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Abstract 
 
Pancreatic neuroendocrine tumour (pNET) patients present with non-specific 

symptoms leading to delayed diagnosis which in turn impacts survival. The 

current gold standard marker Chromogranin A (CgA) has limitations, including 

associated confounding factors such as proton pump inhibitor use and limited 

utility for insulinomas. In clinical practice, pNETs need to be discriminated from 

other pancreatic conditions such as pancreatic ductal adenocarcinoma (PDAC), 

acute pancreatitis (AP) and chronic pancreatitis (CP), but currently no test is 

available for this distinction to be made.  

A multianalyte biomarker approach for pNET detection, using seven previously 

explored GEP-NET markers was explored for their suitability for pNET 

detection. A training cohort of pNET patient and healthy control samples was 

used to develop machine learning (ML) algorithms across seven different 

marker combinations. Based on this work, a three-marker combination of CgA, 

VGF-nerve growth factor inducible peptide (VGF-NGF) and Angiopoietin-2 

(ANG2) was identified as suitable across the algorithms assessed, and that the 

seven markers could be reduced to three markers without a large impact on 

performance, meaning a more cost-effective test using fewer markers. The 

suitability of this three-marker combination was also confirmed in internal 

validation. However, at external validation using an independent sample of 

pNETs, VGF-NGF was deemed not to be suitable and the performance of 

ANG2 and CgA algorithms was less than that seen using the training cohort. 

Models created based on the training pNET case and healthy control evaluation 

were also not found to discriminate between AP, CP, PDAC and pNETs. 

In summary, reduction to a two or three-marker pNET detection panel 

performed well in the ML model training stage but did not show strong 

performance in external validation. Further markers, perhaps identified in early 

pNET biological models are likely to be needed in combination for better 

identification in a point of care test.  
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Impact Statement 
 
The work from my PhD explored the role that machine learning (ML) algorithms 

can play in the diagnosis of pNET patients using biomarkers. The methods of 

ML applied to this work such as C5.0 decision trees, logistic regression, support 

vector machines and random forest’s allowed for ML algorithms which have a 

widespread utility in healthcare to be used in an application to diagnose pNET 

patients; this therefore had the impact to improve diagnosis in these patients. 

The thesis explored these ML algorithms in detail using different approaches for 

validation including a train test approach, k-fold cross validation and external 

validation using independent cohorts. The work from my thesis illustrated some 

of the limitations that these ML algorithms and validation approaches can have. 

My thesis also highlighted the challenges in biomarker work, in that certain 

biomarkers that hold promise in preliminary stages can fall through at different 

points as illustrated in this thesis. The thesis began with the analysis of seven 

GEP-NET markers which lead to three markers to be taken forward to external 

validation and from this only two markers evaluated in the ML models. 

Moreover, the work from this thesis has shown that different approaches are 

needed when trying to diagnose pNET patients from healthy controls, compared 

to when pNET patients need to be differentially diagnosed from AP, CP and 

PDAC patients and that one a strategy fits all is not the answer. The use of 

independent pNET cohorts was a particular strength in this work. The work also 

brought to light the limitations that exist for the established NET marker CgA. As 

there is no standardised FDA approved test, with many ways to assay CgA 

available, this thesis illustrated this challenge as well as highlighting this for the 

wider field of NET research. As if ML algorithms using CgA were to be adopted 

into clinical practice, having standardisation as part of this process would be 

key. My thesis work also illustrated the need for identifying newer pNET 

markers, particularly for early stage whereby the impacts of a biomarker test 

would be most beneficial for pNET patients in terms of survival. This would 

mean developing newer experimental models that better recapitulate the early 

pNET tumour.  
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PET Positron emission tomography 
PFS Progression free survival 
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proGRP Progastrin-releasing peptide 
PRRT Peptide receptor radionuclide therapy 
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Chapter 1 – Introduction 

 

1.1 Neuroendocrine Tumours 

Neuroendocrine tumours (NETs) are a wide spectrum of malignancies which 

arise from neuroendocrine cells throughout the body1. The discovery of NETs 

within the gastrointestinal tract and pancreas began in 1870 when Rudolf 

Heidenhain discovered neuroendocrine cells2. However, Siegfried Oberndorfer 

was the first to describe these tumours and coined the term carcinoid 

(“karzinoide”) in 19073. The term “neuroendocrine” is applied to dispersed cells 

with “neuro” and “endocrine” properties. The “neuro” property is based on the 

identification of dense core granules (DCGs), similar to the DCGs which are 

found in serotonergic neurons that store biologically-active monoamines4. The 

“endocrine” property of these cells refers to the synthesis and secretion of these 

monoamines5. The neuroendocrine system itself is extensive and includes 

endocrine glands, such as the parathyroid, pituitary and the adrenal medulla, 

and endocrine islet tissue embedded within glandular tissues, such as the 

thyroid and pancreas, as well as scattered cells in the exocrine parenchyma, 

including the cells of the digestive and respiratory tracts4. Consequently, NETs 

are heterogenous in nature. The wider group of NETs include various types of 

gastro-entero-pancreatic NETs (GEP-NETs) which include various types of 

pancreatic neuroendocrine tumours (pNETs).  

 

1.1.1 Epidemiology of Neuroendocrine Tumours 
A recent 2019 UK NET registry analysis included NET patients diagnosed 

between 2013 and 20156. Among the 15,222 cases, 7724 (50.7%) were GEP-

NENs. The patient cohort included both NETs and NECs. The age adjusted 

incidence rate of all GEP-NENs was 4.8 cases per 100,000 however this 

included NEC patients thus the true incidence rate of GEP-NETs was not 

specified7. 17.7% of all cases were pancreatic6. Findings from the Surveillance 

Epidemiology End Result 18 in the for pNETs diagnosed between 2000 and 

2016 showed that annual incidence rates increased of pNETs from 0.27 to 1.00 

per 100,0008. This was largely explained by an increase in the number of 

patients diagnosed with localised disease in more recent years (2012-2016).  
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1.1.2 Functional and non-functional pNETs 
pNETs consist of both functional and non-functional types. Functional pNETs 

(F-pNETs) are associated with specific functional syndromes including 

gastrinomas (Zollinger-Ellison syndrome), insulinomas, glucagonomas, 

VIPomas (Verner-Morrison syndrome, pancreatic cholera, watery diarrhoea, 

hypokalemia, achlorhydia (WDHA) syndrome), GRFomas (growth hormone 

releasing factor secreting), adrenocorticotropin (ACTHomas), 

somatostatinomas, pNETs causing carcinoid syndrome, and finally pNETs 

causing hypercalcaemia parathyroid hormone-related peptide (PTHrPomas). 

Table 1.1 illustrates the different types of pNETs, associated secretory products 

and clinical features. Non-functional pNETs (NF-pNETs) are not associated with 

a functional syndrome, however similar to other pNETs 60-100% secrete 

various peptides including chromogranin A (CgA), neuron-specific Enolase 

(NSE) pancreatic polypeptide (50-70%), ghrelin and neurotensin9. However, 

NF-pNETs tend to be asymptomatic and incidentally diagnosed. Sporadic, small 

NF-pNETs are associated with aggressive behaviour and poorer prognosis, 

including extra-pancreatic extension, lymph nodal metastasis, distant 

metastasis, recurrence, and mortality10. 

 
1.1.3 Sporadic pNETs 
pNETs can arise either sporadically or from familial syndromes. The genetic 

background of sporadic pNETs and the mutational landscape of sporadic 

pNETs with and without liver metastasis was explored recently11. The study 

involved the collection of tumour tissue from 14 patients who had sporadic 

pNETs11. Next generation sequencing of 612 cancer-associated genes carried 

out on tumour tissue samples11 identified 63 somatic mutations in 53 genes. 

Amongst these mutations, multiple endocrine neoplasia 1 (MEN1) was identified 

as the most recurrently mutated gene11. Other novel genes which were 

recurrently mutated included adrenoceptor alpha 2B, ARVGF delta catenin 

family member, carbamoyl-phosphate synthase 2, aspartate transcarbamylase, 

dihydroorotase and neuregulin 111. Out of the 53 genes with mutations, 11 of 

these were enriched in the PI3K/AKT signalling pathway11. Additionally, the 

analysis found that sporadic pNETs with liver metastasis had distinctly different 

mutational profiles compared to pNETs without liver metastasis11. 13 genes 

were mutated in pNETs with liver metastasis alone11. These genes included 

ATRX chromatin remodeller, thioredoxin reductase 2, janus kinase 3, armadillo 
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repeat protein deleted in velo-cardio-facial syndrome (ARVCF) delta catenin 

family member, integrin subunit alpha V, RAD50 double strand break repair 

protein, protein kinase C delta, tubulin alpha 3c, DNA methyltransferase 3 

alpha, integrin subunit alpha L, partner and localiser of BRCA2 and pyruvate 

dehydrogenase kinase 211. Kyoto Encyclopaedia of Genes and genomes 

signalling pathway enrichment analysis found that the 13 genes were involved 

in homologous recombination, chemokine signalling pathways and type II 

diabetes mellitus11. The relationship between pNETs and type II diabetes was 

examined in a study by Fan et al., with this study finding that pNET patients with 

type II diabetes had an increased risk for tumour metastasis (OR of 2.81 

P=0.001). The Fan et al., study had cohort of 299 pNET patients. However, in 

this study the two pNET patients with pNET and type II diabetes did not 

demonstrate liver metastasis11.  

 

1.1.4 Familial Syndromes Associated with pNETs 
The majority of pNETs are sporadic in nature, however they can also be 

associated with a number of genetic syndromes including MEN1 and Von 

Hippel-Lindau (VHL) disease12. pNETs are thought to occur in 30-80% of MEN1 

patients, >15% of VHL patients, <10% of neurofibromatosis type 1 (NF1) 

patients, and <1% of tuberous sclerosis patients13,14. While MEN1 remains the 

most common hereditary syndrome associated with pNETs, over the past 

decade the spectrum of inherited pNETs has been expanded via the inclusion 

of multiple endocrine neoplasia 4 (MEN4) and glucagon cell adenomatosis 

(Mahvash disease)15.  

MEN1 is characterised by the combined occurrence of two or more tumours 

which usually involve the pancreatic islets and the parathyroid, anterior pituitary 

and adrenal glands16. It is an autosomal dominant disorder and patients carry 

germline mutations of the MEN1 tumour suppressor gene located on 

chromosome 11q13 and consequent loss of a 610 amino acid nuclear protein 

known as menin, which has a role in suppressing proliferation17,18. The majority 

of MEN1 patients develop tumours by the age of 4519. VHL-driven pNETs occur 

in young patients and within the pancreas. They are typically non-functional and 

multifocal15. The NF-1 gene functions as a tumour suppressor and the NF-1 

protein plays a role in MAPK signalling as it contains a 360-residue GAP 

domain that is involved in the MAP-kinase pathway15. From a morphological 
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point of view, pNETs seen in NF-1 patients are indistinguishable from their 

sporadic counterparts, hence their diagnosis is difficult in the absence of 

genetic or more specific clinical characteristics15. 

 
Type of F-pNET Secretory Product Clinical features 
Gastrinoma Gastrin Zollinger Ellison syndrome 

Mostly malignant 

NET of the duodenum and pancreas 

Insulinoma Insulin Usually benign 

Associated with hypoglycaemia 

Glucagonoma Glucagon Rare pancreatic tumours 

VIPoma Vasoactive intestinal 

peptide 

VIPoma syndrome is also known as WHDA 

syndrome 

Table 1.1: Summary of the different types of F-pNET, including the secretory product and 
clinical features. 
 

1.1.5 pNET Grading and Staging 
 
1.1.5.1 pNET Grading 
World Health Organisation (WHO) classifications have evolved significantly in 

the last two decades in particular for digestive neuroendocrine neoplasms 

(NENs)20. The latest WHO classification published in 202221 groups all NENs 

regardless of their primary location and is a progress for clinicians. In this 

classification NENs are separated into two main groups, the well differentiated 

neoplasms (called neuroendocrine tumours, NETs) and the poorly differentiated 

neoplasms (called neuroendocrine carcinomas, NECs). NECs are further 

divided into small cell -NEC and large cell NEC. The classification was an 

important step towards a common classification blueprint for all NENs in the 

body that share many characteristics20. Proliferations and grading refer to the 

biological aggressivity of NEN and proliferation is a key point of the digestive 

WHO classification and NETs are graded into G1, G2 and G3 grades20. 

 
In addition to their central role in grade classification22, Ki-67 index and mitotic 

rate influence patient prognosis23 and biomarker levels24. A study in which 202 

patients with pancreatic NECs were enrolled, including 172 well differentiated 

and 30 poorly differentiated carcinomas, showed that the major risk factor for 

progression is Ki-67 index23. This therefore is an important measure to help 
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guide clinicians to better manage patients and plan appropriate follow up 

programmes and therapeutic strategies. 5-year survival rates for G1 NETs, G2 

NETs and NECs were 91%, 69% and 10%, respectively24. Moreover, patients 

who had G1 or G2 NETs and who were treated with surgical resection had a 

good prognosis, while NEC patients exhibited distant metastasis and had a 

poor prognosis24. Therefore NET grading can provide not only prognostic 

information but also information on the most suitable treatment strategy for 

patients24. The relationship between the grade of pNET and biomarker levels 

has revealed that pNET patients with different tumour grades have different 

levels of biomarkers24. Elevated tumour markers (carbohydrate antigen 19-9 

(CA19-9)), carcinoembryonic antigen (CEA), NSE, progastrin-releasing peptide 

(ProGRP) and lactate dehydrogenase (LDH) levels increased with pathological 

grade of pNET24. Serum levels of NSE and LDH were elevated in pNECs 

compared to G1 and G2 pNETs24. They also found a positive correlation 

between the Ki-67 index and NSE levels (R=0.3030, p=0.021) and LDH levels 

(r=0.578, P<0.001)24. 

 

1.1.5.2 pNET Staging 
The two most widely used staging systems for pNETs have been produced by 

the European Neuroendocrine Tumour Society (ENETs) and the American Joint 

Committee on Cancer (AJCC)25. Both staging systems use a TNM approach. 

The T refers to the size of the primary tumour, N to metastasis to regional lymph 

nodes, and M to distant metastases26. In the AJCC 7th staging system26 T1 

tumours are limited to the pancreas and are ≤2 cm in greatest dimension25. T2 

tumours are limited to the pancreas and >2 cm in greatest dimension, T3 

tumours are spread beyond the pancreas but with no involvement of the 

superior mesenteric artery25. T4 tumours have involvement of the celiac axis or 

superior mesenteric artery and are unresectable25. In the AJCC 8th and ENETs 

staging systems, T1 refers to a ≤2 cm tumour limited to the pancreas, T2 refers 

to a 2-4 cm tumour limited to the pancreas, T3 refers to a tumour limited to the 

pancreas and >4cm in size or one that has invaded the duodenum or common 

bile duct, and T4 refers to a tumour that has invaded adjacent structures25. N0 

refers to no regional lymph node metastasis, while N1 refers to regional node 

metastasis. This classification of nodal involvement is the same in the AJCC 7th 

stage, AJCC 8th stage and ENETs systems25. In the AJCC 7th staging system, 
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the M0 category refers to no distant metastasis and M1 refers to distant 

metastasis25. The AJCC 8th and the ENETs staging have a detailed M1 

classification with M1 being further subdivided into M1a referring to metastasis 

confined to liver, M1b referring to at least one extrahepatic stie and M1c 

referring to both hepatic and extrahepatic metastases25. 

 

1.1.6 Therapeutics and Treatments for pNETs 
 
Understanding the different treatment options and therapeutics available for 

pNET patients is important to illustrate the clinical complexity of this group of 

patients. The following Sections 1.1.6.1 to 1.1.6.9 briefly explain the different 

treatment options available to patients with non-metastatic and metastatic 

pNETs.  

 

1.1.6.1 Active Surveillance for non-metastatic pNETs 
Active surveillance is an option for patients whereby treatment is not initiated 

but instead a watch and wait approach is taken. The Asymptomatic Sporadic 

non-functioning Pancreatic Neuroendocrine Neoplasms (ASPEN) study aims to 

prospectively explore whether active surveillance as an approach for 

asymptomatic NF-PNENs of <2cm in size is safe when compared to surgery27. 

However an important issue with active surveillance is the absence of 

prognostic markers that can predict tumour progression during follow-up28.  

 
1.1.6.2 Surgery for non-metastatic pNETs 
Surgical resection offers the only potentially curative treatment for patients with 

F-pNETs and NF-pNETs. Patients are selected for surgical resections based on 

tumour functionality, grade, stage, and association with MEN1. Gastrinomas 

and non-MEN1 genotypes are positive indicators for surgery, as >98% survival 

was obtained for these groups after surgical resection29.  

 

1.1.6.3 RFA for non-metastatic pNETs 
Interventional radiology also encompasses techniques such as radiofrequency 

ablation (RFA), which provides a relatively new treatment option. A recent RFA 

study included a cohort of 18 adults, comprising seven insulinoma patients and 

11 patients with NF-pNETs, who underwent RFA between March 2017 and 

October 2018. Technical success was achieved in 26 out of 27 lesions and 
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there were no major complications 48 hours post procedure. There were also 

no clinically-significant recurrences during a mean follow-up period of 8.7±4.6 

months30.  

 

1.1.6.4 Surgery if feasible for metastatic pNETs 
Surgery is the first course of treatment for liver metastasis31. The risk of 

recurrence is significant and full excision of metastasis is rarely achievable32. It 

may be performed in the palliative setting for symptomatic control or when 

hepatic involvement is smaller than 50% and at least 90% of the tumour can be 

resected33,34. 

 

1.1.6.5 Somatostatin analogues for metastatic pNETs 
Somatostatin analogues (SSAs) act on the somatostatin receptor and work by 

controlling hormonal secretion and tumour growth as functional and NF-pNETs 

express at least one out of the five subtypes of somatostatin receptor35. SSAs 

exert antiproliferative activity against pNETs with ki-67 > 10% and can be used 

instead of other more toxic treatments36. There is an association between lower 

tumour burden (25%) and potential for benefit in this population. Moreover, 

patients with hepatic tumour burden <25% showed longer PFS compared with 

those with high liver tumour load36. In this study a substantial proportion of 

patients displayed a liver tumour load greater than 25% which reflects the 

current ‘real life’ practice among NET referral centres36. 

 

1.1.6.6 PRRT for metastatic pNETs 
Another therapy for pNETs is Peptide Receptor Radionuclide Therapy (PRRT). 

The presence of somatostatin receptors (SSTRs) on GI-NETs and pNETs has 

been exploited in order to target radiotherapy by using radiolabelled SSAs 

(indium-111, yttrium-90 (Y90) or lutetium-177 (Lu-177))37. After SSTR binding 

and internalisation of the receptor complex, the ionising radiation is released 

which causes damage to tumour DNA and cell death18. Treatment of metastatic 

pNETs with 177Lu-DOTATATE was shown to be a safe and effective therapy 

resulting in radiological symptomatic and biochemical response in a high 

percentage of patients with metastatic functioning pNETs38.  

 



 37 

1.1.6.7 Molecular targeted therapies for metastatic pNETs  
Molecular therapies for NETs include mammalian target of rapamycin (mTOR) 

inhibitors and anti-angiogenic compounds that target vascular endothelium 

growth factor (VEGF). Other therapies include anti-angiogenic compounds that 

block the actions of VEGF in promoting the survival and growth of blood 

vessels18. Sunitinib maleate is a tyrosine kinase inhibitor that can irreversibly 

inhibit several kinases including the VEGFR family. Sunitinib has been 

approved for the treatment of locally advanced or metastatic pNETs39. 

Continuous daily administration of Sunitinib at a dose of 37.5mg improved 

progression free survival, overall survival and the objective response rate as 

compared with placebo among patients with advanced pNETs39. Treatment of 

patients with progressive metastatic well-differentiated pancreatic tumours with 

the biologic Bevacizumab, which is an anti-VEGF monoclonal antibody, in 

combination with 5-FU/Streptozocin was carried out through the multicentre, 

non-randomised BETTER Phase II trial and this achieved a progression-free 

survival (PFS) of 23.7 months which was much longer than the initial 9 months 

that was assumed in the protocol and also better than the reported PFS with 

either chemotherapy alone or new targeted therapies in the same population40. 

The mTOR inhibitor Everolimus has been shown to have efficacy in Phase II 

and Phase III studies in patients with pNETs,41 in the RADIANT-3 study, where 

patients treated with Everolimus had a significantly longer PFS (11 versus 4.6 

months) than patients receiving placebo42.  

 
1.1.6.8 Chemotherapy for metastatic pNETs 
When pNETs progress under somatostatin analogue (SSA) therapy, or exhibit 

symptoms or aggressive features and/or Ki67 values >10%, cytotoxic 

chemotherapy should be considered as the first-line treatment of choice43. The 

two classes of drugs which are used to treat well-differentiated pNETs are 

alkylating agents (e.g. streptozocin, temzolomide, and dacarbazine) and 

antimetabolites (e.g. 5-Flurouracil (5-FU) and capecitabine (CAP))44. In western 

countries streptozocin has been used as a first-line anti-cancer drug in patients 

with unresectable NETs45.  
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1.1.6.9 Locoregional treatments of hepatic metastases  
Intra-arterial therapies for NETs are based on the knowledge that most liver 

metastases from NETs are hypervascular and take their blood supply from the 

hepatic artery, while the normal liver blood supply is from the portal vein46. 

Trans-arterial embolization (TAE) causes ischemia and necrosis of the lesions 

by injecting various particles (gelfoam, polyvinyl alcohol, microspheres)44.Trans-

arterial chemoembolization (TACE) was developed in 1990s based on the 

rationale of embolising the blood vessels after delivering chemotherapy directly 

to the tumour cells by systemic injection44. Both the high drug concentration and 

ischaemia of the cells can enhance their response to the treatment. The most 

commonly used agents are doxorubicin and streptozotocin alone or combined 

with other agents44.  

 
Selective interval radiation therapy (SIRT) is radioemobilisation using resin-

based (Sirspheres) and glass-bead (Therapspheres) micron sized particles, 

loaded with Yttrium-90 radioisotype, is increasingly being used, delivering high 

irradiation directly to the tumour44. One series of 148 patients has shown 

positive response in 62.9% of patients, and stable disease in 22.7%47.  

Thermal ablation is performed by using radiofrequency ablation (RFA) or 

microwave ablation (MWA) which delivers high frequency current to the lesion 

inducing heat which destroys the proteins leading to cellular death44. RFA is 

more frequently used than microwave ablation, showing overall good clinical 

response but as with surgery intra-hepatic recurrence remains a problem44. 

The classical indications for thermal ablation in liver metastases are less than 5 

lesions, and less than 5cm in size, however in NETs a more extensive 

metastatic spared is frequent and the technique is sometimes used beyond 

these indications44. 

 

1.2 pNET Detection and Diagnosis 

The earlier pNETs are detected and diagnosed the better the patients’ outlook. 

Methods for diagnosing pNETs including histology and imaging which are 

discussed in subsections 1.21 and 1.22 respectively. The clinical pathways and 

routes for patient diagnosis are reviewed in 1.23. pNET symptoms, 

comorbidities and risk factors are considered in 1.24 and 1.25. Blood based 

pNET detection is discussed in a separate section (1.3). 
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1.2.1 Histology 
NETs present as solid or small trabecular clusters or dispersed among other 

cells which then make them difficult to identify in sections that are stained with 

haematoxylin and eosin (H&E). However, immunostaining enables exact 

identification of NETs. NETs at the ultrastructural level are defined by their 

cytoplasmic membrane-bound dense-cored secretory granules (diameter 

>80nm) and small clear vesicles (40-80nm) which are related to the synaptic 

vesicles of neurons48. 

pNETs are characterised as well-demarcated, usually solitary, round tumours 

with a diameter of 1-4 cm. These tumours can occur in all parts of the 

pancreas48. If associated with a hormonal syndrome the hormone causing the 

syndrome can be detected immunocytochemically. Histologically, in 

approximately 5% of insulinomas amyloid deposits are found in the tumour. The 

colour of the cut surface varies but is mostly white to tan, depending on the 

degree of fibrosis and amyloid deposition. Fibrous capsules are not a 

characteristic finding although they can be present. The tumours are mostly 

located in the pancreatic parenchyma. The following histopathological features 

of pNETs are characteristic in the majority of cases49. 

• Tumour cells are arranged in solid nests or in ribbon-like trabecular 

and/or gland like formations. 

• Tumour nests are surrounded by thin vascular stroma. Perivascular 

pseudorossette arrangements are considered highly specific in pNETs. 

• The cytoplasm of tumour cells contains neuroendocrine granules with 

CgA presence demonstrated via immunohistochemistry. 

• Nuclear atypia is mild to moderate and round to oval in shape. The 

characteristic nuclear morphology of the nuclei with coarsely granular 

chromatin and subtle nucleoli is referred to as the “salt and pepper” 

pattern. 

Immunohistochemical examinations are vital for the diagnosis of pNETs49. The 

neuroendocrine differentiation of the tumour is confirmed via the expression of 

CgA and synaptophysin49. CgA is a large secretory granule associated 

universal marker of neuroendocrine tissues and tumours48. However, its 

expression level depends on the cell type and the number of secretory granules 

present in the cells48. Synaptophysin is a small vesicle associated marker and 
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an integral membrane glycoprotein that occurs in the presynaptic vesicles of 

neurons. Other small vesicle associated markers include synaptic vesicle 

protein 2 (SV2) and synaptobrevin48. Somatostatin receptors (SSTRs) are 

widely expressed in different NETs and comprise five subtypes termed SSTR1, 

SSTR2, SSTR3 SSTR4 and SSTR5. These subtypes can be identified via 

immunohistochemistry and also through autoradiography50 or otreoscan51. 

Serotonin-producing NETs and gastrinomas are more commonly positive for 

SSTR2 and SSTR5 compared to insulinomas52. 

Cytosolic markers of NETs include NSE48. However, commercially available 

antibodies have a limited sensitivity due to unspecific staining of certain non-

endocrine tissues such as striated muscles48. Additionally, NSE has also been 

recognised in some non-neuroendocrine tissues including pseudopapillary 

neoplasm of the pancreas and serous cystic neoplasms of the pancreas48. 

Thus, these limitations suggest that NSE alone as a marker is not suitable for 

histological diagnosis48. Cell membrane markers of NETs include the neural 

cell-adhesion molecule (NCAM, CD56) which belongs to a group of cell surface 

glycoproteins involved in direct cell to cell adhesion48. However, limitations of 

NCAM include the presence not only in neuroendocrine cells but also 

expression in non-endocrine normal tissues such as the renal tubules and 

thyroid follicle and neoplastic tissues including non-small lung carcinomas48.  

 

1.2.2 Imaging 
The detection of a F-pNET can be a diagnostic challenge. While these tumours 

affect very prominent hormonal systems, the resulting effect may be small53. In 

contrast, NF-pNET symptoms are usually secondary to tumour mass effects, 

such as abdominal pain, jaundice and weight loss, or to the effects of metastatic 

disease53. Patients with NF-pNETs more often present with larger tumours 

which are more easily detected compared to functioning pNETs53. This is due to 

the lack of symptoms associated with NF-pNETs compared to F-pNETs, thus 

the size of the tumour being larger at diagnosis due to a delayed diagnosis. 

Moreover, imaging of PDACs and pNETs can produce similar results leading to 

misdiagnosis of pNETs as PDACs54. Additionally, pNETs need to be 

distinguished from other hypervascular lesions such as primary exocrine 

tumours (e.g. serous cystic adenoma, solid pseudopapillary neoplasia, and 

acinar cell carcinoma), hypervascular metastases (e.g. renal cell carcinoma, 
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carcinoid, and medullar thyroid carcinoma), neurogenic tumours (e.g. 

Schwannoma), vascular lesions (e.g. aneurysm, pseudoaneurysm, and 

arteriovenous malformation) and developmental lesions (e.g. intrapancreatic 

splenule)55. Imaging options for pNETs include anatomical (computed 

tomography (CT), magnetic resonance imaging (MRI), ultrasound (US)) and 

functional (scintigraphy and positron emission tomography (PET))53. CT is the 

first line imaging modality of choice for suspected pNET patients and allows for 

disease identification in the pancreas and assessment of disease extent51. On 

CT and MRI images, NF-pNETs appear as a large pancreatic mass that has 

heterogenous enhancement due to necrotic and haemorrhagic changes. 

Moreover, the development of multidetector CT technology has allowed high 

resolution images to be obtained during multiple phases of enhancement56. 

However, meticulous technique, awareness of atypical appearances such as 

isoattenuating, hypoattenuating and cystic tumours, and careful scrutiny of 

tumours near vessels are critical to obtaining the highest possible sensitivities56. 

On CT images typical insulinomas are well defined, hypervascular, and show 

intense enhancement during the arterial/pancreatic phase51. Moreover, 

amongst all pNETs, gastrinomas are most often associated with MEN1 

mutation51. After contrast injection, gastrinomas have a delayed enhancement 

persistent on the delayed phase of CT imaging due to the presence of fibrosis51. 

The superior soft tissue contrast resolution of MRI, which is the ability to 

distinguish various structures based on their different signal intensity 

characteristics, makes it advantageous for the investigation of pNETs compared 

to CT53. However, limitations to MRI include its lower availability and prolonged 

image acquisition time compared to CT53. CT sensitivity for the diagnosis of 

GEP-NETs is 57-94% with sensitivities for MRI approaching 94%. Thus, the 

sensitivities are similar for both imaging modalities. With both CT and MRI, 

pNET detection increases with tumour size57. 

Another method for imaging pNETs is ultrasound (US). The various US 

approaches include conventional transabdominal US, endoscopic US (EUS), 

(US by inserting a transducer via the endoscope) and intra-operative US (direct 

contact of the transducer with the organ surface during surgery)53. Similar to 

MRI, US is advantageous as it does not expose the patient to potentially 

ionising radiation53. Moreover, US provides guidance of the biopsy needle for 

both fine needle aspiration for cytology and core biopsy for histopathological 
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examination53. EUS has a sensitivity of 87% in the diagnosis of GEP-NETs57, 

but it is more suited for the detection of small (< 2cm) pNETs, such as 

gastrinomas and insulinomas57. Moreover, the sensitivity for EUS is higher for 

head than tail lesions due to differences in the proximity of the endoscope51. 

The sensitivity of EUS is higher for pancreatic gastrinomas compared to extra-

pancreatic gastrinomas, which is thought to be due to their generally smaller 

size51. EUS is also thought to be helpful for the detection of adjacent lymph 

node metastasis within the gastrinoma triangle51. The gastrinoma triangle itself 

is defined as the confluence of the cystic and common bile duct superiorly, the 

2nd and 3rd parts of the duodenum inferiorly and the neck and body of the 

pancreas medially, both dorsally and ventrally58. Moreover early screening 

using EUS can identify pNETs in asymptomatic patients with MEN159. Thus 

identifying these tumours before the development of symptoms and metastases 

could facilitate prompt surgical intervention and improve prognosis59. EUS can 

also be used to guide RFA to the tumour and thus be an alternative to 

surgery30.  

Isotope-imaging modalities have become increasingly relevant for the 

management of pNET patients51. Functional imaging with SSAs is useful to 

detect the primary tumour, assess disease extent and recurrence, and to finally 

select patient candidates for PRRT with Y90 or Lu177-labelled SSAs51. Poorly 

differentiated NECs have lower expression levels of somatostatin receptors and 

functional imaging with SSAs is limited for these tomours51. SRS (somatostatin 

receptor scintigraphy) may be able to detect the pancreatic primary tumour 

when morphological imaging and EUS show no lesions51, because SRS is more 

sensitive in detecting well-differentiated gastrinoma, glucagonoma, VIPoma and 

non-functioning pNETs51. However, it has a low sensitivity for detecting 

insulinomas due to their lower SSTR2 subtype expression51. FDG 

(fluorodeoxyglucose) PET (positron emission tomography)/CT is widely used in 

oncology but FDG is not considered a good tracer for NET tumours. Moreover, 

gallium-68 SSA PET has been demonstrated to be more sensitive than SRS-

SPECT (SRS single photon emission computerised tomography) and is 

expected to become the preferred mode for functional imaging of pNETs51.   

Imaging predictors of aggressive behaviour in pNETs include large size, low 

vascularisation, vascular encasement, ill-defined margins, pancreatic and/or bile 

duct dilatation, complex cystic morphology, liver involvement, a large number of 
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metastatic sites and rapid spontaneous tumour progression51. Liver involvement 

and a higher number of metastatic sites represent an advanced disease state.  

 

1.2.3 Clinical pathways to diagnosis 
Patients with NETs face delays in the time taken to be diagnosed. A web-based 

survey found that the median time from first symptoms to diagnosis is 53.8 

months60. Moreover 58% of respondents were referred to secondary care 

where they were seen a median of 3 times60. Furthermore, 30% of patients 

presented acutely to Accident and emergency (A&E) services60. There is 

therefore a clear clinical need to improve diagnostic pathways for NET patients. 

When considering patients with pNETs, most occur sporadically and a minority 

are associated with familial conditions such as MEN1. Patients who have been 

diagnosed as MEN1 or are at an increased risk of MEN1 affects due to first 

degree relative diagnosis should be offered a programme of combined clinical, 

biochemical and radiological screening61. As a minimum, screening for GEP-

NETs in this group should include an annual plasma biochemical evaluation 

comprising measurements of gastrin, glucagon, VIP, pancreatic polypeptide, 

CgA and insulin with associated fasting glucose level61. A consensus for 

optimum radiological screening in these patients has not been established and 

this depends instead on clinical judgement, resources and patient preferences. 

However, a suggested minimum imaging protocol includes annual pancreatic 

and duodenal visualisation with MRI, CT or EUS61. As most pNETs are sporadic 

identification of patients is typically through presentation with symptoms in 

general practice. The National Institute For Health and Care Excellence (NICE) 

guidelines pathway (Dec 2021) for pancreatic cancer indicates patients 

suspected of pancreatic cancer should be referred to secondary care via a 

suspected cancer pathway, which should provide an appointment within 2 

weeks for suspected pancreatic cancer patients if they are aged 40 years and 

over and have jaundice62. The NICE guidelines also suggest an urgent direct 

access CT scan should be performed within 2 weeks, or an urgent ultrasound 

scan if CT is not available, to assess people aged 60 years and over with 

weight loss and any of the following symptoms: diarrhoea, back pain, abdominal 

pain, nausea, vomiting, constipation, or new-onset diabetes62.  

There are also patients who present with non-specific symptoms, who 

consequently don’t qualify for referral via the two-week wait pathway. A non-
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specific symptom can be caused by a range of conditions in addition to cancer. 

Thus, identifying appropriate diagnostic tests and referral routes for these 

patients can be challenging. This leads to patients often seeing their GP 

multiple times before referral, which contributes to longer intervals from 

presentation to diagnosis. Improved clinical pathways are needed to diagnose 

these patients. The MDC (multi-disciplinary diagnostic centre) provides another 

route whereby patients with non-specific but concerning symptoms which could 

be indicative of cancer can be seen. The MDC aims to improve outcomes for 

such patients by providing rapid access to a variety of diagnostic tests within a 

single diagnostic centre, with the aim of speeding up diagnosis63. The MDC 

concept was first trialled in Denmark as part of their three-legged cancer 

stategy64 and subsequently in the United Kingdom (UK) (5 projects 

encompassing 10 centres in total)63. The UK criteria for referral to MDCs 

followed two key points. Firstly, that the patient must be considered as being of 

clinical concern with non-specific symptoms potentially indicative of cancer (or 

other serious disease) and that their presenting symptoms are not sufficiently 

clear to indicate an appropriate tumour-specific urgent referral pathway. 

Patients with a previous cancer were included and painless jaundice despite 

being a site-specific symptom was included as a referral criterion in the London 

MDC. Table 1.2 summarises the approaches taken at the different UK MDCs. 

Eligible referral criteria were included on MDC referral templates to assist with 

data consistency, data quality and to clearly indicate patient symptoms as 

appropriate. However, there was still some missing data associated with the 

evaluation arrangements and despite measures implemented to promote 

consistency with data collection and reporting, a certain degree of variation was 

present due to localised data arrangements63.  

 
MDC Referral Criteria Referrer 
London 

(5 centres) 

Abdominal symptoms with no clear referral pathway, new 

unexplained abdominal pain, unexplained weight loss, 

persistent nausea/appetite loss, GP clinical suspicion and 
painless jaundice 

GP 

Oxford 

(1 centre) 

Severe unexplained fatigue, unexplained weight loss, 

persistent nausea or appetite loss, now atypical pain, 

unexplained laboratory findings, no organ specific symptoms, 

no symptoms fulfilling referral via the standard 2 week wait 

GP 
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pathway, over 40 years old and GP clinical suspicion (‘gut 

feeling’) 

Airedale 

(1 centre) 

Persistent unexplained weight loss, persistent unexplained 

abdominal pain, non-specific but concerning symptoms (high 

risk of cancer), GP suspicion. Too unwell for 2-week wait 

referral 

GP 

A&E 

Secondary 

care clinic 

Leeds 

(1 centre) 

Appetite loss and nausea (unexplained, 40 years and over), 

weight loss (unexplained, 40 years and over), abdominal pain 
without rectal bleeding or weight loss (<3-month duration or 

recent change in the character/severity, 50 years and over), 

anaemia (non-iron deficient, without bleeding, 50 years and 

over), hypercalcaemia (unexplained and persisting <12 

months), thrombocythemia (unexplained and persisting <12 

months), GP suspicion and general condition (‘poor’ general 

condition) 

GP 

Acute 
Medicine 

Greater 
Manchester 

(2 centres) 

Non-specific abdominal pain, unexplained weight loss, severe 
unexplained fatigue, nausea/appetite loss, splenomegaly, 

hepatomegaly, lymphadenopathy, GP clinical suspicion and 

non-iron deficiency anaemia 

GP 

Table 1.2: Referral criteria and referral route for the different MDC pilot centres in 
England63. 
 

The MDC pilot found that 8% of referrals resulted in a cancer diagnosis with 241 

cancers diagnosed form a referral cohort of 2961. Moreover, a relatively large 

proportions of the diagnosed patients had stage IV cancers compared to Stage 

1 to 3. Several of the non-specific symptoms were systemic, consistent with 

metastatic cancer63. Despite this a substantial portion of early-stage cancers of 

the lung, upper gastrointestinal (GI) tract and haematological cancers were 

diagnosed, which indicated that MDCs provide a route for timely diagnosis for 

these cancers. However, it does remain a possibility that some of the cancers, 

including those diagnosed at an early stage, were diagnosed ‘incidentally’ via 

symptoms not caused by cancer. Also the number of NETs diagnosed via this 

route was not mentioned63. The MDC pilots found a strong association between 

cancer diagnosis and patient age and identified GP ‘clinical suspicion’ as a 

strong predictor of cancer amongst the non-specific symptoms. Hence the pilot 

demonstrated that a cancer referral pathway for patients with non-specific but 

concerning symptoms could be a valuable referral option for patients suspected 

of cancer across a broad range of anatomical sites63.  
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1.2.4 pNET symptoms 
There is a delay in the diagnosis of patients with pNETs with the median 

duration from the time of first symptoms to diagnosis being 24 months65. 

Respondents saw their GPs about their symptoms 5 times over a median 18-

month period, with 31% of patients being diagnosed following unplanned 

emergency admission65. Due to the absence of a UK screening programme for 

the detection of pancreatic cancer, identification of patients suspected of this 

disease through symptomatic presentation in general practice remains the key 

avenue for early diagnosis66. In a real-life general practice scenario, GPs have 

the considerable challenge of distinguishing patients with suspected malignancy 

versus other benign conditions66. Often these patients present with non-specific 

symptoms that can be easily missed by the clinician and thus delay a cancer 

diagnosis. A recent and first-of-its-kind large population-based study examining 

the symptomology of PDAC and pNENs was carried out by Liao and co-workers 

in 202166. This open cohort study included 15,194,279 patients aged 25 years 

and over. From this group 23,640 PDAC cases and 596 pNEN cases were 

identified. Most pNENs were neuroendocrine carcinomas (45.97%) and most of 

the pNETs were well differentiated (38.59%). 

This study systematically examined the symptomology of PDACs and pNETs 

and quantified the association of 42 potential symptoms in different time 

windows relative to the date of diagnosis. The study identified 2 symptoms for 

pNETs within 3 months of diagnosis (alarm symptoms) - GI bleeding and 

jaundice. The study also identified symptoms within 1 year of diagnosis of a 

pNET and these were diarrhoea, bowel change, vomiting, indigestion, 

abdominal mass, abdominal pain and weight loss (longer than 2 years). 

However, the identified symptoms overlapped with those of PDAC as illustrated 

in Figure 1.1 and no pNET-specific symptoms were identified in this study. In 

contrast, several PDAC-specific symptoms were identified. Consequently, a 

patient presenting to their GP with a PDAC-specific symptom might be referred 

for PDAC as opposed to pNET assessment, while a patient presenting with a 

pNET symptom might be referred for pNET and PDAC assessment. In both 

cases other diagnoses could not be excluded based on non-specific 

symptomatic presentation. 

A limitation of this study was the low number of pNET cases as this may have 

resulted in the full burden of symptoms associated with pNETs not being 
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statistically significant. Hence it is not clear whether a lower number of 

significant symptoms for pNETs was due to a lack of statistical power, or if 

pNETs had a less prominent symptomatology, or if it was a combination of both 

factors. Additionally, symptomatology was not explored with functionality, which 

might have revealed different symptoms between NF-pNETs and F-pNETs. The 

study also did not explore symptoms associated with early and late stage 

pNETs. There was also information bias in the electronic health records and the 

authors were unable to evaluate the accuracy of information recording across 

practices. The implications of this study were that the identified symptoms 

should be communicated to the public to encourage individuals to seek medical 

attention if they have any of these symptoms. Public and patient engagement 

events could assist in raising public awareness of these symptoms as signs of 

pancreatic cancer which could result in patients seeing their GPs more promptly 

when they notice these changes. 

 
 

 
 
Figure 1.1: Symptomology Venn Diagram for PDAC and pNET.  
The Venn diagram illustrates PDAC-specific symptoms, overlapping symptoms for pNETs and PDAC, and 
the absence of any pNET-specific symptoms as identified by Liao and co-workers. 
 



