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Abstract—Defect prediction aims at identifying software com-
ponents that are likely to cause faults before a software is made
available to the end-user. To date, this task has been modeled
as a two-class classification problem, however its nature also
allows it to be formulated as a one-class classification task.
Previous studies show that One-Class Support Vector Machine
(OCSVM) can outperform two-class classifiers for within-project
defect prediction, however it is not effective when employed at
a finer granularity (i.e., commit-level defect prediction). In this
paper, we further investigate whether learning from one class only
is sufficient to produce effective defect prediction model in two
other different scenarios (i.e., granularity), namely cross-version
and cross-project defect prediction models, as well as replicate
the previous work at within-project granularity for completeness.
Our empirical results confirm that OCSVM performance remain
low at different granularity levels, that is, it is outperformed by
the two-class Random Forest (RF) classifier for both cross-version
and cross-project defect prediction. While, we cannot conclude
that OCSVM is the best classifier, our results still show interesting
findings. While OCSVM does not outperform RF, it still achieves
performance superior to its two-class counterpart (i.e., SVM) as
well as other two-class classifiers studied herein. We also observe
that OCSVM is more suitable for both cross-version and cross-
project defect prediction, rather than for within-project defect
prediction, thus suggesting it performs better with heterogeneous
data. We encourage further research on one-class classifiers for
defect prediction as these techniques may serve as an alternative
when data about defective modules is scarce or not available.

Index Terms—One-Class Predictors, Software Defect Predic-
tion, One-Class Support Vector Machine

I. INTRODUCTION

Software defects can be very costly to both, the users and

the company providing the software. As the world becomes

more dependent on software, detecting defects early in the

development process becomes more and more critical: the

earlier a defect is found and fixed, the less it costs [1].

The research in software defect prediction aims at the

automatic and early identification of problematic software

components, in order to direct the most of the testing effort

towards them.

A large number of classifiers have been investigated to build

software defect prediction models [2]. The most commonly

used type of these classification models, two-class predictors,

rely on the use of training data consisting of instances of the

two classes being studied (i.e., defective and non-defective in-

stances). These include widely known models such as Random

Forest (RF) [3], Support Vector Machines (SVM) [4], Naı̈ve

Bayes (NB) [5], etc. The use of both classes allows such

models to learn characteristics about both types of modules

possibly making the task of predicting a new unseen module

more accurate.

One-class predictors are another type of classification mod-

els which have been recently gaining more attention. These

techniques require the availability of one class only (i.e., non-

defective instances) in order to learn characteristics of the

training data. An unseen module is classified as an outlier

if its characteristics are very different from those learnt by the

model from the training set and hence it does not lie within

the boundaries created by the technique.

The fact that the number of defective modules in real

world systems is much lower than the non-defective ones,

leads to highly imbalanced datasets that often cause two-class

predictors to produce poor results [2], [6]. As a result, stud-

ies have attempted to improve the performance of defective

prediction models by applying well-known under- and over-

sampling approaches like Random Under Sampling (RUS),

Synthetic Minority Over-sampling TEchnique (SMOTE) [7],

ADAptive SYNthetic sampling technique (ADASYN) [8],

and SMOTUNED [9] to balance the datasets. However, in

a recent study investigating the impact of class rebalancing

techniques on the performance measures and interpretation of

defect models, Tantithamthavorn et al. [10] show that sampling

affects the interpretability of defect prediction models and it

should be avoided when deriving knowledge and insights from

them. Thus, the availability of a model that only requires

non-defective instances and no data balancing to learn and

accurately classify defective modules could offer an alternative

to address data-imbalance.

While several studies have shown that one-class predictors

can be successfully used to address various classification tasks

suffering from imbalanced data [11]–[15], only two investi-

gations have been carried out on the use of one-class SVM

(OCSVM) for software defect prediction showing promising

results when using OCSVM for within-project defect predic-

tion [16] by the NASA datasets, and negative results when it

is used for just-in-time defect prediction [17].

In this paper, we further investigate the use of OCSVM in

different prediction scenarios (namely, within-project, cross-
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version and cross-project) in the light of the more recent

advances in defect prediction empirical research including the

use of more recent and robust data, hyper-parameter tuning,

robust evaluation measures and statistical tests.

Specifically, we investigate both the canonical OCSVM, as

proposed in the literature, as well as a novel way to perform

OCSVM hyper-parameter tuning by using a minimal number

of defective instances (we refer to this as OCSVMT ).

Our results show that, while OCSVM performs generally

better than naive baseline, its two-class counterpart SVM, and

some other two-class defect predictors for some scenarios,

it is not the best approach for all scenarios. In fact, it is

outperformed by Random Forest. While we cannot recommend

the use of OCSVM for the within-project scenario, therefore

confuting the results of previous study [16], its performance

notably improves when heterogeneous data is used, as for

the cross-project scenario, where OCSVMT is able to always

achieve statistically significantly better estimates with respect

to three widely used two-class approaches (i.e., Support Vector

Machine, Naive Bayes, Logistic Regression), while it is able to

outperform Random Forest with statistical significance in 22%

of the cases for the within-project and cross-version scenarios,

and 44% of the cases for the cross-project scenario.

As these results confound the findings by Chen et al. [16],

for due diligence, we also conduct a replication of their work,

in which we follow as closely as possible the procedure

undertaken by the authors [18]. To this end, we use their

same datasets and validation procedure (as summarised in

Table V), and at the same time enrich the experimental design

by using a robust evaluation measure, statistical significance

test, and three benchmarks. Our results still do not confirm

the conclusion of the prior work [16] as we found that

while OCSVM generally performs similarly to its two-class

counterpart, and it does not outperform the best two-class

classifier (i.e., Random Forest).

