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Abstract—This paper investigates block-level interference ex-
ploitation (IE) precoding for multi-user multiple-input single-
output (MU-MISO) downlink systems. To overcome the need for
symbol-level IE precoding to frequently update the precoding
matrix, we propose to jointly optimize all the precoders or trans-
mit signals within a transmission block. The resultant precoders
only need to be updated once per block, and while not necessarily
constant over all the symbol slots, we refer to the technique as
block-level slot-variant IE precoding. Through a careful examina-
tion of the optimal structure and the explicit duality inherent in
block-level power minimization (PM) and signal-to-interference-
plus-noise ratio (SINR) balancing (SB) problems, we discover that
the joint optimization can be decomposed into subproblems with
smaller variable sizes. As a step further, we propose block-level
slot-invariant IE precoding by adding a structural constraint on
the slot-variant IE precoding to maintain a constant precoder
throughout the block. A novel linear precoder for IE is further
presented, and we prove that the proposed slot-variant and slot-
invariant IE precoding share an identical solution when the
number of symbol slots does not exceed the number of users.
Numerical simulations demonstrate that the proposed precoders
achieve a significant complexity reduction compared against
benchmark schemes, without sacrificing performance.

Index Terms—MU-MISO, block-level precoding, symbol-level
precoding, power minimization, SINR balancing, interference
exploitation.

I. INTRODUCTION

W ITH the ever-growing demand for high data rates and

massive access in wireless communications, indepen-

dent data streams need to be spatially multiplexed in the same

resource block via multiple-input multiple-output (MIMO) or

multi-user multiple-input single-output (MU-MISO) systems

[1]–[3]. Transmit precoding/beamforming is a predominant

interference management technology for MIMO communi-

cations [4], [5]. Linear precoding methods leverage only
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the channel state information (CSI) to design the precoder,

assuming the data symbols across different symbol slots

are independent and identically distributed (i.i.d.) Gaussian

random variables. For example, zero forcing (ZF) [6] and

regularized ZF (RZF) precoding [7] use (regularized) channel

inversion to eliminate interference, but the inversion operation

results in limited communication performance. There are also

nonlinear precoding methods such as dirty-paper precoding

(DPC) [8], Tomlinson-Harashima precoding (THP) [5], and

vector perturbation (VP) precoding [9], where the precoded

signal is a nonlinear combination of the data symbols. The

complexity of the above nonlinear precoding methods limit

however their practical implementation [5], [8], [9].

To improve interference management, optimal linear pre-

coding has been proposed, which models the precoding task as

an optimization problem. A variety of optimization techniques

have been investigated to seek solutions under different opti-

mality criteria. Power minimization (PM) linear precoding can

minimize the transmit power while guaranteeing given quality

of service (QoS) conditions, which is commonly expressed

in terms of signal-to-interference-plus-noise ratio (SINR) con-

straints [10], [11]. SINR balancing (SB) linear precoding aims

to provide fairness among users by maximizing the minimum

SINR of all the users in the system, usually subject to a

transmit power constraint [12], [13].

The aforementioned interference management methods treat

the interference as a harmful component that should be elimi-

nated. However, recent studies on IE have provided the novel

insight that the multiuser interference is beneficial when it

is constructive, and can be exploited to improve detection

performance. This technique is also referred to as constructive

interference (CI) precoding [14]–[19]. IE precoding is data

symbol dependent, and the precoder is commonly updated on

a symbol-by-symbol basis, so it is often referred to as symbol-

level precoding (SLP) [17], [19]–[25]. Recently, the idea of IE

via SLP has been studied in various emerging wireless commu-

nication fields, such as reconfigurable intelligent surface (RIS)

[26], [27], low-resolution digital-to-analog converters (DACs)

[28], [29], and integrated sensing and communications (ISAC)

[30], [31].

As promising as the symbol-level IE precoding is, its

need to update the precoder in each symbol slot imposes

implementation challenges that originate from the SLP design

criteria. Based on this observation, a block-level transmit

power constrained SB IE precoding algorithm was proposed

in [32], where a constant IE precoder is designed for an entire

transmission block/frame.

http://arxiv.org/abs/2401.00166v1


2

Given that the precoded symbol-level IE signal can be

viewed as a nonlinear combination of data symbols on the

block level, SLP is commonly classified as nonlinear precod-

ing [33]. The CI-BLP proposed in [32] offers a potential linear

method for IE precoding, since it designs a unified constant

precoder for a collection of data symbols over a transmission

block. However, the work of [32] primarily concentrates on

the SB problem and specifically addresses the scenario where

the number of symbol slots exceeds the number of users. It

thus does not provide proofs for the generic existence of linear

precoding for IE.

To further exploit the potential of block-level optimizations

for IE, in this paper we propose block-level slot-variant and

slot-invariant IE precoding for both PM and SB problems.

Here, ”block-level” refers to the fact that the precoding

optimization is solved once per block, while ”slot-variant”

indicates that the precoding solution can be considered as a

time-varying linear transformation of the data symbols. The

main contributions of this paper are summarized below:

• Block-Level Slot-Variant IE Precoding: We propose

block-level PM and weighted SB slot-variant IE pre-

coders. In a single transmission block/frame, multiple

precoders or equivalently transmit signals are optimized

with block-level performance metrics. The optimal struc-

ture of the precoders is derived for both PM and

(weighted) SB problems. We further prove that the block-

level PM slot-variant IE precoding and the PM-SLP share

the same optimal solution, and the relationship between

SB slot-variant IE precoding and SB-SLP is also derived.

• Block-Level Slot-Invariant IE Precoding: By introducing

a structural constraint on the slot-invariant IE precoding

matrix, we obtain PM and weighted SB IE precoders that

are invariant across the symbol slots within a transmission

block/frame, and hence become block-level slot-invariant

IE precoders. Their optimal structure is revealed by

deriving the Lagrangian dual problems, while a novel

explicit duality is revealed in the proof of the solutions

to the two slot-invariant IE precoding problems.

• Existence of Linear Precoding for IE: On the premise that

the number of symbol slots does not exceed the number of

users, we prove the existence of a constant precoder over

different symbol slots for arbitrary precoding, and reveal

that the IE gain can be achieved by a linear precoder. This

is contrary to the common assumption that IE precoders

must be calculated in each symbol slot to fully exploit

the multiuser interference.

Extensive numerical simulations are conducted to demonstrate

the superiority of the proposed block-level slot-variant and

slot-invariant IE precoding. The simulations also validate our

derivations of the optimality of the linear precoder.

The remainder of this paper is organized as follows. Section

II introduces the system model and preliminaries. Section

III presents the block-level PM/SB slot-variant IE precoding.

Section IV investigates the block-level PM and weighted SB

slot-invariant IE precoding. Section V proposes the novel

linear precoder for IE. Section VI presents the numerical

results, and Section VII concludes the paper.