 48 

1.2.5 pNET comorbidities and risk factors 
A large scale population level based study identified pNET comorbidities as 

type 2 diabetes, venous thromboembolism (VTE), Cushing’s syndrome and 

pancreatic cyst66. Type 2 diabetes, especially recent-onset of type 2 diabetes, 

has been shown to be associated with pNET risk in various case control studies 
67,68,69,70. In the Liao et al. (2021) population level study comorbidity analysis 

identified an overlap between those seen for pNENs and for PDACs66. The 

identified pNET comorbidities of type 2 diabetes, VTE, Cushing’s syndrome and 

pancreatic cyst are all statistically associated with PDAC as well and no pNEN-

specific comorbidities were identified. However, additional comorbidities were 

identified for PDACs but not for pNENs. These included AP, cholangitis, family 

history of GI cancer and type 1 diabetes. Figure 1.2 illustrates the specific and 

shared comorbidities of PDACs and pNENs. 

The relationship between pNETs and diabetes is of particular interest. Other 

case control studies have identified diabetes as a risk factor for 

pNETs70,67,68,69,71. This includes the 2008 Hassan et al. study which reported an 

odds ratio (OR) of 2.80 (confidence interval (CI) 1.50-5.20) for pNETs and 

diabetes70. CIs are at 95% unless specified otherwise.  This study compared 

740 patients with histologically confirmed, well-differentiated, low/intermediate 

grade NETs and 924 healthy controls. Within the NET cohort there were 60 

patients with pNETs. The study found an association between recent onset 

diabetes and pNETs in 55% of the patients, but no such association with long-

term diabetes. Moreover, the significant relationship between diabetes and 

pNETs in men and women was observed only for diabetes that had been 

diagnosed within less than a year of NET diagnosis.  

A study by Halfdanarson et al. in 2014 reported an OR of 4.80 (CI 2.30-9.90) for 

pNET and diabetes67. In this study, patients were asked to complete a risk 

factor questionnaire that included detailed information on family history of 

malignancies, personal history of malignant and non-malignant disorders and 

habits including tobacco and alcohol use. Only histologically or clinically 

confirmed low to intermediate grade pNETs were included in the study. Patients 

having MEN1 or other inherited syndromes such as VHL were excluded. They 

found that cases were more likely than controls to report being diagnosed with 

diabetes prior to being diagnosed with pNETs (19% vs 11% p=0.003). 

Moreover, 6 patients were diagnosed with diabetes at the same time or after the 
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pNET diagnosis and 16 were diagnosed with diabetes within three years prior to 

pNET diagnosis. Additionally, this study excluded patients with insulinomas. 

However due to a lack of information on gene mutations resulting in MEN1 

there is a likelihood that patients with clinically unrecognised MEN1 may have 

been included. The study also found that pNET patients were more likely than 

controls to report a family member with sarcoma (p=002), pNET (p=0.024), gall 

bladder cancer (p=0.024), ovarian cancer (p=0.04) and gastric cancer (p=0.01). 

They also found that more cases had a body mass index (BMI) of 30 or higher 

compared to controls (30% vs 24% p=0.013)67. 

 

 
Figure 1.2: Comorbidities Venn Diagram for PDAC and pNET.  
The Venn Diagram illustrates the specific comorbidities seen in PDAC alone, pNET alone and in both 
conditions identified from the 2021 Liao et al. study. 
 

A report by Capurso et al., describes another case control study which 

comprised of 162 pNETs and 648 controls68. In this study participants were 

interviewed using a specific questionnaire on demographics and potential risk 

factors, which included smoking, alcohol, height, weight, medical history and 

family history of cancer68. The study found that a first-degree family history of 

any cancer was a significant risk factor with an OR of 2.2 (CI (1.5-3.2)68. 

Moreover, they found that a family history of PDAC was more frequent in 

pNETs than in controls (4.2 vs 1.25, p=0.01)68. They also found that high 
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alcohol intake OR 4.8, CI(2.4-9.5), history of CP (OR of 8.6, (CI 1.4-51) and 

recent onset of diabetes OR 40.1, (4.8-328.9) were all independent risk 

factors68. Interestingly, they found that a history of diabetes was also associated 

with metastatic disease at the time of diagnosis68. 

Another study that explored risk factors was performed by Girladi et al, who 

investigated a total of 184 cases and 248 controls, with 100 of the cases being 

pNENs69. This study also reported that type 2 diabetes was a pNEN risk factor 

(OR 3.01, (CI 1.15-7.89)69. They also found increased risk associated with a 

history of pancreatic cancer (OR 5.88, (CI 2.43-1422), increased risk with a 

family history of pancreatic tumours (OR 1.94, (CI 1.19-3.7) and an increased 

risk of pNETs for patients who had a family history of lung tumours (OR 3.01, 

(CI 1.15-7.89). The case group for this study included both pNENs and lung 

NENs, but not MEN1 cases, but tumour functionality details were not collected. 

The mean age of controls was significantly younger compared to both lung 

(p<0.001) and pancreatic NENs (p<0.001). Moreover, patients with both lung 

NENs and pNENs were heavier than controls (p=0.033) and among the pNET 

group only the prevalence of diabetes was significantly higher compared to 

controls (p=0.002). pNENs patients and lung NEN patients both had a 

significantly higher prevalence of a family history of tumours compared to 

controls (p<0.001 and p=0.001, respectively). Additionally, patients with lung 

NENs and pNENs reported a significantly higher prevalence of family history of 

lung cancer compared to controls. Increased age was shown to be a risk factor 

for developing pNENs and lung NENs (OR=1.03, CI 1.01-1.05). Based on these 

data, the authors suggested a link between neuroendocrine neoplasia and 

cancer in general through a cancer predisposing landscape. Genes involved in 

familial susceptibility are well known for both lung NENs and pNENs69. Heritable 

syndromes associated with NEN development including MEN1, VHL, NF-1 

Cowden, tuberous sclerosis and Li-Fraumeni syndromes. As genome-wide 

association data are lacking for patients with neuroendocrine cancer, more 

subtle genetic associations have not been elucidated. MEN1 cases were 

excluded from the study and additional hidden genetic traits may exist within 

this cohort. Another limitation of this study is the small sample size, most likely 

as a result of the low pNEN prevalence. 

A study by Ben et al. also explored pNET risk factors. This study included 385 

pNET patients and 614 age and sex-matched controls71. Patients with inherited 
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syndromes including MEN1 and VHL were excluded, but pNET functionality and 

grade data were included. Most F-pNETs were insulinomas and most pNETs 

were well-differentiated G1 tumours. The study also investigated risk factors for 

the total pNET group and for the F-pNET and NF-pNET subgroups. 

Multivariable analysis showed that only heavy alcohol use was independently 

associated with F-pNET risk with multivariate adjusted odds ratio (AORs) (AOR 

1.87, CI 1.01-3.51). AORs are ORs which have been adjusted to account for 

other predictors. Multivariable analysis, which is an analysis with one outcome 

(dependent) and multiple independent (a.k.a predictor or explanatory variables) 

was used in this study with multivariable analysis with adjustment for risk factors 

for NF-pNETs showing that ever/heavy smoking, first degree family history of 

cancer and history of diabetes were independent risk factors for NF-pNETs. 

Additionally, multivariable analysis with adjustments for ever smoking and first 

degree family history of cancer showed that new-onset diabetes (<1 year) was 

significantly associated with development of NF-pNETs with an AOR of 2.67 (CI 

1.37-5.20). As seen with the other studies, the increased risk of NF-pNETs in 

subjects who have a family history of cancer could be due to unknown genetic 

factors or shared environmental factors. 

The limitations of this study, as with the other previously mentioned studies, 

include not considering medications such as statins and aspirin which are both 

associated with the risk of PDAC72. Additionally, in this study data on the usage 

of hypoglycaemia treatments such as metformin, thiazolidines and insulin were 

not available for most of the diabetic individuals71. This may be important as 

metformin has been shown to have anti-proliferative effects in pNET cell lines73 

and insulin therapy is associated with an increased risk of colorectal cancer74. 

Thus, the association between certain medications and pNET risk deserves 

more exploration. 

The Ben at el. study also did not distinguish between type 1 and type 2 

diabetes. However, it is most likely that the majority of the diabetic individuals 

had type 2 diabetes because of the late onset and because they were treated 

only with oral hypoglycaemic agents71. Importantly, this study shows the 

different risk factors between F-pNETs and NF-pNETs suggesting different 

biological behaviour and clinical characteristics exist between the two disease 

subtypes. 
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1.3 pNET diagnosis utilising blood-based assays 

Diagnostic markers for NETs were first evaluated at the tissue level, whereby 

several proteins involved in hormone secretion, such as synaptophysin75 and 

chromogranin A (CgA)76, were found to be specific to the neuroendocrine cell 

phenotype77. These initial findings in NET tissues were significant in the further 

development and consequent implementation of clinical tests for circulating 

biomarkers, including CgA and pancreatic polypeptide77. These biomarkers now 

provide clinicians with a useful and less invasive way of diagnosing, monitoring 

and predicting treatment responses in patients77. The five year survival rate of 

pNET patients is 37.6% and is lowest in comparison to the other assessed 

NETs78. This highlights the importance of having more sensitive and specific 

biomarkers to improve pNET detection, ideally at an early stage. Multiplex tests 

for pancreatic cancer diagnosis are discussed in section 1.3.1. microRNA 

(miRNAs) for pNET diagnosis are discussed in section 1.3.2 and metabolomics 

approaches are discussed in section 1.3.3. 

 

1.3.1 Multiplex tests for Cancer Diagnosis 
Multiplex blood tests, which use a number of analytes, that have been used for 

the detection diagnosis of pancreatic cancers include the Galleri, CancerSEEK 

and NETest tests. 

 

1.3.1.1 Galleri (GRAIL) test 
The Galleri (GRAIL) blood test was developed by the healthcare company 

GRAIL and works by a targeted methylation analysis of circulating cell-free DNA 

(cfDNA) to detect and localise multiple cancer types across all stages79. A study 

exploring the ability for this blood test to detect cancer was carried out. The 

study consisted of 6689 participants which in turn consisted of 2482 cancer 

patients across 50 different cancer types and 4207 non-cancer patients. cfDNA 

samples were prepared and divided into training and validation sets. They 

found a consistent level of performance in the training and validation sets with a 

specificity of 99.3% in the latter. Moreover, they found a stage 1-3 sensitivity of 

67.3% in a pre-specified set of 23 cancer types (anus, bladder, colon, 

oesophagus, head and neck, liver/bile duct, lung, lymphoma, ovary, pancreas, 

plasma cell neoplasm and stomach) and a sensitivity of 43.9% in all cancer 

types. Detection increased with increasing stage, for example sensitivity was 
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39% at stage 1 compared to 93% at stage 4. There were some limitations to 

this study, including the small sample size compared to a larger scale 

prospective study and the smaller sample numbers for individual type of cancer. 

This means that the representation of heterogeneity within some cancer types 

was less. Additionally, it is unclear as to how many NETs were identified using 

the Galleri test. Larger population-based studies are in progress to assess the 

suitability of the Galleri test for the detection of cancer. A UK GRAIL pilot study 

with 165,000 participants in total began in 202180. The participants included a 

group of 140,000 participants aged 50 to 79 with no symptoms who will have 

blood tests every three years. Anyone within this group who has a positive test 

will be referred for further investigation by the NHS80. The other participant 

group of 25,000 participants with possible cancer symptoms will also be offered 

testing after referral to hospital to see if the Galleri test speeds up the diagnosis 

time. The results from this study are expected in 2023 and, dependent on the 

findings of the study, this will be expanded to around 1 million participants in 

2024 and 2025. The SYMPLIFY study is the first large scale evaluation of a 

multi cancer early detection test in individuals presenting in primary care and 

referred for diagnostic follow up for suspicion of cancer. The study enrolled 

6238 patients aged 18 and over in England and Wales who were referred for 

urgent imaging, endoscopy or other diagnostic modalities to investigate 

symptoms suspicious for possible gynaecological, lung, lower GI or upper GI 

cancer or who have presented with non-specific symptoms. Within the study 

368 (6.7%) of the 5461 evaluable patients were diagnosed with cancer through 

standard care, with the most common cancer diagnosed being colorectal 

(37,2%). GRAIL’S multi detection cancer test detected a cancer signal in 323 

people, 244 in whom cancer was diagnosed, resulting in a PPV of 75.5%, NPV 

of 97.6% and specificity of 98.4%. The overall sensitivity of the test was 66.3% 

with this ranging from 24.2% in stage 1 cancers to 95.3% in stage 4 cancer81. 

 

1.3.1.2 CancerSEEK 
The CancerSEEK test was developed in the USA by scientists at John Hopkins 

and aims to detect 8 types of cancer (liver, stomach, ovary, pancreas, 

oesophagus, colon, lung and breast) through assessment of the levels of 

circulating proteins and mutations in cfDNA82. The test was applied to 1005 

patients with these eight types of non-metastatic, clinically detected cancer, and 
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resulted in test sensitivities ranging from 69% to 98% for 5 cancer types (ovary, 

liver, stomach, pancreas and oesophagus) at > 99% specificity. CancerSEEK 

localised the site of the cancer with a median of 83% of patients, but there were 

some important limitations to this study. First, the cohort consisted of patients 

with known cancers diagnosed on the basis of symptoms of disease; however, 

in practice in a true screening setting most individuals would have less 

advanced disease. Moreover, the controls in this study were limited to healthy 

individuals but in a true cancer screening setting, individuals may have other 

diseases or inflammatory conditions which could result in a greater proportion of 

false positives than observed in the study. The estimate for the cost of the test 

is estimated to be less than $500, which is comparable to or lower than other 

screening tests for single cancers such as colonoscopy. As with the Galleri test, 

to truly evaluate CancerSEEK, larger prospective studies in a genuine clinical 

setting are required. 

 

1.3.1.3 NETest 
The NETest utilises 51 different circulating ribonucleic acids (RNAs) for NET 

detection with an AUC of 0.9883. Despite the strong performance which is 

superior to the widely used CgA test there are important issues to consider with 

this test. These includes cost, practicality and reproducibility in early clinical use 

associated with the amplification of the 51 different RNA targets using 

polymerase chain reaction (PCR) thus better diagnostic tests  are needed for 

early pNET detection are needed, ideally a point of care test for use in primary 

care. 

 

1.3.2 MicroRNAs 
miRNAs are a series of small noncoding RNAs which are able to regulate gene 

expression84. Circulating miRNAs derived from a tumour can be detected via 

quantitative polymerase chain reaction (qPCR)84. Certain miRNAs have been 

shown to be elevated in pNETs. A study by Thorns et al., aimed to identify 

miRNA signatures of pNEN in tissue and serum, with the study including tissue 

samples from 37 pNEN patients, 9 patients with non-neoplastic pancreatic 

pathology, 7 samples of micro-dissected pancreatic islets and serum samples 

from 27 pNEN patients and 15 healthy controls85. In this study miRNA 

expression profiles were established through utility of qPCR for 754 miRNAs. 
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They found that miR-193b was more highly expressed in pNEN tissue than the 

islet cells (p=0.039). When comparing the miRNA levels in the serum from 

patients with pNEN and healthy controls, 13 miRNAs were more abundant in 

the serum of patients. miRNA-193b was significantly more abundant in the 

serum of patients (P=2.02x10-5). The mechanism of miRNA access to the blood 

is unclear. They may be released into the blood during tumour necrosis or 

apoptosis. However, in G1 and G2 tumours, necrosis is not common and so this 

is most likely not the source of circulating miRNA in pNEN. miRNA may also be 

secreted in an ATP-dependent manner as exosome enclosed or agonaute-2 

(AGO2/NPM1)-associated miRNAs86,. The tumour itself may not be the source 

of miRNA but the tumour may directly or indirectly induce the secretion of miR-

193b from other cells. miR193B has been shown to be overexpressed in high 

grade prostate carcinomas, however sera levels of this miRNA were not looked 

at in this study87,. Another miRNA, miRNA-1920 was shown to discriminate 

between PDAC and pNET with an AUC of 0.80 in sera88. However, the clinical 

utility of circulating miRNAs for pNET diagnosis could be hampered by the lack 

of standardised measurements84. 

 

1.3.3 Metabolomics 
Metabolomic approaches have shown to be suitable for detection of NETs from 

healthy controls. A study by Kinross et al.,2013 explored metabolomic 

approaches in urine for NET detection, with this study consisting of 28 patients 

with NENs who were prospectively recruited and 17 healthy controls. Within the 

group of NETs there were 10 pNETs. Urine samples were subjected to 1H 

nuclear magnetic resonance spectroscopy profiling with data obtained from this 

used for supervised for supervised and unsupervised analysis. They found an 

AUC of 0.90 to differentiate heathy vs NET. Analysis also showed the ability to 

distinguish small bowel NETs and pNETs. A subclass analysis also 

demonstrated class separation between functional and non-functional NETs 

and those with metastases. Thus metabolomic profiling could provide novel 

biomarkers for NETs89. 
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1.4 GEP-NET serum markers  

CgA, tissue inhibitor of metalloproteinases 1 (TIMP1), VGF-nerve growth factor 

(VGF-NGF), thymosin beta 4 (TB4), NSE, Mac-2-binding protein (MAC2BP) and 

angiopoietin-2 (ANG2) were used for the development of a GEP-NET biomarker 

panel by our group (unpublished). These 7 markers are described further in 

sections 1.4.1-1.4.8. They were also the selected markers for my research 

project in which a pNET biomarker panel was developed.  

 

1.4.1 Chromogranin A 
CgA is a 46kDa glycoprotein and a member of the granin family90, which has 9 

members91, namely CgA, chromogranin B (CgB), secretogranins SG2 to SG7, 

VGF and Proprotein convertase subtilisin/kexin type 1 inhibitor (proSAAS)91. 

The shared properties of this family include their acidic pI, heat stability due to 

their hydrophilic nature, multiple dibasic cleavage sites, and ability to form 

aggregates that bind calcium92. Granins are also major components of large 

dense core secretory vesicles, and are co-secreted with peptide hormones and 

amines93. CgA was the first to be discovered in 196594 and was subsequently 

purified from the bovine adrenal medulla in 196795. CgB was subsequently 

identified in bovine adrenal medulla in 198596. 

A general characteristic of GEP-NETs is the expression of CgA which is 

released from many non-transformed neuroendocrine cells97. In pNETs 

increased CgA expression is associated with advanced disease progression 

and is considered a good marker for treatment response to Everolimus for 

advanced pNETs98. Moreover CgA has been suggested as a predictor of 

radiological disease with predictive value 6 months before radiological 

progression of pNETs99. CgA is a widely used serum diagnostic biomarker for 

many pNETs but not for insulinomas90. This highlights the crucial point that 

insulinomas are biologically different to other NENs, a property that needs 

further exploration. Moreover, it strengthens the reasoning for a multianalyte 

approach for pNET detection as opposed to a single analyte approach. 

Nobles et al. found that 2 of 21 (10%) insulinoma patients had an elevated CgA 

level and 38% had an elevated NSE level100. Additionally, 9 of 13 (69%) NF 

pancreatic islet cell tumour patients had an elevated CgA level and 4 (31%) had 

an elevation in NSE100. Despite their small cohort sizes, these results suggest a 

higher suitability of NSE for insulinomas compared to CgA and of CgA 
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compared to NSE as a marker for NF-pNETs. This highlights biological 

differences between NF-pNETs vs insulinomas, and potentially other pNET 

subtypes. 

A further study supports the notion that CgA is not a reliable marker for 

insulinomas. When comparing healthy controls, insulinomas and non-

insulinomas, Qiao et al. reported serum CgA levels being slightly elevated in 

patients with insulinomas and significantly increased in patients with non-

insulinoma pNETs90. They also reported that the median CgA level in 

insulinoma patients was 64.8ng/ml, which was significantly lower than the 

median of 192.5ng/ml seen in non-insulinoma pNETs90, once again highlighting 

differences between insulinomas and non-insulinoma pNETs. This could be 

attributed to the fact that >90% of the insulinomas were benign, similar to other 

studies101 and reflecting the characteristic absence of metastasis in most 

insulinoma patients90.  

The presence of metastasis does not fully account for increased CgA levels in 

non-insulinoma patients. For example, a specific study of gastrinomas showed 

that CgA levels were raised in this group despite the absence of metastasis102. 

Moreover, in addition to the absence of metastasis, high levels of insulin in 

insulinoma patients might inhibit secretion of CgA by these tumour cells90. 

Therefore, both metastasis and tumour subtype are potentially important 

determinants of CgA levels90.  

 

1.4.2 Tissue Inhibitor of Metalloproteinase 1 
Tissue Inhibitor of Metalloproteinase 1 (TIMP1) belongs to the TIMP family, 

which includes TIMP1, 2, 3 and 4103. The TIMP1 protein has a main function of 

inhibiting matrix metalloproteinases (MMPs) by forming non-covalent 1:1 

stoichiometric complexes, thereby regulating the balance of matrix remodelling 

during the process of degradation of the extracellular matrix (ECM)104.This 

inhibitory effect on the MMPs is significant for the tumour invasion property and 

development of metastatic disease. TIMP1 is known to inhibit apoptosis and in 

lung adenocarcinoma cells TIMP1 has an anti-apoptotic effect via an interaction 

with B-cell lymphoma 2 (Bcl-2)105. Bcl-2 is also an anti-apoptotic molecule, with 

it’s overexpression known to increase TIMP1 expression106. 

TIMP1  has been identified as a secreted protein in 2 NET cell lines, BON-1 and 

SHP-77107. However, its function in pNET pathology is unclear. It is thought that 
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TIMPs can regulate cellular functions via MMP-dependent and independent 

mechanisms. In the MMP-dependent mechanism, TIMPs interact with soluble or 

membrane-bound MMPs or other metalloproteinases in the cellular periphery 

modulating cleavage of ECM proteins, which include collagens, laminin and 

fibronectin as well as signalling proteins such as cytokines, chemokines and 

growth factors that can activate or supress receptor mediated signalling in the 

cell108. The MMP-independent mechanism involves a direct interaction of TIMPs 

with a specific cell surface receptor to initiate intracellular signalling cascades, 

leading to altered gene expression and changes in cellular behaviour108. 

Elevated stromal expression of TIMP1 promoted liver metastasis in two 

independent tumour models109. This induced the hepatocyte growth factor 

signalling pathway and expression of several metastasis associated genes109. 

Furthermore, TIMP1, but not TIMP2, prevented cytokine-induced apoptosis and 

cytokine-mediated inhibition of glucose-stimulated insulin secretion in rat islets 

and b-cells110. Moreover, TIMP1 did not impact nitric oxide (NO) production or 

inducible nitric oxide synthase (iNOS) gene expression110. As overcoming 

cytokine-induced b-cell damage is an important goal for protecting pancreatic b-

cells from immune mediated destruction in type 1 diabetes, this work infers 

TIMP1 may be an ideal gene to prevent cytokine-mediated b-cell destruction 

and dysfunction in models of type 1 diabetes as well as islet transplantation 

rejection110. This thus, may also be of relevance to patients with type 1 

diabetes. 

TIMP1 has been suggested to be a suitable biomarker for malignancies such as 

PDAC111 and colorectal cancer112. Specifically, urinary TIMP1 (uTIMP1) could 

differentiate between PDAC and control samples with a sensitivity of 90% and 

specificity of 70%111. Importantly uTIMP-1 could also distinguish between PDAC 

and pNET samples, which is potentially of clinically importance because 

discriminatory biomarker tests for pancreatic diseases are needed to help 

clinicians make accurate diagnosis when patients could present with 

overlapping symptoms. Moreover, the results from this study suggest that 

TIMP1 has a more specific role in the progression of exocrine PDACs than 

pNETs, thereby highlighting differences in the biology of both types of 

pancreatic cancers and the selective utility of this biomarker in being able to 

differentiate between endocrine and exocrine cancers of the pancreas. This 

study also found that MMP2 was an independent predictor of the presence of 
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pNET111. Moreover, urinary MMP2 levels were 1.7ng/ml (1.1-3.3) for pNETs and 

1.2ng/ml (1.0-1.6) for PDAC compared to 0.8ng/ml (0.2-1.0) for controls. It has 

been suggested that lipocalin-2 (LCN2) and TIMP1 are potential serum markers 

for the early detection of familial pancreatic cancer (PDAC)113. This group of 

patients has a higher risk of developing pancreatic cancers, which have a 

prevalence of 3.5% (range 1.1-3.5%)114.  

 

1.4.3 Mac-2-binding protein 
Mac-2-binding protein (MAC2BP), also known as galectin 3 binding protein, is a 

secreted glycoprotein which is found in various bodily fluids including serum, 

saliva, semen, and urine115. MAC2BP and galectins are located in the ECM, 

where they may play a role in cell attachment by interactions with b1 integrins, 

collagens and fibronectin116. It is implicated in various cancers including 

breast117, oesophageal squamous cell carcinoma118, nasopharyngeal 

cancers119 as well as NETs107. MAC2BP interaction to integrins on tumour cells 

leads to activation of the Protein Kinase B (AKT) and extracellular signal-

regulated kinase (ERK) pathways that are associated with increased survival, 

proliferation, motility an migration of cancer cell lines120. High expression of 

MAC2BP is associated with poor survival in node-negative breast cancer 

patients who were not receiving systemic adjuvant therapies121. MAC2BP is a 

novel E-selectin ligand expressed by breast cancer and patients with breast 

cancer who have MAC2BP overexpressing tumours are more likely to develop 

distant metastasis than those with low MAC2BP expression121. Mechanistically, 

Shirure et al., proposed three possible scenarios for MAC2BP expressing 

breast cancer cells with these being either metastasis, no adhesion or deletion. 

The first scenario is that breast cancer cells expressing high levels of MAC2BP 

bind to galectin-1 (Gal-1) but also possess enough free epitopes for E-selectin 

binding, thus, these cells are more likely to form metastatic lesions. The second 

scenario is that breast cancer cells that express low levels of MAC2BP may not 

bind to the endothelium due to blockade of E-selectin ligand function by Gal-1. 

The third scenario is that breast cancer cell with an absence of Gal-1 may lead 

to deletion of cancer cells by immune cells. However, in pNETs a Gal-1 based 

mechanism such a seen in breast cancer is not relevant because despite 

pNETs expressing E-selectin122 they do not express Gal-1, or other galectins 

such as Gal-3 or Gal-4123 cells117. A study in which the quantitative proteomic 
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profiling of the extracellular matrix of pancreatic islets during the angiogenic 

switch and insulinoma progression revealed that galectin-1 was present in lower 

abundance in the ECM of both angiogenic islets and insulinomas124. 

 

Cell secretome analysis has revealed MAC2BP secretion by 3 NET cell lines, 

including the pNET cell line BON-1107. MAC2BP was expressed by the majority 

of NET tissue samples and serum MAC2BP levels were significantly elevated in 

NET patients compared to healthy controls107. In terms of the primary site of the 

NET, serum MAC2BP levels were significantly elevated in midgut NETs 

(3.34µg/ml; range of 0.82-10.66µg/ml) and pNETs (2.67µg/ml; range of 1.37-

10.50µg/ml) compared to controls107. A logistic regression (LR) receiver 

operator characteristic (ROC) curve for all NETs vs controls based on serum 

MAC2BP level revealed an Area under the curve (AUC) of 0.77.  

 

1.4.4 Neuron-Specific Enolase 
Neuron-specific enolase (NSE) belongs to a group of intracellular enzymes 

known as enolases, which catalyse the conversion of 2-phospho-D-glycerate to 

phosphoenolpyruvate in the glycolytic pathway125. This pathway is involved in 

the conversion of glucose into pyruvate126. They are cytoplasmic enzymes 

required for aerobic glycolysis, which provides the main source of energy in 

cancer cells aiding cell proliferation125. Enolases are functionally active as 

dimers composed of non-covalently linked alpha (𝛼), beta (𝛽), and gamma (𝛾) 

subunits125. The 𝛾𝛾 homodimer is known as NSE127. The biological half-life of 

NSE in bodily fluids is around 24 hours, and elevated levels of NSE in serum 

and or cerebrospinal fluid may activate different pathways leading to 

neuroinflammation128. Cell surface enolase is found on microglia, activated 

macrophages, neurons and astroctyes129. The expression of NSE at the cell 

surface promotes cell migration, survival and growth as well as initiating 

inflammatory processes after injury129. Cell surface enolase can act via different 

pathways including the mitogen-activated protein kinase kinase (MEK)/ ERK 

pathway, phosphoinositide 3-kinase (PI3K)/AKT pathway. The MEK/ERK 

pathway induces cellular proliferation, differentiation and migration and the 

PI3K-AKT pathway promotes glycolysis, cellular proliferation and migration129.  

NSE is important in diabetes and cancer. Increased levels of NSE are seen in 

diabetic patients and higher levels of NSE have been associated with diabetic 
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neuropathy128. NSE is also overexpressed in tumours where its primary role is 

to accelerate glycolysis125. Glycolysis is mediated via the enzymatic part of the 

peptide whereas other functions for NSE are mediated by interactions through 

the C-terminal part of the peptide130. The C-terminal part of NSE promotes cell 

survival and neurite outgrowth via activation of the PI3K/AKT and MAPK/ERK 

pathways130. NSE is also greatly up-regulated in glioblastoma cells which were 

exposed to hypoxia and serum starvation131. 

NSE is localised both in the cytoplasm and also on membranes of primary and 

metastatic cerebral tumours and on glial filaments of glioma cells127. In 

neuroblastoma cells, NSE co-localised with actin filaments, and the co-

localisation depended on the presence of gamma-1-syntrophin132. This 

suggests that NSE might be involved in migration of tumour cells. In lymphoma 

cells, NSE regulates the polarisation of macrophages to the M2 phenotype, and 

contributes to the proliferation and progression of lymphoma133.    

NSE has been used as a tumour marker for monitoring the response to 

chemotherapy in advanced adenocarcinoma, squamous cell carcinoma and 

small cell lung cancer134. Moreover, serum NSE level has been associated with 

CTC levels in lung cancer patients135. NSE has also been associated with the 

development of intracranial metastasis in patients with lung or breast cancer136. 

However, 28.3% of patients in this study showed no increase in 4 serum tumour 

markers including NSE. This high percentage suggested better monitoring of 

these patients and better markers are needed for this subgroup of patients136. 

NSE was not significant for monitoring the efficacy of nivolumab in patients with 

advanced non-small cell lung cancer whereas the reduction in serum level of 

two other markers, Cytokeratin 19 fragment (CYFRA21-1) or carcinoembryonic 

antigen (CEA), might be reliable biomarkers134. In small cell carcinoma of the 

pancreas, NSE has been shown to be a good marker, both for diagnostic 

purposes but also for an evaluation to treatment137. NSE is also secreted by 

three NET cell lines BON1, NCI-H727 and SHP-77107.  

 

1.4.5 Angiopoietin-2 
Angiogenesis is a vital process in cancer growth, maintenance and 

metastasis138, and the angiopoietin (ANG)/TIE (tyrosine kinase with 

immunoglobulin (Ig) and epidermal growth factor (EGF) homology domains) 

signalling pathway is one of the main pathways linked to angiogenesis139. 
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Angiopoietin-2 (ANG2) is a growth factor that activates the ANG/TIE signalling 

pathway139 by binding to the TIE2 receptor tyrosine kinase. Unlike angiopoietin-

1 (ANG1), ANG2 acts in an autocrine manner and its expression is tightly 

regulated in healthy tissue139. ANG2 signals synergistically with VEGF as well 

as with ANG1 through TIE-dependent and independent pathways. ANG2 may 

be involved in the facilitation of endothelial cell migration and proliferation in 

pro-angiogenic signalling140. 

ANG2 mRNA was found to be significantly overexpressed in hypervascular 

hepatocellular carcinoma, and overexpression of ANG2 led to rapid tumour 

growth in an animal model141. NETs are highly vascularised in nature142 and an 

enhanced peripheral blood plasma TIE2 concentration is a diagnostic marker 

for NET patients with a similar level of performance to CgA140. Higher plasma 

levels of ANG2 in conjunction with a positive correlation with TIE2 levels in NET 

patients with metastasis indicated that both ANG2 and TIE2 are predictive of 

metastases140. In NET patients’ sera ANG2 levels were significantly elevated 

compared to healthy controls, however ANG1 levels displayed no differences. 

Additionally, serum ANG2 levels were more elevated in patients with distant 

metastases than in patients without metastasis. Moreover, time to disease 

progression was worse in patients with elevated serum ANG2. Hence ANG2 

would be a useful serum marker for monitoring and assessing the prognosis of 

NET patients138. 

 

1.4.6 Thymosin Beta 4 
Thymosin beta 4 (Tb4) is a 43 amino acid peptide with a molecular weight of 

4.9kD143. It is a part of the thymosin family and was first isolated from bovine 

thymus tissue144. It is present in all mammalian cells investigated except 

erythrocytes145. The family consists of a, b and g thymosins146. Within the 

thymosin beta family, three subtypes exist including Tb4, 10 and 15147. Tb4 has 

a well-studied intracellular role, involving the regulation of actin 

polymerisation148. Actin polymerisation is a process which is vital for many 

aspects of cellular function including cytoskeleton maintenance, cell 

morphology and cell migration149. Within this process, Tb4 binds to monomeric 

actin, known as G-actin. This interaction prevents its polymerisation into F-actin 

microfilaments.   



 63 

There is also growing evidence for extracellular Tb4 signalling, for which two 

potential mechanisms have been suggested. In the first it is internalised and 

then acts intracellularly to promote cell migration, while in the second it signals 

via a surface receptor150. Extracellular Tb4 can modulate platelet activity and 

has a biphasic effect on thrombus formation. Work by Kaur et al., showed that 

low concentrations of TB4 (0.2µM to 0.5µM) increased both the rate constant of 

platelet deposition by around 1.5 fold and the total number of deposited 

platelets by around 3 fold151. However, at higher concentrations (>1µM) the 

Tb4-potentiating effect was diminished to near control levels151. Thus, at low 

concentrations, Tb4 could increase the affinity of platelet receptors for their 

ligands and hence promote platelet deposition. However at higher 

concentrations Tb4 can bind to fibrinogen and prevent fibrinogen–platelet 

interactions and thereby attenuate platelet deposition151,145. This dual action of 

Tb4 has potentially important implications for several disease conditions. In 

conditions such as thrombocytopaenia, gray platelet syndrome, in which platelet 

adhesion and aggregation are halted, the introduction of submicromolar 

amounts of Tb4 to the blood would be expected to increase platelet activity145. 

Whereas in conditions such as diabetes, atherosclerosis and coronary artery 

disease supramicromolar levels of Tb4 could be used to prevent platelet 

hyperactivity145. 

Tb4 has also been shown to have various important extracellular functions 

encompassing many aspects of tumour biology. This includes apoptosis of Hela 

cells152, tumour invasion by A549 and H157 cells,153 and metastasis as seen for 

mouse melanoma B16 cell lines154. Tb4 has also been shown to play a role in 

promoting cardiomyocyte migration and cardiac repair, which are important in 

the treatment of conditions such as myocardial infarction155. The mechanism by 

which Tb4 is thought to act on cardiomyocytes is via the formation of a 

functional complex with PINCH and integrin-linked kinase (ILK), resulting in 

activation of the AKT protein kinase, which promotes cardiomyocyte migration 

and survival during cardiac repair155. Tb4 is also known to upregulate 

transcription of laminin 5, which induces cell differentiation, adhesion and 

motility, and it protects cardiomyocytes from oxidative stress by targeting anti-

oxidative enzymes and anti-apoptotic genes156 
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Tb4 is also thought to have anti-inflammatory properties by inhibiting TNFa-

induced Nuclear factor kappa B (NFKB) activation157. Tb4 is involved in the 

pathology of diabetic peripheral neuropathy, but mechanisms for this have not 

been fully established158. It has been suggested that activation of ANG/TIE2 

signalling contributes to the anti-inflammatory nature of Tb4158 as inhibition of 

TIE2 activity with an anti-TIE2 antibody abolished Tb4-suppressed p- NFKB and 

vascular cell adhesion protein 1 (VCAM1) expression, but not monocyte 

chemotactic protein-1 (MCP1) expression. Thus, blockage of the ANG1/TIE2 

pathway with the antibody against TIE2 may not affect MCP1. This study 

provided in vivo evidence that the ANG1/TIE2 pathway contributes to the 

therapeutic effect of Tb4 on diabetic peripheral neuropathy158. 

Tb4 also has an oxidised form known as thymosin beta sulphoxide (Tb4SO). 

Tb4SO has an important role in neutrophils. It is an anti-inflammatory peptide 

which down regulates neutrophil mediated inflammation. Mechanistically this is 

via the action of neutrophil apoptosis and their clearance via phagocytic 

macrophages159. 

 

1.4.7 VGF-nerve growth factor 
The VGF-nerve growth factor inducible peptide (VGF) gene encodes a 68kDa 

peptide that comprises 615 amino acids (human) and 617 amino acids (mouse 

and rat)160. VGF is a member of the chromogranin/secretogranin family161. VGF 

is stored in large dense core vesicles which are located in neuroendocrine, 

endocrine and neuronal cells161. The VGF gene was originally found on the 

basis of its regulation via NGF in rat phaeochromocytoma cells162. VGF plays a 

role in various neurological diseases, including Huntington’s disease163, 

amyotrophic lateral sclerosis161 and bipolar disorder164. VGF is regulated by 

both brain-derived neurotrophic factor (BDNF) and serotonin165. Localisation 

studies have indicated that VGF is distributed widely across the nervous system 

in neurons and in a number of neuroendocrine tissues, which include the 

pituitary and adrenal medulla, and also in various gastrointestinal and 

pancreatic endocrine cell types160. The receptor for VGF has not been 

identified165. The relationship between VGF and pNENs has been explored166. 

In vitro and in vivo data demonstrated that long non-coding RNA (lncRNA) H19 

overexpression promoted metastasis and tumour growth with H19 knockdown 

leading to the opposite effects166. This study demonstrated an H19 interaction 
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with VGF as well as VGF upregulation in pNENs166. Mechanistically H19 

activated phosphoinositide 3-kinase(PI3K)/AKT/ cyclic adenosine 

monophosphate (cAMP) response element-binding protein (CREB) signalling 

and promoted pNEN progression by interacting with VGF166. Thus, VGF has a 

potentially important role in pNEN progression in man. 

 

1.5 GEP-NET serum biomarker confounding factors 

During the process of developing a biomarker test a key consideration is the 

effect of confounding factors. Confounding factors can be internal or external to 

patients167. Internal confounding factors include age, gender, diet and other 

metabolic factors167. In practice however, it is difficult to identify and control for 

all potential confounding factors. All 7 biomarkers within the GEP-NET panel 

discussed in Section 1.4 have confounding factors, which are discussed in 

subsections 1.5.1 to 1.5.7. 

 

1.5.1 Confounding factors for CgA in serum and plasma 
CgA levels are elevated in the plasma or sera of various malignancies including 

colon cancer168, hepatocellular carcinoma169, lung cancer170, bladder 

cancer171,melanoma172, multiple myeloma173, ovarian cancer174, head and neck 

cancer175, prostate cancer176, PDAC177, small cell lung cancer170, 

neuroblastoma178 and medullary thyroid carcinoma179. CgA levels are also 

elevated or reduced in either the plasma or sera of non-malignant conditions 

including chronic obstructive pulmonary disease (COPD)180, chronic 

pancreatitis181, cirrhosis182, diabetes183, heart failure183, hypertension184, 

idiopathic pulmonary fibrosis180, inflammatory bowel disease185, kidney 

dysfunction186, major depressive disorder187, myocardial infarction188, non-

alcoholic fatty liver disease (NAFLD)189, rheumatoid arthritis190, sepsis191, 

systemic lupus erythaematosus190, type 1 diabetes192, type 2 diabetes193, 

vertigo194, diabetic neuropathy195, epilepsy196, hyperthyroidism197, 

schizophrenia198, hypothyroidism183, chronic diarrhoea183, peptic ulcer183, 

chronic periodontitis199, birth200, Meniere’s disease (an inner ear disorder)194 

and gastritis201. Treatments associated with influencing CgA levels include, 

proton pump inhibitors202, endocrine treatment for prostate cancer203, 

abiraterone acetate therapy204 and the nGR-hTNF vaccine for metastatic 
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melanoma172. Other factors influencing CgA levels in plasma and sera include 

age188,190, creatinine clearance188, marathon running205, and alpha-

fetoprotein206. 

 

1.5.2 Confounding factors for TIMP1 in serum and plasma 
Serum levels of TIMP1 are also increased in patients with various cancers. 

These include melanoma207, metastatic breast cancer208, hepatocellular 

carcinoma209, ovarian cancer210, PDAC211, multiple myeloma212, and lung 

adenocarcinoma213. TIMP1 serum or plasma levels are also elevated or 

decreased in range of non-malignant conditions. These include COPD214, 

rheumatoid arthritis215, psoriasis216, ulcerative colitis217, hypertension218, rotator 

cuff tear219, metabolic syndrome220, systemic sclerosis221, migraine aura222, 

burns223, polycystic kidney disease224, autoimmune ear disease225, cystic 

fibrosis226, pneumonia227, juvenile idiopathic arthritis228, jaundice229, cachexia229 

and osteoarthritis230. Moreover, TIMP1 predicts adiposity in humans with 

plasma levels of TIMP1 being significantly different between lean, obese and 

visceral obese patients231. Certain medications and treatments are known to 

have an impact on TIMP1 levels including methotrexate215. Oral contraceptive 

treatment for 6 months significantly reduced TIMP1 concentration levels in 

patients who had this treatment for polycystic ovary syndrome232. Statin 

treatment is also known to impact TIMP1 levels233. TIMP1 is also a powerful 

predictor of long-term mortality in heart failure patients treated with cardiac 

resynchronisation therapy234.   

 

1.5.3 Confounding factors for MAC2BP in serum and plasma 
MAC2BP has been explored in the serum or plasma of patients with various 

malignancies. These include breast cancer235, gastric cancer236, lung cancer237, 

lymphoma238, hepatocellular carcinoma239 and oesophageal squamous cell 

carcinoma118. MAC2BP has also been shown to be a plasma or serum 

biomarker of in conditions including chronic pancreatitis (CP)240, non-alcoholic 

steatohepatitis (NASH)241, angina242, atherosclerosis243, cirrhosis239, coronary 

artery disease244, diabetic retinopathy245 and juvenile idiopathic arthritis246. For 

non-alcoholic fatty liver disease (NAFLD) patients, MAC2BP is associated with 

diabetes247, metabolic syndrome 247, obesity247 and hypertension247. Moreover 

in NAFLD patients MAC2BP is also associated with levels of albumin247, uric 



 67 

acid247, alpha-fetoprotein247, BMI247, fasting blood glucose (FBG)247,  

haemoglobin A1C (hBa1C)247, alanine aminotransferase247, aspartate 

aminotransferase247, total bilirubin247, and high density lipoprotein cholesterol 

(HDL-C)247. 

