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Abstract. We correct the proofs of Theorems 3.3 and 5.2 in [Y. A. P. Osborne and I. Smears,
SIAM J. Numer. Anal., 62 (2024), pp. 138--166]. With the corrected proofs, Theorems 3.3 and 5.2
are shown to be valid without change to their hypotheses or conclusions.
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1. Introduction. In [3, Proof of Theorem 3.3], the passage to the limit from
[3, eq. (4.12)] to [3, eq. (4.15)] is not generally valid when considering a convergent
subsequence of \{ mj\} j\in \BbbN , since [3, eq. (4.12)] holds for mj+1 instead of mj . The con-
sequence is that the argument given there is not sufficient to prove the existence of
a weak solution of the MFG PDI system that is being considered. Likewise, the ar-
gument of the proof of [3, Theorem 5.2], which is entirely analogous in the discrete
setting, is affected in the same way.

We now give correct proofs of Theorems 3.3 and 5.2 of [3]. There is no change to
the statement of the theorems or their hypotheses. The correct argument is similar to
the one in [2, Theorem 3.3], and is based on an application of Kakutani's fixed-point
theorem [5, Chap. 9, Theorem 9.B], which we recall below for completeness.

Theorem 1.1 (Kakutani's fixed point theorem). Suppose that
1. \scrB is a nonempty, compact, convex set in a locally convex space X;
2. \scrV :\scrB \rightrightarrows \scrB is a set-valued map such that \scrV (\~b) is nonempty, closed, and convex

for all \~b\in \scrB ; and
3. \scrV is upper semicontinuous.

Then \scrV has a fixed point: there exists a \~b\ast \in \scrB such that \~b\ast \in \scrV (\~b\ast ).

2. Correction.

2.1. Proof of [3, Theorem 3.3]. Recall that c4 = \| b\| C(\Omega \times \scrA ;\BbbR n) is the Lipschitz
constant of the Hamiltonian given in [3, eq. (2.3b)]. We equip the space L\infty (\Omega ;\BbbR n)
with its weak-\ast topology, noting that it is then a locally convex topological vector
space. Let \scrB denote the ball

\scrB :=
\Bigl\{ 
\~b\in L\infty (\Omega ;\BbbR n) : \| \~b\| L\infty (\Omega ;\BbbR n) \leq c4

\Bigr\} 
.(2.1)

We note that \scrB is nonempty, convex, and is also closed in the weak-\ast topology.
Since L1(\Omega ;\BbbR n) is separable, the weak-\ast topology on \scrB is metrizable [4, Chap. 15].
Moreover, Helly's theorem implies that \scrB is compact.

\ast Received by the editors April 1, 2024; accepted for publication June 20, 2024; published elec-
tronically October 22, 2024.

https://doi.org/10.1137/24M165123X
\dagger University College London, Department of Mathematics, London, WC1H 0AY, UK (yohance.

osborne.16@ucl.ac.uk, i.smears@ucl.ac.uk).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2415

D
ow

nl
oa

de
d 

10
/2

4/
24

 to
 1

44
.8

2.
11

4.
24

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/24M165123X
mailto:yohance.osborne.16@ucl.ac.uk
mailto:yohance.osborne.16@ucl.ac.uk
mailto:i.smears@ucl.ac.uk


2416 YOHANCE A. P. OSBORNE AND IAIN SMEARS

Let M : \scrB \rightarrow H1
0 (\Omega ) be the map defined as follows: for each \~b \in \scrB , let M [\~b] in

H1
0 (\Omega ) be the unique solution of\int 

\Omega 

\bigl( 
\nu \nabla M [\~b] \cdot \nabla \phi +M [\~b]\~b \cdot \nabla \phi + \kappa M [\~b]\phi 

\bigr) 
dx= \langle G,\phi \rangle H - 1\times H1

0
\forall \phi \in H1

0 (\Omega ).(2.2)

The mapM is well-defined thanks to [3, Lemma 4.5]. Next, let U :L2(\Omega )\rightarrow H1
0 (\Omega ) be

the map defined as follows: for each m\in L2(\Omega ), let U [m]\in H1
0 (\Omega ) denote the unique

solution of

\int 
\Omega 

\bigl( 
\nu \nabla U [m] \cdot \nabla \psi +H(x,\nabla U [m])\psi + \kappa U [m]\psi 

\bigr) 
dx= \langle F [m],\psi \rangle H - 1\times H1

0
\forall \psi \in H1

0 (\Omega ).