Although we cannot conclude that OCSVM is suitable for

all scenarios, we believe reporting negative findings still helps

advance the research agenda in defect prediction. Properly

conducted studies with negative, null or neutral results are

essential for the progression of science and its self-correcting

nature as much as positive results are [19]–[21]. Sharing these

findings prevents other researchers from following the same

route and it can help them adjust their own research plans,

thus saving time and effort; it can also provide researchers

with the knowledge needed to develop alternative strategies

and evolve new better ideas [19], [22].

In fact, even though our study shows that OCSVM does

not consistently outperform all two-class classifiers considered

herein, it also provides some interesting initial evidence on the

potential advantages of using a minimal number of defective

instances for hyper-parameter tuning, especially in case of

heterogeneous data (i.e., training data composed by different

versions of the same target project, or from projects different

from the target one). Thus, we encourage future work to

further explore the extent to which using different ratio of

defective instances coming from the target project or different

Repository Dataset No. of modules (faulty %)

NASA [23]

CM1 296 (12.84%)
KC3 123 (13.00%)
MW1 253 (10.67%)
PC1 661 (7.87%)
PC3 1043 (12.18%)
PC5 94 (19.15%)

Realistic [24]

Activemq 5.3.0 2367 (10.90%)
Activemq 5.8.0 3420 (6.02%)
Camel 2.10.0 7914 (2.91%)
Camel 2.11.0 8846 (2.17%)
Derby 10.3.1.4 2206 (30.33%)
Derby 10.5.1.1 2705 (14.16%)
Groovy 1 6 BETA 1 821 (8.53%)
Groovy 1 6 BETA 2 884 (8.60%)
Hbase 0.95.0 1669 (22.95%)
Hbase 0.95.2 1834 (26.34%)
Hive 0.10.0 1560 (11.28%)
Hive 0.12.0 2662 (8.00 %)
Jruby 1.5.0 1131 (7.25%)
Jruby 1.7.0 1614 (5.39%)
Lucene 3.0 1337 (11.59%)
Lucene 3.1 2806 (3.81%)
Wicket 1.3.0-beta2 1763 (7.37%)
Wicket 1.5.3 2578 (4.07%)

TABLE I: Datasets. Total number of modules and percentage

of faulty components per dataset.

ones, can impact the prediction performance, as this can serve

as alternative solutions when data on defective instances is

scarce or not available.

II. EMPIRICAL STUDY DESIGN

A. Research Questions

First and foremost, we investigate if OCSVM is able to

outperform a naive baseline. Recent studies have stressed

on the importance of including a baseline benchmark to

assess any newly proposed prediction models [25], [26]. This

check is essential to assess whether OCSVM is able to learn

and differentiate non-defective modules from defective ones,

instead of randomly classifying them. For this reason, we pose

our first research question:

RQ1. OCSVM vs. Random: Does OCSVM outperform a

Random classifier?

In order to answer RQ1, we compare OCSVM with a basic

Random Classifier, which is completely independent of the

training data (i.e., there is no learning phase), and instead gen-

erates predictions uniformly at random [27]. Any prediction

system must outperform the Random Classifier, otherwise this

would indicate that the prediction system is not learning any

information from the training data [26].

Our second benchmark consists in assessing whether

OCSVM performs better than its two-class counterpart, SVM.

This is a required check, as if the results reveal the opposite,

there is no advantage of using the one-class classifier. To this

end, we ask:

RQ2. OCSVM vs. SVM: Does OCSVM outperform SVM,

its two-class counterpart?

To answer this question we compare OCSVM versus its

two-class version by using the same kernel. We use SVM both

out-of-the-box and tuned, as the former has been widely used

in past studies, although we discourage its use as lack of proper



hyper-parameter tuning might lead to less accurate predictions

[10], [28], [29].

A positive answer to RQ2 means that using only information

about the non-defective class is sufficient to achieve accurate

predictions for SVM. However, it might still happen that

OCSVM is not comparable with other two-class classifiers.

This leads us to our third, and last research question where

we compare the performance of OCSVM to that of other well-

known traditional two-class techniques:

RQ3. OCSVM vs. Traditional ML: Does OCSVM out-

perform traditional machine learning techniques?

To address this question, we compare OCSVM with three

traditional two-class machine learning techniques, namely NB,

LR and RF, which have been widely used in defect prediction

studies [2]. Similarly to RQ2, we experiment with both tuned

and non-tuned versions.

In the remaining of this Section we describe in details the

experimental setting used to answer these RQs.

B. Datasets

In our empirical study we have used two sets of publicly

available software project datasets: NASA [23] and the Real-

istic [24] datasets.

1) NASA dataset: The NASA datasets, made publicly avail-

able by the NASA’s Metrics Data Program (MDP), contain

data on the NASA Lunar space system software written both

in C and Java. In our empirical study we use the NASA

datasets curated by Petrić et al. [23], who applied rules

to clean and remove the erroneous data contained in the

original NASA datasets [23], [30]. We use the six datasets

listed in Table I. They contain static code measures (e.g.,

LOC, Halstead, MaCabe) and the number of defects for each

software component.

2) Realistic dataset: The Realistic datasets have been

collected in 2019 from nine open-source software systems

(i.e., ActiveMQ, Camel, Derby, Groovy, HBase, Hive, JRuby,

Lucene, and Wicket), which vary in size, domain, and defect

ratio in order to reduce potential conclusion bias. The data

has been extracted from the JIRA Issue Tracking System of

these software by following a rigorous procedure as explained

elsewhere [24], resulting in less erroneous defect counts and

hence representing a more realistic scenario of defective mod-

ule collection. The metrics extracted include code, process,

and ownership metrics for a total of 65 metrics (i.e., 54

code metrics, 5 process metrics, and 6 ownership metrics)

as detailed in the original paper [24]. In our experiment

we consider two releases for each of these nine software

systems, as listed in Table I. This allows us to explore the

applicability of OCSVM for the cross-version defect predic-

tion (CVDP) scenario, where data from one release is used

to build prediction models to identify defects in subsequent

releases. We also explore the cross-project defect prediction

(CPDP) scenario by exploiting the Realistic datasets, where

data from various software projects is used all together to

build prediction models for predicting defective instances in a

different target project. CPDP is useful when the target project

lacks historical or sufficient local data [31]. However, it has

been shown that CPDP is a more difficult prediction problem

than CVDP due to the use of heterogeneous data [32].