 

1.5.4 Confounding factors for NSE in serum and plasma 
NSE has also been shown to be a blood-based biomarker for malignancies 

including, metastatic breast cancer248, small cell cancers of the urinary 

bladder249 and uterine cervix250, colon cancer251, gastric cancer252, lung 

cancer253, lymphoma254, multiple myeloma255, glioma256, non-small cell lung 

cancer134, head and neck cancer257, prostate cancer258, metastatic prostate 

cancer259, squamous carcinoma of the lung253, oral squamous cell carcinoma, 

neuroblastoma260, adult T cell luekemia254, ovarian dysgerminoma261, ovarian 

choriocarcinoma 262, small cell carcinoma of the pancreas137, medullary thyroid 

carcinoma263, meningioma100 and bone cancer264. NSE is also a blood-based 

biomarker for non-malignant conditions including; bipolar disorder265, 

diabetes266, liver failure267, diabetic neuropathy268, Human immunodeficiency 

virus (HIV)269, idiopathic pulmonary fibrosis270, major depressive disorder265, 

metabolic syndrome271, migraine272, delirium in polytrauma273, obesity274, 

preeclampsia275, pregnancy275, pulmonary tuberculosis276, spinal-cord injury277, 

systemic sclerosis278 , type 1 diabetes268, type 2 diabetes268, vascular 

dementia279, vertigo280, stroke281, silicosis282, interstitial lung disease283, 

epilepsy284, chronic severe traumatic brain injury285, multiple sclerosis286 and 

lean mass205. NSE levels are also influenced by various treatments, procedures 

and chemicals including magnesium sulphate287, octreotide288, 

dexmedetomidine273, fentanyl289, tuberculosis treatment276, carbamazepine284, 

oxcarbazepine284, mercury290 and cardiopulmonary by-pass291.  

 

1.5.5 Confounding factors for ANG2 in serum and plasma 
ANG2 is known to be a blood-based biomarker for patients with malignancies 

including bladder cancer292, breast cancer293, chronic myeloid leukaemia294, 

chronic lymphocytic leukaemia295 multiple myeloma296, type 1 endometrial 

cancer297, ovarian cancer , colon cancer299, gastric cancer300, cervical cancer301, 

glioma302, meningioma302, hepatocellular carcinoma303, acute myeloid 

leukaemia303, angiosarcoma305, lymphoma306, lung cancer307, melanoma308, 
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renal cancer309, head and neck cancer310, oesophageal cancer311 and medullary 

thyroid cancer179. 

However, similar to other marker proteins, ANG2 levels in serum and plasma 

are also affected by various cardiac and circulatory conditions such as 

angina312, aortic stenosis313, coronary artery disease314, hypertension315, 

bronchopulmonary dysplasia-associated pulmonary hypertension316, hereditary 

haemorrhagic telangiectasia317, venous thromboembolism318, heart failure319, 

stroke320, myocardial infarction321, peripheral artery disease322 and Crimean-

Congo haemorrhagic fever323. 

ANG2 levels in serum or plasma have also been found to be of importance in 

respiratory conditions such as COPD324, idiopathic pulmonary fibrosis325, 

pneumonia326, interstitial lung disease327, tuberculosis lymphadenitis 328 and 

lung transplantation329, and in gastrointestinal conditions such as AP330, chronic 

hepatitis-associated cirrhosis331, small bowel angiodysplasia332, NASH333, and 

ulcerative colitis334. ANG2 levels are also influenced in other conditions 

including atopic dermatitis335, rheumatoid arthritis336, sepsis191, systemic 

sclerosis337, multiple sclerosis338, systemic lupus erythematosus 339,  spinal cord 

injury340, malaria341, hyperthyroidism342, Kawasaki disease 343, kidney 

dysfunction344, juvenile idiopathic arthritis228,  human immunodeficiency virus 

(HIV)345, psychological stress346, pregnancy347, sleep apnoea348, brain 

arteriovenous malformation349, dengue and dengue haemorrhagic fever350, 

multiple trauma351, polycystic kidney disease352, severe malnutrition345, pre-

eclampsia353, Kaposiform lymphangiomatosis354, type 2 diabetes, obesity348, 

metabolic syndrome355, lean mass356, C1 inhibitor-deficient hereditary 

angioedema357 and diabetic retinopathy358. 

Certain medications are also known to have an influence on ANG2 levels. 

Treprostinil or Sunitinib treatment have been associated with decreased levels 

of circulating ANG2 levels359,360. Likewise, itraconazole and propranolol 

treatment caused a decrease in serum ANG2 levels in patients treated for 

infantile haemangioma361. Laser treatment for retinopathy also caused an 

increase in serum ANG2 levels from prior to post treatment in infants362. 

 

1.5.6 Confounding factors for Tb4 in serum and plasma 
Tb4 has been shown in various studies to be a blood-based biomarker for 

obstructive sleep apnoea syndrome363, acute on chronic liver failure364, 
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rheumatoid arthritis365, sepsis366, psoriasis367, pre-eclampsia368, congenital heart 

disease369, cirrhosis370, heart failure371, bipolar disorder372, sleep apnoea 

syndrome363, Crohn’s disease373, ulcerative colitis373, non-Inflammatory Bowel 

Disease (IBD) GI disease373, knee osteoarthritis374, rheumatoid arthritis365, 

coronary angioplasty375, and major depressive disorder and bipolar372. Tb4 

levels were also decreased in several liver-related conditions. Patients with 

NAFLD376, a chronic hepatitis B infection, compensated liver cirrhosis, or 

chronic or acute on chronic liver failure370 had lower levels of Tb4 compared to 

healthy controls. Moreover, in patients that had chronic liver disease there was 

a positive relationship between Tb4 level and albumin, choline esterase level, 

and platelet count370. There was a negative relationship between Tb4 and 

aminotransferase aspartate aminotransferase and total bilirubin levels, as well 

as prothrombin time and Child-Pugh score370. 

 

1.5.7 Confounding factors for VGF in plasma and serum 
VGF levels are elevated or decreased in certain conditions including bipolar 

disorder164, major depressive disorder164 and obesity377. Patients with major 

depressive disorder presented with significantly lower serum VGF levels 

compared to healthy controls164. In contrast, VGF levels were significantly 

higher in bipolar patient serum compared to controls164. VGF levels were 

highest in the plasma of obese individuals with type 2 diabetes, followed by 

obese (BMI >30) individuals without type 2 diabetes, and lowest in lean (BMI 

<25) individuals, suggesting that obesity and type 2 diabetes each contribute to 

an elevation of VGF level377. 

 

1.6 Artificial Intelligence and Healthcare 

Artificial intelligence (AI) is a term used for a collection of established 

technologies called decision support technologies, knowledge-based systems, 

or expert systems. Early AI applications were focused on diagnosis and therapy 

recommendations in medical settings. Moreover, early types of AI used 

symbolic approaches which were based on rules and knowledge, while present-

day AI implements statistical methods alongside symbolic approaches. 

Currently, there is increasing and renewed interest in AI utility whereby a new 

generation of clinical decision support is facilitated by the availability of powerful 
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computing tools to help manage and analyse big data to generate new 

knowledge378. Modern medicine is faced with the major challenge of acquiring, 

analysing and applying large amounts of information to solve complex clinical 

problems379. 

AI systems include artificial neural networks (ANNs), fuzzy expert systems, 

evolutionary computation and hybrid intelligent systems. ANNs are mainly 

concerned with learning, whereas fuzzy logic focuses on imprecision, and 

evolutionary computation is based on search and optimisation379. ANNs are 

computational analytical tools which are based on the biological nervous 

system. They consist of networks of highly interconnected computer processors 

(neurons) which can perform parallel computations for data processing and 

knowledge representation. Fuzzy logic was popularised by Lofti Zadeh in 

1965380. It is a science of reasoning, thinking and inference which bases itself 

on everything being a matter of degree. Thus, instead of assuming everything is 

either black or white (conventional logic) fuzzy logic recognises that in reality 

most things would fall somewhere in between (i.e. in differing shades of grey). 

This method uses continuous set membership from 0 to 1 in contrast to using 

sharp distinctions i.e. 0 for false and 1 for true379. Evolutionary computation is a 

broad term for several computational techniques that are based on natural 

evolution, which incorporates the mechanisms of natural selection and survival 

of the fittest into solving real world problems. John Holland381 developed the 

“Genetic algorithms”, which are a class of stochastic search and optimisation 

algorithms based on natural biological evolution. The advantages of each of 

these technologies can be combined to produce hybrid intelligent systems, 

which work in a complementary synergistic manner379. Hybrid systems include 

ANNs for designing fuzzy systems, fuzzy systems that design ANNs, and 

Genetic algorithms for automatically training and generating ANN architectures.  

AI can be classified in different ways, but in its simplest form it can be divided 

into two main categories termed strong AI and weak AI277. Strong AI refers to a 

programmed machine that can take on human-level cognition with the machine 

having the ability to learn on its own, simultaneously conducting a number of 

complex tasks based on what is already known382. Currently, strong AI does not 

exist. However, weak AI does exist, and it is the process by which a machine is 

trained to complete a specific designated task. The machine works by simply 

acting upon and is bound by the rules and algorithms set for it. Machine 
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learning (ML) comes under the weak AI umbrella. Subdivisions of ML include 

supervised learning, unsupervised learning, semi-supervised learning and deep 

learning. Figure 1.3 illustrates the different types of AI. 

 

 
Figure 1.3: Different types of AI.  
AI can be divided into strong and weak AI382. Strong AI is currently non-existent however weak AI 
encompasses ML, which in turn encompasses deep learning, as well as supervised, unsupervised and 
semi-supervised ML. Figure adapted from Du et al.,2020. 
 

AI has the potential to transform healthcare. For example, AI is a tool that can 

aid clinicians in the decision-making process. With the generation of vast 

amounts of genomic, biomarker and phenotypic data across the healthcare 

system, AI is likely to play an increasingly central role in their utility378. The 

challenges of real-world implementation mean that little change to clinical 

practice from AI is likely expected in the next 10 years. However, change in 10 

years’ time is certain with massive changes in 20 years’ time. Medical students 

starting today are likely by mid-career to be substantially impacted by this 

technology. Clinical specialities like radiology may not have disappeared by 

then, but are expected to be heavily transformed383. Healthcare AI techniques 

are emerging in imaging-based specialities such as radiology and 

gastroenterology384. Moreover, modern imaging modalities, which include 

endoscopic and cross-sectional imaging, generate a greater amount of visual 



 72 

information than the human eye can distinguish. Thus, harnessing the 

technology that AI provides offers clear benefits to these specialities. 

Historically, the evaluation of AI was limited to the design and development 

phase, due to the rare implementation and use of AI systems within routine 

clinical practice. Moreover, during the design and development phase, 

evaluation focuses upon the performance of algorithms in terms of 

discrimination, accuracy and precision378. Depending on the use, one 

performance measure could be considered more important compared to 

another. For example, for a triage-based algorithm, a high level of discrimination 

is needed. However, an algorithm that predicts mortality or complication risks in 

shared decision making needs to be highly accurate and precise for all types of 

patients. Another key consideration is the decision-making performance of 

humans with and without AI assistance. Once an algorithm is developed, clinical 

validation of its utility is also needed. Wider considerations include how 

meaningful the algorithm is operationally, how it fits the clinical workflow, if it 

represents up to date clinical knowledge, if it will change clinical decisions, and 

the level of confidence that can be given. Another important consideration is 

that humans may become over reliant on decision support systems and 

delegate full responsibility to a decision support system rather than continue to 

be vigilant. This could have dangerous consequences if a decision support 

system is wrong or fails378.  

 

1.7 Machine Learning 

Machine learning (ML) is the name given to both an academic discipline as well 

as a set of techniques that allow computers to undertake complex AI tasks. ML 

encompasses elements of mathematics, statistics and computer science and is 

an engine helping to drive advances within the development of AI. Two areas in 

particular that may benefit from the application of ML techniques in the medical 

field are diagnosis and outcome prediction. ML techniques themselves are 

based on algorithms, which are sets of mathematical procedures that describe 

the relationship between variables. Algorithms working in different ways 

depending on their type, and they can be combined synergistically in ML385. 

Statistical techniques and ML techniques have similarities and the boundary 

between the two is ill-defined. However, to understand the difference between 
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the two, the goal of each technique should be understood. ML is an extension 

of statistical approaches, as it has a learning component, with this learning 

component allowing for iterative learning. In addition to supervised, 

unsupervised, and semi-supervised methods, ML includes the area of deep 

learning, which originated from ANN research386,382.  

 

1.7.1 Unsupervised Machine Learning 
Unsupervised learning does not involve a pre-defined outcome. Unsupervised 

techniques are exploratory and are used to find undefined patterns or clusters 

which occur within datasets385. The techniques used for unsupervised ML are 

often referred to as dimension reduction techniques and include principal 

component analysis387 and latent Dirichlet analysis388. 

 

1.7.2 Supervised Machine Learning 
In supervised learning a set of input variables such as blood metabolite or gene 

expression levels are utilised to predict a quantitative response variable for 

example hormone level or a qualitative response variable such as healthy 

versus diseased individual389. For supervised ML algorithms, a labelled training 

dataset is used to train the underlying algorithm390. The trained algorithm is then 

fed onto the unlabelled test dataset to categorise each sample390. Supervised 

learning algorithms suit classification and regression problems390. In 

classification problems the output variables are discrete, such as ‘red’ or ‘black’ 

or whether someone was ‘diabetic’ or ‘non-diabetic’390. However, for regression 

problems, the corresponding output is a continuous value such as the risk of 

developing cardiovascular disease for an individual. The following supervised 

types of ML which will be used within this project are described - decision trees 

(Section 1.7.2.1), LR (Section 1.7.2.2), support vector machines (SVM, Section 

1.7.2.3) and random forests (Section 1.7.2.4). Table 1.7.2.5 described the 

advantages and disadvantages of supervised ML models discussed in the 

subsections of Section 1.7.2. 

 

1.7.2.1 Decision Trees 
Decision trees are highly versatile and can be used for a wide range of 

classification problems. A key application of decision trees is to predict 

outcomes. Decision tree models include the classification and regression tree 
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(CART) 391, C5.0 tree392, quick, unbiased, efficient, statistical tree (QUEST)393 

and chi-squared automatic interaction detection (CHAID)394 tree. Binary 

decision trees were first developed at the Bell Laboratories in 1958395. The C5.0 

decision tree originates from the C4.5 tree, which in turn originates from the 

iterative dichotomiser 3 (ID3) decision tree396. The C4.5 tree improved on the 

ID3 tree by taking information gain as the selecting criterion, which was a 

limitation of the latter. C4.5 trees also introduced new functions including 

pruning technology. C5.0 decision trees have the additional feature of boosting.  

 

 

 

 

Figure 1.4: Illustration of 
how a decision tree would 
work for pNET diagnosis.  
Green ovals denote splitting 
nodes and child nodes are 
shown in blue (pNET) and 
orange (control). 
 

 

 

 

A decision tree has different components including nodes and branches. Figure 

1.4 illustrates how a decision tree model would work for pNET diagnosis. There 

are 3 types of nodes, namely decision, internal and child nodes397. A root node 

is also a decision node and represents a choice that divides all samples into 

two (binary classification) mutually exclusive subsets. Internal nodes are also 

known as chance nodes and represent the possible choices at that point in a 

tree. The top edge of each chance node is connected to its parent node and the 

bottom edge is connected to its child or leaf nodes. Leaf nodes are also known 

as end nodes and represent the final result of the combined decisions or 

events. A tree also consists of branches, which connect nodes. A decision tree 

is formed using a hierarchy of such branches. Each path from the root node 

through the internal nodes to a leaf node represents a classification decision 

rule. Table 1.3 summarises the different decision tree approaches in Statistical 

Package for the Social Sciences (SPSS) Modeler software. 
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Decision trees differ in the approach taken for splitting. When building a 

decision tree, the most important input values classify the records at each root 

and early internal node into two categories based on the value of each 

corresponding nodal variable. Splitting options include using entropy, Gini 

index, classification error, information gain, gain ratio and twoing criteria397,398. 

This classifying or splitting procedure continues until stopping criteria or 

homogeneity are met397. In most cases not all of the potential input values are 

used to build a decision tree and, in some instances, a specific input variable 

may be used multiple times at different levels of a decision tree397. Stopping 

decision tree development is also important to consider, because complexity 

and robustness are competing characteristics that need to be considered397. A 

more complex model might fit the decision tree training data well but is likely to 

have a poorer ability to predict future samples due to overfitting397. Overfitting of 

decision trees needs to be controlled using stopping rules. Common parameters 

used in such stopping rules include the minimum number of records in a leaf, 

the minimum number of records in a node prior to splitting, and the distance or 

depth of any leaf from the root node397. Decision trees can also be pruned398, 

which involves reducing the size of the tree in order to avoid unnecessary 

complexity and overfitting398. 

Advantages of decision trees include simplifying complex relationships between 

input and target variables, being relatively easy to understand and interpret, 

being non-parametric and without distributional assumptions, the ability to 

handle missing values, the ability to handle heavy skews without the need to 

transform data, and its robustness to outliers397. However, they also have 

disadvantages, which include being subject to overfitting and underfitting 

particularly with small datasets397. This can limit the generalisability and 

robustness of the resulting models397. 

 

 C&R Tree QUEST Random 
Trees 

CHAID C5.0 Trees-AS 

Input fields Continuous 
Categorical 

Continuous Continuous 
Categorical 

Continuous 
Categorical 

Any type Continuous 
Categorical 

Target fields 
 
(Only one 
field can be 
specified) 

Continuous 

Categorical 

Flag 
Nominal 

Ordinal 

Categorical 

Flag 

Nominal 

Continuous 

Categorical 

Flag 
Nominal 

Ordinal 

Continuous 

Categorical 

Flag 
Nominal 

Ordinal 

Flag 

Nominal 

Ordinal 

Continuous 

Categorical 

Flag 
Nominal 

Ordinal 
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Table 1.3: Decision tree options available in SPSS Modeler.  
The main parameters available for each decision tree type are shown399,400 
 

1.7.2.2 Logistic Regression 
When considering a problem in which a dependent variable is categorical, a 

common approach is to use logistic regression (LR), which takes its name from 

the type of curve used for data fitting401. Categorical variables are used in 

biomedicine for discrete parameters, such as whether a drug was administered, 

or if a patient survived401. Categorical variables may have more than two 

values. LR with two dependent categorical variables is known as binary LR, 

while LR involving more than 2 dependent categorical variables is known as 

multivariate LR. Two advantages of using LR is that it is relatively simple to 

perform and easy to interpret401.  

Type of split Binary split  Binary split  Binary split  2 or more 2 or more 2 or more 

Method 
used for 
splitting 

For a 
Categorical 

output a 

dispersion 
measure is 

used e.g. 

(Gini 
coefficient) 

Chi-square 
for 

categorical 

inputs  
 

ANOVA for 

continuous 
inputs 

Same 
approach 

as C&R 

tree 

Chi-square 
test 

Information 
theory 

measure is 

used, the 
information 

gain ratio 

Chi-square 
test 

Missing 
value 
handling 

Substitute 

prediction 

fields 
where 

needed  

Substitute 

prediction 

fields 
where 

needed  

Can handle 

missing 

values 

Missing 

values 

assigned a 
new 

category 

Fractioning 

method 

Can handle 

missing 

values 

Pruning Option to 
grow the 

tree fully 

and then 
prune back 

Option to 
grow the 

tree fully 

and then 
prune back 

Allows 
control of 

the 

minimum 
subgroup 

size. 

However, 
no pruning 

Allows 
control of 

the 

minimum 
subgroup 

size 

Option to 
grow the 

tree fully 

and then 
prune back 

Allows 
control of 

the 

minimum 
subgroup 

size 

Interactive 
tree 
building 

Available Available Not 

Available 

Available Not 

Available 

Not 

Available 

Prior 
probabilities 

Available Available Not 

Available 

Not 

Available 

Not 

Available 

Not 

Available 

Rule sets Available Available Not 
Available 

Available Available Not 
available 
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In LR the probability of event Y (P(Y)) occurring is predicted, given known 

values of different factors (𝑥', vector-containing predictors). The general form of 

the functional dependence given by this regression is through this formula402. 

 

𝑃(𝑌) =
1

1 + 𝑒0(1231454316563..1858)
=

1
1 + 𝑒0(19.5)

 

 

P(Y) can also be defined as the probability of Y belonging to a certain class and 

𝑏' are coefficients that are determined within a LR analysis402. A more compact 

version of the formula is shown on the right hand side of the second equals sign 

and is used where 𝑏 is the coefficients vector and 𝑋 is the predictor vector 

having 1 as the first value402. 

Different approaches can be adopted within an LR analysis, including the enter, 

forward stepwise and backward stepwise methods. In the enter method all the 

input variables are entered simultaneously1. In a “forward stepwise” regression 

analysis various factors are introduced one by one, beginning with the strongest 

and stopping when addition of another factor does not significantly improve the 

prediction. In a backward stepwise approach all the factors are initially 

introduced and then individual factors are withdrawn until the overall prediction 

does not deteriorate403. 

LR has been used in cancer biomarker algorithm development for various 

cancers including breast404, gastric405, ovarian406 and pancreatic cancers407. 

The approach taken to optimising a serum biomarker algorithm for ovarian 

cancer was to compare different methodologies for algorithm development 

including LR, k-nearest neighbour and linear discriminant analysis (LDA) 406. In 

this study the LR algorithm produced the best performance based on a 

combination of 4 biomarkers (Human epididymis protein 4(HE-4), Platelet-

derived growth factor AA (PDGF-AA), prolactin and Transthyretin (TTR)). LR 

produced an AUC of 0.95 compared to 0.94 using a k-nearest algorithm and 

0.92 using linear discriminant analysis406. Moreover, a LR model has been 

incorporated in to a PancRisk score for the improved earlier detection of PDAC 

utilising urine biomarkers407.  
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1.7.2.3 Support Vector Machines 
The SVM algorithm was developed by Vapnik and Cortes in 1995408. Its 

characteristics include the algorithm’s ability for good generality under the 

principle of structural risk minimisation, being able to deal with non-linear 

problems though kernel methods, the ability to deal with noise through the 

introduction of slack variables, and producing limited solutions as the optimal 

hyperplane depends only on the support vectors and guarantees 

convergence409.  

SVMs identify the hyperplane that separates a set of data points into two 

classes. This is achieved by maximising the marginal distances (the distance 

between the decision hyperplane and the data points closest to the 

boundary)410 to produce the maximum margin hyperplane411. The samples 

closest to hyperplane boundaries are known as the support vectors412. The aim 

of a SVM is for the resulting classifier to achieve considerable generalisability 

and to be utilisable for the reliable classification of new samples410. 

In reality it is not straightforward to separate data linearly, as noise is a 

phenomenon of real-world data which blurs linear boundaries within 

classification problems411. A solution is to relax the constraint of maximising the 

margins of a linear separator411, resulting in a soft margin classifier413.  

For a soft margin classifier, additional coefficients such as epsilon (e) are 

utilised known and is known as a slack variable. The soft margin approach can 

work for data that are close to being linearly separable, however it returns poor 

results when inputs are strongly influenced by errors and other sources of 

variation411. The C parameter, known as the penalty parameter is important as it 

controls the extent of misclassification414. If C is low, this means that that the 

boundary which is chosen has a larger margin, meaning a potentially greater 

number of misclassifications, resulting in a model which is underfitted414. 

However, a higher C means that the boundary chosen has a smaller margin, 

with a smaller number of misclassifications and thus potentially resulting in 

overfitted models414. Thus, finding a balance between an overfitted SVM and an 

underfitted SVM model is key. 

SVMs map input vectors into a high dimensional feature space Z via non-linear 

mapping408. Within the feature space, a linear decision is constructed to ensure 

a high generalisability of the network408. The kernel feature of SVMs allow for 

linear and non-linear data to be separated linearly. Different kernel functions 
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include linear, polynomial, sigmoid and the Radial Basis Function (RBF) which 

is also known as a Gaussian kernel414. The performance of a SVM is dependent 

on the choice of the kernel415. Table 1.4 summarises the different types of 

kernel with their associated formulas and parameters. 

The most common type is the linear kernel, which can be used directly when 

samples are separable in a low dimensional space. Unlike other kernels, there 

are no parameters for the linear kernel function. 

The polynomial kernel is a global learner with a poor local performance. The 

parameters in this kernel include ‘d’, which represents the dimensionality of the 

kernel function. The dimensionality of the mapping function grows with the 

value of d, and the higher the dimensionality the easier the classification, but 

computational complexity increases at the same time. Complex classifiers have 

a good performance with a high classification accuracy at the training data level 

but are prone to overfitting414. There are 3 parameters, gamma, coef and d for 

the polynomial kernel. The default values are gamma set to 1/k (k is the number 

of classes), coef set to 0, and the polynomial degree set to 3414. The polynomial 

kernel is a non-stationary kernel and it is particularly suited to problems where 

all the training samples are normalised412. This kernel non-linearly maps 

samples into a higher dimensional space and so, unlike the linear kernel, this 

can deal with attributes that are non-linear. 

The ability for the algorithm to generalise decreases with the increase of the 

adjustable gamma parameter414, which specifies the radius of the RBF416. As it 

plays an important role in the performance of the RBF kernel it should be 

carefully tuned. The gamma parameter defines how far the influence of a single 

training data set reaches, meaning that low values of gamma have a far 

reach417. Low gamma value also imply that points need not be close together to 

be considered the same class. Conversely, larger gamma values imply that 

points should be closer together to be co-classified. Moreover, when the 

gamma is very small, the model is too constrained and cannot capture the 

complexity and the shape of the data417. When the gamma value is small it has 

less influence, and the resulting model behaves similarly to a linear model. 

Larger gamma value models tend to overfit whereas smaller gamma value 

models tend to underfit. 

Applications of the sigmoid kernel are rare414. The sigmoid kernel satisfies 

Mercer’s theorem412 and the underlying kernel function is the equivalent of a 
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two-layer neural network414. Thus, the sigmoid kernel is widely used in the 

context of neural networks 414. The gamma and r values must be carefully 

chosen to avoid poor and potentially worse than random performance of the 

resulting SVM model412. Gamma is a scaling parameter for the input samples 

and r is a shifting parameter that controls the mapping threshold. 

 
Type of SVM Formula Parameters 
Linear K(x,xi )= x.xi None 

Polynomial K(x,xi )=[y*(x.xi )+ coef]d y, coef, d 

RBF K(x,xi )=exp(-y*||x-xi ||2 ) y 

Sigmoid K(x,xi )=tanh(y(x.xi)+coef) y, coef 

Table 1.4: Different SVM kernels with their associated formulas and kernel parameters. 
 

 

Figure 1.5: Illustration of how a Linear 
SVM would work for pNET diagnosis.  
The level of Biomarkers 1 and 2 are shown on the 
x and y axis, respectively. Orange rectangles and 
blue triangles represent control and case samples, 
respectively. A straight line defined by shows the 
separation  using Linear SVM for the cases and 
controls. 
 

 

 

SVMs are supervised ML algorithms which have been widely employed for their 

discriminative ability in many different disciplines, including areas of 

oncology418,419, cardiology420,421, respiratory medicine422,423 and neurology424,425. 

The utility of these algorithms has been particularly evident in improving cancer 

detection426,427,428. For example, a study by Tong et al. found that an SVM 

algorithm could differentiate the samples in their validation set with an accuracy 

of 86.1%, which was higher than the accuracy obtained using RF (82.5%) or LR 

(78.7%) algorithms426. Figure 1.5 illustrates how a Linear SVM model could be 

used to discriminate between pNETs and controls based on two biomarker 

assays. 

 

1.7.2.4 Random Forests 
In essence a random forest (RF) is a collection of a type of decision tree known 

as CART that have been constructed using bootstrap datasets with a random 

subset of predictor variables for modelling outcomes. Thus, RF is in effect an 



 81 

ensemble of multiple decision trees. The CART is user friendly and produces a 

visual representation that can be read in a similar way to a flow chart to predict 

outcomes429. CARTs are constructed using binary splits of a dataset429. CARTs 

can be simple or detailed in nature, depending on the number of predictor 

variables included in a CART model, outcome categories and stopping criteria. 

More detailed trees are commonly employed in RF models429. RFs work by 

iteratively developing decision trees to be used in the context of classification or 

regression problems429. The RF ML method was developed in 2001 by Leo 

Breiman et al.430. A RF is built via multiple steps based on a dataset divided into 

two groups termed the in-bag (training) set and the out-of-bag (validation) 

set429. The in-bag dataset is used to grow the CART forest by randomly 

selecting a subset of predictor variables to make binary splits at each tree using 

the best features429. Each tree is grown until the stopping criterion has been 

met. This process is repeated until the specified number of trees has been 

made429. The out-of-bag dataset is then run down all the trees in the forest and 

the results from each tree are compiled to give a prediction for each sample429. 

Decision trees have drawbacks, particularly in providing poor accuracy for 

complex datasets (large datasets as well as datasets with complex variable 

interactions)431. RFs can however address the pitfalls of decision trees. RFs 

share some of the beneficial properties of decision trees, such as the ability to 

interpret relationships between predictors and an outcome429 but they can 

provide higher accuracy than a single decision tree model. RF algorithms are 

focused on result prediction as opposed to production of an explainable model. 

Despite the absence of a well-defined model, they have been increasingly used 

as a standard analytical tool432. The price for accurate classification via a RF is 

reduced user understanding and interpretability of results429. This latter is a key 

disadvantage of the RF model, which is often described as ‘black box’ because 

it does not provide users with a describable model due to the complexity of the 

algorithm429 and because gaining an insight into the RF prediction rule is 

difficult due to the typically large number of trees432. Initially their usage was 

limited to innovation-friendly scientists or ML experts432, but RFs have since 

become increasingly well known by various non-computational communities432.  

Bagging is employed by RFs to enhance accuracy when random features are 

used to give estimates of the generalisation error of the combined ensemble 

trees430. Moreover, the out-of-bag error estimate removes the need for an 
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additional test set430. Additionally, cross validation (CV) entails bias of an 

unknown extent, while out-of-bag estimates are unbiased430. 

A major advantage of RFs is their ability to deal with datasets that consist of 

large numbers of predictor variables. However, in practice the number of 

predictors required to obtain the outcome predictions are limited to improve 

efficiency431. RFs differ from traditional statistical techniques whereby classical 

assumptions are not necessary hence RF approach often has much lower 

prediction error rates compared to traditional models, which makes it ideal for 

classification problems429. A final advantage of RFs is that they can be 

employed situations in which the number of predictor variables is much bigger 

than the sample size unlike other models429. 

 

 
 

Supervised ML Approach Advantages Disadvantages 

LR • Robustness 

• High precision 

• Works well with small 

sizes 

• Interpretable model 

• Simplicity 

• Problems with high co-

linearity 

• Gaussian distributed 
residuals 

• Not the most powerful 

algorithm. Can be 

outperformed. 

SVM • Robust 

• High precision 

• Slow in training 

• Blackbox approach 

• Sensitive with respect to 

kernel choice 

Decision Tree • Easy to interpret 

• Deals well with outliers 

• Works with many 

datatypes 

• Fast predictive speed 

• Variable distribution not 

important 

• Boosting option available 

• Overfitting 

• Slow in training 

Random Forest 
 

• Feature of importance 

• Works well with large 

datasets 

• Strong performance 

• Blackbox approach 

• Slow in training 

• Overfitting 

• An ensemble approach is less 
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 Table 1.5: Advantages and disadvantages of different supervised ML approaches. 
 
 

1.7.2.6 Validation of supervised machine learning models 
A reliable way to validate the performance of a supervised ML model is by 

assessing it’s classification performance using a separate dataset to that used 

to train the model. However, this approach requires a large amount of data 

which is often not available, for example due to the high associated costs or 

limited data availability. Another approach is known as the Train and Test 

approach in which a portion of the dataset is allocated to training and another 

portion to validation. Using unseen data to test a ML model provides an 

unbiased estimate of what the performance would be when the model is 

deployed for actual predictions in real-world situations. Cross validation (CV) 

approaches address situations in which the availability of datasets is limited. 

Instead of training a fixed model only once via a Train/Test split, in CV several 

models are created iteratively on different portions of the data. K-fold is a 

common CV approach in which a portion of the data is separated for validation, 

leaving the rest to train a model and predict class outcomes. This is then 

repeated several times by leaving out a different portion of the data for the 

validation until all of the data is used. A model’s performance is then calculated 

as a mean of classification performances in each of the validation folds. The 

advantage of a k fold approach is that is economical as it allows utilisation of all 

the data for training and reuse for validation. If the validation were to be 

performed with a separate dataset, double the amount of data would be needed 

to have the same amount for training and validation. Another approach known 

as nested CV avoids pooling the training and validation data but is economical 

as it allows all the data to be used for training and reused for validation. With 

nested CV a portion of data is split and in each fold a model is developed on the 

reduced training set from scratch including feature selection and parameter 

tuning. This is repeated after splitting a different portion of the data for validation 

and each time a new model is developed for training until all the data is used433. 

 

interpretable than a single 

decision tree 
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1.7.2.7 Evaluating supervised machine learning models 

1.7.2.7.1 Receiver operating characteristic and Area under the curve 

 A Receiver operating characteristic (ROC) curve is used for the visualisation, 

organisation and selection of classifiers based on their performance. ROC 

curves are 2D graphs which have the true positive rate plotted on the Y axis 

and the false positive rate plotted on the x axis. Thus, a ROC curve depicts the 

relative trade-off between benefit (true positives) and cost (false positives). 

ROC curves are compared via calculation of corresponding AUC values. The 

area under the curve (AUC) is the area under a curve as a proportion of a unit 

square defined by the both axes ranging from 0 and 1. However because 

random guessing produces a diagonal line between (0,0) and (1,1) with an area 

of 0.5, no effective classifier should have an AUC of less than 0.5434. 

 

1.7.2.7.2 Confusion matrix 

In the field of ML a confusion matrix is also known as an error or contingency 

matrix. A confusion matrix has 4 different components, namely true positives 

(TP), which are the positive cases that the classifier has correctly identified; true 

negatives (TN), which are negative cases that the classifier has correctly 

identified; false positives (FP), which are negative cases that the classifier has 

incorrectly identified; and false negatives (FN), which are the positive cases that 

the classifier has incorrectly identified. 

The following parameters are based on the confusion matrix and can be used to 

evaluate different classification models. These include accuracy, F1 score, 

precision, sensitivity (TP rate), specificity and FP rate390. 

 

1.7.2.7.3 McNemar test 

The McNemar test can be employed to compare the performance of ML 

models. This test is a 2x2 cross classification of paired (or matched) responses 

to a dichotomous item. A McNemar test is a type of chi-squared test that uses 

dependent (i.e. correlated or paired) data as opposed to independent 

(unrelated) samples. It is non-parametric and thus distribution free, and can 

therefore be used with sample data that are not normally distributed435.  
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1.8 Cancer Screening Programmes in the UK 

Once a biomarker test and algorithm are validated using well characterised 

patient and healthy cohorts, they may be applied to undiagnosed populations. 

Cancer screening at a population level is seen for a few types of cancer where 

there is a suitable test and justification based on a cost-benefit assessment that 

typically requires a high prevalence such as that found in the UK for breast, 

cervical and bowel cancer. The screening approaches for these cancers and 

the associated issues of FN and FP results are discussed in subsection 1.8.1. 

However, as pNETs have a much lower population prevalence, use of a pNET 

test could only be justified for a smaller, high-risk group. Targeted screening 

programmes for cancers with lower prevalence such as pancreatic cancer are 

discussed in subsection 1.8.2.  

 

1.8.1 Population cancer screening programmes  
There were 367,167 new cases of cancer between 2015 and 2017 in the UK436. 

However, the National Health Service (NHS) has only three established 

population screening programs - for breast, cervical and bowel cancer437.  

Breast cancer is the most common type of cancer in the UK, accounting for 

15% of all new cancer cases (2016-2018)438. Moreover, between 2016 and 

2018 there were 11,547 deaths from breast cancer in the UK, highlighting why 

screening for breast cancer is important in order to improve outcomes by 

detecting disease earlier438. The UK NHS breast cancer screening program is 

available to women aged between 50 and 70 as well as some trans and non-

binary people, and these individuals are invited to partake in screening via 

mammogram analysis every three years439. However, women aged over 70 can 

still have screening mammograms even though they don’t fall within the 

recommended screening programme age range. Cancer is found in 9 out of 

every 1000 women that undergo screening439. Screening for breast cancer is 

also adapted to reflect the level of risk in different age groups. Women with an 

increased risk of breast cancer due to a family history of the condition who are 

younger than 40 years are offered yearly MRI scans from the age of 30 or 40 

dependent on level of risk439. For patients who have been shown to have a 

gene mutation through testing that increases the risk of breast cancer the 

recommendations are slightly different with UK guidelines recommend yearly 

MRI scans from the age of 20 for women who have a TP53 mutation and age 
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30 for breast cancer gene 1 (BRCA1) or breast cancer gene 2 (BRCA2) 

mutations439.   

The UK NHS bowel cancer screening programme is organised separately by 

each nation440. The programme in England invites people aged between 60 and 

74 years to be screened every 2 years440 using a faecal immunochemical test 

(FIT), which is an immunoassay that measures human haemoglobin in faeces in 

terms of micrograms of blood per gram of faeces (µg/g)441. People over the age 

of 74 can request a screening kit from the bowel cancer screening program440.  

Dependent on the results of the FIT, patients may be referred for further 

investigation and diagnosis440. 

The NHS screening program for cervical cancer targets women aged 25 to 

64442.  Women aged between 25 and 49 are invited every 3 years, and those 

aged over 49 are invited every 5 years until the age of 64442. Cervical screening 

is also available for trans men and non-binary people within this age range who 

have a cervix442. GPs can arrange cervical screening for patients aged over 

64442. Cervical screening in England, Wales and Scotland involves testing 

cervical cells for human papilloma virus (HPV)442. 

When participants consider breast, bowel or cervical cancer screening, it is 

important for them to understand that while screening is widely beneficial, there 

are also potential harms of screening, such as FN or FP results439. A FN result 

means a screening test has failed to identify a cancer in a patient and hence the 

opportunity to promptly treat that cancer has been missed439. In contrast, a FP 

result means a screening test has incorrectly detected the presence of 

cancer439. A FP result can lead to patient anxiety and further testing such as a 

biopsy assessment439. 

When considering breast screening there are also issues of overdiagnosis and 

overtreatment439. Overdiagnosis could lead to identifying breast cancers that 

won’t ever cause any problems439. For example, breast screening can pick up 

ductal carcinoma in situ (DCIS)439 but it’s not possible to know whether DCIS 

will develop into cancer. Hence many DCIS patients have surgery, radiotherapy 

and hormone therapy, potentially unnecessarily439. 

The risks in bowel cancer screening also include overdiagnosis and 

unnecessary treatment, in this case for bowel growths that may never cause 

any harm440. Some people with an increased risk of bowel cancer may undergo 

screening earlier than the normal schedule of the NHS bowel screening 
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program440. These patients include patients with conditions such as familial 

adenomatous polyposis, lynch syndrome, a family history of bowel cancer, 

ulcerative colitis, Crohn’s, polyps in the bowel, and previous history of bowel 

cancer440. 

Despite cervical cancer screening saving thousands of lives every year in the 

UK, similar potential harms include FN and FP results, overdiagnosis and 

overtreatment442. Treatment is offered to everyone with above a threshold count 

of abnormal cells as it is impossible to know whether they will go on to develop 

cancer or not442. Treatment can lead to problems such as bleeding or 

infection442. Moreover, removal of cervical tissue can elevate the risk of 

premature birth in subsequent pregnancies442. 

 

1.8.2 Targeted cancer screening for pancreatic cancer 
There is no population screening programme for pancreatic cancer. The 

European Registry of Hereditary Pancreatitis and Familial Pancreatic Cancer 

(EUROPAC) programme exists to identify and monitor high-risk patients443. 

Inclusion in this study is for patients who have 2 or more first degree relatives 

with pancreatic cancer, patients who have 2 or more relatives with pancreatic 

cancer on the same side of the family, or if the patient’s family has a known 

familial syndrome and at least one family member having pancreatic cancer and 

a faulty gene443. Participation in the EUROPAC study involves a CT scan, EUS, 

and a blood test to check CA-19-9 and sugar levels,443 and screening usually 

starts from the age of 40443. 

There is no similar screening programme for pNETs due to their far lower 

prevalence. Patients with MEN1 are offered yearly screening to check for early 

signs of tumour development,61 but only a small portion of pNETs are familial. 

Thus, the prompt identification of patients with sporadic pNETs is an unmet 

clinical need. The characterisation of any particular combinations of symptoms 

and comorbidities associated with pNETs would allow primary care physicians 

and MDC specialists to identify high-risk patients with individually non-specific 

symptoms and establish points of care in which a biomarker test for pNETs 

could justifiably be used. 
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1.9 Summary 

Despite substantial advances being made for several more prevalent cancers, 

the development of novel biomarkers for NETs has not been as successful444. 

Pharmacoeconomics, and the heterogenous nature of NETs with respect to 

site, secretory product, proliferative control and molecular genetic changes, 

make it challenging to identify a single panel of pNET markers444. The delay in 

pNET diagnosis is partly due to the symptomatic presentation of these tumours 

being non-specific in nature, but it is also due to the absence of a suitable test. 

One reason for the latter is a deficit in the identification of early diagnostic 

biomarkers445. Moreover, the development of robust circulating pNET 

biomarkers for the diagnosis and prediction of disease progression would 

greatly facilitate early tumour detection and targeted management446,447. The 

current gold standard marker used clinically is CgA, which has important 

drawbacks to consider, including multiple confounding factors such as the use 

of proton pump inhibitors448 and renal failure449. There is also the important 

drawback that CgA is not a reliable diagnostic biomarker for insulinomas90. 

Recent efforts have shifted toward a multianalyte approach with the rationale 

that targeting a greater number of markers as opposed to a single analyte 

approach would improve the performance of test sensitivity and specificity. 

Pancreatic cancers present challenges to accurately diagnose due to the 

presence of fibrosis and cystic disease that can confound imaging and clinical 

interpretation450. Thus, developing a biomarker panel for the identification of 

pNETs which is both cost-effective and has high accuracy is an unmet clinical 

need. 

 

1.10 Aims and Hypotheses 

1.10.1 Hypotheses 
• Earlier detection of pNETs via the usage of a biomarker panel and a 

corresponding algorithm will lead to a higher proportion of patients being 

diagnosed at a stage at which surgery is possible and, consequently, an 

improved 5-year survival rate. 

• The biomarker panel will be used a part of a triage pathway in primary 

care for patients suspected of having a pNET based on their 

presentation with a characteristic combination of symptoms . 
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1.10.2 Aims 
This study aims to 

• Develop and validate a diagnostic blood biomarker panel that can be 

used to detect patients with pNETs and to differentiate pNETs from 

benign, non-cancer pNETs and lower-risk pancreatic lesions. 