Notation: Scalars, vectors, and matrices are denoted by

plain lower-case, bold lower-case, and bold capital letters,

respectively. (·)T , (·)H , and (·)−1 denote transpose, conjugate

transpose, and inverse operators, respectively. CM×N and

RM×N denote the sets of M ×N matrices with complex and

real entries, respectively. |·| represents the absolute value of a

real scalar or the modulus of a complex scalar. ‖·‖ denotes the

Euclidean norm of a vector or spectral norm of a matrix. ℜ{·}
and ℑ{·} respectively denote the real part and imaginary part

of a complex input. � denotes element-wise inequality. 0, 1,

and I represent respectively, the all-zeros vector, the all-ones

vector, and the identity matrix. ⊘ denotes the element-wise

division. diag{·} returns a diagonal matrix with the entries of

the input vector on the main diagonal.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

We consider a time-division duplex (TDD) MU-MISO

downlink system with Nt transmit antennas and Nr single-

antenna users. Assume the channel is constant over a trans-

mission block/frame, which consists of Ns symbol slots. The

received signal ỹk,i at the k-th user in the i-th symbol slot can

be represented as

ỹk,i = h̃
T
k w̃

k
i s̃k,i

︸ ︷︷ ︸

desired signal

+

Nr∑

g=1,g 6=k

h̃
T
k w̃

g
i s̃g,i

︸ ︷︷ ︸

interference

+ z̃k,i
︸︷︷︸

noise

= h̃
T
k W̃is̃:,i + z̃k,i = h̃

T
k x̃i + z̃k,i, (1)

where h̃k ∈ CNt represents the channel between the trans-

mitter and the k-th user; s̃k,i and z̃k,i ∼ CN (0, σ2) denote

the modulated data symbol and the additive white Gaussian

noise of the k-th user in the i-th symbol slot; W̃i ,
[

w̃
1

i · · · w̃
Nr

i

]
∈ CNt×Nr , s̃:,i , [s̃k,i, · · · , s̃Nr,i]

T
, and

x̃i , W̃is̃:,i denote the precoder, the data symbol vector,

and the precoded transmit signal in the i-th symbol slot,

respectively. We assume phase-shift keying (PSK) signaling

in this paper, but the IE design can be readily extended

to quadrature amplitude modulation (QAM) [32], [34]. The

term ‘precoding technique’ or ‘precoder design’ refers to the

computation of the precoder W̃i, and it can also mean the

direct computation of the transmit signal vector x̃i. Given the

transmit signal vector x̃i and any data symbol vector s̃:,i, the

precoder W̃i can be obtained by the following expression [34]:

W̃i = x̃i

s̃
H
:,i

s̃H
:,is̃:,i

. (2)

The precoding matrix varies with the symbol slots when

slot-variant BLP or SLP is adopted. When slot-invariant BLP

is employed at the transmitter, a constant precoding matrix will

be used to precode all the Nr ×Ns data symbols transmitted

in one transmission block/frame. In such cases, we omit the

subscript of the block-level slot-invariant precoder, i.e., W̃i =
W̃j 6=i = W̃.
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Fig. 1. Geometric interpretation of IE for a generic M-PSK constellation.

B. Interference Exploitation

The interference term
∑Nr

g=1,g 6=k h̃
T
k W̃is̃g,i in (1) is often

treated as noise to be eliminated or suppressed. On the

contrary, with the aid of CSI and knowledge of the data

symbols, IE precoding manages to convert the interference

part of the received signal into CI by optimizing the noise-

less received signal [18]. To measure the quality of service

(QoS) of a specific IE precoding technique, we introduce the

instantaneous SINR of the k-th user in the i-th symbol slot

as SINRk,i ,
|h̃T

k x̃i|2
σ2 [18], which can also be viewed as an

indirect indicator of the degree of IE.

It should be noted that the instantaneous SINR is effective

only when the interference is exploited and the noiseless

received signal is pushed deeper into the detection region.

Fig. 1 gives a geometric interpretation of the idea of IE for

a generic M-PSK constellation, where
−→
OS = s̃k,i,

−→
OA =√

γk,iσs̃k,i, and
−−→
OB = h̃

T
k x̃i denote the data symbol, the

nominal received data symbol with instantaneous SINR thresh-

old SINRk,i ≥ γk,i |s̃k,i|2, and the noiseless received signal,

respectively. We can observe that as long as the noiseless

received signal
−−→
OB lies in the CI region, IE is achieved with

a certain SINR threshold. Leveraging the method proposed in

[34], we orthogonally decompose
−−→
OB along the direction of−→

OS, then we have
−−→
OB =

−−→
OC +

−−→
CB, where

−−→
CB intersects

with the nearest CI region boundary at point D. In this way,

we can readily formulate the condition for the received signal

to be located in the CI region as

∣
∣
∣
−−→
CD

∣
∣
∣ ≥

∣
∣
∣
−−→
CB

∣
∣
∣. After some

transformations, the CI constraints for the IE system can be

written in terms of the instantaneous SINR threshold as [18]

ℜ
{

ĥ
T
k x̃i

}

−

∣
∣
∣ℑ
{

ĥ
T
k x̃i

}∣
∣
∣

tan π
M

≥ √
γk,iσ, ∀k, (3)

where ĥ
T
k ,

h̃
T
k

s̃k,i
. Since the instantaneous SINR thresholds are

incorporated into the CI constraints, we use the terms SINR

constraints and CI constraints interchangeably in this paper.

III. BLOCK-LEVEL SLOT-VARIANT

INTERFERENCE-EXPLOITATION PRECODER

In this section, we propose a slot-variant IE precoder

that only needs to compute the precoders or transmit signal

vectors once per transmission block/frame while coherently

considering the communication performance for all the symbol

slots. Moreover, the proposed block-level optimizations can

achieve long-term operation, instead of focusing only on the

short-term symbol-level design metrics.

A. PM Slot-Variant IE Precoder

To design a slot-variant IE precoder for the PM problem, the

transmitter aims to minimize the block-level transmit power

while satisfying the prescribed SINR constraints for the noise-

less received signal of all the Nr users over each symbol slot.

Therefore, the symbol-level transmit power objective function

in the PM-SLP problem mentioned in [18] is relaxed to block-

level transmit power. This allows for a joint optimization

of the precoder over a collection of symbol slots within a

transmission block. It can be formulated in each transmission

block as

min
{x̃i}

Ns∑

i=1

‖x̃i‖2

s.t. ℜ
{

ĥ
T
k x̃i

}

−

∣
∣
∣ℑ
{

ĥ
T
k x̃i

}∣
∣
∣

tan π
M

≥ √
γk,iσ, ∀k, ∀i. (4)

The formulation in (4) is a linearly constrained quadratic

programming problem, and thus is convex. Although it can

be solved using standard optimization tools like CVX, effi-

ciently addressing it with customized algorithms poses chal-

lenges. The first and foremost obstacle is the complex-valued

optimization variables and sophisticated constraint structure.