C. Evaluation Criteria

The performance of a classification model is normally

evaluated based on a confusion matrix describing four types

of instances: True Positives (TP), defective modules correctly

classified as defective; False Positives (FP), non-defective

modules falsely classified as defective; False Negatives (FN),

defective modules falsely classified as non-defective; True

Negatives (TN), defective modules correctly classified as de-

fective.

The values in the confusion matrix are used to compute

a set of evaluation measures. Common ones include Recall

(which describes the proportion of defective modules that are

actually classified as defective), Precision (which measures

the proportion of modules that are actually defective out

of the ones classified as defective), and F-Measure (which

is the harmonic mean of Precision and Recall). However,

when the data is imbalanced, which is frequently the case

in defect prediction, it is recommended to use the Matthews

Correlation Coefficient (MCC) as, unlike the other measures,

it is a balanced measure and less prone to data imbalance bias

[6], [33], [34]. Thus, in our empirical study we use MCC.

MCC represents the correlation coefficient between the actual

and predicted classifications:

MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

it outputs a value between −1 and +1 where a value of

+1 indicates a perfect prediction, a value of 0 signifies that

the prediction is no better than random guessing, and −1
represents a completely mis-classified output.

We also investigate whether there is any statistical sig-

nificance between the results obtained by the models, by

using the Wilcoxon Signed-Rank Test [35] with confidence

limit α=0.05 and Bonferroni correction (α/K , where K is

the number of hypotheses) for multiple statistical testing

(the most conservatively cautious of all corrections) [36]. In

addition, we check the effect size is worthy of interest by

using the Vargha and Delaney’s non-parametric effect size

measure Â12, since it is recommended to use a standardised

measure rather than a pooled one like the Cohen’s d when

not all samples are normally distributed [37], as in our case.

The Â12 statistic measures the probability that an algorithm

A yields better values for a given performance measure M
than running another algorithm B, based on the following

formula Â12 = (R1/m− (m+1)/2)/n, where R1 is the rank

sum of the first data group we are comparing, and m and

n are the number of observations in the first and second data

sample, respectively. If the two algorithms are equivalent, then

Â12 = 0.5. Given the first algorithm performing better than the

second, Â12 is considered small for 0.6 ≤ Â12 < 0.7, medium

for 0.7 < Â12 < 0.8, and large for Â12 ≥ 0.8, although these

thresholds are somewhat arbitrary [36].



D. Validation

For the within-project scenario experiments, involving the

NASA data, we follow common practice for Hold-Out valida-

tion using 80% of the data for training and the other 20% for

testing, and repeating this process 30 times, each time using

a different seed, in order to reduce any possible bias resulting

from the validation splits [38].

For the experiments involving the Realistic data, we explore

the performance of the models in two additional scenarios

(namely CVDP and CVDP) given that this data consists of

multiple releases as explained in Section II-B. In the CVDP

scenario, for each of the software systems, we train on one

release and test on a different one, i.e., we train on version vx
and test on version vy , where x < y as done in previous work

(see e.g., [39]). In the CVDP, for each of the software systems,

we consider the version with the higher release number as the

test set and train the model on the union of the versions of

the other datasets with a lower release number. The versions

used as train and test sets are not subsequent releases nor

are they the system’s most recent ones. In addition, there

is always a window of at least five months between these

releases. This reduces the likelihood of the snoring effect or

unrealistic labelling as described in previous studies [40]–[42].

E. Techniques

SVM [4] is a classification technique based on the use of

hyperplanes able to separate data points into two categories.

Since there might be several hyperplanes that can correctly

separate the data, SVM seeks to find the hyperplane that has

the largest margin, in order to achieve a maximum separation

between the two categories. When the data is not linearly

separable, SVM does the mapping from input space to feature

space. To achieve this, a kernel function is used instead of an

inner product. This allows the formation of a non-linear deci-

sion boundary. OCSVM is an unsupervised version of SVM,

whereby the technique trains on one class label only instead of

two. Similar to its two-class counterpart SVM, it aims to draw

a boundary around the instances that belong to the same class.

However, given that this technique learns from one class only,

it creates boundaries for the instances that belong to that class.

Any instance that is not mapped inside the created boundary

is considered an anomaly or an outlier, and hence classified

as the other class. In our empirical study we benchmark

OCSVM with respect to a Random Classifier (RQ1) and four

traditional and widely used two-classes classifiers: SVM [4]

(RQ2), Logistic Regression [43], Naı̈ve Bayes (NB) [5] and

Random Forest (RF) [3] (RQ3). We experiment with both

tuned and non-tuned versions of SVM and a tuned version

of RF since recent work has emphasized on the importance of

hyperparameter tuning for defect prediction [10], [29], [44].

We use the default parameters of Scikit Learn [27] for the

non-tuned version and perform Grid Search for the tuned ones

(we indicate with techniqueT that hyperparameter tuning has

been applied to a given techqniue) by using GridSearchCV

from the Scikit-Learn v.0.20.2 library [27] in Python

v.3.6.8. By applying hyperparameter tuning, we search for and

obtain the best parameter values for the ML techniques used

in our study based on MCC. Since GridSearchCV cannot

be applied for classifiers that only learn from modules of the

same class like OCSVM, we implement our own Grid Search

method, namely GridSearchCV-OCSVM. In the latter, we

introduce instances of the other class (i.e., defective modules)

in the testing fold of Grid Search’s inner CV (which is

only used to assess the hyper-parameters and not used in

the training of the model or its validation). This allows us

to obtain a confusion matrix, like the one obtained when

GridSearchCV is performed on a two-class predictor, from

which we are able to calculate the MCC and choose the most

suitable parameter values. The number of defective instances

added to the testing fold reflects the proportion of classes

in the original training set and are drawn randomly, with no

duplicates.

