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Abstract. This article seeks to propose a framework and corresponding paradigm 

for evaluating explanations provided by explainable artificial intelligence (XAI). 

The article argues for the need for evaluation paradigms – different people per-

forming different tasks in different contexts will react differently to different ex-

planations. It reviews previous research evaluating XAI explanations while also 

identifying the main contribution of this work – a flexible paradigm researchers 

can use to evaluate XAI models, rather than a list of factors. The article then 

outlines a framework which offers causal relationships between five key factors 

– mental models, probability estimates, trust, knowledge, and performance. It 

then outlines a paradigm consisting of a training, testing and evaluation phase. 

The work is discussed in relation to predictive models, guidelines for XAI devel-

opers, and adaptive explainable artificial intelligence - a recommender system 

capable of predicting what the preferred explanations would be for a specific do-

main-expert on a particular task. 
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1 Introduction 

Research in Deep Learning (DL) – a large subfield of Machine Learning (ML) – has 

researched and developed Deep Neural Network (DNN) models which are capable of 

high-end performance on a range of complex tasks [1]. A significant number of deep 

neural network models are uninterpretable black-boxes, typically resulting in less trust 

from users [2]. This lack of interpretability and trust can result in negative outcomes – 

people might use an AI that errs, or not use an AI that could increase the likelihood of 

a desired outcome. To address these issues, Explainable Artificial Intelligence (XAI) 

research seeks to build method for explaining the behaviour of black-box models in 

human-understandable terms [3].  

This raises the psychological question of what is a human-understandable explana-

tion, and how to measure people’s reactions to different explanations. In 2016, DARPA 

launched the Explainable AI (XAI) program [4]. It aimed to 1) produce more explain-

able models, 2) design better explanation interfaces, and 3) understand the psycholog-

ical requirements for effective explanations. This paper aims to tackle DARPA’s third 

aim by utilizing methods from cognitive and behavioural science in order to develop a 

framework for evaluating XAI methods from a user’s perspective. It also describes a 
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corresponding human-AI interaction (HAII) paradigm with testable and operational-

ized measures for comparing human-XAI to human-AI (and no-AI) teams. Finally, it 

will outline how the paradigm can generate data that allows for optimizing the distri-

bution of explanations to the right person for the right task. 

1.1 Different explanations for different individuals in different contexts  

A large number of XAI methods have been researched, developed and deployed to im-

prove explainability in DNN models [3]. As it stands it is not clear which method is 

better for a given person at a specific time in a certain context. This is further compli-

cated by the fact that there are different ways in which one can measure an explanations 

benefit to a person. 

Feature importance methods (i.e., saliency methods) provide scores that show the 

importance of a feature (e.g., word vector or pixel) to the AI’s decision [5]. Explana-

tions from this group of methods can either be local or global [6]. Local explanation 

methods, such as LIME (Local Interpretable Model Agnostic Explanations), assign a 

numeric measure of importance to an input variable (i.e., the weighting it has in relation 

to the outcome variable) [7]. Global explanations, such as SHAP (SHapley Additive 

exPlanations) models, provide a numeric measure of importance to each of the input 

variables on the model's output [8]. Further, Concept-based explanations aim to explain 

a models output using pre-defined or auto-discovered sets of human-understandable 

concepts [9]. Finally, counterfactual explanations outline what the outcome of the 

model could have been had input to a model been changed in a certain way [10]. 

The current evidence does not provide a universal account of why different XAI 

methods would be better for a certain person performing a task at a given time. The 

way explanation methods are distributed from an AI to a human will thus not be opti-

mal, reducing the quality of HAII. In human-to-human interaction, Theory of Mind is 

central to a person being able to provide an explanation to another person or to explain 

another person's behaviour [11]. Predictive models of how people react to explanations 

are thus needed.  

Not optimising for what XAI methods are used will lead to at least three broader 

issues. First, explanations might obscure more information than it reveals. In psychol-

ogy, this is referred to as information overload – receiving too much information or 

more specifically when the “amount of input to a system exceeds its processing capac-

ity” [12]. This phenomena holds even when all of the information is task-specific. Re-

cent research has found information overload effects in response to explanations pro-

vided by XAI methods [13]. The more detailed explanations was found to be less useful 

and trustworthy than the less information-rich explanation. Further, there are individual 

differences in how people react to more information rich explanations; specifically, 

people with backgrounds in AI preferred them to people who did not have backgrounds 

in AI [14]. Making normative predictions, such as that more information will result in 

better decisions, is thus not possible. 