Therefore we reformulate problem (4) into a real-valued

equivalent form with explicit linear constraints:

min
{xi}

Ns∑

i=1

‖xi‖2 s.t. TŜiHxi � bi, ∀i, (5)

where

xi ,

[
ℜ{x̃i}
ℑ {x̃i}

]

∈ R
2Nt , ∀i, (6a)

T ,

[

I − 1

tan
π
M

I

1

tan
π
M

I I

]

∈ R
2Nr×2Nr , (6b)

Ŝi ,




ℜ
{

S̃i

}

−ℑ
{

S̃i

}

ℑ
{

S̃i

}

ℜ
{

S̃i

}



 ∈ R
2Nr×2Nr , ∀i, (6c)

S̃i ,diag {1⊘ s̃:,i} ∈ R
Nr×Nr , ∀i, (6d)

H ,




ℜ
{

H̃

}

−ℑ
{

H̃

}

ℑ
{

H̃

}

ℜ
{

H̃

}



 ∈ R
2Nr×2Nt , (6e)

H̃ ,
[

h̃1 · · · h̃Ns

]T ∈ R
Nr×Nt , (6f)

bi ,
[

b̃
T
i b̃

T
i

]T ∈ R
2Nr , ∀i, (6g)

b̃i ,
[√

γ1,iσ · · · √
γNr,iσ

]T ∈ R
Nr , ∀i. (6h)
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The real-valued PM problem for the slot-variant IE precoder

has a simplified structure compared with the complex-valued

one. It is however still not trivial to obtain the optimal solution

due to the irregular polyhedral feasible region in (5). Since its

convexity guarantees that the duality gap is zero, we can derive

the optimal solution structure of (5) by further formulating its

dual problem and leveraging Lagrangian duality.

B. Optimal Structure for PM Slot-Variant IE Precoder

To derive the optimal precoder structure, we first write the

Lagrangian function of (5):

L ({xi} , {λi}) ,
Ns∑

i=1

‖xi‖2 + λ
T
i

(

bi −TŜiHxi

)

, (7)

where λi is the Lagrangian dual variable associated with the

CI constraints in the i-th symbol slot. The Karush-Kuhn-

Tucker (KKT) optimal conditions are given by

TŜiHxi �bi, ∀i, (8)

λi �0, ∀i, (9)

λi,k

(

bi −TŜiHxi

)

k
=0, ∀k, ∀i, (10)

∂L ({xi} , {λi})
∂xi

=0, ∀i, (11)

where λi,k and
(

bi −TŜiHxi

)

k
denote the k-th entry of λi

and bi −TŜiHxi, respectively. From (11) we have

2xi −H
T
T

T
Ŝ
T
i λi = 0, ∀i. (12)

Therefore, the optimal solution of (5) is given by

xi =
1

2
H

T
T

T
Ŝ
T
i λi, ∀i. (13)

The dual problem of (5) is to maximize the dual function,

i.e., g ({λi}) , min{xi} L ({xi} , {λi}), subjected to non-

negative constraints. It can be written as:

max
{λi}

min
{xi}

L ({xi} , {λi}) s.t. λi � 0, ∀i. (14)

By substituting the optimal solution structure (13) into the

above dual problem, we can reformulate it in the following

form:

min
{λi}

Ns∑

i=1

1

4
λ
T
i ŜiTHH

T
T

T
Ŝ
T
i λi − λ

T
i bi

s.t. λi � 0, ∀i. (15)

This problem is much simpler than the original problem in

(5). Since the polyhedral constraints are transferred to simple

nonnegative constraints.

C. SB Slot-Variant IE Precoder

In designing a block-level slot-variant IE precoder for the

SB problem, we aim to attain fairness among all the users over

a transmission block by balancing the instantaneous received

SINR. It can be seen from Fig. 1 that the aforementioned

rationale can be interpreted as maximizing the minimum

amplitude of
−→
OA over Ns symbol slots, which is formulated

as an optimization problem on the precoding matrix in (16) at

the top of the next page.

Since handling such a max-min problem is difficult, we

recast it as a maximization problem by introducing an auxiliary

variable t. The new problem can be formulated as:

max
{x̃i}, t

t

s.t. ℜ
{

ĥ
T
k x̃i

}

−

∣
∣
∣ℑ
{

ĥ
T
k x̃i

}∣
∣
∣

tan π
M

≥ t
√
γk,iσ, ∀k, ∀i,

Ns∑

i=1

‖x̃i‖2 ≤
Ns∑

i=1

pi, (17)

where pi denotes the transmit power budget for the i-th

symbol slot, and
∑Ns

i=1
pi denotes the block-level transmit

power budget. With a slight abuse of notation, we will let
1√
γk,i

denote the square root of the weight applied to SINRk,i

in the context of the weighted SB problem. Similar to our

manipulations on the PM problem, we again reformulate the

above problem into a real-valued form:

min
{xi},t

− t

s.t. TŜiHxi � tbi, ∀i,
Ns∑

i=1

‖xi‖2 ≤
Ns∑

i=1

pi, (18)

where the definitions follow those in (6). This is a quadratically

constrained linear programming problem, and thus is convex.

Proposition 1: The block level transmit power constraint

in (18) is active when optimality is achieved, i.e.,

Ns∑

i=1

‖xi‖2 =

Ns∑

i=1

pi. (19)

Proof: Assume the above proposition does not hold, then

the optimal solution satisfies
∑Ns

i=1
‖xi‖2 ≤∑Ns

i=1
pi. We can

always find a feasible solution {ẋi} = α {xi} , α ≥ 1, such

that TŜiHẋi � αtbi, ∀i, which contradicts the optimality of

t.

In the next subsection, we will derive the optimal solution

structure and formulate the Lagrangian dual problem.

D. Optimal Structure for SB Slot-Variant IE Precoder

The Lagrangian function of (18) is defined by

L ({xi} , {λi} , µ) ,− t+

Ns∑

i=1

λ
T
i

(

tbi −TŜiHxi

)

+ µ

(
Ns∑

i=1

‖xi‖2 −
Ns∑

i=1

pi

)

, (20)

where λi is the Lagrangian dual variable associated with the

CI constraints in the i-th symbol slot, and µ is the Lagrangian

dual variable associated with the block-level transmit power

constraint.
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max
{x̃i}

min
k,i

argmin







1
√
γk,iσ



ℜ
{

ĥ
T
k x̃i

}

−
ℑ
{

ĥ
T
k x̃i

}

tan π
M



 ,
1

√
γk,iσ



ℜ
{

ĥ
T
k x̃i

}

+
ℑ
{

ĥ
T
k x̃i

}

tan π
M











s.t.