III. EMPIRICAL STUDY RESULTS

In this section we report the results of our empirical study

answering RQs1–3 for each of the scenarios investigated.

A. Results for Within-Project Scenario

RQ1. OCSVM vs. Random: Table II shows that the MCC

values obtained by OCSVM are higher than those obtained by

Random on two datasets (i.e., KC3 and PC5), while on the

other four datasets, the former obtains the same results, with

values indicating that it is no better than random guessing.

The Wilcoxon test and Â12 effect size measures, reported in

Table III, also support this by showing that the difference

achieved on PC5 is statistically significant. On the other

hand, OCSVMT outperforms Random on all datasets, with

a statistically significant difference and a large effect size on

four datasets and medium effect size on the remaining two.

RQ2. OCSVM vs. SVM: To address this question, we com-

pare both OCSVM and OCSVMT with their two-class couter-

parts, SVM and SVMT . It is clear from the results shown in

Table II that hyperparameter tuning enhances the performance

of these techniques, as OCSVMT and SVMT generally obtain

better results than OCSM and SVM, respectively. We can

also observe that, while SVM and OCSVM obtain the same

results on five datasets, with the latter performing better on

the remaining dataset (i.e., PC5), OCSVMT outperforms both

SVM and OCSVM, on all the datasets, with a statistically

significant difference, with five of them showing a large effect

size and the remaining dataset having a medium one, as shown

in Table III. OCSVMT also outperforms SVMT on five out of

six datasets, with the difference being statistically significant

on three of them with a large effect size.

RQ3. OCSVM vs. traditional ML: To answer this ques-

tion, we compare the performance of OCSVM to that of NB,

LR and RFT . We can observe from Table II and IV that

OCSVM does not outperform LR, only preforms better than

RFT on one dataset with a statistical significance and a large

effect size and outperforms NB on two datasets with the differ-

ences being statistically significant and having a medium effect

size. On the other hand, OCSVMT outperforms traditional ML



Validation Dataset Random OCSVM SVM OCSVMT SVMT NB LR RFT

HoldOut

CM1 0.00 0.00 0.00 0.09 0.11 0.17 0.13 -0.01
MW1 0.00 0.00 0.00 0.11 -0.03 0.32 0.24 0.14
KC3 -0.03 0.00 0.00 0.24 -0.02 0.32 0.19 0.09
PC1 0.00 0.00 0.00 0.12 0.02 0.26 0.22 0.31

PC3 0.00 0.00 0.00 0.15 0.12 -0.03 0.17 0.20

PC5 0.00 0.11 -0.04 0.29 0.27 -0.02 0.25 0.25

CVDP

ActiveMQ 0.00 0.03 0.00 0.18 0.27 0.27 0.26 0.35

Camel 0.00 0.11 0.00 0.17 0.14 0.19 0.00 0.15
Derby 0.00 0.10 0.06 0.27 0.37 0.08 0.13 0.40

Groovy 0.00 0.18 0.04 0.20 0.26 -0.07 0.07 0.30

Hbase 0.00 0.15 -0.06 0.25 0.19 0.05 0.03 0.29
Hive 0.00 0.12 -0.01 0.20 0.17 0.00 0.02 0.27

JRuby 0.01 0.10 0.00 0.19 0.07 0.17 0.07 0.34

Lucene 0.00 0.03 0.00 0.10 0.08 0.14 0.05 0.07
Wicket 0.00 0.01 0.00 0.03 0.06 0.20 -0.01 0.16

CPDP

ActiveMQ 0.00 0.05 -0.03 0.25 0.21 0.00 0.08 0.22
Camel 0.00 0.05 0.00 0.17 0.10 0.00 0.01 0.19

Derby 0.01 0.03 0.00 0.28 0.13 0.11 0.01 0.14
Groovy -0.01 0.12 0.00 0.23 0.07 0.07 -0.01 0.25
HBase 0.01 0.09 0.00 0.26 0.20 0.03 -0.04 0.29

Hive -0.01 0.10 0.00 0.17 0.08 0.02 0.04 0.14
JRuby 0.00 0.04 0.00 0.20 0.07 0.18 0.17 0.33

Lucene 0.00 0.06 0.00 0.12 0.09 0.06 0.01 0.18
Wicket 0.00 0.04 0.00 0.19 0.12 0.00 0.04 0.17

TABLE II: RQs1-3. Average MCC values achieved by each of the techniques over 30 runs.

Validation Dataset OCSVM vs. Random OCSVMT vs. Random OCSVM vs. SVM OCSVM vs. SVMT OCSVMT vs. SVM OCSVMT vs. SVMT

HoldOut

CM1 0.484 (0.53) 0.003 (0.71) 0.373 (0.50) 1.000 (0.00) <0.001 (0.90) 0.786 (0.47)
KC3 0.245 (0.57) <0.001 (0.94) 0.164 (0.50) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
MW1 0.452 (0.53) 0.003 (0.72) 0.774 (0.50) 0.050 (0.68) <0.001 (0.77) <0.001 (0.80)

PC1 0.580 (0.47) <0.001 (0.89) 0.009 (0.60) 0.755 (0.48) <0.001 (0.97) <0.001 (0.86)

PC3 0.540 (0.50) <0.001 (0.97) 0.886 (0.50) 1.000 (0.08) <0.001 (0.97) 0.060 (0.65)
PC5 0.021 (0.64) <0.001 (0.81) <0.001 (0.92) 1.000 (0.00) <0.001 (0.92) 0.180 (0.60)