• Detect pNETs at a greater sensitivity and specificity than chromogranin A 

(CgA) the current gold standard test used in clinical practice. 
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Chapter 2 – Methods 

 

2.1 General summary of ML model creation using SPSS 
Modeler 

An SPSS Statistics data file, containing the biomarker data and whether a 

patient had a pNET or not was used for the creation of ML models. In SPSS 

Statistics (IBM), the NET column contained “0” and “1” values and was set to be 

a numeric data. The “0” and “1” values were used to represent control and case, 

respectively. The columns of biomarker data were also set to be numeric data.  

Creation of models in SPSS Modeler (IBM) employed the following general 

method. First, the SPSS Statistics file containing the biomarker data was 

dragged into the area in SPSS Modeler known as the stream, where models 

were created. The SPSS Statistics file was then connected to the Type node, 

located under the Field Ops or Favourites tabs. Within the Type node, the NET 

field and the different biomarker fields could then be seen. The measurement 

option for the NET field was changed to “flag” and the role option to “target”. 

The Type node was then connected to the ML model algorithm of interest 

located in the Modelling tab. The algorithms employed were SVM (SVM node), 

LR (Logistic Node), Random Forest (RF node) and C5.0 decision tree (C5.0 

node). Within the Modelling nodes, parameters for the models were defined and 

the models were run. Once a model had been run, a gold diamond nugget was 

produced that contained the model information. Each nugget could be 

connected to other nodes to obtain further information for the corresponding 

created model. Additional nodes included the Table node, which provided 

prediction information, the Analysis node, which provided the AUC and 

confusion matrix, and the Evaluation Node for obtaining ROC curves. Section 

2.2 describes the methodology for the creation of LR models for the whole 

training dataset in SPSS Modeler. Section 2.3 provides the methodology for the 

creation of C5.0 decision trees in SPSS Modeler for the whole training dataset. 

Section 2.4.1 provides the methodology for the creation of SVM models in 

SPSS Modeler. Finally, Section 2.5 provides the methodology for the creation of 

RF models in SPSS Modeler for the whole training dataset. 
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2.2 Creation of Logistic Regression models from the UOL 
training dataset in SPSS Modeler 

2.2.1 Generating the Logistic Regression model 
SPSS Modeler 18.2.1 software was used to create LR models for the University 

of Liverpool (UOL) pNET and control data. The record containing the missing 

ANG2 value was first removed from the analysis using SPSS Statistics Version 

27, resulting in a dataset that contained 49 controls and 57 cases of the starting 

50 controls and 57 cases. The SPSS Statistics file containing the levels of 

seven biomarkers was used to generate the results for all 127 possible 

biomarker combinations. For model generation this file was dragged into the 

blank canvas of SPSS Modeler to create a node. The Type node was then 

dragged into the same canvas and these two nodes were linked using the 

Connect option. Clicking on the Type node revealed the NET field and the 

different biomarker fields. The Measurement option for the NET field was 

changed to “flag” and the Role option to “target”. The Preview option allowed a 

snapshot of the data to be viewed. 

From the node palette, the Logistic option was selected to carry out LR 

modelling in SPSS Modeler. The Logistic node was dragged into the canvas 

and a connection formed between the Type node and the Logistic node. Within 

the Logistic node, under the Fields option, “Custom Field Assignments” was 

selected with target and inputs added. The Target was NET and inputs were the 

different combinations of biomarker data. Below the model options, the “Use 

partitioned data” and the “Build model for each split” options were unselected. 

The Procedure option chosen was “Binomial”. Beneath the Binomial Procedure 

the method used was the “Enter” method. Underneath the Expert setting, the 

“Simple mode” (default) was kept and in the Analyse option the “Calculate 

predictor importance” option was selected, before each LR model was 

generated. Model generation was indicated on the canvas by a gold diamond-

shaped icon known as the “model nugget for the LR model”. Clicking on the 

Logistic model gold nugget provided further information on the created model. 

This included the equations for the LR analysis and predictor importance 

information for the different markers. A summary table was also shown which 

provided the characteristics of the LR model and the settings used to build the 

model. 

  



 92 

2.2.2 Performance Evaluation 
For each LR model generated as described in the previous section the Logistic 

node was connected to the Analysis node located in the Output tab. Within the 

Analysis node the coincidence matrices (for symbolic targets) and evaluation 

metric (AUC and Gini, binary classifiers only) were then selected. Run was then 

clicked to provide the AUC value and confusion matrix for each model.      

 
2.2.3 ROC curves 
ROC curves were also obtained for each LR model by selecting the Graphs 

option within the Evaluation node. The gold diamond Logistic model node 

containing the LR model was then connected to the Evaluation node. Clicking 

on the Evaluation node provided further options and in the Plot setting the Chart 

Type was changed from the default to ROC, with all other settings kept at 

default. Run was then clicked to generate the interactive ROC curve. 

 
 

2.3 Creation of non-boosted C5.0 decision trees from the UOL 
training dataset in SPSS Modeler 

C5.0 non-boosted trees were created in SPSS Modeler. Section 2.3.1 explains 

the process for generating a C5.0 decision tree model, Section 2.3.2 describes 

the methodology for performance evaluation, and Section 2.3.3 explains the 

methodology for C5.0 decision tree ROC curve analysis. 

  

2.3.1 Generating a C5.0 decision tree model 
A SPSS file containing the UOL biomarker data was saved in SPSS Statistics 

Version 25 and used by SPSS Modeler 18.2.1 to create C5.0 decision tree 

models on the stream canvas. This file used had a pre-defined missing ANG2 

value already specified in the SPSS Statistics file. 

Specifically, a blank canvas was opened and streams were created by linking 

nodes as previously explained. The SPSS Modeler stream represented the data 

flow through each operation and the tools required to build the model were 

located in the Nodes palette.  

The SPSS Statistics file containing the biomarker data for the 50 controls and 

57 cases was dragged into the canvas to create a File node, which was then 

connected to a Type node that had been dragged from the Node palette in the 
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Field ops section as previously described. The Type node fields included the 

NET and biomarker data. The measurement for NET was changed to “flag” and 

the role changed to “target”. The asterix (*) next to ANG2 denoted a missing 

value, which had been defined previously in the SPSS Statistics file and did not 

need to be redefined.  

From the node palette the modelling option was selected to reveal the different 

modelling options available. The C5.0 node was selected and dragged into the 

canvas and connected to the Type node as described previously. Clicking on 

the C5.0 node provided further information and parameters required to build the 

C5.0 models.  

Selecting the C5.0 node revealed five tabs, including the Fields and Models 

tabs. In the Fields tab, “Use custom field assignments” was selected with target 

and inputs added. The target was NET and inputs were the biomarker 

combination used to generate each model. In the Model tab, further parameters 

for the decision tree were selected according to on the type of C5.0 decision 

tree to be built. For all trees, “Use partitioned data” and “Build model for each 

split” were deselected, as was “Group symbolics”, and the Output Type was set 

to “Decision tree”. The default “Expected noise” setting of 0 was used for all 

trees. The model options containing simple and expert options was set to 

simple and contained the Favor accuracy (default) or Favor generality. 

Accuracy or generality were selected for different models. Relevant option 

boxes were ticked or unticked according to the type of decision tree being 

created (cross validated, non-cross validated, boosted or non-boosted). 

“Calculate predictor importance” was selected in the Analyse tab. 

Table 2.1 summarises the settings employed to create different types of C5.0 

decision trees. 

 
 C5.0 Decision tree 

Non boosted  
Non cross validated 
Generalise setting 

C5.0 Decision tree  
Non boosted 
Non cross validated 
Accuracy setting 

Output type Decision Tree Decision Tree 
Partitioning data None None 
Boosting No boosting No boosting 
Boosting settings N/A N/A 
Cross Validating None None 
Cross Validating settings N/A N/A 
Mode Simple Simple 
Favour Generalise Accuracy 
Expected noise (%) 0 0 
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Table 2.1: Summary table for the settings used to model different types of C5.0 decision 
trees in SPSS Modeler 18.2.1.  
C5.0 decision trees include non-boosted, non-cross-validated general trees; non-boosted, non-cross-
validated accuracy trees; and boosted, cross-validated general trees (described in Section 2.8). 
 

Once the model was successfully generated, a gold diamond-shaped “model 

nugget” appeared, which contained information on the model. On the Model 

tab, thresholds and predictor of importance information were shown, and the 

Viewer button provided a visual representation of the decision tree.   

The Summary tab provided further details of each decision tree, including the 

tree depth, fields used, and inputs used in that model. Summaries of the build 

settings and model training were also available. The Settings tab provided 

additional information, including “calculate confidences” and “generate SQL of 

this model”. 

 

2.3.2 Performance Evaluation 
The AUC value and Gini score (for non-boosted trees) for C5.0 decision tree 

models were obtained to evaluate performance. For each model, the Analysis 

node in the Output tab was selected, dragged onto the canvas, and connected 

to the C5.0 model nugget. The default settings for the Analysis node included 

“Evaluation metric” (AUC and Gini binary classifiers only) selection. Run was 

then selected to provide the AUC value and Gini score for that model.  

 

2.3.3 ROC curves 
To generate a ROC curve, from the Nodes pallet, the Graphs tab was selected 

and the Evaluation node dragged onto the canvas and then connected to the 

gold diamond C5.0 model node. In the Plot settings the “Chart type” was 

changed from the default to ROC with other settings kept at default. Run was 

then clicked to generate a ROC curve. 
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2.4 Creation of Support Vector Machine (SVM) models from the 
UOL training dataset using SPSS Modeler and the MATLAB 
Classification Learner App  

2.4.1 SVM model generation from the UOL training set using SPSS 
Modeler 18.2.1 
Linear and RBF SVM models were created from the whole UOL training dataset 

using SPSS Modeler. Section 2.4.1.1 explains the pre-processing and scaling 

of the UOL data that was carried out prior to Linear and RBF SVM model 

generation, while Sections 2.4.1.2 and 2.4.1.3 describe the process of Linear 

and RBF SVM generation, respectively, using SPSS Modeler. 

 

2.4.1.1 Data pre-processing and scaling prior to SPSS Modeler entry 
Prior to data analysis using SPSS Modeler, the UOL biomarker data (n=107) 

was pre-processed by removing a missing value record (n=1) and scaled in 

Microsoft Excel. The resulting dataset contained 49 controls and 57 cases 

(n=106) and scaling used the min-max process, which scaled the data using the 

equation: 

xnormalised = (x - minimum(x)) / (maximum(x) - minimum(x)) 

 

Data scaling was required for SVM modelling as this is a distance-based 

algorithm. 

 
2.4.1.2 Linear and RBF SVM model creation using SPSS Modeler 
SPSS Statistics Version 27 was used to create the data input file for SPSS 

Modeler 18.2.1 from the min-max scaled data.  

To create each SVM model the SPSS Statistics data file containing the scaled 

data was dragged into the stream area of SPSS Modeler, and the resulting File 

node was connected to the Type node. Double clicking the Type node allowed 

the fields in the model to be seen. The NET field in the “measurement” option 

was changed to “flag” and the “role” for the NET field changed to “target”. 

Clicking the preview button allowed the dataset to be previewed. The Type 

node was then connected to the SVM node, which was located in the Modelling 

tab. Double clicking on the SVM node showed the type of SVM to create (linear, 

RBF, sigmoid or polynomial), to adjust parameters, and to run the model. Within 

the SVM node were further subtabs including Field, Model, Expert and Analyse. 

The Field subtab was kept on the default setting “use pre-defined roles”. In 
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Model subtab, “use partitioned data” and “build model for each split” were both 

deselected. The Expert subtab allowed the parameters of the model to be 

adjusted, including the C parameter (also known as the regularisation 

parameter) for Linear SVM models, and the kernel type (gamma) for RBF SVM 

models. For Liner SVM models, C parameter values from 1 to 10 were 

employed, as recommended by the manufacturer. For RBF SVM models, C and 

gamma parameters were explored to compare the performance of the resulting 

models using a grid approach. C parameter values were chosen between 1 and 

10 and the gamma value ranged from 0.4 to 0.95. In the Analyse tab, “calculate 

predictor importance” was selected to assess the contribution of each marker to 

a model. 

Models were then created, resulting in the generation of a SVM model nugget, 

which contained model parameter information and predictor of importance data. 

Further information for a model was obtained by connecting the model nugget 

to other nodes. These included the Analysis tab to obtain the AUC value and 

confusion matrix information; the Evaluation tab (plot) to get a ROC curve; and 

Table to see the predictions for individual case and control samples. 

 
2.4.2 SVM model generation for the UOL training set using MATLAB  
Optimised Linear and Optimised RBF SVM models were generated for the 

whole training dataset using the MATLAB R2020a Classification Learner App 

(MCLA). Section 2.4.2.1 describes the process of uploading the biomarker data 

and Sections 2.4.2.2 and 2.4.2.3 describe the Optimised Linear and RBF SVM 

parameters, respectively. Sections 2.4.2.4 to 2.4.2.6 them describe the methods 

to obtain minimum classification error plots, confusion matrix for the models, 

and ROC curves, respectively. 

 

2.4.2.1 Uploading of Biomarker data into MATLAB CLA 
Although RBF is known as Gaussian in MATLAB, for consistency it will be 

referred to in this thesis as RBF. In order to create an Optimised Linear or RBF 

SVM model in MATLAB, the “Classification Learner App” was selected under 

the Apps tab. “New session” was selected and within this the “file” option was 

selected to allow the Microsoft Excel spreadsheet containing the pre-processed 

min-maxed scaled data for the seven biomarkers (n=106) to be imported and 

the response status to be indicated as “categorical 2 unique”. Specific markers 

were then selected via tick boxes according to the input required for each model 
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to be generated. No cross validation (CV) options were selected. “Start session” 

was then selected to open a new session. “Optimised SVM” was selected, 

followed by “advanced options” to fine tune each model. 

 
2.4.2.2 Optimised Linear SVM parameters 
In the Select SVM Hyperparameters to Optimise tab the Box constraint level 

was “optimised” and the Kernel function was “linear”. “Not optimise” and 

“standardise data” options were not selected as the data had previously been 

standardised. Within the Optimiser options the “optimiser of grid search” was 

selected with a training time limit of 300 seconds. The number of grid divisions 

was set at 10 and the box constraint level range was 0.001-1000. 

 
2.4.2.3 Optimised RBF (Gaussian) SVM model parameters 
In the Select SVM Hyperparameters to Optimise tab the selected Kernel 

function was “Gaussian” with the optimise option not selected. The selected Box 

constraint level was “optimised” and the “kernel scale” was set in the optimised 

settings. The “standardise data” option was not ticked in both the “values” and 

the “optimise” options as the data had already been scaled. The optimiser 

options were the same as those used for the Optimised Linear SVM parameters 

(Section 2.4.2.2). The box constraint level was set to 0.001-1000 and the kernel 

scale to 0.001-1000. 

 

2.4.2.4 Confusion Matrix 
A confusion matrix was obtained for the Optimised Linear and Optimised RBF 

models in the MCLA. The matrix was available in different formats and used to 

calculate sensitivity and specificity values based on the number of observations 

plot. 

 

2.4.2.5 ROC curve  
ROC curves were obtained for the models within the MCLA. ROC curves in 

MCLA were obtained once the model was generated by clicking on the ROC 

curves tab. 
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2.5 Creation of Random Forest models from the UOL training 
dataset using SPSS Modeler 

Section 2.5.1 summaries the process involved in the generation of RF models 

using SPSS Modeler, followed by Section 2.5.2 which explains performance 

evaluation of the RF models and Section 2.5.3 which describes how ROC 

curves were generated for these models.  

 
2.5.1 RF model generation 
SPSS Version 26 was used to remove one control record from the UOL dataset 

which had a missing ANG2 value, thereby reducing the total dataset to n=106. 

Individual input files were generated for the different combinations. A stream 

was created in SPSS Modeler Version 18.2.1 and an RF model was generated 

from the input dataset by dragging the File node into the stream. The File node 

was connected to the Type node using the connect command, as previously 

described (Section 2.1). Double clicking on the Type node allowed the fields of 

the dataset to be seen. The NET field was changed to “flag” and the role 

changed to “target”. The “preview” command allowed a small preview of the 

dataset to be seen. The Type node was then connected to the RF node, which 

was located in the Modelling tab. Default settings with “predefined” data were 

used to generate the model. The gold diamond nugget represented the 

resulting RF model, its features of importance, and the parameters used. 

 

2.5.2 RF model performance evaluation 
To generate the AUC value for each RF model, the Analysis node was selected 

from the Output tab and dragged onto the canvas. The gold diamond nugget 

was connected to the Analysis node, which the employed default settings with 

the evaluation metric (AUC and Gini binary classifiers only) selected. “Run” was 

selected to generate the AUC result for the model. This procedure was 

repeated 10 times for each combination to generate 10 different models, each 

with an associated AUC value. The AUC average, standard deviation (SD) and 

range were obtained for each set of 10 runs. 

 
2.5.3 RF model ROC curve generation 
ROC curves were generated for each RF model as described for C5.0 decision 

trees in Section 2.3.3.  
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2.6 Train and Test assessment of models using SPSS Modeler 

A train and test approach was used to assess the different types of model 

created using the UOL data. For this analysis the whole UOL dataset was 

divided into 2 separate datasets with one defined as the training data and 

another as the validation data. The training portion (n=53) consisted of 25 

controls and 28 cases while the validation portion (n=53) consisted of 24 

controls and 29 cases. The methods for this approach in SPSS Modeler are 

shown in Sections 2.6.1 to 2.6.4 for non-boosted C5.0 decision trees, SVM, LR 

and RF, respectively. 

 
2.6.1 C5.0 decision tree Train and Test assessment 
The four input biomarker combinations present in the top five resulting C5.0 

non-boosted decision tree models created from the whole UOL training data 

(with the ANG2 missing value entry removed, n=106) were assessed. Training 

(n=53) and test (n=53) datasets were created in SPSS Statistics for each of 

these combinations (VAMP, AMNTP, TAPM and CM). 

The training dataset for each combination was dragged into the stream area 

and connected to the Type node. Within the Type node the NET field 

measurement was changed to “flag” and role changed to “target”, before the 

node was connected to the C5.0 node. The settings for the decision trees were 

the same as those used previously (Section 2.2.1). The model nugget was 

connected to the Analyse node to generate the AUC value and ROC curve, as 

described previously (Sections 2.2.2 and 2.3.3, respectively). 

The validation dataset was then dragged into the stream and connected to the 

Type node, and the NET field measurement and the role were changed as for 

the training dataset. The gold diamond representing a model was copied and 

pasted next to the Type node for the validation dataset, to which it was then 

connected. The model nugget was connected to the Analyse node to obtain the 

AUC value and the ROC curve for the validation portion, as previously 

described (Sections 2.2.2 and 2.2.3, respectively). 

 
2.6.2 SVM Train and Test assessment 
The raw biomarker data (n=106) was edited in Excel to create a min-max 

normalised training and validation portions that contained the same cases used 

for other algorithms. For both portions, min-max normalisation was carried out 
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using the equation in Section 2.4.1.1 and only the normalised data were used. 

These include a 7-marker train and test split dataset; a 4-marker CVAM train 

and test split dataset; a 3-marker CVA train and test split dataset; and 2-marker 

train and test split dataset for the CV, AV and AC combinations. 

To create SVM models, the SPSS file containing the normalised training portion 

of the data was dragged into the stream area of SPSS Modeler and connected 

to the Type node (Favourite tab). Within the Type node the NET field 

measurement and role were changed as described (Section 2.6.1) before this 

node was connected to the SVM node. 

Train and test Linear and RBF SVMs were created using the method described 

in Section 2.4.1.2 (Linear) and Section 2.4.1.3 (RBF). Once the SVM settings 

were selected and a model nugget for the training portion was generated, this 

was connected to the Analyse node to obtain the AUC value and ROC curve as 

described (Sections 2.2.2 and 2.2.3, respectively). 

The normalised validation portion was dragged into the stream and connected 

to the Type node. The NET field measurement and role were changed as for 

the training portion before the gold diamond model nugget was copied and 

pasted next to the Type node. A connection between the Type node for the 

normalised validation portion and the SVM model nugget was then established. 

The model nugget was connected to the Analyse node where the AUC and 

ROC curve for this portion were obtained as described (Sections 2.2.2 and 

2.2.3, respectively). 

 
2.6.3 LR Train and Test assessment 
Train and Test assessment of LR algorithms were carried out for LR models 

created from the CVAM, CVA, CV, CA, VA, C, V and A data. 

The training dataset was dragged into the stream area and connected to the 

Type node, in which the NET field measurement and role were changed as 

described (Section 2.6.1). The Type node was then connected to the Logistic 

Node. The settings used to create each model were as previously descried 

(Section 2.2.1). The training LR model nugget was connected to the Analyse 

node where the AUC value and ROC curve were obtained as described 

(Sections 2.2.2 and 2.2.3, respectively).  

The validation portion was dragged into the stream, connected to the Type 

node, and the NET field measurement and the role were changed as for the 
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training portion. The LR model nugget obtained for the training portion was 

copied and pasted next to the Type node before the model nugget and Type 

node for the validation portion were connected. The LR model nugget was then 

connected to the Analyse node where the AUC value and ROC curve for the 

validation portion were obtained as previously described (Sections 2.2.2 and 

2.2.3, respectively). 

 
2.6.4 Random Forest Train and Test assessment 
Train and Test assessment was carried out for RF models created from the 

TCVAPM, CVAPM, VAPM, CVAM, CVA, TPM, CA, CM, VA, and A data. 

The training dataset was dragged into the stream area and connected to the 

Type node, within which the NET field measurement and role were changed as 

described (Section 2.6.1) before connection to the Logistic Node. The settings 

used to create each model were as descried (Section 2.2.1). The RF model 

nugget was connected to the Analyse node, where the AUC value and ROC 

curve were obtained as described (Section 2.2.2). 

The validation portion was dragged into the stream, connected to the Type 

node, and the NET field measurement and the role were changed as described 

(Section 2.6.1). The model nugget obtained for the training portion was copied 

and pasted next to the Type node before connection to the Type node. The RF 

model nugget was connected to the Analyse node, where the AUC value and 

the ROC curve for the validation portion were obtained as described (Sections 

2.2.2 and 2.2.3, respectively). 

 

2.7 SVM K-Fold Cross Validation in MATLAB Classification 
Learner App 

2.7.1 Creation of Optimised Linear and RBF SVM cross-validated models 
The methodology used to create the optimised SVM k-FCV models was the 

same as that described for the non-validated optimised SVM models (Section 

2.4.2) apart from the inclusion of 5FCV, 10FCV or 20FCV. The k value was 

selected using the slider control (as opposed to the “no validation” option used 

in Section 2.4.2) before the session was started. 

The k-FCV analysis in MCLA partitions the data into k folds, and for each fold it 

trains a model using the out-of-fold observations and assesses model 

performance using in-fold data. The results are reported as the average test 
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error over all folds. The advantage of this method is that it gives a good 

estimate of the predictive accuracy of the final model which has been trained 

using all the data. It requires multiple fits but makes efficient use of all data and 

is therefore ideal for smaller datasets. 

This optimised SVM model was selected in the new session and the advanced 

options were used for further fine tuning of each model. Subsequent steps for 

5FCV, 10FCV and 20FCV were as described previously for Optimised Linear 

and RBF SVM models (Sections 2.4.2.2 and 2.4.2.3, respectively). ROC curves 

for 5FCV, 10FCV and 20FCV were based on the validation portion. 

 

2.8 10-fold Cross Validation of C5.0 Boosted Decision Trees 

Boosted C5.0 decision trees were created in SPSS Modeler using the complete 

UOL training dataset (n=107). The build settings for 10FCV are shown in Table 

2.2. The number of trials setting, which enables control of how many models are 

used for the boosted model, was kept at the default (10). The number of folds 

specifies the number of divisions of the data and this was also kept at the 

default value of 10. The whole process was repeated 10 times and the AUCs 

obtained for the runs were compared. Additional results included the Predictor 

Importance for each run, the percentage of boost, and the markers that had 

been used in each run. 

 
 Setting 
Output type Decision Tree 
Partitioning data None 
Boosting Boosting 
Boosting Number of trials=10 
Cross Validating Number of folds =10 
Mode Simple 
Favour Generalise 
Expected Noise (%) 0 

 
Table 2.2: C5.0 Boosted Decision Tree cross validation settings. 
 
 

2.9 RFH Cohort Validation of ML algorithms based on the UOL 
cohort 

ML algorithms created using the CA data in the whole UOL dataset (Sections 

2.2 – 2.5) were externally validated in MCLA using the RFH pNET biomarker 

data for CgA and ANG2 (n=51).. 
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A dataset containing only RFH pNET cases was entered into the stream and 

connected to the Type node. The NET field measurement and the role were 

changed as described (Section 2.6.1). The model nugget for each type of CA 

model (C5.0 non-boosted decision tree, LR, RBF SVM, Linear SVM and RF) 

obtained in the UOL analysis was connected to the Type node. The various 

model nuggets were also connected to the Analyse node to allow the confusion 

matrix comprising the correctly identified cases and unidentified cases to be 

obtained. For the RF algorithm, 10 runs were carried out to compare 

performance across the runs. 

A similar approach was taken for the single C and A marker algorithms, 

excluding the Linear and RBF SVM models. 

 

2.10 McNemar test for model selection 

A McNemar test was carried out to compare the predictions obtained for 

selected models created using SPSS Modeler. These comparisons are shown 

in Table 2.3. 

 
Model 1 Model 2 Model type 
C, A, V CA, CV, AV LR 
CA, AV, CV CVA LR 

RBF SVM 
Linear SVM 

CVA CVAM LR 
RBF SVM 
Linear SVM 

 
Table 2.3: Models selected for comparison using a McNemar test. 
 
 

For these analyses to be carried out model streams were created for the LR 

(selected 1, 2, 3 and 4-marker combinations) and SVM (selected 2, 3 and 4-

marker combinations) models (Table 2.3). The Table node located in the Output 

tab was used to calculate the 106 different predictions for the models that are 

needed for the McNemar test. The results file containing the predictions for 

each of the models was exported in comma separated value (csv) format and 

then imported into SPSS Version 27 for the McNemar test, which compares the 

predictions of two models. The test’s confusion matrix has four components A, 

B, C and D. A is the number of correct predictions for Model 1 and Model 2. B is 
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the number of correct predictions for Model 1 and incorrect predictions for 

Model 2. C is the number of incorrect predictions for Model 1 and correct 

predictions for Model 2. D is the number of incorrect predictions for Model 1 and 

Model 2. Thus, the B and C values indicate the amount of difference between 

the two models.  

A binomial McNemar test, a variation of the McNemar test is favoured from the 

standard McNemar test when the sample size is small or when B+C is less than 

25451, the McNemar test using a binomial distribution was carried out in Chapter 

3. To carry out the McNemar test, the Analyse tab was selected to allow 

“descriptive statistics” and then the “crosstabs” option to be selected. The Model 

1 predictions were added to the rows and the Model 2 predictions were added 

to the columns. The McNemar test was selected in the statistics box and an 

output file containing the McNemar test p value was generated. A statistically 

significant difference between Model 1 and Model 2 was indicted by p<0.05. 

 

2.11 Sample size calculation for the Pancreatic Diseases cohort 

Sample size calculations to obtain the number of participants required in each 

of the four groups (AP, pNETs, PDAC and CP) drawn from the ADEPTs cohort 

were carried out using the following methodology, based on Hajian-Tilaki et al., 

2014452. The number of samples required for a defined sensitivity level 

(nsensitivity) was obtained using the following equation: 

 

𝑛=>'=?@?A?@B =
𝑍DE

D
× 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)

𝑑D × 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒  

 

 

The nsensitivity value was then divided by 4 to obtain the required number of 

samples per group. A range of sensitivities was selected to cover the potential 

sensitivity of the diagnostics test (0.6, 0.7, 0.8 and 0.9), across a range of d 

(maximum marginal error) values (0.1 ,0.15 and 0.2). The prevalence of pNETs 

used in the equation was 0.25 as there were four groups, and the Z2α/2 value for 

a 5% type-1 error is 1.96.  
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2.12 ELISA of the External Validation cohorts 

Analyses of the circulating CgA, VGF-NGF and ANG2 marker levels were 

carried out for the Royal Free Hospital (RFH) cohort of pNET cases, healthy 

control samples from the UKCTOCs biobank, and the ADEPTs cohort. Different 

ELISA protocols were used for the analysis of serum ANG2 (Section 2.12.2), 

serum CgA (Section 2.12.3) and serum VGF (Section 2.12,4). 

 
2.12.1 Serum sample preparation 
Serum samples for the RFH pNET cohort and the ADEPTs cohort were 

processed according to the ADEPTs protocol. In summary, for sera the blood 

samples were centrifuged at 2000g for 10 mins at room temperature and 

aliquots of the sera supernatant were stored for future ELISA experiments 

 

2.12.2 ANG2 ELISA 
ANG2 ELISAs were carried using QuantikineTM ANG2 ELISA kits (R&D 

Systems) with reagents, working standards and samples prepared according to 

the manufacturer’s protocol. 100 µl of Assay diluent RD1-76 was added to each 

well, followed by 50µl of standard, control or sample. The plate was covered 

with an adhesive stripped and incubated for 2 h at room temperature on a 

horizontal orbital microplate shaker set at 500rpm. Each well was then aspirated 

and washed four times with wash buffer. 200µl of Human ANG2-conjugate was 

added to each well and the plate was then incubated for 2 h on the shaker as 

before. Aspiration and washing were repeated as previously described before 

200µl of substrate solution were added to each well. The plate was incubated 

for 30 min at room temperature and 50µl of stop solution was then added to 

each well. Absorbance was read using the DS2 plate reader (Dynex) at 450nm 

with wavelength correction set at 540nm. After adjusting for dilution, sample 

concentrations were determined from standard curves created using the 

OriginPro 2022b Standard Curve App (OriginLab). 

 
2.12.3 CgA ELISA 
Serum CgA ELISA assays were carried out using CgA ELISA kits (CisBio). 

500µl of diluent were mixed with 10µl of calibrator, control or sample in an 

Eppendorf tube and 200µl of each was added to each ELISA plate well. The 

plate was covered with adhesive film and agitated for 1 h at 700 rpm at room 
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temperature. Wells were then aspirated and washed three times with 200µl of 

wash buffer. 200µl of HRP conjugate was added to each well and the plate was 

covered with adhesive film and incubated for 2 h at room temperature with 

agitation at 700 rpm. The wells were then aspirated and washed three times as 

before. 100µl of TMB was dispensed into each well and the plate was covered 

with adhesive film. The colorimetric reaction was developed for 10 min at room 

temperature with agitation at 700rpm. 50µl of stop solution was dispensed to 

each well and plates were read using a DS2 plate reader (Dynex) at 450nm. 

Sample concentrations were determined using Origin Pro (Section 2.12.2). 

 
2.12.4 VGF ELISA 
Serum VGF ELISA assays employed the VGF ELISA kit (Cloud-Clone Corp). 

100µl of diluted sample, blank or standard were added to each well of the plate, 

which was then sealed and then incubated at 37°C for 1 h. The liquid was 

removed from each well without washing before 100µl of Detection Reagent A 

working solution was added to each well. The plate was sealed and incubated 

for 1 h at 37°C. Wells were then aspirated and washed three times with wash 

solution. 100µl of Detection Reagent B working solution was added to each well 

and the plate was sealed and incubated for 30 min at 37°C. The wells were 

aspirated and washed 5 times before 90µl of Substrate solution was added to 

each well. The plate was then incubated for 10 to 20 min at 37°C. 50µl of stop 

solution were then added to each well and absorbance was read at 450nm 

using a DS2 plate reader (Dynex). Sample concentrations were determined 

from standard curves using the OriginPro Standard Curve App (Section 2.12.2). 

 

2.13 Clinical characteristics 

2.13.1 Clinical characteristics of the RFH cohort and the QCancer® 
protocol  
Samples were obtained for patients at RFH with ethical approval for this 

present. Patients provided consent and blood samples were provided by the 

patients. Sera samples were processed as explained in Section 2.12.1 and 

aliquots of sera were stored in the -80 freezer for experiments.   

The QCancer questionnaire algorithm was pioneered by Professor Julia 

Hipplsey-Cox and was created from the QResearch database. The QCancer 

questionnaire is an algorithm that combines symptomatic information, alongside 
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family history questions and lifestyle questions to generate a predicted risk 

score of having cancer. Female and male versions of the QCancer 

questionnaire are available at (www.qcancer.org). Clinical information for the 

RFH cohort was obtained from the RFH computer system, and I invited patients 

who were part of the RFH pNET cohort to complete the QCancer questionnaire. 

The questionnaire data were analysed using the QCancer algorithm. 

 

2.13.2 Plasma CgA levels of RFH pNET patients  
RFH pNET patients have a CgA assay carried out as part of their clinical work 

up and I included these data in the external validation of detection algorithms. 

These blood test results were recorded on the ADEPTs database, but with no 

units. As the assays had been carried out by HSL Analytics using a Diasource 

assay that reports blood test results in U/L, these units were assigned to the 

CgA data. The healthy reference range for controls was obtained from the 

Diasource ELISA protocol. As my machine learning algorithms used CgA 

measurements in nmol/L, the U/L values were converted to nmol/L. 

 

2.13.3 Inclusion and Exclusion criteria for the ADEPTs Pancreatic 
Diseases cohort 
An inclusion and exclusion criteria for the ADEPTs pancreatic diseases cohort 

was created. The inclusion criteria were patients diagnosed with pNETs, PDAC, 

CP and AP. An exclusion criterion that was originally proposed was pregnancy, 

patients diagnosed with another cancer, patients on PPIs, patients with any 

mental health conditions (diagnosed depression, schizophrenia and bipolar 

disorder), however in practice an exclusion criterion including depression and 

PPI usage was not possible with the available samples. 

 
2.13.4 Assessing relationships between biomarkers and clinical 
parameters and assessing confounding factors  
Statistical association of individual biomarkers with clinical parameters and 

confounding factors were both assessed in Chapter 5 and Chapter 6. Tests 

used in these analyses included the Independent-Samples Mann Whitney U 

Test and the Independent-Samples Kruskal-Wallis Test, which were both 

performed using SPSS Version 28. 

In SPSS, the Analyse tab was selected, and within this, “Non-parametric tests” 

was selected. The default option of “automatically compare distributions across 
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groups” was retained within the Objective tab. Within the fields tab, specific 

biomarker and classification data were selected as the test and the group 

variables, respectively. The software automatically selects the Mann Whitney U 

Test if assessing a group variable which has two groups, and the Independent-

Samples Kruskal-Wallis Test if the group variable has more than two groups. 

 

2.14 External validation of ML models in SPSS Modeler 

LR, C5.0 decision tree, RF, RBF and Linear SVM models created using the 

UOL training dataset were validated using the external validation dataset 

consisting of ANG2 and CgA levels for the RFH pNET cases (n=60) and the 

UKCTOCs controls (n=51). External validation was applied to the LR, C5.0 non-

boosted decision tree (general and accuracy) and RF models created using the 

single ANG2 and CgA markers; and the LR, C5.0 non boosted decision tree 

(general and accuracy), Linear SVM and RBF SVM models created using the 

combination of ANG2 and CgA markers. 

The model to be validated was re-opened in SPSS, and the corresponding 

SPSS dataset was dragged into the stream. The Type node which forms the 

bridge between the dataset and the model nugget was then dragged into the 

canvas with these two nodes connected. Clicking on the Type node revealed 

the NET field and the different biomarker fields. The measurement option for the 

NET field was changed to “flag” and the role option to “target”. The preview 

option was selected to view a snapshot of the data.The model nugget created 

using the training dataset was copied and pasted to the stream. The Type node 

was then connected to the copied model nugget, which was connected to other 

nodes including the Analyse node in which the confusion matrix that provided 

the correctly identified cases and unidentified cases was obtained. The model 

nugget was also connected to the Evaluation node to obtain the ROC curve and 

AUC value (Section x.x). The same procedure was carried out for each of the 

RF algorithms (A, C and AC), however as there were ten runs, each of the ten 

resulting models was opened and the same procedure carried out for each of 

these. 

For the Linear and RBF SVM AC dataset (n=217), the data were minmax 

scaled in Microsoft Excel using the min-max approach (Section 2.4.1.1). 

 



 109 

2.15 Validation of ML models derived from the Pancreatic 
Diseases cohort 

LR, C5.0 decision tree, RF, RBF and Linear SVM models created using the 

UOL training dataset in SPSS Modeler were evaluated by assessing diagnostic 

performance of the individual CgA and ANG2 marker data in the pancreatic 

diseases cohort (n=59) . LR, C5.0 decision tree and RF models created using 

the combined UOL and external validation dataset (n=217) were also evaluated 

using the combined CgA and ANG2 marker data in the pancreatic diseases 

cohort (n=59). ML model evaluation in SPSS Modeler was carried out as 

previously described (Section 2.14).  

 

2.16 Further algorithm development from the Combined UOL 
and external validation dataset 

SPSS Modeler was used to create non-boosted general and accuracy C5.0 

decision tree, RF and LR models as described (Sections 2.3, 2.5 and 2.2, 

respectively), but based on the combined UOL and external validation dataset 

(n=217). Similarly, the MCLA was used to create Optimised Linear and RBF 

SVM models as described (Section 2.4.2) using the combined UOL and 

external validation dataset. 

 

2.17 Further algorithm development from the ADEPTs 
Pancreatic Diseases dataset 

Further LR, RF, and non-boosted C5.0 decision tree algorithms were developed 

from the Pancreatic diseases cohort for the ANG2 and CgA makers using SPSS 

Modeler. Non-boosted C5.0 decision trees were created using a newer version 

of SPSS Modeler 18.3 (trial version). A general overview of the creation of 

algorithms in SPSS Modeler is described in Section 2.1. The creation of 

Optimised Linear and RBF SVM models (CgA and ANG2 combination) was 

carried out using MATLAB Classification Learner App as described (Section 

2.4.2). 
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Chapter 3 - Development of a biomarker panel and algorithm for 
pNET detection using the University of Liverpool (UOL) training 
dataset 

 

3.1 Introduction to the machine learning models used for 
analyses. 

As discussed in Section 1.6, AI could revolutionize healthcare via its 

widespread range of potential applications, such as assisting physicians to 

make better clinical decisions453. As this project was centred around the 

development of models to detect patients with pNETs based on a biomarker 

assay and corresponding algorithm, exploring ML methods was pivotal to this 

research aim. However, the field of ML is vast, with many methodologies for 

supervised and unsupervised ML, each with its associated strengths and 

weaknesses. Thus, it was important that the most suitable methodologies were 

identified and tested to address the research aim.  

The research aim was addressed using labelled data, meaning that it was 

known whether or not samples were from a pNET patient. Accordingly, 

supervised ML approaches were assessed. Key to these algorithms was to use 

a biomarker (independent or input variables) dataset obtained for each of the 

labelled cases to produce a prediction of case or control (dependent or output 

variable) for each case, and then to learn iteratively from the accuracy of the 

results385.  

Supervised ML algorithms are typically used on two types of problem, namely a 

classification problem or a regression problem. In a classification problem, the 

output variable is discrete. For example, in this project the output value for a 

healthy control could be defined as 0 and a pNET patient as 1 (binary 

classification). In contrast for a regression problem the output variable is 

continuous. A classification approach was used in this project. 

The four supervised ML approaches used to develop the “pNET” or “not pNET” 

binary classification algorithms in this project were LR, SVM, C5.0 decision tree 

and RF. For LR to be used as a binary classifier, a threshold level of probability 

is assigned to differentiate the two classes402. The main reasons for selecting 

LR in my research were its relative simplicity and the ability to easily review the 

quantitative basis for individual classifications401. The second selected 
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approach was SVM, which has the advantage of being useful for linearly and 

non-linearly separable data via the use of different kernels. These include RBF 

(Gaussian), Polynomial and Sigmoid kernels, as well as Linear SVM414.  

Moreover, the RBF kernel has two parameters (C and gamma) that need to be 

carefully tuned using a grid-based approach, which can be time consuming. 

One disadvantage to the SVM approach is that it is a distance-based algorithm 

for which normalisation is an important pre-processing step454. Normalisation is 

not needed for the other ML algorithms such as RFs and decision trees as 

these are not distance-based algorithms.  

Within previous biomarker applications, SVM had been shown to have superior 

performance to LR and RF in the development of a gastric cancer biomarker 

panel455. Although, care is needed in comparing the properties of different 

markers and panels, the properties and proven application of this algorithm 

made it important to assess in the development of a pNET biomarker panel. 

The C5.0 decision tree approach was the third method that I selected for the 

development of a pNET detection algorithm due to its ability to deal with missing 

values and its superior performance in comparison to other algorithms including 

LR and artificial neural networks456. Advantages of a decision tree approach 

include its easy interpretability, non-parametric approach without distributional 

assumptions, handling of missing values, easy handling of skewed data and 

robustness to outliers397. Similar to LR, the main advantage of a decision tree is 

its simplicity and easy interpretability397. There is also a clear way to visually 

represent these algorithms, which can help guide a clinician or patient through 

the decision-making process. As there are many different types of decision 

trees, it was important to choose the most suitable type for the data. The 

different types of decision tree have differences in the types of input field, target 

(output field), splitting method, ability to handle missing values and pruning 

options. The C&R, QUEST, CHAID and C5.0 decision tree models can all have 

the target variable as the flag type in SPSS Modeler. The target variable in this 

case is whether the patient had a pNET or not and the flag aspect in SPSS 

Modeler denotes that this target variable is binomial. Moreover, as the input 

variables for these four tree types can be continuous, they were all compatible 

with the biomarker assay data. The C5.0 decision tree was selected as the 

decision tree to take forward for further analysis as it produced the best decision 

tree model based on area under the receiver-operated characteristics curve 
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(AUC) when compared to other decision tree models including the QUEST 

decision tree and CHAID decision tree in SPSS Modeler when using the Auto 

Classifier node (Appendix D). The Auto Classifier node in SPSS Modeler allows 

different algorithms to be compared based on different properties including 

AUC.  

The final approach used for algorithm development was the RF. The RF is an 

ensemble (combination of algorithms) approach developed by Breimann et 

al430. It is a collection of decision trees which are combined to produce a final 

output. Single decision trees have easy interpretability, however they tend to 

perform poorly on their own and hence an ensemble approach such as RFs can 

produce more accurate results, as the best features for splitting at each node 

are selected. Random selection in this process causes the individual decision 

trees that make up the ensemble to emphasise different features, with the 

resulting diversity of the trees being able to capture more complex feature 

patterns than a single decision tree. RFs also reduce the chance of the training 

data to be overfitted, which improves predictive accuracy457. RFs have been 

shown to have good performance compared to LR432. However, RFs have 

disadvantages including their black box approach, which makes interpretation 

of the model difficult.  