Ns∑

i=1

‖x̃i‖2 ≤
Ns∑

i=1

pi (16)

To derive the Lagrangian dual problem, we write the KKT

optimal conditions below:

TŜiHxi �tbi, ∀i, (21)

Ns∑

i=1

‖xi‖2 ≤
Ns∑

i=1

pi, (22)

λi �0, ∀i, (23)

µ ≥0, (24)

λi,k

(

tbi −TŜiHxi

)

k
=0, ∀k, ∀i, (25)

µ

(
Ns∑

i=1

‖xi‖2 −
Ns∑

i=1

pi

)

=0, (26)

∂L ({xi} , {λi} , µ)
∂xi

=0, ∀i, (27)

∂L ({xi} , {λi} , µ)
∂t

=0, (28)

where λi,k and
(

tbi −TŜiHxi

)

k
denote the k-th entry of

λi and t1 − TŜiHxi, respectively. From Proposition 1, we

see that the block-level transmit power constraint cannot be

ignored, therefore µ 6= 0. Then based on the stationarity

condition in (27), we can directly write the optimal solution

structure for the block-level SB slot-variant IE precoder as:

xi =
1

2µ
H

T
Ŝ
T
i T

T
λi, ∀i. (29)

We can subsequently write the dual function as:

g ({λi} , µ) ,min
{xi}

L ({xi} , t, {λi} , µ)

=− 1

4µ

Ns∑

i=1

λ
T
i TŜiHH

T
Ŝ
T
i T

T
λi − µ

Ns∑

i=1

pi.

(30)

Substituting the optimal solution structure (29) into (19),

we can write µ in terms of {λi} as:

µ =

√
√
√
√

∑Ns

i=1
λT
i TŜiHHT ŜT

i T
Tλi

4
∑Ns

i=1
pi

. (31)

Therefore, the optimal solution structure for the block-level

SB slot-variant IE precoder in (29) turns out to be:

xi =

√
√
√
√

∑Ns

i=1
pi

∑Ns

i=1
λT
i TŜiHHT ŜT

i T
Tλi

H
T
Ŝ
T
i T

T
λi, ∀i. (32)

By substituting (31) into (30), the dual variable µ therein

can be eliminated. Thus the dual function can be reformulated

as:

g ({λi}) ,min
{xi}

L ({xi} , t, {λi} , µ)

=−

√
√
√
√

Ns∑

j=1

pj

Ns∑

i=1

λT
i TŜiHHT ŜT

i T
Tλi. (33)

Since the square root function is monotonic, the dual problem

of (18) can be expressed as:

min
{λi}

Ns∑

i=1

λ
T
i TŜiHH

T
Ŝ
T
i T

T
λi

s.t. λi � 0, ∀i,
Ns∑

i=1

b
T
i λi − 1 = 0. (34)

E. Relationship to Traditional PM/SB-SLP

In this subsection, we begin by proving that the block-level

PM slot-variant IE precoding and PM-SLP share an identical

optimal solution, then present the explicit duality between

block-level PM and SB slot-variant IE precoders, based on

which we investigate the connections between block-level SB

slot-variant IE precoder and the conventional SB-SLP in [18].

In the i-th symbol slot, the PM-SLP approach designs the

transmit signal x̃i using [18]:

min
x̃i

‖x̃i‖2

s.t. ℜ
{

ĥ
T
k x̃i

}

−

∣
∣
∣ℑ
{

ĥ
T
k x̃i

}∣
∣
∣

tan π
M

≥ √
γk,iσ, ∀k. (35)

We summarize the connections between the proposed block-

level PM slot-variant IE precoder and the existing PM-SLP in

the following theorem.

Theorem 1: The block-level PM slot-variant IE precoder

(4) and the PM-SLP precoder (35) have identical optimal

solutions and precoding matrices in each symbol slot.

Proof: Note that in (4), the constraints on x̃i are indepen-

dent of the choice of other x̃j , ∀j 6= i, and the contributions of

each x̃i to the criterion function do not dependent on the other

x̃j , ∀j 6= i. Therefore, we can decompose the block-level PM

slot-variant IE precoding problem (4) into Ns subproblems

over the symbol slots and solve them independently, which

means that the optimal solutions to the problem for block-

level PM slot-variant IE precoder and PM-SLP problem are

identical.
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The weighted SB-SLP problem in the i-th symbol slot can

be formulated as [18], [34]

max
x̃i,ti

ti

s.t. ℜ
{

ĥ
T
k x̃i

}

−

∣
∣
∣ℑ
{

ĥ
T
k x̃i

}∣
∣
∣

tan π
M

≥ ti
√
γk,iσ, ∀k,

‖x̃i‖2 ≤ pi. (36)

Before investigating the block-level SB slot-variant IE pre-

coder’s relationship to SB-SLP, let us review the explicit

duality for PM/SB-SLP.

Lemma 1 (Duality for Symbol-Level IE Precoding [34]):

The PM-SLP problem (35) and the SB-SLP problem (36)

are dual problems. Let x
PM
i ({γk,i}) and pPM

i ({γk,i}) ,

‖xPM
i ({γk,i}) ‖2 denote the optimal solution and the optimal

value of the PM-SLP problem (35) given {γk,i}, respec-

tively. Then the counterparts for the SB-SLP problem (36),

x
SB
i ({γk,i} , pi) and µSB

i ({γk,i} , pi), are given by

x̃
SB
i ({γk,i} , pi) =

√
pi

pPM
i ({γk,i})

x̃
PM
i ({γk,i}) , (37)

tSB
i ({γk,i} , pi) =

√
pi

pPM
i ({γk,i})

. (38)

and vice versa as

x̃
PM
i ({γk,i}) =

1

tSB
i ({γk,i} , pi)

x̃
SB
i ({γk,i} , pi) , (39)

pPM
i ({γk,i}) =

pi
(
tSB
i ({γk,i} , pi)

)2
. (40)

Proof: A detailed proof can be found in [34].

A useful explicit duality for the block-level slot-variant IE

precoders can be subsequently demonstrated below.

Theorem 2 (Duality for Block-Level Slot-Variant IE

Precoding): The block-level PM slot-variant IE precoder in

(4) and the SB slot-variant IE precoder in (17) are dual

problems. Let
{
x̃
PM
i ({γk,i})

}
and

∑Ns

i=1
pPM
i ({γk,i}) ,

∑Ns

i=1
‖x̃PM

i ({γk,i}) ‖2 denote the optimal solution and the

optimal value of the block-level PM slot-variant IE precoding

problem (4) given {γk,i}, respectively. Then the counterparts

for the block-level SB slot-variant IE precoding problem (17),{

x̃
SB
i

(

{γk,i} ,
∑Ns

i=1
pi

)}

and tSB
(

{γk,i} ,
∑Ns

i=1
pi

)

, are

determined as

x̃
SB
i

(

{γk,i} ,
Ns∑

i=1

pi

)

=

√
√
√
√

∑Ns

i=1
pi

∑Ns

i=1
pPM
i ({γk,i})

×

x̃
PM
i ({γk,i}) , ∀i, (41)

tSB

(

{γk,i} ,
Ns∑

i=1

pi

)

=

√
√
√
√

∑Ns

i=1
pi

∑Ns

i=1
pPM
i ({γk,i})

. (42)

and vice versa as

x̃
PM
i ({γk,i}) =

1

tSB

(

{γk,i} ,
∑Ns

i=1
pi

)×

x̃
SB
i

(

{γk,i} ,
Ns∑

i=1

pi

)

, ∀i, (43)

Ns∑

i=1

pPM
i ({γk,i}) =

∑Ns

i=1
pi

(

tSB

(

{γk,i} ,
∑Ns

i=1
pi

))2
. (44)

Proof: The proof is similar to that of Lemma 1 and is

therefore omitted.