CVDP

ActiveMQ <0.001 (0.93) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) 1.000 (0.00)
Camel <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00)

Derby <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) 1.000 (0.00)
Groovy <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) 1.000 (0.00)
HBase <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00)

Hive <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (0.90)

JRuby <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)

Lucene <0.001 (0.90) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00)
Wicket <0.001 (0.73) <0.001 (0.93) <0.001 (1.00) 1.000 (0.00) <0.001 (0.93) 1.000 (0.00)

CPDP

ActiveMQ <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00)

Camel <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00)

Derby <0.001 (0.90) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00)

Groovy <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
HBase <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00)

Hive <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)

JRuby <0.001 (0.93) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00)
Lucene <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00)

Wicket <0.001 (0.97) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00)

TABLE III: RQs1-2. Wilcoxon test and Â12 effect size (p-value(Â12)) results for OCSVM vs. Random and SVM.

techniques on seven out of the 18 cases studied. Specifically,

it outperforms NB and LR on two datasets each, obtaining

differences that are statistically significant with large effect

sizes when compared to NB. OCSVMT also outperforms

RFT on three datasets with two of them being statistically

significant and having a large effect size. Therefore, based on

the above results we can state that:

Finding 1: OCSVM performs similarly to Random, while

OCSVMT statistically significantly outperforms it. When

compared to its two-class counterpart SVM, OCSVM per-

forms similarly. Whereas, OCSVMT obtains better results

than SVMT on five out of the six datasets studied with

three of the differences being statistically significant. How-

ever, OCSVM and OCSVMT outperform the traditional

ML techniques in three and seven of the 18 cases studied,

respectively.

B. Results for Cross-Version Scenario

RQ1. OCSVM vs. Random: Table II shows the MCC

values obtained by OCSVM and Random. We can observe

that OCSVM obtains better results on all datasets, with the

difference always being statistically significant and the effect

size being large for eight of these nine datasets. When com-

paring OCSVMT and Random, results show that OCSVMT

also outperforms Random on all datasets. The Wilcoxon Test

and Â12 effect size results, described in Table III, support this

conclusion as they show a statistically significant difference

and a large effect size on all cases considered.

RQ2. OCSVM vs. SVM: To address RQ2, we compare the

performance of OCSVM with that of SVM. Results in Table

II indicate that OCSVM always outperforms its two-class

counterpart SVM. Table III also indicates that this conclusion

is supported by the statistical tests, as it shows that the

difference is always statistically significant with the effect

size being large. However, this is not always the case when



Validation Dataset OCSVM vs. NB OCSVM vs. LR OCSVM vs. RFT OCSVMT vs. NB OCSVMT vs. LR OCSVMT vs. RFT

HoldOut

CM1 1.000 (0.15) 0.999 (0.37) <0.001 (0.80) 0.989 (0.34) 0.755 (0.45) <0.001 (0.92)

KC3 1.000 (0.13) 1.000 (0.22) 1.000 (0.00) 0.962 (0.34) 0.067 (0.61) <0.001 (0.94)
MW1 1.000 (0.03) 1.000 (0.33) 0.999 (0.33) 1.000 (0.17) 0.975 (0.40) 0.680 (0.47)
PC1 1.000 (0.07) 1.000 (0.20) 1.000 (0.07) 1.000 (0.20) 0.985 (0.34) 1.000 (0.15)
PC3 0.005 (0.77) 1.000 (0.27) 1.000 (0.00) <0.001 (0.95) 0.604 (0.46) 0.974 (0.32)
PC5 0.008 (0.64) 0.995 (0.35) 1.000 (0.04) <0.001 (0.87) 0.271 (0.54) 0.089 (0.63)

CVDP

ActiveMQ 1.000 (0.00) 1.000 (0.00) 1.000 (0.00) 1.000 (0.17) 1.000 (0.17) 1.000 (0.00)
Camel 1.000 (0.00) <0.001 (1.00) 1.000 (0.00) 1.000 (0.00) <0.001 (1.00) <0.001 (0.99)
Derby <0.001 (1.00) 1.000 (0.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00)
Groovy <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.01)
HBase <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00)
Hive <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00)
JRuby 1.000 (0.00) <0.001 (1.00) 1.000 (0.00) <0.001 (0.97) <0.001 (1.00) 1.000 (0.00)
Lucene 1.000 (0.00) 1.000 (0.00) 1.000 (0.03) 1.000 (0.00) <0.001 (1.00) <0.001 (0.90)

Wicket 1.000 (0.00) <0.001 (1.00) 1.000 (0.00) 1.000 (0.00) <0.001 (0.93) 1.000 (0.00)

CPDP

ActiveMQ <0.001 (1.00) 1.000 (0.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
Camel <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.20)
Derby 1.000 (0.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)

Groovy <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.13)
HBase <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.05)
Hive <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)

JRuby 1.000 (0.00) 1.000 (0.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00)
Lucene 1.000 (0.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00) 1.000 (0.00)
Wicket <0.001 (1.00) <0.001 (1.00) 1.000 (0.00) <0.001 (1.00) <0.001 (1.00) <0.001 (0.93)

TABLE IV: RQ3. Wilcoxon test and Â12 effect size (p-value(Â12)) results for OCSVM vs. traditional ML.

comparing the hyperparameter tuned version of both of these

models, OCSVMT and SVMT . Results show that the former

obtains better results than the latter on five out of the nine

cases studied with all differences being statistically significant

and the effect size being large.

RQ3. OCSVM vs. traditional ML: Based on the results

reported in Tables II and IV, we can observe that RFT

generally performs better than the other techniques, achieving

the highest MCC values in six out of the nine cases under

study. However, when analysing the results obtained by NB,

LR, and OCSVM we can see that the latter performs better

than LR on 67% of the cases (i.e., six out of nine) and better

than NB on 44% (four out of nine cases) respectively, with the

differences always being statistically significant and having a

large effect size. While when hyperparameter tuning is applied,

OCSVMT obtains better results than LR, NB and RFT 89%

of the time (eight out of nine cases), 56% of the time (i.e., five

out of nine cases) and 22% of the time (two out of nine cases)

with the differences always being statistically significant and

having large effect sizes.