Other methodologies for supervised ML exist, including neural networks and 

LDA but a focus for this project was given to the four ML approaches previously 

mentioned. Neural networks have the disadvantages of being black box in 

nature, overtraining and having chance effects458. Thus, the neural network 

approach is similar to the SVM and RF in its black box nature. LDA and LR are 

both used widely for analysing categorical outcome variable problems, however 

the disadvantage of LDA compared to LR is that LDA makes more assumptions 

about the underlying data. Thus, LR is more flexible in this respect459. Hence a 

LR approach was more favourable for this analysis. It was therefore decided 

that the four ML approaches used for this project included two basic, more 

interpretable algorithms (C5.0 decision trees and LR) and two computationally 

advanced, black box model algorithms (SVMs and RFs). Hence, in the 

development of the pNET model a range of complexity in approaches were 

used. 

In this chapter, I describe how the four above mentioned algorithms were 

explored using the UOL case-control data as a training dataset to allow marker 
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and algorithm performances to be determined. Comparison of the performance 

of different biomarker combinations and algorithms then allowed the best 

performing candidate tests to be identified. Validation of these marker 

combinations is explored in Chapters 4 and 5. Validated tests were then used to 

analyse other pNET and pancreatic disease cohorts using samples obtained 

from a bona fide clinical pathway (Chapter 6). 

3.2 C5.0 non-boosted decision trees models 

General and accuracy C5.0 decision trees were created from the UOL training 

dataset (n=107) using the methodology described in Section 2.3. C5.0 decision 

trees can be created in SPSS Modeler as non-boosted or boosted types. 

Boosting for C5.0 decision trees works by building multiple models in a 

sequence. The first model is initially built with the second model subsequently 

built in a way that it focuses on the records that were misclassified by the first 

model. The third model is then built focussing on the second model’s 

misclassifications, and this process is then repeated. Finally, the cases are then 

classified via applying the whole set of models to them and a weighted voting 

procedure is used to combine the separate predictions into one overall 

prediction. Thus the C5.0 method uses gradient boosting which enables the 

algorithm to learn from classification errors of prior trees460. Boosted C5.0 

decision tree cross-validated models will be explored in Chapter 4. In contrast 

the non-boosted C5.0 model does not do this, and a single model is developed. 

In addition, C5.0 decision trees can be created using the “favor accuracy” or 

“generality” setting (referred to as general C5.0 decision trees in this thesis). 

The generality setting aims to produce C5.0 decision tree models that are less 

susceptible to overfitting, however models built using the generality setting are 

not guaranteed to generalise better than other models. Thus to truly evaluate 

the generality of a model a validation approach should be used. The accuracy 

setting aims to create the most accurate decision tree possible. General non-

boosted C5.0 decision tree results will be discussed in Section 3.2.1 and 

accuracy C5.0 non-boosted decision tree results will be discussed in Section 

3.2.2, followed by a comparison of these models in Section 3.2.3. 
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3.2.1 General non-boosted C5.0 decision trees 
General non-boosted C5.0 decision trees were created for all 127 marker 

combinations of up to all seven candidate serum markers in the training dataset 

(Tables 3.1 to 3.7). Models were evaluated and compared using AUC values, 

for which 0.5 indicated performance no better than random (i.e. no usable 

model). 

Single marker analysis revealed that CgA (C) was the best single marker with 

an AUC of 0.813 (Table 3.1). The best two-marker combination was CM with an 

AUC of 0.850 (Table 3.2). The best three-marker combinations were CMP, CMT 

and MNC although each of these models utilised only CgA and MAC2BP (M) 

(Table 3.3). This result indicated that TIMP1 (P), TB4 (T) and NSE (N) made no 

significant contribution to the resulting three-marker models. 
 

Marker entered Marker used Predictor Importance AUC Gini 
C C C=1.00 0.813 0.627 
A A A=1.00 0.767 0.534 
V V V=1.00 0.681 0.361 
M None Not Available 0.500 0.000 
N None Not Available 0.500 0.000 
T None Not Available 0.500 0.000 
P None Not Available 0.500 0.000 

Table 3.1: C5.0 general non-boosted decision tree results for single markers. 
Results obtained when one marker was entered for general non-boosted C5.0 model creation for the 
training dataset (n=107). Markers entered were C (CgA), A (ANG2), V (VGF-NGF), M (MAC2BP), N 
(NSE), T (TB4) and P (TIMP1). The biomarkers entered and the biomarkers utilised in the individual 
models are shown. Three usable models were created. The marker key is used in all subsequent tables. 
 

Markers entered Markers used  Predictor Importance AUC Gini 
CM CM C=0.90 M=0.10 0.850 0.700 
CA AC A=0.68 C=0.32 0.835 0.670 
CN C C=1.00 0.813 0.627 
CP C C=1.00 0.813 0.627 
CT C C=1.00 0.813 0.627 
AM A A=1.00 0.767 0.534 
AN A A=1.00 0.767 0.534 
AP A A=1.00 0.767 0.534 
AT A A=1.00 0.767 0.534 
AV A A=1.00 0.767 0.534 
CV C C=1.00 0.751 0.502 
MV V V=1.00 0.681 0.361 
NV V V=1.00 0.681 0.361 
TV V V=1.00 0.681 0.361 
VP V V=1.00 0.681 0.361 
MN None Not Available 0.500 0.000 
MP None Not Available 0.500 0.000 
MT None Not Available 0.500 0.000 
PN None Not Available 0.500 0.000 
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TN None Not Available 0.500 0.000 
TP None Not Available 0.500 0.000 

Table 3.2: C5.0 general non-boosted decision tree results for two-marker combinations.  
Results obtained when two marker combinations were entered for C5.0 general  
non-boosted decision tree creation. 21 combinations were assessed with usable models produced for 15 
combinations. 
 

Markers entered Markers used  Predictor Importance AUC Gini 
CMP CM C=0.90 M=0.10 0.850 0.700 
CMT CM C=0.90 M=0.10 0.850 0.700 
MNC CN C=0.90 M=0.10 0.850 0.700 
PAV AVP A=0.66 V=0.20 P=0.15 0.844 0.688 
AMP AMP A=0.75 M=0.21 P=0.04 0.844 0.689 
CAV AC A=0.68 C=0.32 0.835 0.670 
CTA AC A=0.68 C=0.32 0.835 0.670 
CAM AC A=0.68 C=0.32 0.835 0.670 
CAP AC A=0.68 C=0.32 0.835 0.670 
CAN AC A=0.68 C=0.32 0.835  0.670 
PVC CV C=0.80 V=0.20 0.815 0.629 
MVC CV C=0.80 V=0.20 0.815 0.629 
CNT C C=1.00 0.813 0.627 
CNP C C=1.00 0.813 0.627 
CTP C C=1.00 0.813 0.627 
VAM A A=1.00 0.767 0.534 
ATP A A=1.00 0.767 0.534 
VAT A A=1.00 0.767 0.534 
TNA A A=1.00 0.767 0.534 
TAM A A=1.00 0.767 0.534 
PAN A A=1.00 0.767 0.534 
MNA A A=1.00 0.767 0.534 
VAN A A=1.00 0.767 0.534 
CVT C C=1.00 0.751 0.502 
CNV C C=1.00 0.751 0.502 
VMP V V=1.00 0.681 0.361 
MVT V V=1.00 0.681 0.361 
TNV V V=1.00 0.681 0.361 
VTP V V=1.00 0.681 0.361 
MNV V V=1.00 0.681 0.361 
PNV V V=1.00 0.681 0.361 
NMT None Not Available 0.500 0.000 
MTP None Not Available 0.500 0.000 
TNP None Not Available 0.500 0.000 
NMP None Not Available 0.500 0.000 

Table 3.3: C5.0 general non-boosted decision tree results for three-marker combinations 
Results obtained when three-marker combinations were entered for general non-boosted C5.0  
decision tree models. Usable models were produced for 31 out of the 35 models. 
 

The best 4-marker model employed the APMV combination with all four 

markers being utilised (Table 3.4). This revealed that C was not universally 

required for the best performing models, despite it being the best individual 

marker (Table 3.1). The best five-marker model employed the VTAMP and 
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VNAMP combinations. Notably, both used the optimal four-marker combination 

of APMV and omitted C (Table 3.5). In addition to identifying the optimal 

markers combinations, these results further strengthened the argument that 

NSE (N) and TB4 (T) were not important markers for pNET detection as they 

were absent from all optimal combinations of up to five markers. The best six-

marker model employed the TVAMNP combination, but, like the optimal five-

marker model, this model used only the same four markers APMV and achieved 

the same AUC of 0.888 (Table 3.6) as the optimal four-marker model. 

Increasing data input to a seven-marker combination did not lead to a better 

performing model as the seven-marker combination entered produced a model 

which just utilised two of the markers, ANG2 and CgA with a poorer AUC of 

0.835 (Table 3.7). Interestingly the top performing models at the four, five and 

six-marker combinations entered used the APMV markers and produced an 

AUC of 0.888 (Tables 3.4, 3.5 and 3.6) and thus follows this pattern, however 

when the seven markers are entered only two markers (ANG2 and CgA). This is 

not consistent with the pattern seen at the four, five and six-marker level which 

consistently identified the best performing model. Thus, entering seven markers 

into the model did not produce the optimal model. 

Consequently, the best C5.0 non-boosted general model utilised four of the 

seven markers, ANG2, VGF, MAC2BP and TIMP1, to produce an AUC of 0.888 

(Tables 3.4, 3.5 and 3,6), which indicates that the markers TB4, NSE and CgA 

can be omitted from the starting panel to produce the best performing non-

boosted general decision tree. 

 
Markers entered Markers used  Predictor Importance AUC Gini 
AMVP APMV A=0.81 P=0.20 M=0.09 V=1x10-22 0.888 0.776 
CTMN CM C=0.90 M=0.10 0.850 0.700 
CMTP CM C=0.90 M=0.10 0.850 0.700 
CMPN CM C=0.90 M=0.10 0.850 0.700 
TAPV AVP A=0.66 V=0.20 P=0.15 0.844 0.688 
TAMP AMP A=0.75 M=0.21 P=0.04 0.844 0.689 
AMPN AMP A=0.75 M=0.21 P=0.04 0.844 0.689 
AVPN AVP A=0.66 V=0.20 P=0.15 0.844 0.688 
AMVC AC A=0.68 C=0.32 0.835 0.670 
CAMP AC A=0.68 C=0.32 0.835 0.670 
AMCN AC A=0.68 C=0.32 0.835 0.670 
ACPN AC A=0.68 C=0.32 0.835 0.670 
CTAM AC A=0.68 C=0.32 0.835 0.670 
CATP AC A=0.68 C=0.32 0.835 0.670 
CTAV AC A=0.68 C=0.32 0.835 0.670 
AVCN AC A=0.68 C=0.32 0.835 0.670 
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CTAN AC A=0.68 C=0.32 0.835 0.670 
CAPV AC A=0.68 C=0.32 0.835 0.670 
CMVP CV C=0.80 V=0.20 0.815 0.629 
CNVP CV C=0.80 V=0.20 0.815 0.629 
CMNV CV C=0.80 V=0.20 0.815 0.629 
TMVC CV C=0.80 V=0.20 0.815 0.629 
CVTP CV C=0.80 V=0.20 0.815 0.629 
CNTP C C=1.00 0.813 0.627 
TNMA A A=1.00 0.767 0.534 
AMVN A A=1.00 0.767 0.534 
ATPN A A=1.00 0.767 0.534 
AMVT A A=1.00 0.767 0.534 
TAVN A A=1.00 0.767 0.534 
CTVN C C=1.00 0.751 0.502 
TMPV V V=1.00 0.681 0.361 
TMNV V V=1.00 0.681 0.361 
NMVP V V=1.00 0.681 0.361 
TNVP V V=1.00 0.681 0.361 
TNMP Not Available None 0.500 0.000 

Table 3.4: C5.0 general non-boosted decision tree results for four-marker combinations.  
Results obtained when four-marker combinations were entered for C5.0 general non-boosted model 
creation. Models were created from 34 of the 35 possible combinations.  
 

Markers entered Markers used  Predictor Importance AUC Gini 
VTAMP APMV A=0.81 P=0.10 M=0.09 V=1x10-22 0.888 0.776 
VNAMP APMV A=0.81 P=0.10 M=0.09 V=1x10-22 0.888 0.776 
AMNTP AMPT A=0.69 M=0.13 P=0.10 T=0.08 0.871 0.742 
TNPMC CM C=0.90 M=0.10 0.850 0.700 
TAPVN AVP A=0.66 V=0.20 P=0.15 0.844 0.688 
CTAMN AC A=0.68 C=0.32 0.835 0.670 
CTAMP AC A=0.68 C=0.32 0.835 0.670 
VAPMC AC A=0.68 C=0.32 0.835 0.670 
AVMNC AC A=0.68 C=0.32 0.835  0.670 
AVTNC AC A=0.68 C=0.32 0.835 0.670 
CTAMV AC A=0.68 C=0.32 0.835 0.670 
ANPMC AC A=0.68 C=0.32 0.835 0.670 
CTAPV AC A=0.68 C=0.32 0.835 0.670 
AVPNC  AC A=0.68 C=0.32 0.835 0.670 
CTAPN AC A=0.68 C=0.32 0.835 0.670 
CTMPV CV C=0.80 V=0.20 0.815 0.629 
TVMNC CV C=0.80 V=0.20 0.815 0.629 
VNPMC CV C=0.80 V=0.20 0.815 0.629 
CTPVN CV C=0.80 V=0.20 0.815 0.629 
AMNTV A A=1.00 0.767 0.534 
TMPVN V V=1.00 0.681 0.361 

Table 3.5: C5.0 general non-boosted decision tree results for five-marker combinations. 
Results obtained from all 21 five-marker combinations. 
 

Markers entered Markers used  Predictor Importance AUC Gini 
TVAMNP APMV A=0.81 P=0.10 M=0.09 V=1x10-22 0.888 0.776 
CVAMNP AC A=0.68 C=0.32 0.835 0.670 
CATMNP AC A=0.68 C=0.32 0.835 0.670 
CTAMNV AC A=0.68 C=0.32 0.835 0.670 
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CVMPTA AC A=0.68 C=0.32 0.835 0.670 
CVNPTA AC A=0.68 C=0.32 0.835 0.670 
CVMNPT CV C=0.80 V=0.20 0.815 0.629 

Table 3.6: C5.0 general non-boosted decision tree results for six-marker combinations. 
Results obtained from all six-marker combinations. 
 

Markers entered Markers used  Predictor Importance AUC Gini 
CTAMNVP AC A=0.68 C=0.32 0.835 0.670 

Table 3.7: Performance of the C5.0 general non-boosted decision tree created from the 
seven-marker combination. 
 
3.2.2 Accuracy non-boosted C5.0 decision trees 
Accuracy non-boosted C5.0 decision trees were also created for the 127 

biomarker combinations to compare whether the accuracy setting produced 

models that performed better than the general setting for C5.0 non-boosted 

decision trees. Results for the accuracy setting were mostly found to be 

identical to the general setting across most combinations (Appendix A), 

although there were certain exceptions (Table 3.9). Single marker analysis 

revealed that CgA was the best single marker with an AUC of 0.813 (Table 3.8). 

The best two-marker model was produced from the CM combination with an 

AUC of 0.850 (Table 3.8). The best three-marker models arose from CMP, CMT 

and MNC input combinations, although each of these models utilised only the 

two markers C and M, and produced as expected an AUC unchanged from the 

two-marker CM model (Table 3.8). This result indicated that, as for the general 

models, TIMP1, TB4 and NSE were not significant contributors to accuracy 

model building. 

 
Number of markers 
entered 

Best marker 
combination 
entered 

Markers 
used 

Predictor 
Importance 

AUC 
(Accuracy) 

1 C C C=1.00 0.813 
2 CM C M C=0.90 M=0.10 0.850 
3 CMP, CMT, MNC C M C=0.90 M=0.10 0.850 
4 TAMP AMTP A=0.79 M=0.14 

T=0.06 P=0.01 
0.867 

5 AMNTP AMPT A=0.69 M=0.13 
P=0.10 T=0.08 

0.871 

6 TVAMNP APVM A=0.59 P=0.25 
V=0.14 M=0.02 

0.864 

7 CTAMNVP AC A=0.68 C=0.32 0.835 
Table 3.8: Best performing C5.0 non-boosted accuracy decision tree models for all 
marker combinations. 
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The best model for four-marker model was obtained using AMTP, with all these 

markers being utilised in the resulting model that had an AUC of 0.867 (Table 

3.8). The best model for 5-marker inputs was obtained using AMNTP, with only 

the AMTP markers utilised in the resulting model that had an AUC of 0.871 

(Table 3.8). Both models used the AMTP markers however, the resulting 

decision trees were different which is reflected in the performance of the models 

with this being 0.867 and 0.871. The thresholds used for the markers were the 

same, as was the arrangement of the decision tree itself (Figure 3.1), however 

the predictor importance values differed, as seen in (Table 3.8). 

 
 
A 
 
 
 
 
 
 
B 
 
 
 
 
Figure 3.1: C5.0 non-boosted accuracy decision tree AMPT models with differing AUCs. 
Decision tree schematics illustrating that the same four markers can result in different models with different 
AUCs. (A) C5.0 non boosted accuracy setting decision tree obtained when AMNTP was entered and 
AMPT was used. The AUC obtained for this decision tree was 0.871. (B) C5.0 non-boosted accuracy 
setting decision tree obtained when TAMP was entered and AMTP was used. The AUC obtained for this 
decision tree model was 0.867.  
 
The best model for six-marker inputs was obtained using TVAMNP with only the 

AMVP markers being used in the resulting model, which had an AUC of 0.864 

(Table 3.8). The best model for seven-marker inputs was the same as seen with 

the general non-boosted decision tree and used just two of the markers (AC) 

and had an AUC of 0.835 (Table 3.8). 
 
3.2.3 General and Accuracy Non-Boosted C5.0 Decision tree comparison 
General and accuracy non-boosted C5.0 decision trees produced identical 

results for most of the combinations, suggesting that this specific setting did not 

have an impact on the decision tree models that were created. However, there 

were certain exceptions as shown in (Table 3.9). For these marker 

combinations the setting of generality or accuracy mattered. For five of the 

combinations entered the generality setting within SPSS Modeler produced 
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models with higher AUC values compared to those produced using the 

accuracy setting. While the accuracy setting was expected to produce better 

performing trees, in these results the accuracy setting bettered the generality 

setting in only one of the trees, the TAMP entered combination. This therefore 

suggests that the optimal model is not consistently identified in both the 

generality and accuracy setting. 

 
Marker 
combination 
entered 

Marker 
combination 
used 

Predictor 
Importance 
(Accuracy) 

AUC 
(Accuracy) 

Maker 
combination 
used 

Predictor 
Importance 
(General) 

AUC 
(General) 

AMVP AMVP A=0.59 
P=0.25 
V=0.14 
M=0.02 

0.864 AMVP A=0.81 
P=0.10 
M=0.09 
V=1x10-22 

0.888 

TAMP AMTP A=0.79 
M=0.14 
T=0.06 
P=0.01 

0.867 AMP A=0.75 
M=0.21 
P=0.04 

0.844 

VNAMP AMVP A=0.59 
P=0.25 
V=0.14 
M=0.02 

0.864 AMVP A=0.81 
P=0.10 
M=0.09 
V=1x10-22 

0.888 

VTAMP AMVP A=0.59 
P=0.25 
V=0.14 
M=0.02 

0.864 AMVP A=0.81 
P=0.10 
M=0.09 
V=1x10-22 

0.888 

TVAMNP AVMP A=0.59 
P=0.25 
V=0.14 
M=0.02 

0.864 AMVP A=0.81 
P=0.10 
M=0.09 
V=1x10-22 

0.888 

Table 3.9: C5.0 non-boosted decision trees for which the accuracy or general setting 
impacted the AUC.  
 

3.3 Random Forest models 

RF models were created for all 127 marker combinations of the seven 

biomarkers using the UOL (n=106) dataset. The missing ANG2 was removed 

from the dataset due to the algorithm not being able to process this. 

Methodology was carried out using the methodology described in Section 2.5. 

Single marker analysis revealed that ANG2 produced the best RF models with 

an average AUC of 0.993 (Table 3.10). The single marker AUC results were 

high with the average AUCs above ranging from 0.988 to 0.993. This therefore 

suggests that this algorithm can produce a high performance without the need 

for additional markers. When increasing the markers combination to two 

markers again, high AUCs were obtained with the range of average AUCs 

ranging from 0.994-0.999 hence the addition of a marker betters the results 
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comparatively to a one-marker approach. The two-marker combination analysis 

revealed that the best combination was CT with an average AUC of 0.999 

(Table 3.11). For the three-marker analysis the average AUC range was even 

better with this being between 0.996-1.00. Thus, having a better average AUC 

range compared to the single marker and two-marker combinations. The three-

marker combination analysis revealed that the best combination was CAP 

which had an average AUC of 1.000 (Table 3.12). However, the performance of 

the markers did not improve considerably with four to seven-marker 

combinations (Appendix B). Moreover, the performance was constantly high 

across all marker combinations in general, and thus suggests that the RF 

algorithm may be overfitting. The RF algorithm should be less susceptible 

compared to a single decision tree, thus, the impact of overfitting for this 

algorithm should be further evaluated by carrying out a validation. 

 

Marker Average AUC Standard Deviation Range 
A 0.993 0.002 0.989-0.996 
T 0.991 0.006 0.979-0.999 
P 0.989 0.004 0.984-0.996 
V 0.989 0.005 0.981-0.997 
C 0.989 0.005 0.983-0.997 
M 0.988 0.004 0.981-0.994 
N 0.988 0.005 0.981-0.996 

Table 3.10: RF model results for single marker inputs. 
The result shown are the average AUC across 10 runs are shown along with the associated standard 
deviation. The range for the 10 runs for each marker is also shown. ANG2 as a single maker had the best 
average AUC of 0.993. 
 

 
Markers Average AUC Standard 

Deviation 
Range 

CT 0.999 0.001 0.996-1.000 
CA 0.998 0.002 0.996-1.000 
CN 0.998 0.003 0.992-1.000 
MP 0.998 0.002 0.994-1.000 
AM 0.997 0.001 0.996-0.999 
AN 0.997 0.002 0.994-1.000 
CP 0.997 0.001 0.994-0.998 
AP 0.997 0.003 0.991-1.000 
CV 0.997 0.003 0.992-1.000 
PN 0.997 0.004 0.990-1.000 
TA 0.997 0.003 0.991-1.000 
VA 0.997 0.002 0.994-1.000 
TP 0.996 0.002 0.991-0.999 
CM 0.996 0.003 0.990-1.000 
VP 0.996 0.003 0.989-0.999 
MN 0.995 0.005 0.982-0.999 
TN 0.995 0.004 0.987-1.000 
TV 0.995 0.004 0.987-1.000 
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TM 0.994 0.004 0.988-0.999 
VN 0.994 0.006 0.981-1.000 

Table 3.11: RF model results for two-marker inputs.  
SPSS modeler was used for the creation of the models. 21 combinations for the 2 markers were carried 
out with 10 runs for each of the combinations. The standard deviations and the range for this are also 
shown. Average AUC results across all two-marker combinations were 0.994 or above. 
 
 

Markers Average AUC Standard deviation Range 
CAP 1.000 0.001 0.998-1.000 
CVA 0.999 0.002 0.994-1.000 
APN 0.999 0.002 0.993-1.000 
CAN 0.999 0.001 0.997-1.000 
CNM 0.999 0.001 0.997-1.000 
CPM 0.999 0.001 0.998-1.000 
CVM 0.999 0.002 0.996-1.000 
CVP 0.999 0.002 0.994-1.000 
PNM 0.999 0.002 0.995-1.000 
TCA 0.999 0.001 0.997-1.000 
TCP 0.999 0.001 0.997-1.000 
TCV 0.999 0.001 0.998-1.000 
TVA 0.999 0.001 0.996-1.000 
VNM 0.999 0.001 0.998-1.000 
VPM 0.999 0.002 0.995-1.000 
ANM 0.998 0.002 0.994-1.000 
CAM 0.998 0.002 0.995-1.000 
CPN 0.998 0.002 0.994-1.000 
TAM 0.998 0.003 0.991-1.000 
TAP 0.998 0.001 0.996-1.000 
TCN 0.998 0.002 0.994-1.000 
TPM 0.998 0.002 0.993-1.000 
VAM 0.998 0.002 0.995-1.000 
VAN 0.998 0.002 0.994-1.000 
APM 0.997 0.003 0.991-1.000 
CVN 0.997 0.004 0.985-1.000 
TCM 0.997 0.004 0.996-1.000 
TAN 0.997 0.002 0.993-1.000 
TNM 0.997 0.004 0.989-1.000 
TPN 0.997 0.002 0.992-1.000 
TVN 0.997 0.003 0.990-1.000 
TVP 0.997 0.003 0.990-1.000 
VAP 0.997 0.002 0.993-0.999 
VPN 0.997 0.004 0.989-1.000 
TVM 0.996 0.003 0.992-1.000 

Table 3.12: RF model results for the three-marker combinations. 
35 combinations were analysed and for each combination 10 runs were carried out. Average AUCs were 
above 0.996 or above across all three-marker combinations. 
 

3.4 SVM models for the seven-marker combination  

The nomenclature used for certain SVM-related terms differed between SPSS 

Modeler and MCLA. The SPSS Modeler terms RBF and “C parameter” are 

synonymous with the MCLA terms Gaussian and “box constraint”, respectively. 

Finally, in MCLA the RBF SVM kernel scale is synonymous with the RBF SVM 
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gamma setting in SPSS Modeler (referred to simply as gamma within this 

thesis). These terms are used interchangeably in this thesis. 

Linear and RBF SVM models were created for the 7-marker combination using 

the UOL training dataset. Due to the SVM being a distance-based algorithm, 

the data were scaled using a min-max approach as described in Section 

2.4.1.1. The methodologies for Linear and RBF SVM model generation using 

SPSS Modeler are described in Sections 2.4.1.2 and 2.4.1.3, respectively, while 

Optimised Linear and Optimised RBF SVM seven-marker models were created 

using the MCLA as described in Section 2.4.2. 

Linear SVMs were constructed in SPSS Modeler across a range of C parameter 

settings (1 to 10). The C parameter is a tuning parameter for the Linear SVM 

which influences the performance of a model. Increasing the C parameter 

means that the cost of misclassification increases and thus, higher C parameter 

models are more likely to be overfitted to the data due to a harder margin. 

Increasing the C parameter was found to increase the AUC, with a peak value 

of 0.871 at C=6 and 7 (Figure 3.2) with this being the best result for the seven 

Linear SVMs across the tested scale. ANG2 was the most important of the 

seven markers in all these models (Table 3.13).  

For RBF SVM generation, the C and RBF gamma tuning parameters were both 

optimised by varying C (1-10) and gamma values (0.4-0.95). The gamma 

parameter focuses on how closely fitted the model is to the training data, with 

lower gamma values potentially being too constrained and higher gamma 

values potentially causing overfitting. Higher C and gamma values were found 

to improve performance in terms of AUC (Figure 3.2). The best RBF SVM 

model for the seven-maker combination was seen at C=10 and gamma=0.95 

with an AUC of 0.906. 

For the Optimised Linear and Optimised RBF SVMs constructed in the MCLA, 

selection of the best box constraint and of kernel scale values were carried out 

automatically. The box constraint range used for the Optimised Linear SVM and 

Optimised RBF SVM was between 0.001-1000. The kernel scale for the 

Optimised RBF SVM was between 0.001-1000. The C parameter and box 

constraint do not have units associated with them. The Optimised RBF SVM 

had an AUC of 1.00 compared to the AUC of 0.89 for the Optimised Linear SVM 

(Table 3.14), and the corresponding ROC curves are shown in (Figure 3.3). 

Similarly, accuracy which is the percentage of correctly identified instances and 
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misclassification cost of the Optimised Linear SVM were lower than the 

Optimised RBF SVM at 82.1% and 100% accuracy, respectively (Table 3.14), 

and at 0 and 19 misclassifications, respectively (Table 3.14). However, the 

extremely high performance of the Optimised RBF SVM indicates overfitting 

was likely. Moreover, the box constraint (equivalent to C parameter) level for the 

Optimised RBF model was 10, which was at the highest end of the scale used 

for the SPSS Modeler C parameter range of 1 to 10 (Figure 3.2), again 

indicating overfitting because the higher the box constraint or C parameter 

value, the greater the likelihood of overfitting due to a harder margin. The kernel 

scale for the RBF optimised model was 0.0046 and was not within the 

corresponding scale in SPSS Modeler (0.4 to 0.95) hence suggesting that the 

scale used in the SPSS Modeler analysis may not be the most suitable for 

obtaining the best performing model. The box constraint level used for the 

Optimised Linear SVM model in MCLA was 215.4435, which was much higher 

than the C parameter range used for the SPSS Modeler analysis (1 to 10) 

(Figure 3.2). This means that as the box constraint value is higher the margin is 

smaller, meaning that the penalty is higher for misclassification leading to 

overfitting. Hence the implications are that the Optimised Linear SVM model 

developed in MCLA is likely to be overfitted and only by carrying out validation, 

can this be explored further. 
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Figure 3.2: Linear and RBF SVM models for the seven-marker combination. 
 (A) Linear SVM for the seven-marker combination. Increasing the C value caused an increase in 
performance as reflected in the increase in AUC value. (B) RBF SVM for the six-marker combination 
excluding TB4. TB4 was excluded due to its poor performance in the seven marker SVM analysis. AUCs 
for the range of C values between 1 and 10 are shown as C=1 (blue), C=2 (orange), C=3 (grey), C=4 
(yellow), C=5 (light blue), C=6 (green), C=7 (dark blue), C=8 (brown), C=9 (dark grey), C=10 (light brown). 
The general trend is that increasing C and gamma values leads to better performance. The same colour 
key for the C parameter is used in all subsequent RBF results. 
 
 
 
 

C 1st rank 2nd rank 3rd rank 4th rank 5th rank 6th rank 7th rank 
1 A=0.33 V=0.25 M=0.13 C=0.12 P=0.07 N=0.05 T=0.04 
2 A=0.36 V=0.21 M=0.14 C=0.14 N=0.06 P=0.05 T=0.03 
3 A=0.38 V=0.19 M=0.15 C=0.15 N=0.06 P=0.04 T=0.03 
4 A=0.40 V=0.31 M=0.12 C=0.15 N=0.07 T=0.03 P=0.02 
5 A=0.39 V=0.22 M=0.12 C=0.15 N=0.07 T=0.03 P=0.02 
6 A=0.40 V=0.21 C=0.14 M=0.12 N=0.08 *P=0.03 *T=0.03 
7 A=0.40 V=0.20 M=0.12 C=0.14 N=0.08 *P=0.03 *T=0.03 
8 A=0.41 V=0.20 C=0.14 M=0.11 N=0.08 *P=0.03 *T=0.03 
9 A=0.42 V=0.20 C=0.14 *M=0.08 *N=0.08 *P=0.03 *T=0.03 
10 A=0.43 V=0.20 C=0.14 *M=0.08 *N=0.08 *P=0.03 *T=0.03 

Table 3.13: Predictor importance for the ten Linear SVM models for the seven-marker 
combination. 
In all ten models A was the most important marker, while T and P were the least important. * denotes 
same ranking. 
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Model AUC Accuracy Parameters Misclassification 

cost 
Optimised Linear 
SVM 

0.89 82.1% Box constraint=215.4435 19 

Optimised RBF SVM 1.00 100% Kernel scale= 0.0046 
Box constraint level=10 

0 

Table 3.14: Seven-marker Linear and RBF Optimised SVM Models.  
Results for the Optimised Linear SVM and RBF SVM show that the Optimised RBF SVM model performed 
better than the Linear SVM based on AUC, accuracy and misclassification cost.  
 
 
 

 
  

 
 

Figure 3.3: ROC curves for the 
seven-marker Optimised SVM 
models.  
(A) ROC curve for the Optimised 
Linear SVM. (B) ROC curve for the 
Optimised RBF SVM.  
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3.5 SVM models for six-marker combinations excluding NSE, 
TB4 or TIMP1 

Predictor Importance analysis from the seven-marker Linear SVM analysis in 

SPSS Modeler revealed that the lowest performing markers in the generated 

models were TIMP1, NSE and TB4 (Table 3.13). Thus, six-marker Linear and 

RBF SVM models excluding these markers were created in order to assess the 

impact of the loss of these markers on the performance of the models. 

Optimised Linear and RBF SVM models were carried out due to the limitations 

of the SPSS Modeler approach for SVM which include the grid approach not 

necessarily including the optimum Box constrain and gamma values. Optimised 

Linear and RBF six-marker models excluding either NSE, TIMP1 or TB4 were 

generated out using the MCLA. Results for the SVM analysis using SPSS 

Modeler showed as expected that increasing the C parameter value increased 

the performance of the Linear SVM models for these models (Figures 3.4, 3.6 

and 3.8). Likewise, for the RBF SVM increasing values of gamma and C 

parameter led to better performances of these six-marker models (Figures 3.4, 

3.6 and 3.8). For the six-marker models excluding either NSE, TIMP1 or TB4 

the Optimised RBF model performed better than the Optimised Linear model as 

reflected by the AUCs values, accuracy values and the misclassification cost 

values (Tables 3.7, 3.9 and 3.11 and Figures 3.5, 3.7 and 3.9).  
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Figure 3.4: Linear and RBF SVM models generated for the six-marker combination 
excluding TB4.  
(A) Effect of the C parameter on the performance of Linear SVM models derived from the 6-marker 
combination excluding TB4 (UOL training dataset, n=106). The data was min-max scaled. (B) Effect of the 
C and gamma parameter on the performance of RBF SVM models derived from the 6-marker combination 
excluding TB4 (UOL training dataset, n=106).  
.  
 
 
 

C 1st rank 2nd rank 3rd rank 4th rank 5th rank 6th rank 
1 A=0.32 V=0.31 C=0.13 M=0.13 P=0.06 N=0.05 
2 A=0.35 V=0.28 C=0.14 M=0.13 *N=0.05 *P=0.05 
3 A=0.35 V=0.24 C=0.17 M=0.14 N=0.06 P=0.04 
4 A=0.37 V=0.25 C=0.17 M=0.13 N=0.06 P=0.03 
5 A=0.38 V=0.24 C=0.17 M=0.12 N=0.07 P=0.03 
6 A=0.38 V=0.24 C=0.17 M=0.12 N=0.07 P=0.03 
7 A=0.38 V=0.24 C=0.17 M=0.12 N=0.07 P=0.03 
8 A=0.39 V=0.23 C=0.16 M=0.12 N=0.07 P=0.02 
9 A=0.40 V=0.23 C=0.16 M=0.11 N=0.07 P=0.03 
10 A=0.40 V=0.23 C=0.16 M=0.11 N=0.07 P=0.03 

Table 3.15: Predictor Importance for the six-marker Optimised Linear SVM excluding TB4 
and with min-max scaling.  
ANG2 was the most important marker for Optimised Linear SVM models across (C=1 to C=10) using the 
six-marker combination excluding TB4. * denotes same ranking. 
 
  

B 

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

A
U
C

Gamma



 129 

Model AUC Accuracy Parameters Misclassification cost 
Optimised 
Linear SVM 

0.89 79.2% Box constraint=2.1544 22 

Optimised 
RBF SVM 

1.00 100% Kernel scale=0.0046416 
Box constraint=10 

0 

Table 3.16: Optimised Linear and RBF SVM results for the six-marker combination 
excluding TB4. 
Optimised RBF SVM performed better than the Optimised Linear SVM for the six-marker combination 
excluding TB4 as reflected by the higher AUC and accuracy and lower misclassification cost. 
 
 
 

 
  

 

 

Figure 3.5: ROC curves 
obtained for the six-marker 
combination excluding TB4 
Optimised SVM models min-
max scaled using the MCLA. (A) 
ROC curve for the Optimised Linear 
Support Vector Machine. (B) ROC 
curve for the Optimised RBF Support 
Vector Machine. 
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Figure 3.6: Linear and RBF SVM models for the six-marker combination excluding NSE.  
(A) Effect of the C parameter on the performance of Linear SVM models derived from the 6-marker 
combination excluding NSE (UOL training dataset, n=106). The data was min-max scaled.  (B) Effect of 
the C and gamma parameter on the performance of RBF SVM models derived from the 6-marker 
combination excluding NSE (UOL training dataset, n=106).  
 
 

C 1st rank 2nd rank 3rd rank 4th rank 5th rank 6th rank 

1 A=0.33 V=0.31 C=0.12 M=0.12 P=0.08 T=0.04 
2 A=0.34 V=0.31 C=0.14 M=0.13 P=0.05 T=0.03 
3 A=0.35 V=0.29 C=0.16 M=0.14 P=0.04 T=0.03 
4 A=0.37 V=0.32 C=0.15 M=0.11 T=0.03 P=0.02 
5 A=0.36 V=0.33 C=0.15 M=0.11 T=0.03 P=0.02 
6 A=0.36 V=0.31 C=0.15 M=0.11 *P=0.03 *T=0.03 
7 A=0.37 V=0.31 C=0.15 M=0.11 *P=0.03 *T=0.03 
8 A=0.39 V=0.30 C=0.15 M=0.11 *P=0.03 *T=0.03 
9 A=0.40 V=0.30 C=0.15 M=0.09 *P=0.03 *T=0.03 
10 A=0.41 V=0.30 C=0.15 M=0.09 *P=0.03 *T=0.03 

Table 3.17: Predictor Importance for the six-marker Optimised Linear SVM excluding NSE 
and with min-max scaling.  
ANG2 (A) was the most important marker across C=1 to C=10 values. * denotes same ranking 
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Table 3.18: Optimised SVM models generated from the six-marker combination excluding 
NSE and min-max scaled. 
Optimised RBF SVM performed better compared to Optimised Linear SVM as reflected by the 
higher AUC and accuracy and lower misclassification cost.  
 
 

 
  

Model AUC Accuracy Parameters Misclassification cost 
Optimised Linear SVM 0.88 80.2% Box constraint 

level=215.4435 
21 

Optimised RBF SVM 1.00 100% Kernel scale=0.0046 
Box constraint=10 

0 

 Figure 3.7: ROC curves for 
the Optimised SVM models 
generated from the six-
marker combination 
excluding NSE and min-max 
scaled.  
(A) ROC curve for the Optimised 
Linear Support Vector Machine. (B) 
ROC curve for the Optimised RBF 
Support Vector Machine. 
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Figure 3.8: Linear and RBF SVM models for the six-marker combination excluding TIMP1.  
(A)Effect of the C parameter on the performance of Linear SVM models derived from the 6 marker 
combination excluding TIMP1 (UOL training dataset, n=106). The data was min-max scaled. (B) Effect of 
the C and gamma parameter on the performance of RBF SVM models derived from the 6 marker 
combination excluding TIMP1 (UOL training dataset, n=106).  
 
 

C regularisation 
Parameter 

1st rank 2nd rank 3rd rank 4th rank 5th rank 6th rank 

1 V=0.33 A=0.29 M=0.16 C=0.12 N=0.05 T=0.04 
2 V=0.33 A=0.31 M=0.16 C=0.13 N=0.06 T=0.02 
3 A=0.33 V=0.28 M=0.16 C=0.14 N=0.06 T=0.02 
4 A=0.35 V=0.29 C=0.14 M=0.14 N=0.07 T=0.02 
5 A=0.33 V=0.31 C=0.14 M=0.13 N=0.07 T=0.02 
6 A=0.32 V=0.31 C=0.14 M=0.13 N=0.07 T=0.02 
7 A=0.33 V=0.31 M=0.13 C=0.13 N=0.08 T=0.02 
8 A=0.34 V=0.30 C=0.13 M=0.13 N=0.08 T=0.02 
9 A=0.35 V=0.30 C=0.13 M=0.11 N=0.09 T=0.02 
10 A=0.36 V=0.30 C=0.13 M=0.11 N=0.09 T=0.02 

Table 3.19: Predictor Importance for the six-marker Linear SVM (excluding TIMP1) 
models produced with min-max scaling.  
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Model AUC Accuracy Parameters Misclassification 
cost 

Optimised Linear 
SVM 

0.89 82.1% Box constraint=46.4159 19 

Optimised RBF 
SVM 

1.00 100% Kernel Scale=0.0046416 
Box constraint=10 

0 

Table 3.20: Six-marker (excluding TIMP1) combination Optimised SVM model created 
with min-max scaled.  
 
 

 
 
 

Figure 3.9: ROC curves for 
the six-marker (excluding 
TIMP1) Optimised SVM model 
generated using min-max 
scaling. 
(A) ROC curve for the Optimised 
Linear SVM. (B) ROC curve for the 
Optimised RBF SVM. 
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3.6 SVM models for the CVAM combination 

The four best markers identified from the Predictor Importance for the Linear 

SVM for the six-marker combinations excluding either NSE, TB4 or TIMP1 were 

identified as CGA, ANG2, VGF, and MAC2BP (Tables 3.15, 3.17 and 3.19). 

Linear SVM, RBF SVM and Optimised Linear and Optimised RBF models were 

therefore created for the four-marker CVAM combination to assess whether the 

input can be reduced further without loss of performance by the simultaneous 

removal of all three markers (NSE, TB4 and TIMP1). From this analysis, the 

best performing Linear SVM AUC was obtained for the C=9 model (Figure 

3.10). The best performing RBF SVM models were seen for the C=10 and 

gamma = 0.8-0.95 models (Figure 3.10). The particularly high C and gamma 

values for the best performing RBF SVM models suggested that these models 

were overfitted to the training data. This required further exploration through 

validation. The Optimised Linear SVM and Optimised RBF SVM model created 

in the MCLA revealed AUC values of 0.88 and 1.00 respectively (Table 3.22). 

Thus, RBF SVM had superior performance to Linear SVM for the Optimised 

CVAM models, although the very high performance of the former indicated 

overfitting. 
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Figure 3.10: Linear and RBF SVM models for the CVAM combination. 
(A) Effect of the C parameter on the performance of Linear SVM models derived from the CVAM 
combination (UOL training dataset, (n=106)). (B) Effect of the C and gamma parameter on the 
performance of RBF SVM models derived from the CVAM combination (UOL training dataset, n=106).  
 