(2.3)

The map U is well-defined as a result of [3, Lemma 4.6].
We define the set-valued map \scrV :\scrB \rightrightarrows L\infty (\Omega ;\BbbR n) as follows: for each \~b\in \scrB , let

\scrV [\~b] :=DpH
\bigl[ 
U
\bigl[ 
M

\bigl[ 
\~b
\bigr] \bigr] \bigr] 
.(2.4)

In [3, Lemma 4.3] it is implied that \scrV [\~b]\subset \scrB for each \~b \in \scrB , so \scrV : \scrB \rightrightarrows \scrB . Moreover,
for every \~b \in \scrB , the set \scrV [\~b] is nonempty and convex. Indeed, for each \~b \in \scrB the
set \scrV [\~b] is nonempty by [3, Lemma 4.3]. Also, \scrV [\~b] is convex since \partial pH has convex
images. Furthermore, \scrV [\~b] is closed for all \~b\in \scrB thanks to [3, Lemma 4.4].

The existence of a weak solution of the MFG PDI in the sense of [3, Definition
3.1] is equivalent to showing the existence of a fixed point of \scrV , i.e., that there exists
a \~b\ast \in \scrB such that \~b\ast \in \scrV [\~b\ast ]. Indeed, if \~b\ast \in \scrB satisfies \~b\ast \in \scrV [\~b\ast ] then a solution pair
(u,m) of [3, eq. (3.1)] is given by m :=M [\~b\ast ] and u :=U [m] with \~b\ast \in DpH[u], while
the converse is obvious.

We now verify that \scrV is upper semicontinuous. To this end, it suffices to prove
that the graph of \scrV is closed; cf. [1, Chap. 1, Corollary 1, p. 42]. Let \scrW denote the
graph of \scrV , which is defined by

\scrW :=
\Bigl\{ 
(\~b, b)\in \scrB \times \scrB : b\in \scrV [\~b]

\Bigr\} 
.(2.5)

Since \scrB is metrizable, to show that the graph \scrW is a closed it is enough to show that
whenever a sequence \{ (\~bi, bi)\} i\in \BbbN \subset \scrW converges weakly-\ast in \scrB \times \scrB to a point (\~b, b)
as i\rightarrow \infty , then (\~b, b) \in \scrW , which is equivalent to b \in \scrV [\~b]. Let us then suppose that
we are given a sequence \{ (\~bi, bi)\} i\in \BbbN \subset \scrW that converges weakly-\ast in \scrB \times \scrB to a point
(\~b, b) as i\rightarrow \infty . To begin, we claim that M [\~bi] \rightarrow M [\~b] in L2(\Omega ) as i\rightarrow \infty . Indeed,
since \{ \~bi\} i\in \BbbN \subset \scrB , for each i\in \BbbN we apply [3, Lemma 4.5] to obtain the uniform bound

sup
i\in \BbbN 

\| M [\~bi]\| H1(\Omega ) \leq C1\| G\| H - 1(\Omega ).(2.6)

We deduce from this that any given subsequence \{ M [\~bij ]\} j\in \BbbN is uniformly bounded in
H1

0 (\Omega ). The Rellich--Kondrachov compactness theorem then implies that there exists
a further subsequence \{ M [\~bijs ]\} s\in \BbbN and some m \in H1

0 (\Omega ) such that M [\~bijs ]\rightharpoonup m in

H1
0 (\Omega ) andM [\~bijs ]\rightarrow m in L2(\Omega ) as s\rightarrow \infty . By L\infty -weak-\ast \times L2-strong convergence,

we also have that M [\~bijs ]
\~bijs \rightharpoonup m\~b in L2(\Omega ;\BbbR n) as s\rightarrow \infty . Passing to the limit in

the KFP equation (2.2) satisfied by M [\~bijs ] for s\in \BbbN , we deduce that m satisfies\int 
\Omega 