Finding 2: Both OCSVM and OCSVMT significantly

outperform Random, so passing our sanity check; OCSVM

also performs significantly better than SVM, however

whenever tuning is applied to SVM (SVMT ), the latter

achieves the best results. Both OCSVM and OCSVMT are

significantly better than NB, LR and RFT in 50%, 72% and

22% of the cases, respectively.

C. Results for the Cross-Project Scenario

RQ1. OCSVM vs. Random: To address RQ1, we compare

the performance of OCSVM with that of a Random clas-

sifer. Results reported in Table II show that both OCSVM

and OCSVMT outperform Random on all datasets with all

differences being statistically significant and the effect size

always being large as shown in Table III.

RQ2. OCSVM vs. SVM: When compared to its two-

class counterpart, OCSVM performs better than SVM on all

the cases considered (see Table II). The Wilcoxon and Â12

results, reported in Table III, confirm that these differences

are statistically significant with a large effect size. When

hyperparameter tuning is applied, OCSVMT also outperforms

both SVM and SVMT on all nine datasets with statistically

significant differences and large effect size. However, the MCC

values as well as the Wilcoxon and Â12 results show that

SVMT outperforms OCSVM in seven out of the nine cases

considered and performs better than SVM in all cases studied.

RQ3. OCSVM vs. traditional ML: To investigate RQ3,

we compare the performance of OCSVM and OCSVMT to

that of the traditional two-class classifiers (i.e., NB, LR and

RF). Results reported in Table II show that both OCSVMT

and RFT perform better than the other techniques. Specifically,

while OCSVM performs better than NB and LR on 67% of the

cases (six out of nine cases each) , it always performs worse

than RFT . On the other hand, when hyperparameter tuning

is applied, OCSVMT always performs better than NB and

LR with the differences being statistically significant and the

effect size being large in all cases. When compared to RFT ,

OCSVMT performs better in 44% of the cases (four out of

nine) with the differences always being statistically significant

and the effect size being large.

Finding 3: Both OCSVM and OCSVMT significantly

outperform Random and SVM. While OCSVM generally

outperforms NB and LR in most of the cases, it never per-

forms better than RFT . However, when tuning is applied,

OCSVMT always outperforms NB and LR in all cases and

it competes with RFT , performing better than the latter in

44% of the cases.



IV. REPLICATION

The results of our empirical study (Section III) show

that OCSVM generally outperforms its two-class counterpart,

SVM, however it does not achieve results consistently higher

than traditional two-class classifiers and its performance is not

as promising as shown in the work of Chen et al. [16]. For

due diligence and completeness, we replicate their study [16].

Below we describe the design and results of our replication,

a summary of the design is given in Table V.

A. Design

1) Research Questions: Chen et al. [16]’s study did not

explicitly state multiple research questions, but rather their

overall research goal to investigate whether OCSVM can be

used to predict defects, and whether it would outperform

other ML techniques. Hence, in this replication we aim to

address the same goal organised as the research questions we

described in Section II-A. We therefore investigate whether

(RQ1) OCSVM outperforms the Random Classifier; (RQ2)

OCSVM outperforms its two-class counterpart, namely SVM;

(RQ3) OCSVM outperforms traditional two-class classifica-

tion techniques widely used for defect prediction.

2) Datasets: Chen et al. [16] investigate six highly im-

balanced datasets obtained from the public NASA repository

[45]: CM1, KC3, MC1, MW1, PC1, PC2. In our replication

we use the same datasets available from the tera-PROMISE

repository [45]. We report in Table VI the number of modules

and percentage of faulty modules per dataset. We observe that

three out of the six datasets used (i.e., KC3, MW1, PC1) are

identical, whereas the other three datasets (i.e., CM1, MC1,

PC2) vary slightly in the number of instances and percentage

of defects from those used by Chen et al. [16]. The reason for

this difference cannot be determined given that no indication

of pre-processing was stated in Chen et al. [16]’s study.

3) Validation and Evaluation Criteria: Chen et al. [16]

performed 20 independent Hold-Out validations, where each

time, 10% of the data was randomly selected for training and

90% for testing. We, perform the same Hold-Out validation,

but we increase the number of independent runs to 30 in order

to gather more robust results. Recall, False Positive Rate and

G-mean were used to evaluate and compare the performances

of the techniques, however, the main conclusions were drawn

based on G-Mean [16]. We decided to assess the performance

of the techniques using MCC (see Section II-C), since it is

a robust evaluation measure [6], [34]. For completeness, we

also include the G-mean results for OCSVM and compare

them with those obtained in the original study (OCSVM-O)

in Table IX. We observe that the G-mean values obtained with

OCSVM in our study are much lower than those reported

in the work of Chen et al. [16]. The original study did not

perform any statistical analysis, while we use the Wilcoxon

signed rank test and the Vargha and Delaney Â12 effect

size (described in Section II-C) to check for any statistically

significant difference in order to strengthen the robustness of

our conclusions.

4) Techniques: To carry out a fair comparison with previous

work, we compare OCSVM to SVM and RF, NB and LR using

their non-tuned version (see Section II-E) as the original work

did not perform any tuning.

B. Results

RQ1. OCSVM vs. Random: To address RQ1, we compare

the performance of OCSVM to that of a Random Classifier.

From Tables VII and VIII we can observe that OCSVM

outperforms the Random classifier on three out of the six

datasets with statistically significant difference and a large

effect size. On the other three datasets, OCSVM obtains the

same results as the random classifier.