Theorem 3: The optimal solutions to the block-level SB

slot-variant IE precoder in (17) and the SB-SLP problem (36)

are symbol-level scaled versions of each other. Let x̃BL
i and

x̃
SL
i be the solutions in the i-th symbol slot to the block-

level SB slot-variant IE precoding problem (17) and the SB-

SLP problem (36), respectively. These solutions are related as

follows:

x̃
BL
i =

1

ti

√
√
√
√

∑Ns

j=1
pj

∑Ns

j=1

pj

t2
j

x̃
SL
i , ∀i, (45)

x̃
SL
i =

√
pi

∥
∥x̃BL

i

∥
∥
2
x̃
BL
i , ∀i. (46)

Proof: From Theorem 2, we see that the block-level

SB slot-variant IE precoder in (17) is a scaled version of

the block-level PM slot-variant IE precoder in (4). Together

with Theorem 1, it follows that the block-level SB slot-

variant IE precoder in (17) is a power scaled version of the

optimal solution to the PM-SLP problem (35). From Lemma

1, we further conclude that the block-level SB slot-variant IE

precoder in (17) is a symbol-level scaled version of the optimal

solution to the SB-SLP problem (36), and vice versa. The rest

of this proof addresses (45) and (46).

Based on Lemma 1, the optimal transmit power of the PM-

SLP problem is pPM
i = pi, and the optimal auxiliary variable

of the SB-SLP problem is tSB
i = 1. Therefore the minimum

instantaneous received SINRs in each symbol slot
{
tSB
i

}
are

identical and equal to 1 in this case.

Given an arbitrary block-level transmit power budget, the

optimal solution to the block-level SB slot-variant IE precod-

ing problem (17) can be derived from the optimal solution to

the SB-SLP problem (36) by normalizing the minimum instan-

taneous received SINRs to the same level, i.e., multiplying by
1

ti
, and subsequently rescaling the transmit power to satisfy

the block-level transmit power constraint by multiplying by√
∑Ns

j=1
pj

∑Ns
j=1

pj

t2
j

. Conversely, the optimal solution to the SB-SLP

problem (36) can be obtained by rescaling the block-level SB

slot-variant IE precoder such that it satisfies the symbol-level

transmit power constraint.

IV. BLOCK-LEVEL SLOT-INVARIANT

INTERFERENCE-EXPLOITATION PRECODER

To find a further compromise between performance and

complexity, we design block-level PM and SB slot-invariant
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IE precoders in this section.

A. PM Slot-Invariant IE Precoder

The goal of the PM slot-invariant IE precoder is to minimize

the block-level transmit power while adhering to CI con-

straints. In comparison to the PM slot-variant IE precoder de-

sign, this approach involves shifting the optimization variable

from slot-variant IE precoders to a unified slot-invariant IE

precoder. The optimization problem for the PM slot-invariant

IE precoder is given by

min
W̃

Ns∑

i=1

∥
∥
∥W̃s̃:,i

∥
∥
∥

2

s.t. ℜ
{

ĥ
T
k W̃s̃:,i

}

−

∣
∣
∣ℑ
{

ĥ
T
k W̃s̃:,i

}∣
∣
∣

tan π
M

≥ √
γk,iσ, ∀k, ∀i,

(47)

This problem is a linear constrained quadratic programming,

and thus can be solved by off-the-shelf convex optimizers.

To rewrite the complex-valued problem in (47), we intro-

duce the following set of real-valued matrices:

W ,




ℜ
{

W̃

}

−ℑ
{

W̃

}

ℑ
{

W̃

}

ℜ
{

W̃

}



 ∈ R
2Nt×2Nr , (48a)

W ,

[

ℜ
{

W̃

}

−ℑ
{

W̃

}]

∈ R
Nt×2Nr , (48b)

P1 ,

[
I

0

]

∈ R
2Nt×Nt , (48c)

P2 ,

[
0

I

]

∈ R
2Nt×Nt , (48d)

P3 ,

[
0 I

−I 0

]

∈ R
2Nr×2Nr . (48e)

It is easy to verify that

W =P1W +P2WP3, (49)

P
T
1 P1 =P

T
2 P2 = I, (50)

P
T
1 P2 =P

T
2 P1 = 0. (51)

We are now prepared to formulate the real-valued problem

that corresponds to the complex-valued problem for the PM

slot-invariant IE precoder (47):

min
W,W

Ns∑

i=1

‖Ws:,i‖2

s.t. TŜiHWs:,i � bi, ∀i, W = P1W +P2WP3. (52)

The matrix constraint W = P1W+P2WP3 is introduced to

ensure that the optimal real-valued precoder W arranges the

real and imaginary parts of the complex-valued precoder W̃ as

defined in (48). This problem can be simplified by eliminating

the variable matrix W:

min
W

Ns∑

i=1

∥
∥
(
P1W +P2WP3

)
s:,i

∥
∥
2

s.t. TŜiH
(
P1W +P2WP3

)
s:,i � bi, ∀i. (53)

It can be seen that the above problem preserves the quadratic

objective function and linear constraints of (47). However,

directly handling this problem is complicated due to the high-

dimensional optimization variable W and the underlying ma-

trix structure constraint. To address this, we will examine the

problem from a Lagrangian dual perspective in the following

subsections.

B. Optimal Structure for PM Slot-Invariant IE Precoder

To formulate the Lagrangian dual problem, we begin by

writing the Lagrangian function associated with (53) as fol-

lows:

L
(
W,

{
λi }) ,

Ns∑

i=1

∥
∥
(
P1W +P2WP3

)
s:,i

∥
∥
2

+λ
T
i

[

bi −TŜiH
(
P1W +P2WP3

)
s:,i

]

, (54)

where λi is the non-negative Lagrange dual variable vector

or Lagrange multiplier associated with the CI constraints

TŜiH
(
P1W +P2WP3

)
s:,i � bi in the i-th symbol slot.

From the convexity of (53), the duality gap is zero. When the

primal variable W and dual variable {λi} achieve optimality,

the following KKT conditions must be satisfied:

TŜiH
(
P1W +P2WP3

)
s:,i �bi, ∀i, (55)

λi �0, ∀i, (56)

λi,k

[

TŜiH
(
P1W +P2WP3

)]

k,:
s:,i =λi,kbi,k, ∀k, ∀i,

(57)

∂L
(
W,

{
λi })

∂W
=0, (58)

where λi,k and
[

TŜiH
(
P1W +P2WP3

)]

k,:
respectively

denote the k-th component of λi and the k-th row of

TŜiH
(
P1W +P2WP3

)
.