 

C 1st rank 2nd rank 3rd rank 4th rank 
1 A=0.36 V=0.33 C=0.22 M=0.19 
2 A=0.36 C=0.24 V=0.20 M=0.20 
3 A=0.35 C=0.26 M=0.21 V=0.19 
4 A=0.35 C=0.26 V=0.20 M=0.18 
5 A=0.36 C=0.26 V=0.21 M=0.17 
6 A=0.35 C=0.26 V=0.22 M=0.17 
7 A=0.35 C=0.26 V=0.22 M=0.17 
8 A=0.36 C=0.26 V=0.21 M=0.17 
9 A=0.39 C=0.26 V=0.19 M=0.16 
10 A=0.41 C=0.25 V=0.18 M=0.16 

Table 3.21: Predictor Importance results for the CVAM Linear SVM models.  
Models for the C parameter range (1-10) were generated for the min-max scaled data. Predictor 
Importance analysis revealed that A (ANG2) was the most important marker in all 10 models. 
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Model AUC Accuracy Parameters Misclassification 
cost 

Optimised Linear 
SVM 

0.88 81.1% Box constraint 
level=46.4159 

20 

Optimised RBF 
SVM 

1.00 100% Box constraint level=10 
Kernel Scale=0.0046416 

0 

Table 3.22: Performance of the CVAM Optimised SVM models produced using min-max 
scaling.  
The Optimised RBF SVM performed better than the Optimised Linear SVM model as reflected by higher 
AUC and Accuracy, and lower misclassification cost.   
 
 

 
  

 

 

Figure 3.11: ROC curves for 
CVAM Optimised SVM models 
produced using min-max scaling. 
(A) ROC curve for the Optimised Linear 
SVM. (B) ROC curve for the Optimised 
RBF SVM. 
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3.7 SVM models for the CVA combination  

The Linear SVM for the CVAM combination revealed that the top three 

performing models used the markers CGA, VGF and ANG2 (Table 3.21). This 

three-marker combination was therefore explored using Linear, RBF, Optimised 

Linear, and Optimised RBF SVM approaches. Linear and RBF SVM were 

carried out in SPSS Modeler with the methodology described in Section 2.4.1  

All optimised models were created utilising the MCLA methodology described in 

Section 2.4.2. 

The results showed that increasing the C parameter value up to C=4 increased 

the AUC obtained for Linear SVMs as expected, however there was an 

unexpected decrease in the AUC for C>4, as increasing C value should 

increase performance although the C=10 AUC value was still higher than the 

value seen at C=1 (Figure 3.12). This inflection indicated the point at which the 

C parameter started to limit the performance of this combination. The highest 

AUC of 0.863 was seen at C=4 (Figure 3.12). The predictor importance for the 

Linear SVM revealed that ANG2 was the most important marker within the 

three-marker combination, followed by VGF and then CGA (Table 3.23). This 

pattern was seen across all ten SVM models. 
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Figure 3.12: Linear and RBF SVM models for the CVA combination.  
(A) Effect of the C parameter on the performance of Linear SVM models derived from the CVA 
combination (UOL training dataset, n=106). The data were min-max scaled. (B) Effect of the C and  
gamma parameter on the performance of RBF SVM models derived from the CVA combination (UOL 
training dataset, n=106). 
 
 

C  1st rank 2nd rank 3rd rank 
1 A=0.43 V=0.37 C=0.20 
2 A=0.40 V=0.38 C=0.22 
3 A=0.39 V=0.36 C=0.25 
4 A=0.42 V=0.33 C=0.25 
5 A=0.42 V=0.34 C=0.24 
6 A=0.42 V=0.34 C=0.24 
7 A=0.42 V=0.34 C=0.24 
8 A=0.42 V=0.34 C=0.24 
9 A=0.43 V=0.33 C=0.24 
10 A=0.43 V=0.33 C=0.24 

Table 3.23: Predictor Importance for the CAV Linear SVM models.  
A range of C values from 1 to 10 were explored. Across the models, ANG2 was consistently the 1st ranking 
marker, followed by VGF and then CGA. 
 
In the RBF SVM for CVA, the general trend was for increasing C and increasing 

gamma to lead to an increase in AUC, as expected (Figure 3.13). The highest 

AUC of 0.868 was seen at C=10 and gamma=0.95 (Figure 3.13). However, the 

fact that the best AUC was seen at the top end of the C and gamma ranges 

suggested that this model was overfitted.  

The Optimised SVM results revealed that the Optimised RBF SVM performed 

better than the Optimised Linear SVM as their AUC values were 1.00 and 0.88, 

respectively (Table 3.24). Once again, the very high performance of the former 

suggested overfitting.  
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Model AUC Accuracy Parameters Misclassification 
cost 

Optimised Linear 
SVM 

0.88 78.3% Box constraint 
level=215.4435 

23 

Optimised RBF SVM 1.00 100% Box constraint level=10 
Kernel scale= 0.0046416 

0 

Table 3.24: Summary of results for the CVA Optimised SVM models produced using min-
max scaling.  
The Optimised RBF SVM model performed better than the Optimised Linear SVM model as reflected by 
the AUC, accuracy and misclassification cost. 
 
 

 

 
 

Figure 3.13: ROC curves for 
the CVA Optimised SVM 
models produced using min-
max scaling.  
(A) ROC curve for the Optimised 
Linear SVM. (B) ROC curve for 
the Optimised RBF SVM.  
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3.8 SVM for the AV, CA and CV combinations  

Two-marker SVMs were generated using the UOL training dataset (n=106) for 

the different combinations of the three-marker CVA combination (VA, CA and 

CV) to observe whether decreasing the biomarker panel from the three-marker 

CVA combination to the two-marker combinations impacted performance. 

Linear and RBF SVM were carried out using SPSS Modeler whilst Optimised 

Linear and Optimised RBF SVM models were created using MCLA. 

Methodology for the Linear and RBF SVMs are in Section 2.4.1 and 

methodology for the Optimised SVM models is in Section 2.4.2. 

 

3.8.1  Linear and RBF SVM using SPSS Modeler  
For the CA Linear SVM model, unlike with previous combinations, the AUC 

initially decreased with increasing C parameter, followed by an increase above 

C=5 (Figure 3.15). For the CA RBF SVM model, smaller C parameter values 

had lower AUCs compared to the larger C parameter values with increasing 

gamma values leading to higher performing models (Figure 3.15).  

For the VA combination, increasing the C parameter for the Linear SVM models 

led to an increase in the AUC to a peak of 0.820 at C=3 (Figure 3.14). However, 

the AUC dropped to 0.818 at C=4 and was then unchanged up to C=10 (Figure 

3.14). This therefore showed that increasing the C parameter beyond 4 did not 

improve classification and that this was optimal. For the VA RBF SVM, 

increasing the C value and gamma value lead to increased performance (Figure 

3.14). 

For the CV combination with the Linear SVM, the general trend of increasing 

the C parameter caused an increase in AUC as expected (Figure 3.16). The 

RBF SVM for the CV combination also increased with increasing C and gamma 

values (Figure 3.16). However, the trend for the RBF SVM models lacked the 

consistency seen for models produced using higher marker combinations 

(Figure 3.14). Generally, the AUCs seen for the CA, VA, and CV combinations 

dropped from that seen at the 3 marker CVA level for Hence dropping to a two- 

marker level would result in poorer performance for both the Linear and RBF 

SVMs for the two-marker CA combination. 
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Figure 3.14: Linear and RBF SVM models for the VA combination.   
(A) Effect of the C parameter on the performance of Linear SVM models derived from the VA combination 
UOL training dataset, (n=106). The data were min-max scaled. (B) Effect of the C and gamma parameter 
on the performance of RBF SVM models for the VA combination (UOL training dataset, n=106). 
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Figure 3.15: Linear and RBF SVM models for the CA combination.   
(A) Effect of the C parameter on the performance of Linear SVM models derived from the CA combination 
(UOL training dataset, (n=106). The data was min-max scaled. (B) The effect of the C and gamma 
parameter on the performance of  RBF SVM models for the CA combination (UOL training dataset, 
n=106). 
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Figure 3.16: Linear and RBF SVM models for the CV combination.  
(A) Effect of the C parameter on the performance of Linear SVM models derived from the CV combination 
(UOL training dataset, (n=106). The data was min-max scaled. The AUC obtained increases as the C 
parameter increases. (B) The effect of the C and gamma parameter on the performance of RBF SVM 
models for the CV combination (UOL training dataset, n=106).  
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3.8.2 Optimised Linear and SVM using MCLA 
The Optimised Linear SVM for the VA combination produced an AUC of 0.82 

compared to an AUC of 1.00 obtained for the Optimised RBF SVM (Table 3.25). 

The Optimised Linear SVM results for the CA combination revealed an AUC of 

0.82 compared to an AUC of 1.00 obtained for the Optimised RBF SVM (Table 

3.26). Finally, the Optimised Linear SVM results for the CV combination had an 

AUC of 0.79 compared to the Optimised RBF SVM which had an AUC of 1.00 

(Table 3.27). Thus, the VA and CA combinations performed the best in 

Optimised Linear SVM compared to the CV combination which had a lower 

AUC of 0.79. This shows that ANG2 was important in the best performing 

Optimised Linear SVM model. For the RBF Optimised SVM the VA, CA and CV 

combinations had an AUC of 1.00. Thus, producing perfectly performing 

models. This therefore suggests that these RBF Optimised SVM models are 

overfitted and would need to be evaluated using cross validation.  
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Model AUC Accuracy Parameters Misclassification 

cost 
Optimised Linear 
SVM 

0.82 75.5% Box constraint level=0.1 26 

Optimised RBF 
SVM 

1.00 100% Box constraint level=10 
Kernel scale=0.0046416  

0 

Table 3.25: Summary of results for the VA Optimised SVM models produced using min-
max scaled data. 
 
 

 
  

 

 

Figure 3.17: ROC curves obtained 
from Optimised SVM models for 
the VA combination produced 
using min-max scaled data. 
 (A) ROC curve for the Optimised Linear 
SVM. (B) ROC curve for the Optimised 
RBF SVM. 
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Model AUC Accuracy Parameters Misclassification 

cost 
Optimised Linear 
SVM 

0.82 76.4% Box constraint level=0.001 25 

Optimised RBF 
SVM 

1.00 100% Box constraint level=10 
Kernel scale= 0.0046416 

0 

Table 3.26: Summary of results for the CA Optimised SVM models produced using min-
max scaled data. 
 
 

 
  

 
 

 

Figure 3.18: ROC curves for the 
CA combination Optimised SVM 
models produced using min-max 
scaled data.  
(A) ROC curve for the Optimised Linear 
SVM. (B) ROC curve for the Optimised 
RBF SVM 
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Model AUC Accuracy Parameters Misclassification 

cost 
Optimised Linear 
SVM 

0.79 73.6% Box constraint level=10 28 
 

Optimised RBF 
SVM 

1.00 100% Box constraint level=10 
Kernel scale= 0.001 

0 

Table 3.27: Summary of results for the 2 marker CV Optimised SVM models produced 
using min-max scaled data. 
 
 

 
  

 
 

 

Figure 3.19: ROC curves for the 
2 marker CV combination 
Optimised SVM models for the 
whole training dataset (n=106) 
min-max scaled using the 
MATLAB Classification Learner 
App.  
(A) ROC curve for the Optimised 
Linear SVM.  
(B) ROC curve for the Optimised 
RBF SVM. 
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3.9 Logistic Regression for the development of a pNET 
algorithm using SPSS Modeler (n=106) 

The LR approach was used to analyse data in the whole training set (n=106), 

which had one control sample missing a data value removed, in order to 

compare the performance of this algorithm with other supervised ML methods. 

The methodology for this approach is described in Section 2.2. 127 

combinations of the markers were assessed in order to obtain the best LR 

models. Single-marker LR analysis revealed that ANG2 was the best single 

marker with an AUC of 0.758 (Table 3.28). Two-marker LR analysis revealed 

that the CA combination produced the highest AUC of 0.849 (Table 3.29), which 

was higher than the best single marker as expected, the three-marker analysis 

revealed that the CVA combination produced the best AUC of 0.873, (Table 

3.30). The four-marker analysis revealed that the CVAN combination produced 

an AUC of 0.880. The five-marker analysis revealed that the AVMNC 

combination produced an AUC of 0.883. The six-maker LR analysis showed 

that the best combination was the CVAMNP combination which produced an 

AUC of 0.885. The best performing LR model was the seven-marker model 

which produced an AUC of 0.886. For LR, increasing the number of markers in 

the model, improved model performance (Figure 3.20). LR also showed that at 

the single-marker level TB4, NSE and TIMP1 performed the poorest with AUCs 

of 0.559, 0.564 and 0.570 respectively. The four-marker CVAN (Figure 3.21) 

and CVAM (Figure 3.22) combinations were the top performing four-marker 

combinations. Within both these models NSE and MAC2BP were the least 

important markers as assessed by the predictor of importance. Removal of NSE 

or MAC2BP from the four-marker combination reduced performance as the 

AUC for the three marker CVA combination (Figure 3.23) was 0.873. For  the 

two-marker CA (Figure 3.24) CV (Figure 3.25) and VA (Figure 3.26) 

combinations, the CA combination had the best AUC of 0.849, however all 

three two-marker combinations were the top three performing two-marker 

combinations. Finally, at the one-marker level, comprising C (Figure 3.27), A 

(Figure 3.28), and V (Figure 3.29), there was a further drop in AUC which 

illustrated how the AUC dropped with a reduction of markers from the original 

four-marker combination. 
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Marker Predictor Importance AUC 

A A=1.00 0.758 

C C=1.00 0.750 

V V=1.00 0.691 

M M=1.00 0.667 

P P=1.00 0.570 

N N=1.00 0.564 

T T=1.00 0.559 

Table 3.28 LR model results for single-marker inputs 
 
 

Combination  Predictor Importance AUC 
CA A=0.53 C=0.47 0.849 
VA A=0.62 V=0.38 0.819 
CV C=0.58 V=0.42 0.795 
CM C=0.57 M=0.43 0.778 
CT C=0.82 T=0.18 0.774 
AN A=0.76 N=0.24 0.772 
AM A=0.69 M=0.31 0.771 
CN C=0.74 N=0.26 0.767 

CP C=0.82 P=0.18 0.766 

TA A=0.85 T=0.15 0.763 

AP A=0.92 P=0.08 0.755 

MV M=0.51 V=0.49 0.738 

VN V=0.64 N=0.36 0.701 

TV V=0.80 T=0.20 0.697 

VP V=0.70 P=0.30 0.696 

TM M=0.78 T=0.22 0.685 

MN M=0.67 N=0.33 0.671 

MP M=0.54 P=0.46 0.671 

TP P=0.52 T=0.48 0.627 

PN N=0.63 P=0.37 0.616 

TN N=0.61 T=0.39 0.586 

Table 3.29 LR model results for two-marker inputs 
 
 

Combination Predictor Importance AUC 
CVA A=0.44 C=0.28 V=0.28 0.873 

CAM A=0.44 C=0.35 M=0.21 0.856 

CAN A=0.46 C=0.35 N=0.19 0.849 

CAP A=0.49 C=0.47 P=0.04 0.849 
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TCA C=0.48 A=0.46 T=0.06 0.843 

VAN A=0.48 V=0.32 N=0.20 0.829 

VAM A=0.46 V=0.33 M=0.21 0.823 

TVA A=0.51 V=0.41 T=0.08 0.820 

VAP A=0.64 V=0.31 P=0.04 0.819 

CVP C=0.56 V=0.31 P=0.12 0.810 

CVN C=0.42 V=0.34 N=0.24 0.803 

CVM C=0.39 M=0.31 V=0.29 0.802 

TCV C=0.57 V=0.33 T=0.10 0.798 

ANM A=0.54 M=0.23 N=0.22 0.791 

TCP C=0.63 T=0.22 P=0.15 0.786 

TCM C=0.61 M=0.29 T=0.10 0.784 

CNM C=0.56 M=0.29 N=0.15 0.781 

TCN C=0.71 N=0.15 T=0.14 0.780 

CPM C=0.56 M=0.33 P=0.10 0.776 

CPN C=0.56 N=0.27 P=0.17 0.774 

TAN A=0.68 N=0.24 T=0.08 0.773 

APM A=0.63 M=0.33 P=0.05 0.773 

APN A=0.70 N=0.24 P=0.06 0.772 

TAM A=0.64 M=0.27 T=0.10 0.771 

TAP A=0.81 T=0.11 P=0.08 0.759 

VNM V=0.42 M=0.30 N=0.28 0.750 

TVM M=0.49 V=0.44 T=0.07 0.741 

VPM V=0.43 M=0.40 P=0.16 0.739 

VPN V=0.48 N=0.31 P=0.21 0.716 

TVP V=0.67 P=0.18 T=0.15 0.705 

TVN V=0.63 N=0.27 T=0.09 0.702 

TPM M=0.62 T=0.19 P=0.18 0.687 

PNM M=0.60 N=0.26 P=0.14 0.679 

TNM M=0.57 N=0.33 T=0.10 0.678 

TPN N=0.49 P=0.28 T=0.23 0.634 

Table 3.30 LR model results for three-marker inputs 
 
 

Combination Predictor Importance AUC 
CVAN A=0.39 C=0.27 V=0.18 N=0.16 0.880 

CVAM C=0.37 A=0.31 M=0.16 V=0.16 0.879 

TCVA A=0.36 C=0.35 V=0.25 T=0.04 0.874 

CVAP A=0.41 C=0.36 V=0.20 P=0.03 0.873 

CANM A=0.45 C=0.30 M=0.14 N=0.11 0.859 

CAPM A=0.44 M=0.27 C=0.26 P=0.02 0.856 
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TCAM C=0.40 A=0.33 M=0.21 T=0.06 0.853 

CAPN A=0.48 C=0.37 N=0.12 P=0.03 0.849 

TCAN A=0.50 C=0.24 N=0.18 T=0.07 0.848 

TCAP C=0.43 A=0.42 T=0.10 P=0.04 0.846 

VANM A=0.34 V=0.31 N=0.22 M=0.13 0.834 

VAPN A=0.52 V=0.28 N=0.17 P=0.04 0.829 

TVAN A=0.49 V=0.29 N=0.17 T=0.44 0.828 

VAPM V=0.38 A=0.36 M=0.23 P=0.04 0.825 

TVAM A=0.44 V=0.30 M=0.21 T=0.05 0.823 

TVAP A=0.58 V=0.31 T=0.07 P=0.05 0.820 

CVPN C=0.47 V=0.23 N=0.20 P=0.11 0.818 

CVPM C=0.44 V=0.27 M=0.23 P=0.06 0.810 

TCVP C=0.46 V=0.34 P=0.11 T=0.09 0.808 

CVNM C=0.31 M=0.28 V=0.25 N=0.17 0.808 

TCVN C=0.44 V=0.26 N=0.23 T=0.07 0.805 

TCVM C=0.38 V=0.30 M=0.25 T=0.06 0.805 

APNM A=0.50 M=0.25 N=0.21 P=0.04 0.791 

TANM A=0.47 M=0.28 N=0.17 T=0.08 0.789 

TCNM C=0.46 M=0.27 N=0.16 T=0.11 0.788 

TCPN C=0.57 N=0.22 P=0.11 T=0.11 0.785 

TCPM C=0.54 M=0.28 T=0.10 P=0.09 0.784 

CPNM C=0.48 M=0.27 N=0.18 P=0.07 0.783 

TAPM A=0.66 M=0.20 T=0.10 P=0.04 0.772 

TAPN A=0.64 N=0.20 T=0.09 P=0.07 0.771 

VPNM V=0.44 M=0.31 N=0.18 P=0.07 0.752 

TVNM V=0.42 M=0.30 N=0.24 T=0.04 0.747 

TVPM V=0.42 M=0.40 P=0.09 T=0.09 0.741 

TVPN V=0.50 N=0.28 P=0.14 T=0.08 0.719 

TPNM M=0.48 N=0.32 T=0.11 P=0.10 0.687 
Table 3.31 LR model results for four-marker inputs. 
 
 

Combination  Predictor Importance AUC 
AVMNC A=0.32 C=0.24 V=0.19 N=0.13 M=0.12 0.883 

VAPMC A=0.38 C=0.27 V=0.21 M=0.12 P=0.01 0.882 

AVPNC A=0.35 C=0.32 V=0.21 N=0.10 P=0.02 0.881 

AVTNC V=0.38 A=0.30 C=0.20 N=0.09 T=0.03  0.880 

CTAMV A=0.35 C=0.31 M=0.16 V=0.16 T=0.03 0.878 

CTAPV A=0.38 V=0.31 C=0.23 T=0.04 P=0.03 0.874 

ANPMC A=0.40 C=0.28 N=0.15 M=0.15 P=0.02 0.859 

CTAMN A=0.41 C=0.28 N=0.13 M=0.13 T=0.05 0.859 

CTAMP A=0.35 C=0.34 M=0.25 T=0.05 P=0.01 0.854 



 152 

CTAPN  A=0.41 C=0.37 N=0.14 T=0.05 P=0.03 0.848 

AMNTV V=0.35 A=0.34 N=0.16 M=0.13 T=0.02 0.835 

VNAMP  A=0.39 V=0.24 M=0.19 N=0.15 P=0.03 0.833 

TAPVN A=0.42 V=0.30 N=0.20 P=0.05 T=0.05 0.828 

VTAMP A=0.48 V=0.26 M=0.18 T=0.04 P=0.03 0.824 

CTPVN C=0.44 V=0.25 N=0.19 P=0.07 T=0.06 0.815 

VNPMC C=0.31 V=0.29 M=0.22 N=0.14 P=0.04 0.812 

CTMPV C=0.44 M=0.23 V=0.21 P=0.08 T=0.05 0.811 

TVMNC C=0.35 V=0.24 M=0.20 N=0.18 T=0.03 0.809 

AMNTP A=0.51 N=0.21 M=0.20 T=0.05 P=0.03 0.789 

TNPMC  C=0.42 M=0.26 N=0.20 P=0.06 T=0.05 0.788 

TMPVN V=0.44 M=0.24 N=0.19 P=0.08 T=0.05 0.748 
Table 3.32 LR models for the five-marker inputs 
 
 

Combination Predictor Importance  AUC 
CVAMNP A=0.40 C=0.24 V=0.14 N=0.11 M=0.09 P=0.02 0.885 

CTAMNV C=0.28 V=0.22 A=0.22 M=0.14 N=0.13 T=0.01 0.884 

CVMPTA A=0.30 C=0.29 V=0.21 M=0.15 T=0.03 0.881 

CVNPTA A=0.32 V=0.26 C=0.24 N=0.11 T=0.04 P=0.03 0.880 

CATMNP A=0.35 C=0.34 M=0.15 N=0.12 T=0.03 P=0.01 0.858 

TVAMNP A=0.43 V=0.19 M=0.17 N=0.17 P=0.03 T=0.02 0.834 

CVMNPT C=0.37 V=0.26 M=0.18 N=0.13 P=0.03 T=0.02 0.811 
Table 3.33: LR models for the six-marker inputs. 
 
 

Combination  Predictor Importance AUC 
CTAMNVP A=0.35 V=0.21 C=0.18 

N=0.12 M=0.10 P=0.02 
T=0.02 

0.886 

Table 3.34: LR models for the seven-marker input. 
 
 

 
Figure 3.20: The effect of the number of biomarkers on AUC of LR model. 
LR model AUC results for the 127 biomarker combinations (one to seven marker) for the UOL training 
dataset (n=106). 
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Figure 3.21: Predictor Importance and ROC curve analysis for the CVAN input. 
(A) Predictor Importance results reveal that the most important markers for the model were A=0.39 C=0.27 
V=0.18 N=0.16. (B) The ROC curve for the CVAN LR mode with an AUC of 0.880.  
 
 

 

 

Figure 3.22: Predictor Importance and ROC curve analysis for the CVAM input. 
 (A) Predictor Importance results reveal that the most important markers for the model were C (0,34) and A 
(0.32). (B) The ROC curve for the CVAM LR model with an AUC of 0.879. 
 
 

 

 

Figure 3.23: Predictor Importance and ROC curve analysis for the CVA input.  
(A) Predictor Importance results reveal that the most important markers for the model were A=0.39. 
C=0.33 and V=0.29. (B) The ROC curve for the CVA LR model with an AUC of 0.873. 
 
 

 

 

Figure 3.24: Predictor Importance and ROC curve analysis for the CA for input. 
 (A) Predictor Importance results reveal that the most important markers for the model were A=0.53 and 
C=0.47. (B) ROC curve for the CA LR model with an AUC of 0.849.  
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A B 

A B 
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Figure 3.25: Predictor Importance and ROC curve analysis for the CV input. 
(A) Predictor Importance results reveal that the most important markers for the model were C=0.58 
V=0.42. (B) ROC curve analysis reveals an AUC of 0.795 for the CV combination using LR. 
 
 
 

 
Figure 3.26: Predictor importance and ROC curve analysis for the VA input. 
(A) Predictor Importance results reveal that the most important markers for the model were  A=0.62 
V=0.38. (B) ROC curve analysis reveals an AUC of 0.819. 
 
 

  
Figure 3.27: Predictor importance and ROC curve analysis for the C input.  
(A) Predictor Importance results reveal that C was 1.00. (B) ROC curve analysis reveals an AUC of 0.750.  
 
 

 

 

 
Figure 3.28: Predictor Importance and ROC curve analysis for the A input.  
(A) Predictor Importance results reveal that A was 1.00. (B) ROC curve analysis reveals an AUC of 0.758.  
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Figure 3.29: Predictor Importance and ROC curve analysis for the V input.  
(A) Predictor Importance results reveal that  V was 1.00. (B) ROC curve analysis reveals an AUC of 0.691. 
 
 

Combination Predictor Information AUC 
CTAMNVP A=0.35 V=0.21 C=0.18 N=0.12 M=0.10 P=0.02 T=0.02 0.886 

CVAMNP A=0.40 C=0.24 V=0.14 N=0.11 M=0.09 P=0.02 0.885 

AVMNC A=0.32 C=0.24 V=0.19 N=0.13 M=0.12 0.883 

CVAN A=0.39 C=0.27 V=0.18 N=0.16 0.880 

CVAM C=0.34 A=0.32 M=0.18 V=0.15 0.879 

CVA A=0.39 C=0.33 V=0.29 0.873 

CAM A=0.44 C=0.35 M=0.21 0.856 

VAM A=0.46 V=0.33 M=0.21 0.823 

CVM C=0.39 M=0.31 V=0.29 0.802 

CA A=0.53 C=0.47 0.849 

CV C=0.58 V=0.42 0.795 

VA A=0.62 V=0.38 0.819 

C C=1.00 0.750 

A A=1.00 0.758 

V V=1.00 0.691 

Table 3.35: Summary of LR model performance.  
The CTAMNVP combination performed best with an AUC of 0.886  while the single marker V had the 
poorest performance with an AUC of 0.691. 

 

3.10 McNemar test for model selection 

To decide which ML models to take forward, the McNemar test was used for 

binary comparisons of model performance (Table 3.37). Detailed methodology 

for this is described in Section 2.9.  When comparing two ML classifiers 

(classifier one and classifier two respectively), four different outcomes are 

present, firstly that classifier one and classifier two correctly classify, the second 

outcome is that classifier one correctly classifies but classifier two incorrectly 

classifies, the third outcome is that classifier one incorrectly classifies and 

classifier two correctly classifies. The final outcome is that classifier one and 

A B 
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classifier two both incorrectly classify. Crucial for the McNemar test is the sum 

of the B and C values. The B value refers to the number of correctly classified 

instances in the 1st model and the number of incorrectly classified instances in 

the second model, while the C value refers to the number of incorrectly 

classified instances in the 1st model and correctly classified instances in the 2nd 

model. The lower the B+C total the more similar are both models. Conversely, 

the larger the B+C value the greater the differences between the two models. 

The standard McNemar test can be used on larger B+C values but for instances 

where B+C < 25 the binomial corrected McNemar test is recommended451. 

For Linear SVM and RBF SVM it was seen that TB4, NSE and TIMP1 were not 

particularly important markers. Work from C5.0 decision trees also showed that 

NSE was not a significantly important marker. However, RF models consistently 

showed high performance across all marker combinations, even at the single-

marker level. Thus, based on this rationale, NSE, TB4 and TIMP1 were 

excluded. This then led to a decision of an optimal four-marker combination for 

SVM would be the CVAM combination based on NSE, TB4 and TIMP1 being 

the least important markers at the seven and six-marker level. For LR however, 

the CVAN combination performed the best as a four-marker combination with 

an AUC of 0.880, however the CVAM combination performed similarly to the 

CVAN combination, thus the CVAM four-marker combination was used as a 

starting point to examine whether reduction to a three-marker CVA combination, 

two-marker (CV, CA or VA), or single-marker (A, C or V) input; caused a 

significant difference in model prediction performance by McNemar test. This 

would provide further rationale and support to reduce the marker combination 

from a four-marker combination to a three or two-marker panel.  

 

 Linear SVM RBF SVM LR 
CVAM Linear SVM CVAM C=9 

AUC= 0.867 
RBF SVM CVAM C=10 
gamma=0.80 
AUC=0.880 

Binomial LR model 
AUC=0.879 

CVA Linear SVM CVA C=4 
AUC=0.863 

RBF SVM CVA C=10 
gamma=0.95 
AUC=0.868 

Binomial LR model 
AUC=0.873 

CA Linear SVM CA C=10 
AUC=0.823 

RBF SVM CA C=10 
gamma=0.70 
AUC=0.830 

Binomial LR model 
AUC=0.849 

VA Linear SVM VA C=3  
AUC=0.820 

RBF SVM VA C=9 
gamma=0.60 
AUC=0.822 

Binomial LR model 
AUC=0.819 
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CV Linear SVM CV C=10  
AUC=0.775 

RBF SVM CV C=10 
gamma=0.65 
AUC=0.772 

Binomial LR model 
AUC=0.795 

C Not Applicable Not Applicable  Binomial LR model 
AUC=0.750 

A Not Applicable Not Applicable Binomial LR model  
AUC=0.758 

V Not Applicable Not Applicable Binomial LR model 
AUC=0.691 

Table 3.36: Models used for McNemar testing.  
Top performing Linear and RBF SVM models for the four-marker CVAM, three-marker CVA, two-marker 
CA, VA and CV combinations. LR models for these marker combinations are also shown. 
 

The McNemar test produced B+C values of 3, 5 and 5 for the CVA vs CVAM 

Linear SVM, RBF SVM and LR models, respectively (Table 3.37). These low 

B+C values meant that only 3 instances, 5 instances and 5 instances, 

respectively, were dissimilar between the models, which suggested that these 

models were similar. This was supported by the P values of 1.00 (Table 3.37) 

for all three. Moreover, the results across these three models indicated that 

MAC2BP was a redundant marker in LR, Linear SVM and RBF SVM models 

and supported the rationale to decrease the marker panel from CVAM to CVA. 

When comparing the single-marker LR results vs the LR results obtained for the 

two-marker combinations, the B+C values were much higher than those of the 

three to four-marker comparisons, which meant that there were more 

dissimilarities in agreement of classification between the compared models, but 

the only comparison that was statistically significant was V vs VA (Table 3.37). 

Hence, the addition of ANG2 is significantly important for model performance. 

 
Combination Models B+C Result 
CVA vs CVAM  
 
 

Linear SVM CVAM C=9 
Linear SVM CVA C=4 

3 P=1.00 
Not significant 

RBF SVM CVAM C=10 gamma=0.80 
RBF SVM CVA C=10 gamma=0.95 

5 P=1.00 
Not significant 

LR 5 P=1.00 
Not significant 

CA vs CVA 
 
 

Linear SVM CA C=10 
Linear SVM CVA C=4 

19 P=1.00 
Not significant 

RBF SVM CA C=10 gamma=0.70 
RBF SVM CVA C=10 gamma=0.95  

19 P=1.00 
Not significant 

LR 17 P=0.629 
Not significant 

VA vs CVA 
 
 

Linear SVM VA C=3  
Linear SVM CVA C=4  

5 P=0.375 
Not significant 

RBF SVM VA C=9 gamma=0.60 
RBF SVM CVA C=10 gamma=0.95  

5 P=0.375 
Not significant 
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LR 14 P=0.791 
Not significant 

CV vs CVA 
 
 

Linear SVM CV C=10  
Linear SVM CVA C=4  

26 P=0.327 
Not significant 

RBF SVM CV C=10 gamma=0.65 
RBF SVM CVA C=10 gamma=0.95 

26 P=0.327 
Not significant 

LR 20 P=0.167 
Not significant 

C vs CV LR 20 P=0.824 
Not significant  

A vs CV LR 27 P=1.000 
Not significant  

V vs CV LR 27 P=0.122 
Not significant  

C vs CA LR 31 P=0.473 
Not significant 

A vs CA LR 15 P=1.00 
Not significant 

V vs CA LR 54 P=0.076 
Not significant 

C vs VA LR 38 Not significant 
P=0.256 

A vs VA LR 17 P=0.629 
Not significant 

V vs VA LR 35 P=0.041 
Significant 

Table 3.37: Binomial McNemar test results used to determine models to take forward for 
external validation.  
 
 

 

 

 

A 

B 
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Figure 3.30:McNemar B+C results  
Graphical illustration of B+C results from the McNemar test for the 4 marker CVAM, 3 marker CVA, 2 
marker CV, CA and VA  and 1 marker C,A and V. (A) Linear SVM, (B) RBF SVM and (C) LR. 
 
 

 

 

 

 

 

 

 

 

 

Figure 3.31: Impact of omitting markers from the four-marker CVAM combination on AUC 
Graphical illustration of AUC results for the top performing four-marker CVAM, three-marker CVA, two-
marker CV, CA and VA,  and one-marker C,A and V models (A) Linear SVM, (B) RBF SVM and (C) LR. 
  

C 

A 

B 
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3.11 CVA model comparisons 

The confusion matrices obtained for the CVA ML models (Appendix C) were 

utilised to calculate the sensitivities and specificities of each model. A summary 

of these values is shown in (Table 3.38). For all the above-mentioned models 

utilising the CVA combination, apart from the RF and the Optimised RBF SVM 

model, some controls and cases were incorrectly predicted. The LR, Linear 

SVM and the Optimised Linear SVM models had the lowest sensitivities (74%), 

while the RF and Optimised RBF SVM had the best sensitivities (100%). The 

LR model had the lowest specificity (78%), while the RF and Optimised RBF 

SVM models had the best specificities (100%). 
 

CVA model Sensitivity  Specificity 
LR 74% 78% 
Linear SVM (C=4) 74% 80% 
RBF SVM (C=10, gamma=0.95) 77% 84% 
Optimised Linear SVM 74% 84% 
Optimised RBF SVM 100% 100% 
Random Forest 100% 100% 

Table 3:38: Sensitivities and specificities of different CVA ML models.  
The RF model (Run 1) and the Optimised RBF SVM model had the highest sensitivity and specificity of 
100%. 
 
 

3.12 Discussion 

Four different ML approaches were applied to the UOL pNET case and control 

training dataset to obtain the best performing and most suitable pNET 

diagnostic test. 

The best non-boosted C5.0 decision tree generated using either the general or 

accuracy settings produced an AUC of 0.888 based on the four markers ANG2, 

VGF, MAC2BP and TIMP1 (AVMP). This was followed in performance by a tree 

produced from five input markers (AMNTP) that used only four of these markers 

(AMPT) and had an AUC of 0.871 (Table 3.9). Accordingly, these results 

indicated the AVMP decision tree model should be taken forward for validation. 

The RF approach using one to seven-marker inputs (Tables 3.10 to 3.12) 

generated models that performed consistently well across all marker 

combinations with little discrimination in terms of AUC value between three, 

four, five, six and seven-marker combinations (Table 3.12 and Appendix B). 

This made it difficult to decide which marker combination to take forward. The 
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RF algorithm is a black box algorithm, which is a disadvantageous in practice as 

interpretability of a model that would be used as a clinical decision support tool 

is an important consideration in addition to performance. The very high 

performance even at the single marker level, with AUCs even at the single 

marker level reaching >0.99 is indicative of overfitting and would need to be 

tested at validation. Moreover, the very high performance of all RF models 

indicated this approach had suffered from widespread overfitting. Thus, it was 

important to validate a variety of RF models across the one to seven-marker 

range to assess the impacts of overfitting and thus these selected combinations 

would be explored using internal validation approaches in Chapter 4. Moreover, 

unlike with the other approaches, specific maker combinations were not 

selected to assess due to a similar performance across the combinations for a 

given number of markers. 

SVM approaches were explored in SPSS Modeler. For Linear SVMs a C 

parameter range of between 1 and 10 was used and for RBF SVMs a C 

parameter range of 1 to 10 and a RBF gamma range of 0.4 to 0.95 were used. 

Grid optimisation was carried out, meaning that RBF SVM models were 

generated for all combinations of each C and gamma value within their 

respective ranges. A limitation of this approach is that C and gamma values 

outside these ranges were not considered. As a result, there was a possibility 

that the optimal SVM model was not identified. To address this limitation MCLA 

software was also used for SVM model development. MCLA allowed 

optimisation of both the Linear and RBF SVM generation via a wider range of 

gamma (0.001-1000) and C (0.001-1000) values. The MCLA software also 

automated the process of grid optimisation, which was a strength. Both Linear 

and RBF SVM were therefore explored using SPSS Modeler and MCLA. My 

results demonstrated that a reduction of markers used to generate SVM models 

did not initially have a large impact on performance. However, at the two-marker 

level, a reduction in performance was seen in the SPSS Modeler analysis and 

Optimised Linear SVM results (MCLA). However, the Optimised RBF SVM 

results had an AUC of 1.00 even at the two-marker level. As this very high level 

of performance could have been caused by overfitting to the UOL dataset, it 

was important to determine how well the Optimised RBF algorithm would 

perform using k-fold cross-validation (k-FCV) thus, k-FCV models for the seven-

marker combination, six-marker combinations excluding NSE, TB4 and TIMP1, 
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the four-marker CVAM, the three-marker CVA combination and the two-marker 

CV, CA and VA combination will be assessed in Chapter 4. 

LR models were created for all 127 combinations of markers. LR results 

revealed that the seven-marker combination CTAMNVP had the best AUC of 

0.886 (Table 3.34). At the six-marker level the CVAMNP combination had an 

AUC of 0.885 and was the best performing six-marker combination (Table 

3.33), thus illustrating that removal of TB4 did not influence model performance 

as reflected by AUC. The best five-marker combination was the AVMNC 

combination which had an AUC of 0.883 (Table 3.32). This suggested that TB4 

and TIMP1 were not important for model performance. The best four-marker 

combination was the CVAN combination with an AUC of 0.880 followed by the 

CVAM with an AUC of 0.879.The LR performance decreased as any one of the 

four markers was removed (Table 3.31). These LR results clearly support my 

initial hypothesis that a marker-panel approach is more accurate for pNET 

detection compared to a single-marker approach.  

The McNemar test was utilised for LR and SVM models to assess statistically 

whether the number of markers in the best performing combination (CVAM) 

could be reduced to a three-marker (CVA) or even a two-marker combination 

(CV, CA, or AV) with no significant loss of performance despite the decrease in 

AUC. The McNemar test results revealed that a reduction of markers did not 

lead to a statistically significant difference between SVM models as determined 

by p value (Table 3.37). However generally, as the marker number decreased 

model B+C values increased. Similar test results were obtained for 

comparisons of LR models with the exception that a statistically significant 

difference was obtained between the V and VA models and the B+C value for 

the VA vs CVA SVM (Linear and RBF) comparisons was low (Table 3.37). 

Based on the changes in B+C and AUC values (Figure 3.30 and Figure 3.31), 

reducing the CVAM panel to CVA was justified, but further reduction to two 

markers or a single marker was not justified due to the marginal decrease in 

AUC and increase in B+C combined with the cost saving and technical 

simplification resulting from the removal of Mac2BP assays. 

Clinical use of the single CgA marker for pNET detection has been explored in 

several studies and found to be limited. Qiao et al. (2014) found that the 

diagnostic accuracy of CgA for insulinoma pNETs was 0.724 compared to 0.805 

for non-insulinomas90. Indeed, a study by Hong et al. (2020) found that CgA 



 163 

discriminated non-insulinoma pNETs from non-pNET patients with a remarkably 

high AUC of 0.897461. Their study found that a non-insulinoma subtype and the 

presence of liver metastases were associated with elevated serum CgA. 

Pulvirenti et al. (2019), who compared CgA levels in patients with well 

differentiated pNETs, other pancreatic conditions and healthy controls, 

concluded that CgA functions as a poor diagnostic marker for pNETs due to low 

sensitivity462. Their CgA test to distinguish pNET patients from healthy controls 

had an AUC of 0.77, and they also found that treatment with PPIs increased 

CgA levels in pNET patients, indicating compromised specificity. Moreover, 

serum CgA levels were increased in just 6/27 pNET patients with localised 

disease (Stage 1 to 3) compared to 33/38 patients with stage 4 disease. 

Hence clinical characteristics of study cohorts are also important 

considerations. For example, if the cohort had an increased number of late 

stage pNETs or a lack of insulinomas CgA would be expected to perform 

relatively well as a marker. However, CgA seems to have predictive value 6 

months prior to radiological progression prediction in pNET patients, highlighting 

that CgA as a marker has utility in certain circumstances99. 

Many studies have suggested that CgA alone is inadequate as a clinical NET or 

pNET marker and that a wider panel of markers alongside CgA is needed to 

improve pNET patient identification, particularly for pNETs of lower grade, 

earlier stage and subtypes such as insulinomas. Despite CgA being used in 

practice for diagnosis, prognosis, response to treatment and surveillance of 

recurrence, the evidence is inconsistent from mainly retrospective studies which 

are small and based on heterogenous populations undergoing many 

treatments463. Moreover, the drawbacks associated with CgA such as PPI 

usage and other confounders may be offset via a multiple-biomarker approach.  

The models generated here using combinations of markers had improved 

performance across all four ML algorithms compared to the single CgA marker 

currently in clinical use. Results from my work show that CgA as a single 

marker yielded an AUC of 0.75 in an LR algorithm, 0.813 in a C5.0 non-boosted 

decision tree algorithm, and an average of 0.989 across 10 runs of an RF 

algorithm, which was likely to have been overfitted. Superior levels of 

performance resulted when CgA was included with additional markers, 

indicating non-redundancy. Taking the CVA input as an example, the LR model 

had an AUC of 0.873, the best Linear SVM model had an AUC of 0.863, and 
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the best RBF SVM model had an AUC of 0.868. The Optimised Linear SVM for 

CVA had an AUC 0.88 and the Optimised RBF SVM for CVA had an AUC of 

1.00, although both were likely to have been overfitted. Finally, the C5.0 non-

boosted decision tree produced when CVA was entered had an AUC of 0.835. 