\bigl( 
\nu \nabla m \cdot \nabla \phi +m\~b \cdot \nabla \phi + \kappa m\phi 

\bigr) 
dx= \langle G,\phi \rangle H - 1\times H1

0
\forall \phi \in H1

0 (\Omega ).(2.7)
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But by definition of M [\~b] in (2.2), we see that m =M [\~b] in H1
0 (\Omega ). In other words,

every subsequence of \{ M [\~bi]\} i\in \BbbN has a further subsequence that converges to M [\~b] as
i\rightarrow \infty . It follows that the entire sequence \{ M [\~bi]\} i\in \BbbN converges to M [\~b] in L2(\Omega ) as
i\rightarrow \infty . Then, [3, Lemma 4.6] implies that U [M [\~bi]] \rightarrow U [M [\~b]] in H1

0 (\Omega ) as i\rightarrow \infty .
By hypothesis, bi \in \scrV [\~bi] =DpH[U [M [\~bi]]] for all i \in \BbbN and bi \rightharpoonup 

\ast b in L\infty (\Omega ;\BbbR n) as
i\rightarrow \infty . We conclude from [3, Lemma 4.4] that b \in DpH[U [M [\~b]]], i.e., b \in \scrV [\~b]. We
have, therefore, shown that \scrW is closed, so \scrV is upper semicontinuous.

We have thus shown that the map \scrV : \scrB \rightrightarrows \scrB satisfies all of the conditions of
Kakutani's fixed-point theorem, so \scrV admits a fixed point and there exists a weak
solution of the MFG PDI in the sense of [3, Definition 3.1]. The bounds [3, eqs. (3.5)--
(3.6)] then follow directly from [3, Lemmas 4.5 and 4.6].

2.2. Proof of [3, Theorem 5.2]. The proof of [3, Theorem 5.2] on the existence
of solutions of the discrete problems [3, eq. (5.4)] for each k \in \BbbN is analogous to
the argument above, where the operators M and U are replaced by their discrete
counterparts.

Acknowledgment. The authors would like to thank J. Berry, O. Ley (University
of Rennes), and F. J. Silva (University of Limoges) for pointing out the error in [3]
that motivated us to write this erratum.

REFERENCES

[1] J.-P. Aubin and A. Cellina, Differential Inclusions: Set-valued maps and viability theory, in
Grundlehren Math. Wiss. 264, Springer-Verlag, Berlin, 1984, https://doi.org/10.1007/978-
3-642-69512-4.

[2] R. Ducasse, G. Mazanti, and F. Santambrogio, Second order local minimal-time mean field
games, NoDEA Nonlinear Differential Equations Appl., 29 (2022), 37, https://doi.org/
10.1007/s00030-022-00767-2.

[3] Y. A. P. Osborne and I. Smears, Analysis and numerical approximation of stationary second-
order mean field game partial differential inclusions, SIAM J. Numer. Anal., 62 (2024),
pp. 138--166, https://doi.org/10.1137/22M1519274.

[4] H. Royden and P. Fitzpatrick, Real Analysis, Pearson Modern Classics for Advanced Math-
ematics Series, Pearson, 2018.

[5] E. Zeidler, Nonlinear Functional Analysis and its Applications. I, Fixed-point Theorems,
Springer-Verlag, New York, 1986, translated from the German by Peter R. Wadsack.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/2

4/
24

 to
 1

44
.8

2.
11

4.
24

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1007/978-3-642-69512-4
https://doi.org/10.1007/978-3-642-69512-4
https://doi.org/10.1007/s00030-022-00767-2
https://doi.org/10.1007/s00030-022-00767-2
https://doi.org/10.1137/22M1519274

	Introduction
	Correction
	Proof of [<0:xref 0:ref-type="bibr" 0:rid="r3" >3</0:xref>, Theorem 3.3]
	Proof of [<0:xref 0:ref-type="bibr" 0:rid="r3" >3</0:xref>, Theorem 5.2]

	Acknowledgment
	References