The stationarity condition in (58) can be attained by setting

the partial derivative of L
(
W,

{
λi }) with respect to the

primal variable W to zero:

Ns∑

i=1

2W
(
s:,is

T
:,i +P3s:,is

T
:,iP

T
3

)
−P

T
1
H

T
Ŝ
T
i T

T
λis

T
:,i

−P
T
2
H

T
Ŝ
T
i T

T
λis

T
:,iP

T
3
= 0. (59)

When Ns ≥ Nr, the rank of matrix
∑Ns

i=1
s:,is

T
:,i +

P3s:,is
T
:,iP

T
3

is 2Nr, indicating that it is non-singular. With

this information, the optimal solution of the real-valued PM

problem (53) is given by

W =

∑Ns

i=1
P

T
1
H

T
Ŝ
T
i T

T
λis

T
:,i +P

T
2
H

T
Ŝ
T
i T

T
λis

T
:,iP

T
3

2
∑Ns

i=1
s:,is

T
:,i +P3s:,is

T
:,iP

T
3

.

(60)

The KKT conditions indicate that the optimal primal vari-

able can optimize the Lagrangian function L
(
W,

{
λi }) at

the zero derivative point. Having obtained the optimal solution

in (60), we can substitute it into the Lagrangian function to

eliminate the primal variable W. This process allows us to

obtain the dual function, as given by Proposition 2 below.
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Proposition 2: Assuming that Ns ≥ Nr, the dual function

of the problem for the PM slot-invariant IE precoder (53) is

given by

g (λ) ,− 1

4
λ
T
Uλ + λ

T
b. (61)

Proof: See Appendix A.

As a result, we obtain the dual problem for the PM slot-

invariant IE precoder (53) as follows:

min
λ

1

4
λ
T
Uλ− b

T
λ s.t. λ � 0. (62)

Compared with the primal problem in (53), the structure of

the dual problem in (62) is much simpler. First, the two

problems have different optimization variables. By deriving

the dual problem, we reduce the dimension of the optimization

variable from 2NsNt × 2NsNr to 2NsNr. Second, although

both problems are linearly constrained quadratic programming

problems, the non-negative constraints in the dual problem are

easier to handle compared to the polyhedral constraints in the

primal problem.

In the scenario where Ns < Nr, the rank of matrix
∑Ns

i=1
s:,is

T
:,i +P3s:,is

T
:,iP

T
3

is 2Ns and thus it is singular. A

unique Moore-Penrose pseudoinverse can be used to replace

the matrix inverse of
∑Ns

i=1
s:,is

T
:,i+P3s:,is

T
:,iP

T
3

in the above

optimal structure and dual problem.

C. SB Slot-Invariant IE Precoder

Following the previous designs for block-level slot-variant

and slot-invariant IE precoders, the slot-invariant IE precoder

proposed in this section can also be applied to the weighted

SB problem. As a result, the complex-valued optimization

problem for the weighted SB slot-invariant IE precoder can

be represented as

max
W̃,t

t

s.t.ℜ
{

ĥ
T
k W̃s̃:,i

}

−

∣
∣
∣ℑ
{

ĥ
T
k W̃s̃:,i

}∣
∣
∣

tan π
M

≥ t
√
γk,iσ, ∀k, ∀i,

Ns∑

i=1

∥
∥
∥W̃s̃:,i

∥
∥
∥

2

≤
Ns∑

i=1

pi. (63)

The real-valued form of (63) can be written as

max
W,t

t

s.t. TŜiH
(
P1W +P2WP3

)
s:,i ≥ tbi, ∀i,

Ns∑

i=1

∥
∥
(
P1W +P2WP3

)
s:,i

∥
∥
2 ≤

Ns∑

i=1

pi. (64)

Similar to Proposition 1, the above block-level transmit power

constraint is also active as long as optimality is achieved.

When
{√

γk,iσ
}

equals 1, this problem is equivalent to

the optimization problem proposed in [32], referred to as CI-

BLP, in which the symbol-scaling CI metric was employed to

formulate the problem that maximizes the minimum CI effect

of an entire transmission block and subject to a block-level

power constraint.

D. Optimal Structure for SB Slot-Invariant IE Precoder

For the sake of completeness, we give the optimal solution

of the real-valued problem for SB slot-invariant IE precoder

below and omit the derivations:

W =

∑Ns

i=1
P

T
1
H

T
Ŝ
T
i T

T
λis

T
:,i +P

T
2
H

T
Ŝ
T
i T

T
λis

T
:,iP

T
3

2µ
∑Ns

i=1
s:,is

T
:,i +P3s:,is

T
:,iP

T
3

,

(65)

where µ = 1

2

√
λTUλ
∑Ns

i=1
pi

.

Following a procedure similar to that in Section III-D and

Section IV-B, the dual problem of (64) can be shown to be

min
λ

λ
T
Uλ s.t. λ � 0, b

T
λ− 1 = 0. (66)

E. Duality Between PM and SB Slot-Invariant IE Precoders

In this subsection, we investigate the properties of the

PM and SB slot-invariant IE precoding problems, and extend

the explicit duality for block-level slot-variant IE precoding

proposed in Section III-E to slot-invariant IE precoding.

Let W̃
PM ({γk,i}) and

∑Ns

i=1
pPM
i ({γk,i}) ,

∑Ns

i=1

∥
∥
∥W̃

PM ({γk,i}) s̃:,i
∥
∥
∥

2

denote the optimal solution

and objective value of the block-level PM slot-

invariant IE precoding problem (47) given {γk,i}.

W̃
SB
(

{γk,i} ,
∑Ns

i=1
pi

)

and tSB
(

{γk,i} ,
∑Ns

i=1
pi

)

are the

optimal counterparts for the block-level SB slot-invariant IE

precoding problem (63) given {γk,i} and
∑Ns

i=1
pi.

Theorem 4 (Duality for Block-Level Slot-Invariant IE

Precoding): The block-level PM slot-invariant IE precoder

in (47) and SB slot-invariant IE precoder in (63) are dual

problems. The explicit duality between them can be expressed

as

W̃
SB

(

{γk,i} ,
Ns∑

i=1

pi

)

=

√
√
√
√

∑Ns

i=1
pi

∑Ns

i=1
pPM
i ({γk,i})

×

W̃
PM ({γk,i}) , ∀i, (67)

tSB

(

{γk,i} ,
Ns∑

i=1

pi

)

=

√
√
√
√

∑Ns

i=1
pi

∑Ns

i=1
pPM
i ({γk,i})

. (68)

and vice versa as

W̃
PM ({γk,i}) =

1

tSB

(

{γk,i} ,
∑Ns

i=1
pi

)×

W̃
SB

(

{γk,i} ,
Ns∑

i=1

pi

)

, ∀i, (69)

Ns∑

i=1

pPM
i ({γk,i}) =

∑Ns

i=1
pi

(

tSB

(

{γk,i} ,
∑Ns

i=1
pi

))2
. (70)

Proof: Verbatim to the proof of Theorem 1 in [34].

V. LINEAR PRECODER FOR INTERFERENCE EXPLOITATION

In this section, we present an in-depth investigation on

the existence of a linear precoder for IE. Additionally, we

demonstrate the intrinsic connections between the block-level
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precoders proposed in this paper and the conventional linear

precoder. Furthermore, we propose a novel linear precoder

under the assumption that the number of symbol slots does

not exceed the number of users. Under this assumption, we

can equivalently decompose the slot-invariant IE precoding

problem into subproblems over each symbol slot.