These results illustrate the strength of a multi-marker approach as opposed to a 

single marker approach across supervised ML algorithms. However, for the RF, 

C5.0 decision tree and SVM increasing the markers in the panel above a 

certain point ceased to increase the AUC value, most likely because of 

functional redundancy between markers above that point. However, this was 

not seen with LR, as with LR increasing the number of markers in the panel led 

to an increase in performance with the more markers added to the model 

bettering performance with the seven marker LR model having the best 

performance with an AUC of 0.886 (Table 3.34). 

Regarding the clinical characteristics of the UOL cohort, it contained a total of 

57 pNET cases and 50 controls. Within the pNET cases 29 there were females, 

27 were males and 1 was unknown. Within the UOL controls there were 27 

females and 23 males. Within the pNET cases there were 4 confirmed 

insulinomas, 3 confirmed gastrinomas. 4 patients with MEN1 disease, and 22 

idiopathic pNETs. Therefore, the number of confirmed insulinomas, gastrinomas 

and MEN1 related pNETs were similar and insulinomas do not make up a large 

portion of the group. Data on the epidemiology of insulinomas in the modern era 

is rare464, however a recent study from Finland reported an increasing incidence 

of insulinomas from 0.5 cases per million/year in the 1980s to 0.9 cases per 

million/year in the 2000s465. pNETs arise in 30-80% of patients with MEN1466.  

The worldwide incidence of gastrinomas is about 0.5 to 3 cases/million per 

year467. As for CgA assays it has been shown that their performance is poor for 

insulinomas90 it is likely that only a few cases would be impacted based on the 

UOL cohort numbers of insulinomas. UOL TNM staging was available for only 

19 out of the 57 pNETs and thus was a limitation of the cohort. Lymph node 

involvement was specified for only 24 out of the 57 pNETs within the cohort and 

11 of these specifying no lymph node involvement and 13 specifying some 

lymph node involvement. Vascular Invasion was specified for 17 out of the 57 

pNETs. Within this 7 were yes, an additional 2 were IV, 7 no and 1 unknown. 

Perineural invasion was specified for 18 out of the 57 pNETs. 6 were yes, 10 

no, 1 unknown and 1 n/a. 
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In terms of the grade of pNET, 23 were well differentiated, 1 was poorly 

differentiated, and grade information was unavailable for 33 patients. As high 

grade is known to be a predictor of increased CgA levels468, within this cohort 

there was only one poorly differentiated tumour, however as grade information 

was unavailable for 33 patients it is unclear as to the numbers of these patients 

that may also have had a CgA level due to a higher grade, and thus this is a 

limitation. 47 patients did not have diabetes, 7 patients had diabetes (type 

undefined) and one patient had type-1 diabetes. Several pNET patients in the 

cohort had multiple tumours. A main limitation for this UOL cohort was that the 

clinical profile was incomplete for many of the patients. However, it was clear 

that the UOL pNET cohort was diverse in terms of tumour grade and type of 

pNET. Thus, the cohort mirrored the heterogeneity of pNETs that are most 

encountered in clinical practice.   

Combining CgA with other markers has been reported in previous studies. A 

study by Kovesdi et al. (2020) showed that a combination of CgA and miRNAs 

in a regression model resulted in a higher AUC value compared to those 

obtained using individual markers469. The comparative and combined utility of 

cocaine and amphetamine regulated transcript (CART), CgA and chromogranin 

B (CgB) for NET diagnosis and distinguishment between stable and progressive 

disease in different NET substyles were looked at using multiple logistic 

regression analysis.  Least significant variables were omitted form the model 

using a backwards selection procedure. Measuring CgA in combination with 

CgB significantly improved diagnostic accuracy in gut NETs and NETs with an 

unknown primary origin, with CgB being the best diagnostic marker for pNETs 

with no diagnostic advantage in also measuring CgA or CART. For 

distinguishing between controls (n=50) and pNETs (n=117), the LR model had 

an AUC of 0.78 using CART, CgA and CgB which reduced to 0.77 when using 

just CgB and CART which were identified as the most significant markers. 

Moreover, a combination approach for distinguishing stable pNETs (n=116) and 

progressive pNETs (n=36) revealed an AUC of 0.86 for the 3 markers (CART, 

CgA and CgB) however the reduced model using the most significant markers 

(CgA and CART) revealed that CgB did not contribute anything further to the 

model as the AUC remained at 0.86445. This suggests that CgA may be a later 

stage marker compared to CgB due to CgB being in the optimal model for 

distinguishing pNET cases from controls but not for distinguishing stable and 
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progressive disease. Within my optimal CVA marker combination, VGF-NGF 

has not been explored as a serum pNET marker previously, but ANG2 has 

been explored140,470. A study by Melen Mucha found that ANG2 was levels were 

elevated in metastatic disease compared to local disease140. Moreover, an 

additional study found that serum ANG2 levels were elevated in patients with 

metastatic disease compared to those with localised disease without metastasis 

which in turn was higher than healthy controls470. Time to disease progression 

was worse for patients with serum ANG2 levels >4756pg/ml. The study also 

found no significant difference in ANG2 levels when comparing patients with 

functional tumours and non-functional tumours. Additionally, ANG2 serum levels 

were no different between the 29 patients who were on SST analogues and the 

18 patients who were not. However, ANG2 has not been explored previously in 

a purely pNET cohort which made the analysis of the UOL pNET cohort for this 

marker unique. 

Based on the findings from the UOL training dataset the CVA combination was 

optimal relative to other marker combinations in terms of performance and 

marker number. However, it was important to validate how well this marker 

combination, as well as other well-performing combinations, using internal and 

external methods. This was because overfitting and underfitting are both 

important phenomena. It was likely that the best RBF SVM models which 

tended to have higher C and gamma values produced using the training dataset 

were overfitted to the UOL dataset. Likewise, RF models that performed 

extremely well could also have been overfitted, which required assessment by 

validation. Validation approaches such as k-fold, split set and external validation 

are explored in Chapters 4 and 5. 
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Chapter 4 - Validation of pNET biomarker panel and algorithms 

 

4.1 Introduction to validation  

When ML models are created using a whole training dataset as described in 

Chapter 3, a limitation to this approach is not knowing the extent to which these 

models are overfitted to the dataset from which they are derived. Overfitting 

occurs when a model is highly specific to the dataset used to create it and are 

unable to generalise well to other datasets471. The converse of overfitting is 

underfitting. Underfitting is when a model lacks some of the relevant 

assumptions or complexity in order to accurately reflect the data. Thus, an 

underfitted model will make inaccurate predictions from new data. An 

underfitted model will also display high bias and low variance, whereas an 

overfitted model will display low bias and high variance. Bias measures the 

error of the model compared to the true underlying model whereas variance 

measures how much the model would change if it were given different training 

data. In ML models there is typically a trade-off between bias and variance. 

Ultimately a ML model should be detailed enough to capture the pattern but 

simple enough not to be excessively specific to the training data471. Overfitting 

to a certain extent is expected and a modest drop in performance due to a 

marginal level of overfitting and differences between datasets due to their small 

size. It is known that smaller datasets with a are more likely to overfit, and are 

less likely to represent the population in question472. However larger drops in 

performance would indicate too much overfitting for real world applications and 

thus such models would not be taken forward. Thus, future work would need to 

explore refining the best models based on larger datasets. 

Thus, validation approaches for ML algorithms are important in order to assess 

the effect of overfitting and the generalisability of ML models. Different 

validation options have been used in ML biomarker studies, including the train 

and test approach473, k-FCV474, a type of k-FCV known as Leave-one-out cross 

validation (LOOCV)475 and external validation476. These approaches are 

explained in Chapter 1, Section 1.7.2.6. 

In this chapter, different validation approaches were taken to explore the pNET 

UOL case and control data. First, a train and test approach entailed splitting the 

UOL case-control cohort into two separate datasets, one for training and one for 



 168 

validation. The training dataset was employed to produce models that were 

tested using the validation dataset. Using separate data to test a ML model 

provides an unbiased estimate of the expected performance of the model when 

deployed in real world situations433. Train and test analysis was carried out for 

LR (Section 4.2), C5.0 decision trees (Section 4.3), RF (Section 4.4) and SVM 

(Section 4.5), using SPSS Modeler.   

The second type of validation explored in this chapter was k-FCV. For 5FCV 

k=5, for 10FCV k=10 and for 20FCV k=20. For a 10FCV, the data are divided 

into 10 folds with one-fold used for validation whilst the model is trained using 

the remaining subset. This process is repeated 10 times until each subset is 

used exactly once for validation. In a 5FCV and a 20FCV the data are divided 

into 5 or 10 folds, respectively. 5FCV, 10FCV and 20FCV were carried out for 

the Optimised Linear and Optimised RBF SVM utilising MCLA (Section 4.7). 

Optimised Linear and Optimised RBF SVM approaches were carried out in 

Chapter 3 using MCLA, and thus k-FCV for the same type of ML algorithm. k-

FCV is very economical as it allows the use of all the data for training to be re-

used for validation433.The default of 10FCV was carried out for the C5.0 

decision trees produced from the seven-marker combination (Section 4.6). If 

validation were to be carried out with a separate dataset, twice the amount of 

data would be needed to provide the same amount of data for both training and 

validation433. However, validating a model using data that was also used to 

develop the model can inflate performance estimates433. Hence, cross 

validation is used when data are limited. Cross validation typically gives more 

accurate out of sample error estimation compared to the other validation 

approaches433. Out of sample error is a measure of how well the model would 

perform on new data or a test set. By carrying out validation using the two 

different approaches of train and test as well as k-FCV allowed all four types of 

ML approaches to be further evaluated. 

External validation approaches use a separate dataset433. The advantage of 

using unseen data to test a ML model is that is can give a more unbiased 

estimate of performance in real-world situations433. External validation using an 

independent pNET RFH cohort is explored in Chapter 5. 



 169 

4.2 Train and Test approach for Logistic Regression  

A train and test approach was taken to assess the extent of overfitting when 

utilising the LR algorithm for the UOL cohort. The UOL dataset (n=106) was 

divided into two separate datasets with one containing the training data and 

another containing the validation data. The training dataset was used to create 

the model, with the validation dataset used to evaluate the model. Detailed 

methodology for this approach in SPSS Modeler can be found in Section 2.6.3. 

The aim of this analysis was to assess the extent of overfitting for the models 

using these markers and to compare their performance in the training and 

validation portions. The marker combinations assessed in this analysis were 

CVAM, CVA, CA, CV and AV, as well as the single markers C, V and A.  

 
4.2.1 Train and Test analysis of the CVAM LR model 
An LR model was created using the training portion (n=53) and tested using the 

validation portion (n=53) of the CGA, VGF-NGF, ANG2 and MAC2BP data. The 

resulting LR model showed that VGF-NGF was the most important marker from 

the predictor importance, followed by CGA, then ANG2 and finally MAC2BP 

(Figure 4.1A). The performance of the model as reflected by AUC values was 

0.891 in the training portion compared to 0.839 in the validation portion (Figure 

4.1B and C). This modest drop in performance (0.052 units) indicated the model 

had not been overfitted to the training dataset. 

 

 

 

Figure 4.1: Results obtained for 
the CVAM combination LR 
model using the Train and Test 
approach in SPSS modeler.  
(A) Predictor Importance results 
for the model with V=0.37, 
C=0.26, A=0.19 and M=0.17. (B) 
ROC curve obtained for the 
Training portion (n=53) with an 
AUC of 0.891. (C) ROC curve 
obtained for the Validation portion 
(n=53) with an AUC of 0.839. 

 
 

 

A 
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4.2.2 Train and Test analysis of the CVA LR model 
Results for this model’s predictor importance analysis based on the training 

dataset showed that VGF-NGF was the most important marker followed by 

ANG2 and then CGA (Figure 4.2A). The AUC obtained for the training portion 

was 0.894 compared to 0.849 for the validation portion (Figure 4.2B and C). As 

for the CVAM model, a modest drop in performance (0.045 units) indicated the 

CVA model had not been overfitted to the training dataset.  
 

 

 

 

Figure 4.2: Results obtained for 
the 3 marker CVA  combination 
LR model using the Train and 
Test approach in SPSS 
modeler. Training portion (n=53) 
and Validation portion (n=53). (A) 
Predictor Importance results for 
the model with V=0.57, A=0.32 
and C=0.10. (B) ROC curve 
obtained for the Training portion 
(n=53) with an AUC of 0.894. (C) 
ROC curve obtained for the 
Validation portion (n=53) with an 
AUC of 0.849 . 
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4.2.3 Train and Test analysis of the CV, CA and AV LR models  
The results of the Train and Test analysis of the three different two-marker 

combinations of CGA, VGF and ANG2 are shown in Figures 4.3 to 4.5. As 

expected, the performance of each model was higher using the validation data 

compared to using the training data. The CA model produced the best AUC of 

0.870 for the training portion, and this dropped 0.048 units to 0.822 for the 

validation portion (Table 4.1). The VA model had the poorest performance in 

the training stage with an AUC of 0.822, which dropped only 0.005 units to 

0.817 for the validation stage. The CV combination had an intermediate AUC of 

0.850 for the training stage, however this dropped to the lowest AUC of 0.724 at 

the validation stage. This large drop (0.126 units) suggested that the CV model 

had been overfitted to the training data more than the other two-marker models. 

In addition, the combinations of AC and CV performed better in training than the 

VA combination suggesting the presence of CgA improves LR model 

performance. 

 

 

Figure 4.3: Results obtained for 
the 2 marker CV combination 
LR model using the train and 
test approach in SPSS 
modeler. Training portion (n=53) 
and Validation portion (n=53). (A) 
Predictor Importance results for 
the model with C=0.50 and 
V=0.50. (B) ROC curve obtained 
for the Training portion (n=53) 
with an AUC of 0.85. (C) ROC 
curve obtained for the Validation 
portion (n=53) with an AUC of 
0.724. 
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Figure 4.4: Results obtained for 
the 2 marker CA combination 
LR model using the train and 
test approach in SPSS 
modeler. Training portion (n=53) 
and Validation portion (n=53). (A) 
Predictor Importance results for 
the model with A=0.76 and 
C=0.24. (B) ROC curve obtained 
for the Training portion (n=53) 
with an AUC of 0.87. (C) ROC 
curve obtained for the Validation 
portion (n=53) with an AUC of 
0.822 
 

 

 

 

Figure 4.5: Results obtained for 
the 2 marker VA combination 
LR model using the train and 
test approach in SPSS 
modeler. Training portion (n=53) 
and Validation portion (n=53). (A) 
Predictor Importance results for 
the model with A=0.59 and 
V=0.41. (B) ROC curve obtained 
for the Training portion (n=53) 
with an AUC of 0.822. (C) ROC 
curve obtained for the Validation 
portion (n=53) with an AUC of 
0.817. 
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4.2.4 Train and Test analyses of the C, V and A LR models 
The results from the training set analysis revealed that the best performing 

single marker was CGA with an AUC of 0.797 (Table 4.1), while the poorest 

performing single marker was VGF with an AUC of 0.770. In the validation 

stage ANG2 performed the best with an AUC of 0.761, while VGF performed 

the poorest with an AUC of 0.644. ROC curves for the single-marker analyses 

confirmed that the training stage performance was higher than the validation 

stage (Figures 4.6 to 4.8). Hence highlighting the overfitting of these models. 

 

 

 

 

 Figure 4.6: Results obtained 
for the C single marker LR 
model using the train and test 
approach in SPSS modeler. 
Training portion (n=53) and 
Validation portion (n=53). (A) 
Predictor Importance results for 
the model with C=1.00. (B) 
ROC curve obtained for the 
Training portion (n=53) with an 
AUC of 0.797. (C) ROC curve 
obtained for the Validation 
portion n=53 with an AUC of 
0.711. 
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Figure 4.7: Results obtained 
for the A single marker LR 
model using the train and test 
approach in SPSS modeler. 
Training portion (n=53) and 
Validation portion (n=53). (A) 
Predictor Importance results for 
the model with A=1.00. (B) 
ROC curve obtained for the 
Training portion (n=53) with an 
AUC of 0.770. (C) ROC curve 
obtained for the Validation 
portion (n=53) with an AUC of 
0.761. 
 

 
 

 
 

 

 

 

Figure 4.8: Results obtained 
for the V single marker LR 
model using the train and test 
approach in SPSS modeler. 
Training portion (n=53) and 
Validation portion (n=53). (A) 
Predictor Importance results for 
the model with V=1.00. (B) 
ROC curve obtained for the 
Training portion (n=53) with an 
AUC of 0.736. (C) ROC curve 
obtained for the Validation 
portion (n=53) with an AUC of 
0.644. 

 

 

A 

B 

C 

A 

B 

C 



 175 

 

Table 4.1: LR Train and Test results. 
The training portion (n=53) and validation portion (n=53) results are shown for the selected 
marker combinations. 
 

 

4.3 Train and Test approach for C5.0 decision trees  

Non-boosted general and accuracy decision tree models were obtained from 

the previous dataset (n=107) analysis and the top five models were identified 

(Chapter 3). A Train and Test approach was then taken to assess the degree of 

overfitting of these five non-boosted C5.0 decision trees. To allow comparison 

with the Train and Test analysis of other supervised ML algorithms, the entry 

with the single missing ANG2 value was removed and the resulting dataset 

(n=106) used to produce the training and validation datasets. The training 

portion consisted of 25 controls and 28 cases, while the validation portion 

consisted of 24 controls and 29 cases. A detailed methodology for this 

approach can be found in Section 2.6.1. The VAMP C5.0 non-boosted general 

decision tree model is described in Section 4.3.1, the VAMP C5.0 accuracy 

non-boosted model is described in Section 4.3.2, the general AMNTP C5.0 non-

boosted model is described in Section 4.3.3, TAPM C5.0 accuracy non-boosted 

model described in Section 4.3.4 and general CM entered model described in 

Section 4.3.5. 

 
4.3.1 Train and Test analysis of the VAMP general non-boosted C5.0 
decision tree  
The VAMP general non-boosted C5.0 decision tree was previously identified as 

one of the top five models in the whole dataset analysis. Thus, this marker 

combination was reviewed using train (n=53) and test (n=53) subsets to assess 

overfitting and performance. The C5.0 non-boosted decision tree obtained from 

the training subset revealed that all four markers (VGF, ANG2, MAC2BP and 

TIMP1) were used in the model (Figure 4.9). The ROC curves  

 Training portion AUC Validation portion AUC Difference in AUC (%) 
CVAM 0.891 0.839 0.052 (6) 
CVA 0.894 0.849 0.045 (5) 
CV 0.85 0.724 0.126 (15) 
VA 0.822 0.817 0.005 (1) 
CA 0.870 0.822 0.048 (6) 
C 0.797 0.711 0.086 (11) 
A 0.770 0.761 0.009 (1) 
V 0.736 0.644 0.092 (13) 
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Figure 4.9: VAMP C5.0 non-boosted decision tree. 
The schematic illustrates the tree obtained from the training subset (n=53) when the VAMP 
markers were entered and AVPM were used for model creation in the Train and Test analysis. 
 

obtained from the training and validation subsets had AUC values of 0.934 and 

0.691, respectively (Figure 4.10). The large difference (0.243 units) indicated 

strong overfitting of this decision tree model.   

 

 

 

 

Figure 4.10: Train and Test 
approach for the VAMP 
combination using the C5.0 
non-boosted general decision 
tree. 
(A) Predictor Importance 
A=0.34 V=0.26 M=0.22 and 
P=0.17. (B) ROC curve 
obtained for the training portion 
with an AUC of 0.934 (n=53). 
(C) ROC curve obtained for the 
validation portion with an AUC 
of 0.691 (n=53). 
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4.3.2 Train and Test analysis of the VAMP accuracy non-boosted C5.0 
decision tree  
The VAMP combination of markers also produced a C5.0 non-boosted accuracy 

decision tree model as one of the top five models produced using the whole 

dataset, and with results differing from those of the general setting model. A 

train (n=53) and test (n=53) assessment of the accuracy model revealed that all 

four markers were used (Figure 4.11). Moreover, the C5.0 non-boosted decision 

tree produced from the training set was identical to that obtained using the 

general setting (Figure 4.9). Therefore, the general or accuracy setting did not 

have any effect on the train and test approach, as seen for the whole dataset 

analysis in Chapter 3. Consequently, the ROC curves and AUCs obtained for 

the training and validation stages were the same as the corresponding values 

obtained for the general C5.0 non-boosted decision tree (Figure 4.10). The 

large difference in AUC of 0.243 units suggests that the model was overfitting. 

This also suggests that this combination of markers may not be suitable to take 

forward. 

 

 
Figure 4.11: Train and Test approach for the VAMP combination using the C5.0 non-
boosted accuracy decision tree C5.0 created using the training portion of the split 
dataset n=53 for when VAPM markers were entered and AVMP were used. 
 
  

 

C
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4.3.3 Train and Test analysis of the AMNTP general C5.0 non-boosted 
decision tree  
The AMNTP C5.0 non-boosted decision tree was also identified as a top 

decision tree model (Chapter 3) and a train and test analysis of this marker 

combination was therefore explored. The decision tree obtained from the 

training subset (Figure 4.13) employed only three of the five entered markers. 

Predictor importance results showed that ANG2 was the most important marker 

in the model (Figure 4.14). The difference in AUC was 20%. This large 

difference illustrated that the decision tree model was overfitting and again 

questioned the suitability of taking forward this marker combination and type of 

algorithm forward based on these results. 

  

 
 
 

Figure 4.12: Train and Test 
approach for the VAMP 
combination using the C5.0 
non-boosted accuracy 
decision tree. (A) Predictor 
Importance A=0.34 V=0.26 
M=0.22 and P=0.17. (B) ROC 
curve obtained for the training 
portion with an AUC of 0.934 
(n=53). (C) ROC curve for the 
validation portion with an AUC 
of 0.691 (n=53). 
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Figure 4.13: Train and Test approach for the C5.0 non-boosted general decision tree 
model created for the training portion (n=53) of the dataset when the AMNTP 
combination was entered, and APN were used. 
 

 
 
4.3.4 Train and Test analysis of the TAPM accuracy C5.0 non-boosted 
decision tree  
The C5.0 non-boosted accuracy decision tree produced from TAPM data was 

also identified as one of the top five models in Chapter 3, and a train and test 

analysis of these markers was therefore performed. The C5.0 decision tree 

obtained using the training portion (n=53) shows that only ANG2 and TIMP1 

 

Figure 4.14: AMNTP entered 
APN used C5.0 non-boosted 
general decision tree using 
the train and test approach. 
(A) Predictor Importance 
A=0.71 P=0.15 N=0.15 (B) 
ROC curve for the training 
portion (n=53) with an AUC of 
0.866. (C) ROC curve for the 
validation portion with an AUC 
of 0.667 (n=53). 
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were used in this model despite four markers being entered (Figure 4.15). 

Predictor importance analysis showed that ANG2 had greater importance than 

TIMP1 in the model. The ROC curves for this model for the training and 

validation portions are shown in Figure 4.16. The difference in AUC was 15% 

and was thus lower than seen with other combinations looked at. 

 

 
Figure 4.15: TAPM Train and Test C5.0 non-boosted accuracy decision tree. 
 

 

  

 

Figure 4.16: C5.0 non-
boosted accuracy decision 
tree using a train and test 
approach when TAPM were 
entered and AP were used. 
(A) Predictor Importance 
analysis A=0.89 and P=0.11 (B) 
ROC curve for the training 
portion (n=53) with an AUC of 
0.796. (C) ROC curve for the 
validation portion (n=53) with an 
AUC of 0.647. 
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4.3.5 Train and Test analysis of the CM general C5.0 non-boosted decision 
tree  
Finally, a C5.0 non-boosted decision tree model was created from the CM 

combination. The model revealed that only CgA was used. Moreover, this 

model performed better in the training portion compared to the validation portion 

with AUCs of 0.795 and 0.693 respectively, a difference of 0.102 units (Table 

4.2). The difference in AUC of 10% was modest and not as high as seen with 

other marker combinations. 

 
 

 
Figure 4.17: Train and Test C5.0 non-boosted general decision tree produced using CM 
training data entry, and only C was used (n=53). 
 
 
 

 

Figure 4.18: Train and Test 
analysis of the CM C5.0 non-
boosted general decision 
tree. 
(A) Predictor Importance 
C=1.00 (B) ROC curve with an 
AUC of 0.795 for the Training 
portion (n=53). (C) ROC curve 
with an AUC of 0.693 for the 
Validation portion (n=53). 
 

 
 

A 

B 
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4.3.6 Summary of C5.0 non-boosted decision trees using the train and test 
approach 
The train and test analysis of the top five C5.0 non-boosted decision trees 

identified in Chapter 3 revealed that the worst performing model at the training 

stage was produced from CM data and utilised just the C marker. The best 

performing model in the training stage was VAPM which used all four markers 

and had an AUC of 0.934 (Table 4.2). However, in the validation stage this 

dropped to 0.691, a large decrease of 0.243 (26%), indicating substantial 

overfitting. 

 

Moreover, differences between the whole training dataset approach as 

described in Chapter 3 and the train and test approach for the top non-boosted 

C5.0 decision trees (Table 4.2) are seen for the different combinations entered. 

For the VAPM entered combination the same markers are used in both the 

whole training dataset analysis and the train and test approach. However, the 

predictor of importance for the markers vary, with the model created in the 

whole training dataset analysis the order of importance is APMV whereas for 

the train and test approach analysis is it AVMP and so VGF is of greater 

importance in the train and test compared to TIMP1. Interestingly, the AUC 

obtained for the training portion for the train test approach was higher than that 

seen when using the whole training dataset, with this being 0.864 (accuracy), 

0.888 (general) and 0.934 (general and accuracy train and test). This could be 

attributed to the smaller size of the dataset used to build the model (n=106) vs 

(n=53) (for the training portion).For the AMNTP combination, for the whole 

training dataset  the markers used were AMPT with an AUC of 0.871, this was 

higher than that seen for the test and train analysis for when this combination 

was entered. The model created when the AMNTP combination was entered 

 

 
 
 
 

C
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also differed in the markers that were used in the model, with just APN being 

used in the model. The AUC was also lower, with this being 0.866 compared to 

0.871. This could perhaps be attributed to fewer markers being used to build 

the model in the train and test approach compared to the whole training dataset 

(3 vs 4). For the TAPM combination for the whole training dataset analysis, all 

four markers were used with an AUC of 0.867. However, for the train and test 

approach only two out of the four markers were used A and P and the AUC 

obtained for the training portion was 0.796 which was lower. Again, this could 

be attributed to fewer markers being used to build the model for the train and 

test approach. Finally, for the CM combination for the whole training dataset 

analysis, both C and M were used for model building and an AUC of 0.850 was 

obtained. However, for the train and test approach when both these markers 

were entered, only C was used for model building with an AUC of 0.795 in the 

training portion. The lower AUC seen when the same markers are entered in 

these two different approaches could be attributed to two.  markers being used 

in the model when built on the whole training dataset vs when the model was 

built using just the training portion. 

 
Markers 
entered 

Markers 
used 

Predictor 
Importance 

Training 
portion AUC 

Validation 
portion AUC 

Difference in 
AUC (%) 

VAPM AVPM A=0.34 V=0.26 
M=0.22 P=0.17 

0.934 0.691 0.243 (24) 

VAPM AVMP A=0.34 V=0.26 
M=0.22 P=0.17 

0.934 0.691 0.243 (24) 

AMNTP APN A=0.71 P=0.15 
N=0.15 

0.866 0.667 0.199 (20) 

TAPM AP A=0.89 P=0.11 0.796 0.647 0.149 (15) 
CM C C=1.00 0.795 0.693 0.102 (10) 

Table 4.2: Summary of the 5 C5.0 non-boosted decision tree models examined using the 
train and test approach. 
 
 

4.4 Train and Test assessment of Random Forest models  

The RF models across all combinations performed very well and thus overfitting 

was a possible explanation, as described in Chapter 3. A detailed methodology 

for the train and test assessment of RF models is described in Section 2.6.4. 

Briefly, a single run was carried out for one to six-marker combinations to 

assess the likelihood of overfitting, this would provide an overview across 

several marker combinations, it was also unlikely that a seven-marker model 
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would be taken forward as performance at the six-marker level illustrates this 

(Table 4.3). As expected, the training portion AUC was higher than the 

validation portion AUC across all marker combinations. Moreover, the difference 

in AUC across the training portion and validation portion was >0.167 for all the 

explored combinations, which indicated that all the RF models had been 

strongly overfitted to the training data across all combinations and highlights the 

low ability of RF models to generalise. Although many of the validation AUCs 

were higher compared to the C5.0 non-boosted decision trees. This could be 

due to the training portion AUCs being much higher than that being seen for the 

C5.0 non-boosted decision trees thus stronger performing models were made to 

begin with and thus, despite the drop due to overfitting in RF, the validation 

portion AUCs for certain combinations are higher than that seen for decision 

trees. Also, the combination itself could be influencing this to a certain extent. 

As only 5 entered combinations were explored with the C5.0 non boosted 

compared to 10 combinations for RF. 

 
Combination Training portion AUC Validation portion AUC Difference in AUC (%) 
A 0.999 0.681 0.318 (32) 
VA 0.999 0.749 0.250 (33) 
CA 1.00 0.751 0.249 (25) 
CM 0.993 0.627 0.366 (37) 
CVA 1.00 0.828 0.172 (17) 
CVAM 0.996 0.825 0.171 (17) 
TAPM 0.999 0.668 0.331 (33) 
VAPM 0.999 0.687 0.312 (31) 
CVAPM 0.997 0.809 0.188 (19) 
TCVAPM 1.00 0.833 0.167 (17) 

Table 4.3: Summary of the RF model performance using the Train and Test approach.  
 
 

4.5 Train and Test approach for SVM model validation 

SVM models produced by SPSS Modeler from the whole UOL dataset were 

previously explored in Chapter 3. The train and test approach was also used to 

assess overfitting of these models. As SVMs are distance-based algorithms, 

normalisation was needed. The detailed methodology used for this is described 

in Section 2.6.2. Briefly, the whole dataset was divided as before into training 

and validation datasets. The training portion contained 25 controls and 28 

cases, while the validation portion contained 24 controls and 29 cases. Both 

datasets were normalised using the min-max methodology as previously 
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described (Section 2.4.1.1). Ten different C parameter values were assessed 

for the Linear SVM kernel, and 120 different combinations of gamma and C 

parameter were assessed for the RBF SVM kernel. A train and test analysis 

was then conducted for the best performing SVM models identified in Chapter 

3, namely, the seven-marker combination (Sections 4.5.1 and 4.52), and the 

CVAM (Sections 4.5.3 and 4.5.4), CVA (Sections 4.5.5 and 4.5.6) and CV, CA 

and AV combinations (Sections 4.5.7 and 4.5.8).  

 

4.5.1 Train and Test analysis of seven-marker Linear SVM models 
Increasing the C parameter value from one to ten for the training and validation 

portions caused an increase in the performance of the seven-marker SVM 

model (Figure 4.19). Specifically, the training and validation AUCs ranged from 

0.844-0.893 and 0.825-0.845, respectively. The small difference between 

corresponding training and validation AUC values indicated low levels of 

overfitting for the seven-marker Linear SVM models. Moreover, the difference in 

AUC between the train and test portions was lowest at C=1, which supports the 

rationale that smaller C value models tend to overfit less than higher C value 

models (Figure 4.19).   

Moreover, at each C parameter value the training AUC was higher than that 

seen at validation (Figure 4.19), indicating the presence of overfitting. The 

highest AUC was obtained at C=6 for the training data, however this model also 

had the largest difference between training and validation AUCs, indicating the 

highest level of overfitting. The difference in AUC between the validation and 

training portions tended to increase, indicating increasing levels of overfitting, 

with increasing C parameter value. As the difference in AUC was lowest at C=1 

this model was most likely to have been underfitted to the data. 
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The predictor importance results (Table 4.4) indicated that VGF-NGF was the 

most important marker in nine out of then ten models and that thymosin beta 4 

was the least important marker in nine out of the ten models 

 
C 1st Marker 2nd Marker 3rd Marker 4th Marker 5th Marker 6th Marker 7th Marker 
1 M=0.32 V=0.28 A=0.11 C=0.09 N=0.08 T=0.06 P=0.06 

2 V=0.29 M=0.29 C=0.13 A=0.12 N=0.08 P=0.05 T=0.04 

3 V=0.28 M=0.29 C=0.16 A=0.14 N=0.08 P=0.05 T=0.04 

4 V=0.27 M=0.22 A=0.17 C=0.16 N=0.08 P=0.05 T=0.04 

5 V=0.27 A=0.20 M=0.18 C=0.17 N=0.08 P=0.05 T=0.04 

6 V=0.26 A=0.22 C=0.17 M=0.17 N=0.08 P=0.05 T=0.04 

7 V=0.26 A=0.23 C=0.17 M=0.16 N=0.08 P=0.06 T=0.04 

8 V=0.27 A=0.23 C=0.17 M=0.16 N=0.08 P=0.06 T=0.04 

9 V=0.27 A=0.23 C=0.17 M=0.16 N=0.08 P=0.06 T=0.04 

10 V=0.27 A=0.22 C=0.17 M=0.16 N=0.08 P=0.06 T=0.04 

Table 4.4: Train and Test predictor importance analysis for the seven-marker Linear SVM 
models created using the training portion (n=53). 
 

 Figure 4.19: Train 
and Test analysis of 
the Linear SVM 
seven-marker 
model. 
Data were min-max 
scaled, and a C range 
of 1 to 10 was used 
with the training 
(n=53) and validation 
(n=53) portions. 
(A) Comparison 
between the training 
(n=53, blue line) and 
validation (n=53, red 
line) portion. 
(B) Difference in AUC 
between training and 
validation portions at 
each C parameter 
value. 
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4.5.2 Train and Test analysis of seven-marker RBF SVM models 
A train and test dataset approach was carried out in SPSS Modeler as 

previously described (Section 2.6.2). 120 combinations of C parameter and 

gamma were looked at to assess the impact of the C parameter and gamma 

values on the performance of the models in the training and validation portions 

and, consequently, the extent of overfitting. As the C parameter value increased 

at each gamma value, the performance of each model also increased, as 

expected (Figure 4.20). Additionally, at higher gamma values performance was 

better than at lower values, also as expected. The optimal training result was 

seen at C=7 and gamma=0.95, C=8 and gamma=0.85, C=9 and gamma=0.95, 

C=10 and gamma=0.9, and C=10 and gamma=0.95. This indicated that higher 

C parameter and higher gamma values produced better performing models in 

the training stage. 
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Figure 4.20: Train and Test analysis of RBF SVM seven-marker models. 
Data were min-max scaled and a C range of 1 to 10 and a gamma range of 0.4 to 0.95 were 
used. In total 120 combinations of C and gamma values were examined. (A) Training portion 
dataset (n=53) results. AUCs for the range of C values between 1 and 10 is seen with C=1 
(blue), C=2 (orange), C=3 (grey), C=4 (yellow), C=5 (light blue), C=6 (green), C=7 (navy blue), 
C=8 (brown), C=9 (dark grey), C=10 (light brown) are shown. The colour key for C parameter is 
used in all subsequent RBF results. (B) Validation portion dataset (n=53) results.  
 

The validation results were lower than those of the training portion indicative of 

overfitting (Figure 4.20). Moreover, as the C parameter value increased the 

performance of the models decreased, thereby highlighting that these models 

had been overfitted to their cognate data and had a poor ability to generalise 

despite the high C parameter and high gamma value models performing well at 

training. Thus, the best models at the validation level had low C parameter and 

gamma values. 

 

4.5.3 Train and Test analysis of CVAM Linear SVM models 
Using the train and test approach described in Section 2.6.2, C parameter 

values from 1 to 10 were used. As expected, the results showed that the 

training portion performed better than the validation portion, with the best 

training set model in terms of AUC produced at C=6 (Figure 4.21). The 

difference in AUC was the lowest at C=1, suggesting that this model was least 

likely to be overfitted. Predictor importance results revealed that VGF-NGF was 

the most important marker in six out of the ten models, while CGA was the least 

important marker in all ten models (Table 4.5). 
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Figure 4.21: 
Train and 
Test 
analysis of 
the CVAM 
Linear SVM 
model. 
Data were 
min-max 
scaled, and 
a C range of 
1 to 10 was 
used with 
the training 
(n=53) and 
validation 
(n=53) 
portions. (A) 
Comparison 
of Linear 
SVM results 
for the 
training and 
validation 
portions. (B) 
Difference in 
AUC 
between 
training and 
validation 
portions for 
the ten SVM 
models. 
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C 1st Marker 2nd Marker 3rd Marker 4th Marker 
1 M=0.35 V=0.29 A=0.22 C=0.14 

2 V=0.34 M=0.29 A=0.21 C=0.16 

3 V=0.34 M=0.27 A=0.20 C=0.19 

4 V=0.35 A=0.23 M=0.22 C=0.19 

5 V=0.34 A=0.26 M=0.21 C=0.19 

6 V=0.33 A=0.29 M=0.20 C=0.18 

7 V=0.32 A=0.31 M=0.19 C=0.18 

8 A=0.33 V=0.31 M=0.18 C=0.18 

9 A=0.33 V=0.31 M=0.18 C=0.18 

10 A=0.33 V=0.31 M=0.18 C=0.18 

Table 4.5: Train and Test predictor importance for the ten CVAM Linear SVM models 
created using the training portion. 
VGF was the most important marker in lower C parameter value models (C=2 to 7), while ANG2 
was more important in higher C value models (C=8 to 10). The least important marker was CGA 
across all ten models. 
 

4.5.4 Train and Test analysis of CVAM RBF SVM models 
A train and test analysis examined 120 combinations of C parameter and 

gamma values to assess the change in CVAM model performance between 

training and validation stages as an indicator of the extent of overfitting (Figure 

4.22). As expected, increasing the C parameter value resulted in increased 

performance at the training and validation levels, although only for C parameter 

values up to 4 or 5. For these C parameter values, increasing the gamma value 

tended to improved performance at both levels. This therefore supported the 

notion that both an optimal C and gamma level were important for the RBF 

SVM.  

 

 
 

Figure 4.22: 
RBF SVM 4 
marker CVAM 
combination 
Train and Test 
approach using 
SPSS Modeler. 
Data was min-
max scaled. A C 
range of 1 to 10 
was used and a 
gamma range of 
0.4 to 0.95 was 
used. In total 120 
combinations of 
C and gamma 
were examined. 
(A) Training 
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4.5.5 3 Train and Test analysis of CVA Linear SVM models 
The extent of overfitting was explored using C parameter values from 1 to 10. 

The results showed that the training portion performed better than the validation 

portion across all C parameter values, as expected (Figure 4.23). However, the 

performance within either portion changed little with increasing C parameter 

value, suggesting that the C parameter was not a significant determinant of 

these models. The small difference (approx. 0.03 units) in performance across 

all C parameter values indicated that the training model was not overfitted at 

any value. This therefore suggested that overfitting was not of concern with 

these models and a wider suitability of models across the C parameters (1-10). 

 

 

 

Figure 4.23: Linear SVM 
3 marker CVA 
combination Train and 
Test approach using 
SPSS Modeler.  
Data were min-max 
scaled. A C range of 1 to 
10 was used. The training 
portion contained (n=53) 
and validation portion 
contained (n=53). (A) 
Linear SVM results 
comparison between the 
training and validation 
portion results, using the 
3-marker combination. 

 
 

portion dataset 
(n=53) results. 
(B) Validation 
portion dataset  
(n=53) results.  
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(B) Difference in AUC 
between training and 
validation portion. 
 

 

 
C 1st Marker 2nd Marker 3rd Marker 
1 V=0.51 A=0.35 C=0.15 

2 V=0.49 A=0.36 C=0.14 

3 V=0.53 A=0.34 C=0.12 

4 V=0.55 A=0.34 C=0.12 

5 V=0.55 A=0.33 C=0.11 

6 V=0.55 A=0.33 C=0.11 

7 V=0.55 A=0.33 C=0.11 

8 V=0.53 A=0.35 C=0.12 

9 V=0.52 A=0.36 C=0.12 

10 V=0.51 A=0.37 C=0.12 

Table 4.6: Train and Test predictor importance for the ten CVA Linear SVM models 
created using the training portion. 
For the three-marker CVA combination the most important marker is VGF. CGA is the least 
important marker across all the model.  
 
 

4.5.6 Train and Test analysis of CVA RBF SVM models 
Train and test analysis of CVA RBF SVM models were performed using 120 

combinations of C parameter and gamma to assess the impact of these 

parameters on performance in the training and validation portions and the 

extent of overfitting (Figure 4.24). The results for this marker combination were 

mixed. For both portions, increasing the C parameter value tended to improve 

performance, although only up C=3 and 4 for the training and validation 

portions, respectively. Increasing the gamma value had no consistent effect on 

either portion. Moreover, the effect of changing either parameter was small 

(<0.01 units). Specifically, for the three-marker CVA combination the training 
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AUCs ranged from (0.876 to 0.883) and the validation portion the AUCs ranged 

from (0.845 to 0.852). Again, like with the Linear SVM, this meant that 

overfitting was not of major concern with these models across the C and 

gamma range. 

 

 

 

4.5.7 Train and Test analysis of CV, CA and VA Linear SVM models 
The CV, CA and VA Linear SVM models were analysed using a C parameter 

range of 1 to 10. For the CV and the CA models, the training portion AUCs were 

higher than those seen for the validation portion across all C values, as 

expected (Figures 4.25 to 4.27). More specifically, the AUCs of CV training 

models ranged from 0.813 to 0.824, while the AUCs for the validation models 

ranged from 0.704 to 0.710 (Figure 4.25). The poorest performing validation 

models were seen at C=4, 5 and 8 (AUC = 0.704) and the best was at C=9 

(AUC = 0.710). The AUCs of CA training models ranged from 0.833 to 0.846, 

and those of the validation portion ranged from 0.789 to 0.795 (Figure 4.26). 

 
 

Figure 4.24: RBF 
SVM 3 marker CVA 
combination Train 
and Test approach 
using SPSS 
Modeler. 
Data were min-max 
scaled. A C range of 
1 to 10 was used 
and a gamma range 
of 0.4 to 0.95 was 
used. In total 120 
combinations of C 
and gamma were 
examined. (A) 
Training portion 
(n=53) results. (B) 
Validation portion 
(n=53) results.  
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However, for the VA models the validation portion AUCs of 0.822 to 0.825 were 

higher than the training portion AUCs of 0.816 to 0.819 (Figure 4.27). For the 

VA training models the best AUC of 0.819 was seen at C=1, 9 and 10, while for 

VA validation models the best AUC of 0.825 was seen at C=1, 2, 8 and 9. The 

lower performance of training compared to validation models indicated a poorer 

ability of the VA marker data in the training set to produce linear SVM models 

compared to the validation set. 