RQ2. OCSVM vs. SVM: To answer RQ2, we compare the

performance of OCSVM with its two-class counterpart SVM.

By looking at the MCC values reported in Table VII, we can

see that OCSVM performs similarly or better than SVM on

four out of the six datasets (i.e., CM1, KC3, MW1, PC2) with

differences being statistically significant on all four of them

and the effect size being medium in one case and large in

the three other cases. This shows that by learning from the

non-defective modules only, a technique like SVM is able to

perform similarly and sometimes better than when trained on

both, defective and non-defective modules.

RQ3. OCSVM vs. traditional ML: In order to verify

whether OCSVM outperforms traditional two-class classifiers,

we compare its performance to that of three different tech-

niques widely used in defect prediction studies (i.e., RF, NB,

LR). Results, reported in Tables VII and VIII, show that

OCSVM only outperforms RF in one case, with the difference

being statistically significant and the effect size being large.

When compared to LR and NB, results show that OCSVM

does not outperform these two techniques on any of the 12

cases considered.

Finding 4: Our replication study shows that OCSVM sta-

tistically significantly outperforms the Random classifier

on three out of the six cases considered. OCSVM also

performs similarly or better than SVM, with statistical

significant improvements in four out of 6 cases. However,

OCSVM does not perform better than traditional ML

approaches (i.e., NB, LR and RF). These results refute

the original study’s findings.

V. THREATS TO VALIDITY

We mitigated construct validity threats that may arise from

the choice of the data and the way it has been collected, by

using of publicly available datasets that have been carefully

curated and used in previous work [23], [24]. In relation to

conclusion validity, we carefully calculated the performance

measures and applied statistical tests, verifying all the required

assumptions. We use a robust evaluation measure (i.e., MCC)

to evaluate the performance of the prediction models [33].

The conclusion drawn from our replication may be affected

by the fact that we use different hold-out data splits as this



Original Study Replication

Validation Approach Hold-out: 10% for training, 90% for testing, 20 repetitions Hold-out: 10% for training, 90% for testing, 30 repetitions

Techniques OCSVM, NB, NB Log filter. Random under-sampling boosting, Cost sensitive SVM OCSVM, NB, LR, RF, SVM, Random

Evaluation Criteria Recall, False Positive Rate, G-Mean MCC, G-Mean, Wilcoxon Signed Rank Test, Vargha & Delaney Â12

Datasets CM1, KC3, MC1, MW1, PC1, PC2 CM1, KC3, MC1, MW1, PC1, PC2

TABLE V: Summary of the empirical design adopted in the original study and in our replication.

Original Study Replication
Dataset Modules (faulty %) Modules (faulty %)

CM1 496 (9.68%) 498 (9.83%)
KC3 458 (9.39%) 458 (9.39%)
MC1 9277 (0.73%) 9466 (0.72%)
MW1 403 (7.69%) 403 (7.69%)
PC1 1107 (6.87%) 1107 (6.87%)
PC2 5460 (0.42%) 5589 (0.41%)

TABLE VI: Original Study and Replication Data: Total

number of modules and percentage of faulty modules used

in the original and replication studies.

Dataset Random OCSVM SVM RF NB LR

CM1 0.03 0.03 0.01 0.08 0.11 0.13
KC3 0.00 0.10 0.00 0.11 0.21 0.14
MC1 0.00 0.07 0.24 0.23 0.13 0.09
MW1 0.01 0.01 0.00 0.14 0.19 0.16
PC1 0.00 0.00 0.12 0.19 0.15 0.15
PC2 0.00 0.04 0.00 0.02 0.07 0.05

TABLE VII: RQs1-3. Replication Study: Average MCC val-

ues over 30 runs obtained by OCSVM, Random and traditional

two-class classifiers on the six NASA datasets.

information was not present in the original study, however

to mitigate this bias we run the experiments 30 times and

report the average results herein. Similarly, the tools used to

run the experiments may differ given that the original study did

not report this information and the authors could not provide

additional details. Also, we include different benchmarks with

respect to those used in the original study, as it is preferable to

use basic and widely used classifiers rather than more complex

variants, based on the rationale that any novel approach should

be able to outperform basic ones [26], [46]. The external

validity of our study can be biased by the ML techniques and

subjects we considered. However, we have designed our study

aiming at using ML techniques and datasets, which are as

representative as possible of the defect prediction literature.

We considered traditional two-class classification techniques

widely used in previous studies [2] as our aim is to benchmark

one-class predictors vs. traditional two-class predictors, and

not to search for the best prediction technique. If OCSVM

is not able to outperform such traditional baselines, it is

reasonable to assume that it will not perform better than

more sophisticated ones proposed for cross-version and cross-

project defect prediction (e.g., [47]–[52]). Moreover, we used

techniques freely available from a popular API library (i.e.,

Scikit-Learn) to mitigate any bias/error arising from ad-

hoc implementations, however different libraries may bring

different results [53]. We also used publicly available datasets

previously used in the literature, which are of different nature

and size, and have been carefully curated in previous work as

explained in Section II-B. We cannot claim the results will

generalise to other software, despite the fact that we have

analysed the use of the proposed approaches for 15 real-world

software projects having different characteristics and in three

different scenarios (hold-out, cross-release, cross-project). The

only way to mitigate this threat is to replicate the present

study on other datasets. In order to allow and facilitate future

replications and extensions of this work, we will make the

code and data publicly available upon acceptance.

VI. RELATED WORK

A great deal of research has been conducted to predict

defect in software modules. This includes work that explores

a wide range of two-class classifiers as potential solutions

to identify the possibility of a module being defective. A

survey of this can be found elsewhere [2]. However, only few

studies investigate one-class classifiers or anomaly detection

approaches to predict software defects. The work by Chen et

al. [16], replicated herein, is the first using an ML classifier

(i.e., OCSVM) which learns solely from defective training

data. The work by Ding et al. [54] uses Isolation Forest,

which instead uses some amount of defective data, together

with non-defective one, to build the prediction model. Their

results, obtained on five NASA datasets [45], show that on

average over all datasets, Isolation Forest obtained higher F-

Measure and AUC values than Bagging, Boosting, and RF.