We also highlight that the linear precoder can be used to es-

timate the data symbols in a variety of practical multi-antenna

systems. A notable example is the QR-maximum likelihood

detector (QR-MLD), which estimates the data symbols at the

receiver side by performing QR decomposition of the product

of the channel matrix and the linear precoder [35], [36].

When SLP or BLP is adopted to design the transmit signal,

all the Nr×Ns received signals within one transmission block

can be compactly aggregated in one matrix, which can be

written as

Ỹ = H̃W̃S̃+ Ñ = H̃X̃+ Ñ, (71)

where

Ỹ ,






ỹ1,1 · · · ỹ1,Ns

...
. . .

...

ỹNr,1 · · · ỹNr,Ns




 ∈ C

Nr×Ns , (72a)

H̃ ,
[

h̃1 · · · h̃Nr

]
∈ C

Nr×Nt , (72b)

S̃ ,
[
s̃:,1 · · · s̃:,Ns

]
∈ C

Nr×Ns , (72c)

Ñ ,






ñ1,1 · · · ñ1,Ns

...
. . .

...

ñNr,1 · · · ñNr,Ns




 ∈ C

Nr×Ns , (72d)

X̃ ,
[
x̃1 · · · x̃Ns

]
∈ C

Nt×Ns . (72e)

When Ns ≤ Nr, we can represent the optimal transmit signal

matrix as a linear transformation of the data symbols:

X̃ = W̃S̃, (73)

where

W̃ = X̃S̃
†. (74)

If S̃ has full column rank, we have

S̃
† =

(

S̃
H
S̃

)−1

S̃
H . (75)

On the other hand, if S̃ is rank-deficient, we can replace S̃
†

by the Moore-Penrose pseudoinverse matrix of S̃, which can

be readily computed using the singular value decomposition

of S̃.

The precoder in (74) can be regarded as a unified linear

transformation matrix applied to the data symbol vectors {s̃:,i}
over the Ns symbol slots. In each symbol slot, the precoded

signal or transmit signal can be expressed as

x̃i = W̃s̃:,i, ∀i. (76)

This linear precoder holds as a general solution, regardless

of the construction of the transmit signal matrix X̃. By

extending the above linear precoder structure to IE precoding,

we establish the following theorem.

Theorem 5: Let Ns ≤ Nr, then there exists a linear

precoder for IE precoding, given by

W̃ = X̃S̃
† =

[

W̃1s̃:,1 · · · W̃Ns
s̃:,Ns

]
S̃
†, (77)

which guarantees a constant precoder for each symbol slot

within one transmission block.

Accordingly, for symbol-level IE precoding, we can first

solve the Ns ≤ Nr SLP problems and acquire the Ns optimal

symbol-level precoders
{

W̃i

}

or equivalently the Ns optimal

symbol-level transmit signal vectors {x̃i}, then construct the

linear precoder based on Theorem 5.

Remark 1: When the number of symbol slots does not

exceed the number of users, i.e., Ns ≤ Nr, the block-level

slot-variant IE precoding and slot-invariant IE precoding have

an identical precoder or transmit signal in each symbol slot,

which means that the matrix structure constraint in (52) is

redundant and can be discarded. Based on Section III and Sec-

tion IV, the slot-variant IE precoding can be decomposed into

Ns smaller subproblems over Ns symbol slots, whereas the

slot-invariant IE precoding cannot due to the extra structural

constraint in (52). Therefore, Theorem 5 indicates that under

the assumption of Ns ≤ Nr, we can address the simpler slot-

variant IE precoding problem rather than the slot-invariant

IE precoding problem to obtain a linear or slot-invariant IE

precoder.

VI. NUMERICAL RESULTS

In this section, numerical results based on Monte Carlo

simulations are presented to evaluate the proposed block-level

slot-variant and slot-invariant IE precoders, as well as the

linear precoder for IE. For the simulations of the PM problem,

we assume each user has an identical SINR threshold and unit

noise variance, i.e., γk,i = γ, ∀k, ∀i, and σ2 = 1. For the

SB problem, the weights of the users’ SINR are assumed to

be γk,i = γ = 1, ∀k, ∀i. In each symbol slot, the SNR is

determined as SNR = pi

σ2 = 1

σ2 , ∀i. The block-level transmit

power budget is set to
∑Ns

i=1
pi = Ns. The system setting

Nr ×Nt is indicated in the legend of each figure.

For clarity, we list the abbreviations of the considered

algorithms below.

In simulations for PM problems:

1) ‘ZF’: Linear ZF precoding with power re-scaling to

satisfy the SINR thresholds. The ZF precoding matrix

over a transmission block is given by

W̃ZF =
√
γσH̃H

(

H̃H̃
H
)−1

. (78)

2) ‘BLP’: Traditional block-level PM interference mitiga-

tion precoding in [12], which is solved by the fixed-point

method.

3) ‘SV-CVX’: Block-level PM slot-variant IE precoding,

which is decomposed into Ns PM-SLP subproblems

based on Section III-E. The subproblems are solved

using CVX [37].

4) ‘SV-QP’: The above subproblems are converted into

their Lagrangian dual problems, then solved by the

‘quadprog’ function in MATLAB.
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Fig. 2. Average transmit power per frame versus SINR threshold, Nc = 100,
Ns = 20, QPSK.

5) ‘SI-CVX’: Block-level PM slot-invariant IE precoding,

which is solved using CVX [37].

6) ‘SI-QP’: The above problem is converted into its La-

grangian dual problem, which is solved by the ‘quad-

prog’ function in MATLAB.

In simulations for SB problems:

1) ‘RZF’: Linear RZF precoding with block-level power

normalization to satisfy the block-level transmit power

budget. The RZF precoding matrix over a transmission

block is given by

W̃RZF =
1

fRZF

H̃
H
(

H̃H̃
H + σ2

I

)−1

, (79)

where fRZF is a power scaling factor defined by

fRZF =

∥
∥
∥
∥
H̃

H
(

H̃H̃
H + σ2

I

)−1

S̃

∥
∥
∥
∥
F

√
∑Ns

i=1
pi

. (80)

2) ‘BLP’: Traditional block-level SB interference mitiga-

tion precoding in [12], which is solved by the fixed-point

method and the inverse property.

3) ‘SV-CVX’: Block-level SB slot-variant IE precoding,

which is decomposed into Ns SB-SLP subproblems

based on Section III-E. The subproblems are solved

using CVX [37]. Theorem 3 is subsequently applied to

compute the optimal solution to the original problem.

4) ‘SV-QP’: The above SB-SLP subproblems are con-

verted into PM-SLP subproblems, whose Lagrangian

dual problems are solved by the ‘quadprog’ function in

MATLAB.

5) ‘SI-CVX’: Block-level SB slot-invariant IE precoding,

which is solved using CVX [37].