Second, explanations are persuasive and will thus influence behaviour and prefer-

ence in currently unpredictable ways. Current research suggests that an XAI compared 

to an AI tool can produce a greater behaviour change [15, 16]. Researchers have also 
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developed XAI methods which can generate misleading explanations that are capable 

of both increasing trust towards the AI whilst misleading domain experts [17]. Under-

standing the direction of the behaviour change, whether it is desirable, and how this 

will differ from one XAI method to another is thus essential. This is especially relevant 

given the bidirectional causal relationship between preference and behaviour [18], al-

lowing influential AI systems to change preference by changing behaviour [19, 20].  

Finally, explanations can produce different outcomes to specific tasks and user 

groups [21]. A systematic review of 137 articles on XAI in different application do-

mains and tasks reveals certain patterns [22]. First, most current research has been di-

rected towards safety-critical domains. Second, visual explanations are on average 

more acceptable to end-users. Finally, studies have mostly been directed at experts us-

ers, with more research needed for how general users react to explanations. Altogether, 

there is a need for a universal account capable of predicting how and why different 

users react to different XAI methods in different application domains. This raises the 

question of how to evaluate people’s reactions towards different XAI explanations.  

1.2 XAI Evaluation 

Current research aiming to evaluate a person’s reaction to an explanation provided by 

an XAI method reveals some initial patterns that can serve as a foundation and inspira-

tion for a broader HAII paradigm for evaluating XAI. A systematics literature review 

of 241 papers explored how the validity and utility of explanations have been evaluated 

by the authors of those XAI methods [23]. Most studies lacked evaluations or conducted 

user studies in simple scenarios. The results show that in 32% of the research papers 

there was no attempt at any type of evaluation. Furthermore, 59% of the research papers 

conducted a user study evaluating the usefulness (i.e., the increase to performance) of 

the explanation (with a small minority also evaluating user trust towards the AI system). 

A final 9% used an algorithmic evaluation, not involving any empirical user research. 

Studies directed at evaluating XAI have been conducted but they tend to use sim-

plistic proxy (“toy tasks”), third-person vignettes, or do not consider any specific tasks 

at all. These studies nevertheless provide useful information on the variables one needs 

to consider when evaluating people’s reactions the explanations. Users want to under-

stand how and why an AI system makes predictions [24]. Different explanations will 

result in variations of people’s performance on a task [25, 26]. Further, explanations 

influence people’s trust in and understanding of an AI, but have no influence on peo-

ple’s perceptions of fairness and their general attitudes towards the AI [13]. However, 

this is not always the case for all explanations. For example, feature importance expla-

nations do not always increase trust, understanding and performance [27]. 

Other researchers have proposed frameworks and taxonomies which outline the met-

rics and variables researchers should consider when evaluating explanations provided 

by XAI [28, 29]. For instance, [30] propose key measurements such as user satisfaction, 

trust, and performance. A crucial contribution to the present paper is that it offers a 

framework which corresponds to a HAII paradigm which can been deployed towards 

different people and application domains.  
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2 Framework 

Based on how explanations have influenced people in previous research, our framework 

posits that from the perspective of a receiver, an effective explanation needs to: 1) pro-

vide knowledge, 2) be trustworthy, 3) be useful, 4) update the receiver's estimation 

about the probability of events occurring, and 5) change the receiver’s mental model 

(See Fig. 1). The causal relationship between each factor is proposed in Fig. 1, with an 

arrow pointing from one factor to another suggesting that the first factor causally influ-

enced the other, and bidirectional arrows suggesting a bidirectional causal relationship. 

 

 
Fig. 1. Framework of key metrics for an effective XAI explanation 

Knowledge. An effective explanation provides knowledge to its users. An AI without 

an explanation allows people to make inferences from the AI’s decisions and detect 

patterns, as shown in [31]. The learning from XAI is more direct. This learning could 

be procedural, measured as a change in a certain ability, or semantic, measured as an 

increase in factual knowledge [32]. 

Trust. An effective explanation is trustworthy. [33] propose that trust is a multidimen-

sional concept, with one being able to trust another’s performance (i.e., the extent to 

which someone is reliable and/or capable) or morals (i.e., the extent to which someone 

is sincere and ethical). Trust can also be operationalized in multiple ways [30]. Fore-

most, trust is predictive of whether people choose to use an AI tool at all, and thus can 

be measured through adoption. Trust can also be measured in terms of the alignment 

between an AI's suggestions and a user’s decisions. Finally, trust can be measured with 

self-reported measures, of which there are many (see [34]). 

Performance. An effective explanation positively impacts a user's performance i.e., 

increases accuracy. Measuring performance in a task is highly context-specific [30]. 