Their results also show that the use of a certain amount of

defective data, together with non-defective ones, can improve

defect prediction performance, which is in line with what we

observed by using more recent datasets and other validation

scenarios. Lomio et al. [17] conducted an empirical investi-

gation on 32 open-source projects evaluating three anomaly

detection methods, including OCSVM, for fine-grained just-

in-time defect prediction. Their results do not reveal significant

advantages that justify the benefit of using anomaly detection

over more traditional machine learning approaches. These

results are in line with those we obtained by using OCSVM

at a different granularity level (i.e., whithin-project, cross-

version, cross-project).

VII. LESSONS LEARNT AND FUTURE WORK

In this paper we have investigated the effectiveness of

OCSVM for software defect prediction by carrying out a

comprehensive empirical study involving the most commonly

used machine learners and evaluation scenarios (i.e., within-

project, cross-version, cross-project). We summarise the main

lessons learnt below:

• Overall all classifiers investigated herein perform poorly

according to MCC. Even if there are statistical signifi-

cance differences among some of them, the overall effect



Dataset OCSVM vs. Random OCSVM vs. SVM OCSVM vs. RF OCSVM vs. NB OCSVM vs. LR

CM1 0.306 (0.54) 0.007 (0.77) 0.997 (0.26) 0.994 (0.14) 1.000 (0.13)
KC3 <0.001 (0.99) <0.001 (1.00) 0.846 (0.43) 1.000 (0.14) 0.998 (0.27)
MC1 <0.001 (1.00) 1.000 (0.21) 1.000 (0.23) 0.999 (0.14) 0.396 (0.59)
MW1 0.245 (0.55) <0.001 (0.85) 1.000 (0.29) 1.000 (0.17) 1.000 (0.09)
PC1 0.169 (0.63) 1.000 (0.31) 1.000 (0.06) 1.000 (0.06) 1.000 (0.07)
PC2 <0.001 (1.00) <0.001 (1.00) 0.002 (0.83) 0.983 (0.37) 0.708 (0.48)

TABLE VIII: RQs1-3. Replication Study: Results of the Wilcoxon test and Â12 effect size (p-value(Â12)) comparing OCSVM

with each of the other techniques.

Dataset OCSVM OCSVM-O

CM1 0.11 0.63
KC3 0.30 0.66
MC1 0.62 0.84
MW1 0.04 0.61
PC1 0.15 0.64
PC2 0.60 0.76

TABLE IX: Replication Study: G-mean values obtained by

one-class SVM in our replication (OCSVM) and the original

study (OCSVM-O).

has no practical applications. Thus, we are not able

to recommend any of these classifiers to a practitioner

dealing with software defect data similar to the one

investigated herein.

• OCSVM does not pass the sanity check for the within-

project scenario (i.e., its estimates are significantly better

than random guessing in only 17% of the cases) and is

not as effective as SVM, SVMT and the other traditional

two-class classifiers (i.e., NB, LR, RF) for this scenario.

• OCSVM passes the sanity check for both the cross-

version and cross-project scenarios (i.e., its estimates

are always statistically significant better than random

guessing), it also provides significantly better estimates

than SVM in all cases, and than SVMT in 11% of

the cases for cross-version and 22% of the cases for

cross-project. On the other hand, it is able to outperform

with statistical significant results the traditional two-class

classifiers (i.e., NB, LR, RF) in 37% and 48% of the

cases in total for the cross-version scenario and cross-

project scenario, respectively.

When we consider OCVSMT , which makes use of a minimal

number of defective instances for hyper-parameter tuning, the

overall results improve for all scenarios, as follows:

• OCVSMT performs statistically significantly better than

random guessing in all cases for the within-project sce-

nario (which is a very good improvement compared to

the results of OCSVM for this same scenario) passing

the sanity check. Similarly, its performance against SVM,

SVMT and the other traditional classifiers (i.e., NB, LR,

RF) improves to 43% of the cases (compared to the

20% of OCSVM). Overall, we conclude that OCVSMT

is effective in less than half of the cases for within-project

defect prediction.

• OCVSMT performs statistically significantly better than

random guessing and SVM in all cases for both the

cross-version and cross-project scenarios. Whereas it is

significantly better than SVMT in 55% of the cases

for the cross-version scenario and 100% of the cases

for the cross-project scenario. OCVSMT also performs

statistically significantly better than the traditional ML in

56% of the cases for cross-version and 81% of the cases

for cross-project.

The results, overall, suggest that neither OCSVM nor

OCSVMT is as effective as the traditional two-class classifiers

for the within-project scenario. Therefore their use cannot be

recommended in this case, with the only exception being that

OCSVMT should be preferred to SVM when it is not feasible

to tune the latter. On the other hand, we observe that while

OCSVM also remains ineffective for cross-version and cross-

project defect prediction, its tuned counterpart (i.e., OCSVMT )

achieves statistically significantly better results than traditional

approaches in 64% of the cases for cross-version and in 67%

of the cases for cross-projects.

Although our study reveals negative results for OCSVM

(i.e., OCSVM is not able to consistently outperform the

more traditional two-class classifiers and RF is overall the

best performing approach according to RQ3), we believe the

results also shed light on an another interesting aspect. In

fact, the above findings suggest that when the training data

is more heterogeneous, using OCSVM tuned with a minimal

number of defective instances, can improve the estimates

with respect to using traditional approaches trained on all the

available defective and non-defective instances. This points

to recommendations for future work to explore the extent to

which performing hyper-parameter tuning on different ratios

of non-defective instances affects the prediction performance.
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