6) ‘SI-QP’: The block-level SB slot-invariant IE precoding

problem is converted to its PM counterpart based on

Section IV-E. The Lagrangian dual problem of the block-

level PM slot-invariant IE precoding problem is solved

by the ‘quadprog’ function in MATLAB.
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Fig. 3. Average transmit power per frame versus subblock length, γ = 12 dB,
Nc = 2000, Ns = 30, QPSK.

Fig. 2 compares the average block-level transmit power of

various precoding schemes amongst different SINR thresholds

for PM problems. The transmit power of the QP scheme is

demonstrated to be consistent with its original problem solved

by CVX, thus highlighting the effectiveness of the proposed

optimal structure. It can be seen that, when the number of

symbol slots is larger than the number of users, the PM slot-

variant IE precoding always has the lowest block-level transmit

power. The power gain comes from the joint optimization

without the matrix structure constraint over a transmission

block.

To further demonstrate the proposed precoders, we divided

each transmission block/frame into several subblocks. For the

PM problem, we denote ‘SI-QP-x’ to represent that ‘SI-QP’

adopted with a subblock of length ‘x’. Fig. 3 plots the average

transmit power per frame as a function of the subblock length.

It can be observed that when the subblock length does not

exceed the number of users, ‘SI-QP-x’ exhibits the same

transmit power performance as ‘SV-QP’. However, when the

subblock length exceeds the number of users, a larger subblock

results in higher transmit power for ‘SI-QP-x’.

Fig. 4 demonstrates the performance-complexity tradeoff in

terms of average transmit power and average execution time

per block. The 7 data pairs for each scheme are obtained by

evenly varying the block length from Ns = 6 to Ns = 42. We

observe that the proposed block-level PM slot-variant and slot-

invariant IE precoding schemes achieve lower transmit power

compared to ZF and traditional BLP, although they generally

require more execution time. When the block length is less

than 12, the algorithms computed by the QP solver consume

less execution time than traditional BLP.

Fig. 5 compares the BER performance of the considered

SB precoding schemes for different SNR. It shows that when

the number of symbol slots exceeds the number of users,

the proposed SB slot-variant IE precoding has the best BER

performance due to its joint optimization without the matrix

structure constraint over a transmission block/frame.

Fig. 6 depicts the BER performance as a function of the

subframe length. For each subframe in the ‘SI-QP-x’ approach,
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we apply the SB slot-invariant IE precoding and the power

allocation scheme described in Theorem 3. In comparison, we

also include the BER performance of the ‘SI-QP-x’ method

without power allocation, denoted as ‘SI-QP-x-noPA’. Fig. 6
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Fig. 7. BER versus average execution time per block, Nc = 20000, SNR =

20 dB, Ns = {6, 12, 18, 24, 30, 36, 42}, QPSK.
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Fig. 8. BER versus number of users/transmit antennas, Nc = 1000, Ns =

20, SNR = 20 dB, QPSK.

demonstrates that when the subblock length does not exceed

the number of users, ‘SI-QP-x’ exhibits the same BER perfor-

mance as ‘SV-QP’ due to the presence of an intrinsic linear

precoding structure for IE. As the subblock length increases,

there is a tradeoff between BER performance and subblock

length. Furthermore, this figure illustrates that power allocation

within subblocks indeed enhances the BER performance. For

‘SI-QP-x-noPA’, a valley point is observed when the subblock

length equals the number of users.

Fig. 7 depicts the BER performance of the considered

precoding algorithms in relation to the per block average

execution time over a range of block lengths from Ns = 6
to Ns = 42, demonstrating a direct performance-complexity

tradeoff. The block lengths are set to {6, 12, 18, 24, 30, 36, 42}.
It is observed that the execution time of the proposed slot-

invariant and slot-variant IE precoding schemes generally

increases with block length, as it requires more calculations

to solve optimization problems with larger dimensions. Fur-

thermore, the results show that the QP solver, aided by the

proposed optimal structure and explicit duality, can solve the

problems more efficiently thane CVX.
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Fig. 8 presents the BER performance of various SB pre-

coding schemes as a function of the number of users in fully

loaded MU-MISO systems. The figure shows that when the

number of symbol slots in each transmission block exceeds

the number of users, the slot-variant IE precoder demonstrates

better BER performance compared to the slot-invariant IE

precoder. The performance gap between them is almost pro-

portional to the difference in the number of symbol slots and

users. This performance gap disappears when the number of

symbol slots equals or is less than the number of users. In

scenarios where we divide a transmission block into several

subframes, it is observed that when the subframe length

does not exceed the number of users, ‘SI-QP-x’ can achieve

the same BER performance as the slot-variant IE precoding,

thanks to the power allocation scheme.

Fig. 9 illustrates the average execution time per frame of

the SB precoding schemes presented in Fig. 8. By employing

the proposed optimal structure and explicit duality, the QP

approach exhibits superior efficiency compared to the original

problem solved by CVX, for both slot-invariant and slot-

variant IE precoders. Furthermore, the slot-variant IE precoder

requires far less processing time than the slot-invariant IE

precoder because of its less-constrained formulation enabling

us to decompose the problem into several subproblems with

smaller variable sizes, which suggests that we prefer the

slot-variant IE precoder in the scenario where the number

of symbol slots does not exceed the number of users. This

validates our idea of the linear precoder for IE in Section V.

When dividing a transmission block into several subframes,

with each subframe utilizing a constant precoder, the execu-

tion time of ‘SI-QP-x’ is generally shorter than that of ‘SI-

QP’. This observation can be interpreted as a performance-

complexity tradeoff and indicates that by compromising the

frame length, we can enhance the efficiency of the slot-

invariant IE precoding scheme.

VII. CONCLUSION

In this paper, we have presented block-level slot-variant

and slot-invariant IE precoding. Both PM and weighted SB

problems have been investigated, leveraging explicit duality.

A linear precoder for IE has been further proposed, which can

provide uncompromised SLP performance gain. Simulation

results have been conducted to validate the effectiveness of the

proposed slot-variant and slot-invariant IE precoding.Future

works could involve devising practical numerical algorithms

for the derived dual problems.

APPENDIX A

PROOF FOR PROPOSITION 2

For notational simplicity, define Σ ,
∑Ns

i=1
s:,is

T
:,i +

P3s:,is
T
:,iP

T
3 . Substituting the optimal solution structure in

(60) into
∑Ns

i=1
s
T
:,iW

T
Ws:,i and

∑Ns

i=1
s
T
:,iP

T
3
W

T
WP3s:,i,

we have the following two equations:

Ns∑

i=1

s
T
:,iW

T
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j TŜjHP2P

T
2 H

T
Ŝ
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To simplify the above expressions, we can rearrange compo-

nents and utilize the definition of Σ, resulting in
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Ws:,i +

Ns∑
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Ŝ
T
kT

T
λk

+
1

4

Ns∑

j=1

Ns∑

k=1

(

s
T
:,k

1

Σ
P3s:,j

)

λ
T
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Subsequently, we use the optimal solution structure to rewrite

the remaining terms of the Lagrangian, yielding
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i TŜiHP2P

T
2
H

T
Ŝ
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After the above manipulations, the dual function is given by
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where
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