One can also identify whether explanations increase performance at the upper end, or 

increase performance through reducing the frequency of mistakes. 
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Probability Estimates. An effective explanation updates the receiver’s estimation 

about the probability of events occurring. Specifically, this can be operationalized as a 

measure of confidence or certainty in the users’ own predictions [35]. It thus serves as 

a measure of people’s estimates of uncertainty.  

Mental Model. Mental models are representations of how a person understands some 

system. An effective explanation changes the receiver’s mental models about the task, 

the broader application domain, and the AI. People are able to infer causal structures 

from explanations [36]. Explanations establish the presence and change the direction 

of intuited cause and effect relationships between different factors. This in turn influ-

ences other aspects of the user’s cognition (See Fig. 1).  

3 Paradigm 

The outlined paradigm can serve as a foundation for research seeking to evaluate XAI 

explanations. It is intentionally flexible, allowing researchers to pick particular 

measures as they see fit. The HAII paradigm consists of at least three experimental 

groups (See Fig. 2). The XAI group consists of participants performing the task with 

the help of an AI that provides them with explanations. There can be multiple groups if 

multiple XAI methods are being evaluated. Participants in the AI group perform the 

task with the help of an AI. The control group contains participants performing the 

same task without receiving help. In the paradigm participants are given a task, and in 

the XAI and AI group an AI advisor, which they too to do to the best of their ability. 

 

Fig. 2. Experimental groups and phases of the HAII paradigm for evaluating XAI. 

 

 Performance is measured as changes in people’s task-related accuracy, and is context 

dependent. Knowledge is measured as people’s performance in the absence of the AI 

tool (i.e., procedural knowledge) or with questions related to the task and domain (i.e., 
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semantic knowledge). Trust is measured as the alignment between the AI’s advice and 

the human’s decision (i.e., more alignment equals more trust) and with a selected self-

report measure (see [34]). Probability estimates are measured as the probabilities users 

attach to how confident they are in their own decisions for future task performance (on 

a 0-100 scale). Finally, mental models are measured using a nearest neighbor task, 

where participants select the explanation or diagram that best fits their beliefs, or with 

concept mapping, in which users create a diagram which outlines their knowledge [see 

30]. Finally, researchers can also measure participants' socio-demographic background 

or domain-knowledge to identify individual differences in participants’ responses. 

 The paradigm consists of three phases - training, test and evaluation (See Figure 2). 

In the training phase, participants are introduced to the experimental task, and their 

baseline performance and probability estimates are measured for the particular task.  

In the test phase, participants in the XAI and AI groups engage in the same task with 

the aid of their AI tool. The task behaviour that the participants display in this phase of 

the study serves as a measure of their performance. A higher alignment between the 

user’s decision and AI’s prediction implies more trust. At various random points within 

this phase of the paradigm participants will be asked to make probability statements of 

how confident they are in their own decisions. Participants in all groups will then be 

given the same task but without the help of an AI. The task related behaviour here 

serves as a measure of the participants procedural knowledge.  

Finally, in the evaluation phase, participants will be asked a series of questions re-

lated to trust towards AI, semantic knowledge, as well as their mental models about the 

task, domain and AI. They will also be asked questions that can allow researchers to 

identify individual differences. 

4 Discussion 

This articles specified a framework and corresponding paradigm which can inform re-

search seeking to evaluate XAI explanations. Apart from serving as a measure of an 

explanation's effectiveness, the paradigm can generate data that allows for the develop-

ment of predictive models. Such models could predict which explanations are appro-

priate for different domains, tasks, and individuals (e.g., seniority or capacity), as well 

as the appropriate ordering of tasks. The generated insights can be useful for optimizing 

the deployment of XAI methods. 

This predictive framework can provide guidelines for XAI developers. Researchers 

have previously drawn from psychology to propose frameworks for building XAI mod-

els [37]. Such frameworks have been successful when evaluated. A predictive frame-

work could preempt people’s reactions, thus guiding XAI model development.  

By collecting data with this paradigm, research can work towards developing an 

Adaptive Explainable Artificial Intelligence - a recommender system capable of pre-

dicting what the preferred explanations would be for a specific domain-expert on a par-

ticular task. This would involve building a simple, interpretable model, which would 

be given data collected from the paradigm. The model would be capable of prioritiza-

tion - recommending the right XAI method to the right person for the task at hand. 
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Achieving this with a simple model is possible given that the data contains high level, 

well-understood variables. Further, by distilling the data through the paradigm, a simple 

model can also produce salient explanations of its own process by default — a kind of 

meta-interpretability. 
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