For the CV combination the difference in AUC was lowest at C=2, 6 and thus 

the impact of overfitting is less at these C values (Figure 4.25); for the CA 

combination this occurred at higher C parameter values of 7 to 10 (Figure 4.26); 

and for the VA combination, the training and validation model performance was 

most similar at C=10 (Figure 4.27).  At the two-marker level the general trend of 

increased C value leading to a greater overfitted isn’t necessarily the case. 

Finally, as the highest AUC of 0.846 obtained for all three two-marker linear 

SVM models was smaller than the lowest AUC of 0.876 obtained for the three-

marker (CVA) linear SVM model in the training portion (n=53),thus it is clear 

that reducing to a two-marker combination leads to a drop in performance at the 

training level at C values across 1 to 10 and thus suggests that dropping to a 

two-marker combination may not be optimal. 

 
 

 

 

Figure 4.25: Linear 
SVM two-marker CV 
combination Train 
and Test approach 
using SPSS Modeler.  
Data were min-max 
scaled. A C range of 1 
to 10 was used. 10 
models were generated 
in total. (A) Linear SVM 
results comparison 
between the training 
portion (n=53) and 
validation portion 
(n=53) dataset results. 
(B) Difference in AUC 
between training and 
validation portion. 
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Figure 4.26: 
Linear SVM 2 
marker CA 
combination 
Train and Test 
approach using 
SPSS Modeler.  
Data were min-
max scaled. A C 
range of 1 to 10 
was used. 10 
models were 
generated in total. 
(A) Linear SVM 
results 
comparison 
between the 
training portion 
(n=53) and 
validation portion 
(n=53) dataset 
results. (B) 
Difference in AUC 
between training 
and validation 
portion.  
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Figure 4.27: Linear SVM 2 marker VA combination Train and Test approach using SPSS 
Modeler. Data was min-max scaled. A C range of 1 to 10 was used. 10 models were generated 
in total. (A) Linear SVM results comparison between the training portion (n=53) and validation. 
(B) Difference in AUC between training and validation portion 
 

C 1st marker 2nd marker 
1 V=0.80 C=0.20 

2 V=0.80 C=0.20 

3 V=0.80 C=0.20 

4 V=0.78 C=0.22 

5 V=0.78 C=0.22 

6 V=0.79 C=0.21 

7 V=0.79 C=0.21 

8 V=0.78 C=0.22 

9 V=0.75 C=0.25 

10 V=0.73 C=0.27 

Table 4.7: Train and Test predictor importance for the ten CV Linear SVM models created 
using the training portion. 
VGF-NGF was of greater importance for the model compared to CgA. 
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C 1st Marker 2nd Marker 
1 A=0.69 C=0.31 

2 A=0.69 C=0.31 

3 A=0.67 C=0.33 

4 A=0.67 C=0.33 

5 A=0.68 C=0.32 

6 A=0.69 C=0.31 

7 A=0.69 C=0.31 

8 A=0.69 C=0.31 

9 A=0.69 C=0.31 

10 A=0.69 C=0.31 

Table 4.8: Train and Test predictor importance for the ten CA Linear SVM models created 
using the training portion. 
 ANG2 was of greater importance for the models compared to CgA. 
 
 

C 1st Marker 2nd Marker 
1 A=0.50 V=0.50 

2 A=0.57 V=0.43 

3 A=0.55 V=0.45 

4 A=0.57 V=0.43 

5 A=0.57 V=0.43 

6 A=0.56 V=0.44 

7 A=0.53 V=0.47 

8 A=0.52 V=0.48 

9 V=0.50 A=0.50 

10 V=0.51 A=0.49 

Table 4.9: Train and Test predictor importance for the ten VA Linear SVM models created 
using the training portion. 
ANG2 was of greater importance for the model compared to VGF. 
 
 

4.5.8 Train and Test analysis of CV, CA and VA RBF SVM models 
The two-marker RBF SVM models were tested using 120 combinations of the C 

parameter and gamma with grid-based optimisation (Section 2.6.2). As found 

for the CV and CA linear SVM models, the corresponding training model AUCs 

were higher than the validation model AUCs across all C values (Figure 4.28 

and Figure 4.29); the VA validation model AUCs were higher than those of the 

training models (Figure 4.30); and all training model AUCs were lower than 

those of the corresponding three-marker CVA models.  
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Specifically, the CA training model AUCs ranged from 0.834 to 0.844, while the 

validation model AUCs ranged from 0.787 to 0.793 (Figure 4.29); the CV 

training model AUCs ranged from 0.811 to 0.829 and validation model AUCs 

ranged from 0.704 to 0.717 (Figure 4.28); and the VA training model AUCs 

ranged from 0.816 to 0.819 and validation model AUCs ranged from 0.822 to 

0.833 (Figure 4.30). Thus, for the RBF SVM, reduction to a two marker level 

leads to performances inferior to that seen at the three-marker level in the 

training portion and again like with the Linear SVM, it suggests that removal of 

an additional marker impacts performance in the training portion.  

 

 

 
  

  
 

Figure 4.28: 
RBF SVM 2 
marker CV 
combination 
Train and Test 
approach 
using SPSS 
Modeler. 
Data were min-
max scaled. A 
C range of 1 to 
10 was used 
and a gamma 
range of 0.4 to 
0.95 was used. 
In total 120 
combinations of 
C and gamma 
were 
examined. (A) 
Training portion 
dataset (n=53) 
results. (B) 
Validation 
portion dataset 
(n=53) results.  
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Figure 4.29: 
RBF SVM 2 
marker CA 
combination 
Train and Test 
approach using 
SPSS Modeler.  
Data were min-
max scaled. A C 
range of 1 to 10 
was used and a 
gamma range of 
0.4 to 0.95 was 
used. In total 120 
combinations of 
C and gamma 
were examined. 
(A) Training 
portion dataset 
(n=53) results. 
(B) Validation 
portion dataset 
(n=53) results.  
 

 

 

 
 

 

Figure 4.30: RBF 
SVM 2 marker VA 
combination Train 
and Test approach 
using SPSS 
Modeler 
Data were min-max 
scaled. A C range of 
1 to 10 was used 
and a gamma range 
of 0.4 to 0.95 was 
used. In total 120 
combinations of C 
and gamma were 
examined. (A) 
Training portion 
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4.6 Validation of boosted C5.0 decision trees using 10-FCV 

Overfitting by boosted C5.0 decision trees was assessed using a 10FCV 

approach to assess performance when data for all seven markers were entered. 

This approach was taken to give an indication of the most important markers as 

well as which markers were redundant in the resulting models, thereby allowing 

a direct comparison with the results in Chapter 3. It also allowed me to analyse 

the impact of boosting on cross validation.  

Consequently, instead of exploring each marker combination individually, ten 

individual cross validation runs of the seven-marker data were carried out as 

described in Section 2.8. The results from ten runs also provided insight into the 

variation between models produced from each run. 

The results revealed that each run produced consistent high AUC values 

ranging from 0.917 and 0.93 (Table 4.10). Notably, the ACVM and ACV 

combinations were each used in five iterations, indicating the importance of the 

ANG2, CGA and VGF markers. Moreover, all ten runs produced C5.0 boosted 

decision trees that performed better than the C5.0 non-boosted decision tree 

results using either the accuracy or generality settings, showing that boosting 

enhanced C5.0 decision tree performance. 

The extent of boosting differed between models as revealed by the percentage 

boosting, although the amount of boosting had little impact on the selection of 

markers or model performance. For example, runs 1 and 3 both used the three 

markers ANG2, CGA and VGF with boosting percentages of 70% and 90%, 

respectively. Nevertheless, each model achieved the same AUC (0.917) and 

the same predictor of importance for the ACV combination (A=0.37, C=0.36 and 

V=0.27). Similarly, for runs 1 and 7 the same marker combination was used 
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with the same boosting percentage (70%). The improved model performance 

(AUC=0.921) appeared to arise instead from relative changes in the relative 

contribution of each marker (C=0.41, A=0.30 and V=0.29). Finally, comparing 

runs 2, 4, 6, 9 and 10, which all used the 4 markers ANG2, CGA, VGF and 

MAC2BP, showed that while the boosting for these runs varied between 60 and 

80%, the AUCs remained unchanged at 0.930.  

Inclusion of the MAC2BP marker seemed to improve model performance as the 

AUC of 0.930 (mean accuracy 73.0-78.6%) exceed the range of 0.917-0.921 

(mean accuracy 69.3-73.8%) achieved by models in which MAC2BP was not 

used. 

 
 Markers 

entered 
Markers 
used 

Predictor 
Importance 

Boost AUC Mean 
Accuracy 
(%) 

Standard 
error (%) 

Run 1 CTAMNVP ACV A=0.37 
C=0.36 
V=0.27 

70% 0.917 73.0 3.7 

Run 2 CTAMNVP ACMV A=0.30 
C=0.27 
M=0.22 
V=0.20 

60% 0.930 73.0 5.1 

Run 3 CTAMNVP ACV A=0.37 
C=0.36 
V=0.27 

90% 0.917 69.3 3.9 

Run 4 CTAMNVP ACMV A=0.30 
C=0.27 
M=0.22 
V=0.20 

70% 0.930 78.6 3.0 

Run 5 CTAMNVP ACV A=0.37 
C=0.36 
V=0.27 

80% 0.917 73.8 3.3 

Run 6 CTAMNVP ACMV A=0.30 
C=0.27 
M=0.22 
V=0.20 

70% 0.930 74.8 3.9 

Run 7 CTAMNVP CAV C=0.41 
A=0.30 
V=0.29 

70% 0.921 72.8 3.2 

Run 8 CTAMNVP ACV A=0.37 
C=0.36 
V=0.27 

80% 0.917 72.6 3.6 

Run 9 CTAMNVP ACMV A=0.30 
C=0.27 
M=0.22 
V=0.20 

70% 0.930 73.0 5.4 

Run 10 CTAMNVP ACMV A=0.30 
C=0.27 
M=0.22 
V=0.20 

80% 0.930 74.7 3.7 

Table 4.10: 10FCV analysis of boosted C5.0 decision trees.  
Models generated from seven marker inputs and ten iterations are compared. Each run resulted 
in a unique model. 
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The non-boosted C5.0 decision trees explored in Chapter 3 for the seven 

marker entered models, utilised ANG2 and CGA (Section 3.2). This was 

different to what was seen for the boosted cross validated C5.0 decision trees, 

which additionally utilised VGF and even MAC2BP in certain runs. Interestingly 

the AUC’s obtained for the boosted 10FCV C5.0 decision trees were better than 

that obtained for non-boosted, non-cross validated C5.0 decision trees. Based 

on the ten runs obtained for the boosted C5.0 decision tree, the best model was 

the Run 9 and Run 10 models which utilised MAC2BP and VGF, and obtained 

an AUC of 0.930.  

 

4.7 K-fold cross validation (k-FCV) of SVM models 

K-FCV was used to evaluate overfitting of Optimised Linear and Optimised RBF 

models created in MCLA software. Building k-FCV models is a feature in MCLA 

and thus as Optimised SVM and Optimised RBF models were built using MCLA 

previously as described in Chapter 3, Optimised SVM models were explored for 

k-FCV. As the SVM algorithm is a distance-based algorithm, the data was 

normalised as described in Section 2.7.1. K values of 5, 10 and 20 were 

employed to assess the impact of fold number on performance and to compare 

the best performing models at each fold level. Optimal C and gamma 

parameters were assessed using MCLA because it provided a larger range of 

values than SPSS Modeler. Models were created for the seven-marker, six-

marker (-TB4, -NSE, or -TIMP1), four-marker (CVAM), three-marker (CVA), and 

two-marker CV, CA and VA combinations. This was to be consistent with the 

approach taken in Chapter 3 and to compare the same combinations. Model 

performance was assessed using AUC and accuracy (percentage of correctly 

classified observations) values determined at each value of k. 

Results from the k-FCV of Linear SVM models produced from all seven markers 

revealed AUCs of 0.83, 0.83 and 0.84 for the 5-, 10- and 20-fold models, 

respectively, indicating that increasing the fold number had little impact on 

performance.  

The best Optimised Linear SVM 5FCV model was obtained using three different 

marker combinations: the six-marker (-TB4) model, the four-marker CVAM 

model, and the three-marker CVA model. All three models produced an AUC of 

0.85. Hence, the 5FCV revealed the simplest optimal marker combination was 
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CVA. The best performing 10FCV and 20FCV models were both the three-

marker CVA combination with an AUC of 0.86. Thus, across all k values, the 

CVA combination consistently produced the highest AUC values. Reducing to 

the two-marker combinations of CV, CA or VA produced lower AUC values of 

0.74 to 0.83.  

The best Optimised RBF SVM 5FCV model was obtained from the six-marker (-

NSE) and the seven-marker combination with an AUC of 0.82. The best 10FCV 

model was obtained from the CVAM combination, which produced an AUC of 

0.84. The best 20FCV was obtained from four marker combinations: the seven 

marker, six-marker (-NSE), CVAM and CVA combinations, which each 

produced an AUC of 0.81. The CV models had noticeably poorer performance, 

with AUCs of less than 0.8 across all k values. Thus, from these results across 

Optimised Linear and Optimised RBF SVM for each combination assessed fold 

number generally had little impact on AUC and performance. 

 
Optimised Linear 
SVM Model 

Fold 
Validation 

Box 
constraint 

AUC Accuracy (%) 

7 marker  5 215.4435000 0.83 72.6 
7 marker  10 46.4159000 0.83 76.4 
7 marker  20 46.4159000 0.84 76.4 
6 marker (-NSE)  5 215.4435000 0.81 73.6 
6 marker (-NSE) 10 215.4435000 0.81 76.4 
6 marker (-NSE) 20 1000.0000000 0.82 74.5 
6 marker (-TIMP1) 5 46.4159000 0.84 75.5 
6 marker (-TIMP1) 10 46.4159000 0.84 78.3 
6 marker (-TIMP1) 20 215.4435000 0.85 79.2 
6 marker (-TB4) 5 215.4435000 0.85 74.5 
6 marker (-TB4) 10 215.4435000 0.84 76.4 
6 marker (-TB4) 20 46.4159000 0.84 75.5 
4 marker CVAM 5 10.0000000 0.85 75.5 
4 marker CVAM 10 10.0000000 0.85 78.3 
4 marker CVAM 20 10.0000000 0.85 76.4 
3 marker CVA 5 46.4159000 0.85 75.5 
3 marker CVA 10 0.4641600 0.86 77.4 
3 marker CVA 20 0.4641600 0.86 78.3 
2 marker CV 5 0.0215440 0.74 64.2 
2 marker CV 10 0.4641600 0.77 69.8 
2 marker CV 20 0.4641600 0.78 73.6 
2 marker CA 5 0.0046416 0.82 77.4 
2 marker CA 10 0.0046416 0.83 75.5 
2 marker CA 20 0.0010000 0.81 76.4 
2 marker VA 5 0.1000000 0.80 74.5 
2 marker VA 10 0.4641600 0.81 75.5 
2 marker VA 20 2.1544000 0.80 75.5 

Table 4.11: Summary of the Optimised Linear SVM k-fold cross validation analysis using 
MCLA. 
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Optimised RBF 
SVM Model 

Fold 
Validation 

Box 
constraint 

Kernel 
Scale 

AUC Accuracy (%) 

7 marker 5 10.00000 2.15440 0.82 73.6 
7 marker 10 10.00000 2.15440 0.82 71.7 
7 marker 20 46.41590 2.15440 0.81 72.6 
6 marker(-NSE) 5 10.00000 2.15440 0.82 75.5 
6 marker(-NSE) 10 10.00000 215.44350 0.82 71.7 
6 marker(-NSE) 20 10.00000 2.15440 0.81 73.6 
6 marker (-TIMP1) 5 46.41590 0.10000 0.77 73.6 
6 marker (-TIMP1) 10 215.44350 0.10000 0.78 74.5 
6 marker (-TIMP1) 20 215.44350 0.10000 0.78 75.5 
6 marker (-TB4) 5 10.00000 0.10000 0.72 73.6 
6 marker(-TB4) 10 10.00000 0.10000 0.75 73.6 
6 marker (-TB4) 20 10.00000 0.10000 0.76 73.6 
4 marker CVAM 5 0.46416 10.00000 0.80 70.8 
4 marker CVAM 10 215.44350 2.15440 0.84 73.6 
4 marker CVAM 20 2.15440 0.10000 0.81 75.5 
3 marker CVA 5 0.46416 0.10000 0.81 80.2 
3 marker CVA 10 0.46416 0.10000 0.80 80.2 
3 marker CVA 20 0.46416 0.10000 0.81 79.2 
2 marker CV 5 0.46416 0.10000 0.71 71.7 
2 marker CV 10 10.00000 0.46416 0.74 70.8 
2 marker CV 20 2.15440 0.10000 0.69 68.9 
2 marker CA 5 2.15440 0.10000 0.78 74.5 
2 marker CA 10 2.15440 0.10000 0.79 74.5 
2 marker CA 20 2.15440 0.10000 0.80 74.5 
2 marker VA 5 0.46416 0.10000 0.78 78.3 
2 marker VA 10 215.44350 2.15440 0.80 72.6 
2 marker VA 20 215.44350 2.15440 0.79 72.6 

Table 4.12: Summary of the Optimised RBF SVM k-fold cross validation analysis using 
MCLA. 
 

 

4.7 Discussion 

In the work described in this chapter I explored different cross-validation 

approaches to assess the suitability of the different biomarkers and types of 

algorithms identified in Chapter 3. This assessment had a particular focus on 

understanding the level of overfitting via cross validation. The cross-validation 

approaches explored in this chapter were the train and test approach and k-

FCV. Both the train and test approach and the k-FCV approaches generated 

models via splitting the UOL dataset and are different from the models 

described in Chapter 3 which were derived from the whole dataset. Thus, this 

chapter explored the utility of the UOL dataset itself for ML model derivation 

using train and test as well as k-FCV approaches. 
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The train and test analysis of selected LR models (Table 4.1) revealed that the 

relative performance of each model performed, as expected, more poorly in the 

validation compared to the training stage, because models were derived 

exclusively from the training set data. However, most LR models were found to 

be robust to overfitting, because the difference in training and validation AUCs 

was small (<10%). In general, the single marker LR models performed worse 

than multiple marker models, which again illustrates that a multiple marker 

approach improves performance, as seen before in Chapter 3. While the VA 

and A models had the smallest drop in AUC of 1%, the CVA model performed 

best overall with a training and validation AUCs of 0.894 and 0.849, a difference 

of only 5%. However, the inclusion of MAC2BP in the CVAM LR model did not 

improve either the training or validation AUC value, indicating that model 

performance can also be reduced by adding markers.  

In summary of the train and test analysis, the CVA LR model was the most 

suitable one to take forward. This supported my findings in Chapter 3 regarding 

the utility of CgA, VGF and ANG2 markers as the optimal biomarker panel for 

pNET detection.  

The utility of LR as a suitable ML algorithm utilising a train and test approach is 

illustrated in a study by Lee et al. (2021), which involved developing a multi-

biomarker panel for the diagnosis of pancreatic cancer. The algorithm was 

developed using the three biomarkers leucine rich alpha-2-glycoprotein 1 

(LRG1), transthyretin (TTR) and CA-19-9. A multi-centre cohort of normal, other 

cancer, pancreatic benign disease and PDAC patients was used for this 

analysis. This involved a training set created by extracting 70% of normal and 

PDAC type data and a test dataset combining the remaining 30% of normal and 

PDAC data and all the other cancer and pancreatic benign cancer data. They 

found that when looking at normal vs PDAC patients the training data had a 

sensitivity of 93.81% and a specificity of 90.86% and a sensitivity of 94.7% and 

91.21% in the test data473. Thus, illustrating that the LR algorithm is robust to 

overfitting. Thus, providing further support to my findings that LR as an 

algorithm is robust to overfitting.  

When assessing the C5.0 non-boosted decision tree, all C5.0 non-boosted 

decision trees appeared to have been overfitted to their training data as the 

differences in AUC were all high, ranging from 13 to 26% (Table 4.2). These 

results supported the idea that C5.0 decision trees tend to overfit397. Compared 



 206 

to the C4.5 decision tree, the C5.0 algorithm produces smaller decision trees, 

and the training dataset is classified with high accuracy compared to the C4.5 

tree477. The overfitting seen in the non-boosted C5.0 decision trees results was 

most likely exacerbated by the small size of the dataset.  

Instead of carrying out ten runs as used before to generate models from the 

whole UOL training set analysis in Chapter 3, train and test analysis of RFs 

employed a single run to assess overfitting of models produced from ten 

different marker combinations. For all marker combinations, the training data 

performed better than the validation data, as expected (Table 4.3). However, 

based on the very high training AUC values (0.993-1.000) and the large 

differences from the validation AUCs (17-37%) all RF models appeared to have 

been overfitted to the training data, thus suggesting limitations of taking these 

generated models further. A study involving the development and validation of a 

RF Diagnostic model for Acute Myocardial Infarction based on ferroptosis-

related genes had strong diagnostic performance in both validation and test set 

with these being 0.8550 and 0.7308 respectively478 and hence in these results 

the impacts of overfitting are less based on the difference in the AUCs obtained. 

The Yifan et al., study constructed a RF diagnostic model of acute MI through 

eight differentially expressed ferroptosis-related genes. The study used k-FCV 

with n=15 to improve generalisation power. They found that the variability of 

AUCs between the validation and train sets was small enough to be satisfying. 

They also compared the performance of three supervised ML algorithms, that 

included LR, SVM and RF. After evaluating comprehensively Kolmogorov-

Smirnov (KS), accuracy, TPR and AUC of all these three algorithms, the RF 

model showed good diagnostic performance AUC of 0.8550 and validated in 

different data sets AUC=0.7308. They also found that the model had a strong 

ability to eliminate false negative interference, which is critical for myocardial 

infarction which has a high fatality rate.  

The train and test analysis of the Linear and RBF SVM models again showed 

that training performance was consistently better than the validation 

performance, with the single exception of the VA model. As superior validation 

performance of the VA model was seen in both Linear and RBF SVM models, 

this phenomenon was not kernel specific. For the validation portion the best 

AUC of 0.795 was seen at C=4. For the three marker CVA combination using 

the RBF SVM in the training and validation portion, the trend was that at lower 
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C and gamma values the AUC is lower compared to that seen at higher AUC 

and C values. This suggests that at lower C values there is potential underfitting 

and that the algorithm was not capturing patterns within the training data , 

however increasing the C value leads to over-optimistic models. Moreover, for a 

given C value, increasing the gamma parameter caused an increase in AUC 

and for a given gamma value, increasing the C value caused an increase in the 

AUC. Dropping to a two-marker combination, either CA, CV or VA caused a 

general drop in AUCs. A drop in performance between the train and test 

suggests overfitting, whilst underfitted models, are likely to be models that at 

training are not performing well reflected by lower AUCs. Thus, the ideal model, 

would have good performance at training but also maintain this performance at 

validation without substantial drop. However, as the train and test approach in 

this chapter utilised the same dataset which was split, with a smaller training 

number whilst useful in understanding the impact that parameters may be 

having on a model, using an external validation approach as discussed in 

Chapter 5 and assessing if the top performing models utilising the whole 

training data (larger n number) as opposed to the split data as discussed in this 

chapter and that impact of a drop in performance would provide stronger 

evidence as to whether the SVM model approach to a diagnostic pNET 

algorithm was suitable.  

Thus, while the train and test analysis provided an insight into the potential 

underfitting and overfitting, a limitation of the Linear and RBF SVM train and test 

approach in SPSS Modeler was that a narrow range of C parameter and 

gamma values were selected based on recommendations for the use of SPSS 

Modeler479, however there was no indication that the most optimal values lay 

within these ranges. Hence, this time-consuming process provided no 

guarantee of producing an optimal model. Thus, for SVM models the Optimised 

Linear and Optimised RBF SVM k-FCV are more reliable than the Linear and 

RBF train and test approach results as they address the issue of Optimising the 

SVM models that were created.  

Validation in SPSS Modeler employed C and gamma parameter values from 1 

to 10 and 0.4 to 0.95, respectively, which were larger than SPSS Modeler 

recommendations. Nevertheless, Optimised Linear and RBF SVM models 

created in MCLA had a far larger default range of 0.001 to 1000 for the gamma 

(kernel scale) and C (box constraint) values. Thus, SPSS Modeler was useful 
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for analysing trends across C and gamma values and to assess overfitting of 

SVM models but did not necessarily produce the best performing model. In 

contrast MCLA allowed the best optimised SVM models to be selected, albeit 

with an increased risk of overfitting.  

k-FCV differs from train and test validation as the data used for training are also 

used for the validation of the model, thus there is a recycling of the data. Data 

are divided according to a predetermined number of folds (5, 10 or 20 in this 

study) and k-1 folds are then used for testing. 5, 10 and 20 folds were selected 

as these fold numbers would allow for sufficient amounts of data to consist in 

each fold based on the size of the dataset and also provide a range of folds 

numbers to explore. The k-FCV results for all the selected Linear SVM 

Optimised models revealed similar 5FCV, 10FCV and 20FCV AUC values 

(Table 4.11 and Table 4.12). This therefore implies that fold number did not 

have an impact on AUC and that model performance was stable across all folds 

assessed. However, the accuracy of all the selected Optimised Linear SVM 

models was higher with 20FCV than 5FCV. Increasing the k number reduces 

the bias but increases the variance and there is therefore a need to balance 

both. A higher the k number this means that each model is trained on a larger 

training set and then tested on a smaller test fold. This therefore in theory 

should lead to a lower prediction error due to the model seeing more of the 

available data. However, a lower k value means that the model is trained on a 

smaller training set and then tested n a larger test fold. Thus, the potential for 

the data distribution in the test fold to be different form the training set is larger 

and thus a higher prediction error is expected480. 

A study exploring Type 2 diabetes mellites prediction using LR, SVM, ANN , 

KNN and LR based on lncRNA expression used a stratified 10FCV approach for 

evaluation. The stratified 10-FCV ensured that each fold contained the same 

proportion of healthy and diabetic individuals. The results for the stratified 10-

FCV for LR had an AUC across the folds ranging from 0.95 to 1.00 which was a 

strong consistent performance481.  A stratified k-fold approach would be an 

additional approach to consider for the validation of pNET biomarkers and 

algorithms in the future, as this will allow for each fold in the dataset to have the 

same proportion of observations of a given label i.e., in this case pNET or 

control. However, this would ultimately also require a lot more samples. 
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Vablas et al. carried out a study exploring ML validation approaches by using 

Gaussian noise as data in which they simulated a situation in which robust 

validation should produce two class classification accuracy that approaches 

theoretical chance level of 50%. They tested five validation approaches 

including a Train/Test split, k-FCV, nested and two types of partially nested 

cross validation. They also performed the simulations using different sample 

sizes and tested what other factors aside from sample size influence overfitting. 

They found that k-FCV provided optimistically-biased performance estimates 

and was not sufficient to control overfitting. They suggest a nested-CV 

approach is a better approach as this provided an unbiased performance 

estimate. Likewise completely separating testing and training data was enough 

to obtain unbiased performance estimates regardless of sample size433. The 

study found that factors which influence bias include data dimensionality, 

hyperparameter space and the number of CV folds. They demonstrated that 

complex models are capable of fitting random noise in the data and thus if the 

data which was used for validation is also used in parameter tuning, the 

performance is inflated due to the models fitting the noise not only in the 

training but also in the validation data433. This therefore strengthens the 

importance of using an external validation approach as discussed in Chapter 5 

to prevent over overoptimistic performance. 

The usage of k-FCV as an approach in biomarker development using the RF 

algorithm was explored by Langmead et al. (2021). The study assessed 

predictive markers for persistent organ failure in AP with a panel of five 

circulating cytokines (ANG2, hepatocyte growth factor, interleukin-8, resistin 

and soluble necrosis factor receptor 1A in a prospective verification cohort with 

a RF classifier. The study utilised 10FCV approach to estimate how well the RF 

model would generalise to an independent dataset. The results revealed an 

accuracy of 89% and AUC of 0.91482, which outperformed individual cytokines, 

laboratory tests and clinical scores. The strong performance of the five-marker 

RF model indicated that this algorithm with the validation approach used has 

the potential to be used for biomarker development, however a limitation is the 

lack of external validation for the panel, with this needing to be done to further 

support the findings. 

 



 210 

The effect of fold number in k-FCV on algorithm performance was studied by 

Liang et al. (2020), who assessed gene-level copy number alteration using a 

deep learning network algorithm to predict the tissue of origin for cancers of 

unknown primary site. This algorithm was compared to other ML algorithms 

including RF and eXtereme Gradience Boosting (XGBoost). XGBoost is a type 

of boosted tree learning algorithm483. For all the assessed algorithms they found 

the general trend was for increasing k value to improve classifier performance. 

The larger the k value was, the more samples that there were in the training set, 

and the fewer samples that there were in the test set and vice versa. The k 

values used ranged from five to thirty. In their analysis a small test set had a 

negative impact on model evaluation484. However, clarifying what small is in 

practice is likely dependent on the size of the data. Thus, this study illustrates 

the potential importance of fold number on performance. In my k-FCV 

Optimised Linear and RBF SVM models developed for the pNET detection, 

AUC values were broadly similar across all folds suggesting that the k values 

chosen did not have an impact on performance and were most likely suitable.  

Different biomarker studies use different types of validation. Factors that 

commonly influence the choice of validation method include sample availability 

for internal validation methods, and access to independent cohorts for external 

validation methods. In situations where access to independent cohorts for 

external validation is limited or the cohort is too small to split into train and test 

cohorts for internal validation, an internal validation approach such as k-FCV 

would be favoured. Using unseen data to test a ML model entails the collection 

of a substantial amount of data, which is particularly rare in research involving 

human participants due primarily to restrictions on sample availability, time and 

cost433.  

Certain studies have a train, validation and test approach such as a study by 

Zhang et al. (2013) in which an SVM algorithm was developed to predict breast 

cancer485. In this study the 130 patients were randomly split into roughly equal 

training and testing groups. They had a training and validation group which 

consisted of 32 healthy samples and 34 cancer samples and a testing set 

consisting of 34 cancer samples and 31 healthy samples. This study adopted a 

three-way split comprising training, validation, and independent testing groups 

to try and reflect a real application outcome based on the performance of the 

testing groups.k-FCV was carried out on the training group to find the optimal 
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parameters for the SVM classifier. The training group was used for learning to fit 

the parameters of the classifier, the validation was used to tune the parameters 

of the classifier and the testing set was used to assess the performance of the 

fully trained classifier only. They found that the best model from the training 

group may not predict the best performance in the testing data due to 

inconsistencies between training and testing data. One limitation from their work 

was the utility of three-way data split is the sample size, as when they split a 

small sample size into three ways, the minimal data in each set meant that the 

analysis would lack power. With the train and test approach used for the pNET 

algorithm development, this reduced the original training size and meant that 

amount of data with which the algorithm was trained was less than that seen in 

Chapter 3 whereby the whole training set was used, and this was not split as 

seen in this chapter. 

A particular disadvantage of using internal compared to external validation is 

that the same data are used to develop and evaluate a model. As a result, 

internal validation tends to be over-optimistic, even when performed 

appropriately, and particularly when large numbers of biomarkers are 

involved486. Thus, for my work in the development of a pNET algorithm it would 

be important to carry out external validation in model development (Chapter 5), 

to prevent over optimistic assessments.  

From the work carried out in Chapters 3 and 4 there is rationale to take forward 

the markers Chromogranin A, VGF and ANG2 for external validation (Chapter 

5). In Chapter 3 whereby the whole training dataset was used for model 

creation, the McNemar test results showed the reduction to a three-marker 

combination of CVA from CVAM was not significant for the LR algorithm, Linear 

SVM (C=4) and RBF SVM (C=10 and gamma=0.95) (P=1.00). Moreover, 

performance for the LR, Linear SVM (C=4) and RBF SVM (C=10 and 

gamma=0.95) models was above 0.85, with AUCs being 0.873, 0.863 and 

0.868. A strong performance was also seen for the Optimised Linear SVM and 

Optimised RBF SVM models for the CVA combination using the whole training 

dataset which had AUCs of 0.88 and 1.00 respectively. The RF algorithm for 

CVA using the whole training dataset also performed with an average AUC of 

1.00. Thus, across a range of  algorithms, when using the whole training 

dataset, the CVA combination was suitable to take forward. This has been 

further supported by the approaches of internal validation in Chapter 4, with the 
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RF model performing with an AUC of 1.00 in the training portion and 0.828 in 

the validation portion. The RBF SVM models assessed using the train and test 

approach had training portion AUCs ranging from 0.876 to 0.883 with validation 

portion AUC ranging from 0.845 to 0.852. For the Optimised Linear and RBF 

SVM using the k-FCV approach, the AUCs for 5FCV, 10FCV and 20FCV 

Optimised Linear SVM were 0.85, 0.86 and 0.86 respectively and for 5FCV, 

10FCV and 20FCV Optimised RBF SVM the AUCs obtained were 0.81, 0.80 

and 0.81 respectively. Thus ,k-FCV provided further support for the suitability of 

these markers and algorithm. Finally, for the 10FCV boosted decision tree 

model when all seven markers were entered, for 5 out of 10 runs the model 

utilised Chromogranin A, VGF and ANG2 with AUCs above 0.9 across all these 

runs.  

Thus, based on the results obtained in Chapters 3 and 4, it was evident that the 

combination of CHGA, VGF and ANG2 provided the best panel to take forward 

for external validation and to assess using the C5.0 decision tree, SVM, RF and 

LR algorithm. In Chapter 5, these markers and algorithms are evaluated using 

an independent cohort of pNET samples collected for this purpose at the Royal 

Free Hospital. Additionally, confounding factors and associations between 

marker levels and clinical characteristics are evaluated. 
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Chapter 5 - External Validation of the Biomarker Panel  

 

5.1 Introduction to External Validation  

In Chapter 4, validation approaches using the UOL cohort were assessed. 

These approaches included train and test and k-FCV. However, a more 

revealing evaluation of an algorithm’s performance requires an independent 

cohort. Validation of biomarkers using independent cohorts can be seen in 

various studies in the literature across multiple disorders ranging from 

Parkinson’s disease487 to endometriosis488 and to cancer489. While many 

biomarker discovery studies have generated large amounts of omic data, few 

novel biomarkers have reached clinical use. The importance of an independent 

validation cohort has been discussed in the context of the development of a 

metabolomics signature for Parkinson’s disease490. However, the similar 

principles apply to biomarker discovery work in general. The authors concluded 

that independent cohorts are needed to address the problem of biomarkers that 

do not stand up to clinical use due to the overfitting of classifier models490. 

Factors that could differ between sample-collection centres include sample 

handling and other technical variations that could cause unwanted differences 

in marker levels between cohorts. They also suggested that studies ‘merit 

caution’ if they have not used an independent cohort for validation490. Moreover, 

as biomarker discovery, validation and implementation form a long process, 

taking candidate markers and models forward for clinical assessment without 

validation in independent cohorts is likely to be inefficient and wasteful of 

resources. Hence independent cohorts are an important part of the validation 

process.  

Thus, in this chapter I describe external validation of the best models identified 

in Chapter 3, which were produced by combining CgA, VGF and ANG2 marker 

data. External validation of these biomarkers and the model algorithms was 

carried out using an independent cohort of pNET patients at the RFH (Royal 

Free Hospital), who kindly allowed me to collect blood samples. Healthy control 

serum samples were obtained from the UKCTOCs biobank, collected by 

colleagues at UCL491. Plasma CgA levels were available for the RFH pNET 

patients as this is an established NET marker, and I compared these data with 
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my serum CgA results to determine the level of correlation and assess whether 

plasma CgA results were interchangeable with serum data in my models. 

In Section 5.2 to 5.4 I describe and discuss my external validation of ANG2, 

VGF and CgA, respectively, as individual pNET markers. These sections also 

explore the association of specific clinical parameters with each marker and 

potential confounding factors. Based on the external validation results of the 

three candidate markers, I selected specific models developed in Chapter 3 for 

external validation. Finally, in Section 5.6 I consider whether more accurate 

models could be derived from a combination of the training and external 

validation datasets. 

 

5.2 ANG2 External Validation 
ANG2 was validated using an external case control cohort. The cases for this 

cohort consisted of pNET serum samples from the RFH (n=60) and the controls 

consisted of control samples from the UKCTOCs biobank (n=51). The ELISA 

results showed that ANG2 levels were elevated in cases compared to controls 

(Figure 5.1, Table 5.1). 

 

 
Figure 5.1: ANG2 levels in RFH pNET cases (n=60) and UKCTOCs controls (n=51).  
ANG2 levels were assessed by ELISA in RFH pNET case and UKCTOCs control serum 
samples. The results are presented as a box plot with the median shown by the thick horizontal 
line, the top and bottom lines in the box show the 1st and 3rd quartiles, with the whiskers 
denoting the maximum and minimum values, with the exception of outlier values in SPSS which 
are denoted by ° with extreme outlier values by *.  Extreme outlier values are considered in 
SPSS to lie in the 3rd quartile + (3 x interquartile range) or the 1st quartile – (3 x interquartile 
range). 
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 Case Control 
Mean ANG2 level ± 
standard deviation 
(pg/mL) 

3999.74 ± 3354.01  2610 ± 1545.31  

Table 5.1: Mean level of ANG2 in RFH pNET and healthy control samples. 
ANG2 levels were elevated in pNET patients (n=60) compared to healthy controls (n=51). 
 

The null hypothesis that the distribution of ANG2 was similar across cases and 

controls was tested using an independent-samples Mann-Whitney U test which 

produced a p value of 0.018. Hence, the null hypothesis was rejected, and I 

concluded that there was a statistically significant difference between case and 

control ANG2 levels, as expected. 

 

5.2.1 Analysis of potential confounding factors for ANG2 
Potential confounding factors for ANG2 in the cases and control samples were 

examined. Oral contraceptive pill (OCP) and BMI were examined in the control 

group as potential confounding factors for ANG2 as this information was 

available for the control group. For the pNET patients, PPIs, presence of 

another cancer, age, gender and diabetes status were all examined as potential 

confounding factors as this information was available for the pNET patients. The 

results revealed a Pearson correlation coefficient of 0.159 (p=0.266), indicating 

that there was no association between ANG2 level and BMI in the control 

group. Mann Whitney U test results revealed that there was also no significant 

relationship between ANG2 and OCP (no OCP usage = 22; OCP usage = 29) 

(p=0.313) was obtained in the control group.  

For the pNET patients the null hypothesis that the ANG2 distributions were 

similar across different categories of PPI was examined through an 

independent-samples Kruskal-Wallis Test. The categories examined were PPI 

(n=21), omeprazole (n=11), lansoprazole (n=9), pantoprazole (n=1), no PPI 

(n=37) and not known (n=2). The results revealed a test statistic of 0.340 and p 

value of 0.844 and the null hypothesis was therefore not rejected. Thus, PPI 

usage did not appear to be a confounding factor. 

ANG2 confounding factor analysis was also carried out for diabetes. Two 

samples were excluded, one with previous diabetes and one with borderline 

diabetes, leaving a total of 58 samples (no diabetes = 42, diabetes = 16). The 

null hypothesis that the distribution of ANG2 was similar across the two 
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categories of diabetic status was assessed using an independent-samples 

Mann-Whitney U test. The null hypothesis was accepted as no significant 

difference was found (p=0.639), indicating diabetes was not a confounding 

factor. 

Gender was also examined as a potential confounding factor for RFH pNET 

ANG2 levels (n=60) using an independent-samples Mann-Whitney U test to test 

the null hypothesis that the distribution of ANG2 was similar between gender 

categories (male = 30, female = 30). As the result was not statistically 

significant (p=0.947), gender was not found to be a confounding factor. 

Pearson Correlation was used to assess age as a potential confounding factor, 

and the resulting coefficient of -0.123 (p=0.349) indicated age was not a 

confounding factor. 

The presence of another cancer as a confounding factor for ANG2 levels in 

pNET patients (n=60) was also assessed (no other cancer = 47, another cancer 

= 13) using an independent-samples Mann-Whitney U test and also found to be 

not significant (p=0.302). 

Hence, none of the assessed factors appeared to confound the ANG2 data. 

 

5.2.2 Analysis of potential ANG2-associated clinical characteristics 
Association of ANG2 levels with various clinical characteristics of the RFH 

pNET cohort was also examined to explore whether pNET specific clinical 

characteristics were associated with ANG2 levels in the pNET patients. These 

characteristics included MEN1 status, metastasis status, tumour location, and 

tumour grade. 

To examine whether ANG2 levels were associated with MEN1 status an 

independent-samples Mann-Whitney U Test was carried out for the RFH pNET 

ANG2 levels (n=57). Three samples were excluded because one was from a 

patient with Zollinger Ellison syndrome and MEN1, another was from a patient 

with Zollinger Ellison syndrome, and the third was from a patient with 

unconfirmed MEN1. The results showed that MEN1 status (MEN1 = 4, non-

MEN1 = 53) was not associated with ANG2 level (p=0.729) in this this cohort. 

Association with metastasis was investigated using an independent-samples 

Mann-Whitney U test to analyse the RFH pNET data (metastasis = 30, no 

metastasis = 29), with one locally-advanced pNET excluded. The results 

showed that metastasis was not associated with ANG2 level (p=0.111). 
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To examine whether tumour location was associated with ANG2 level in the 

RFH pNET data, an independent-samples Kruskal-Wallis Test was carried out. 

For this analysis seven samples were excluded because there was not a clearly 

defined location of body, neck or head. The remaining cohort (n=53) comprised 

body (n=8), head (n=17), neck (n=4), not known (n=12), and tail (n=12) 

samples. The results showed that ANG2 level was not associated with tumour 

location (test statistic 1.378, p=0.848). 

Association between ANG2 and grade was examined. For this analysis one 

grade-3 sample was excluded because there were no other grade-3 samples. 

Three remaining samples (n=59) were divided into four groups: G1 (n=10), G2 

(n=13), well differentiated (n=24), and not known (n=12). Independent-samples 

Kruskal-Wallis Test results showed that ANG2 level was not associated with 

grade (test statistic 2.583, p=0.461). 

Finally, ANG2 level and QCancer® score correlation was carried out using a 

Pearson correlation test. The resulting coefficient value of 0.077 (p=0.558) 

indicated no significant correlation. ANG2 level and QCancer®Pancreas score 

correlation was also assessed using Pearson Correlation and the resulting 

coefficient of 0.133 (p=0.310) indicated no significant correlation. 

Thus, none of the clinical characteristics examined were found to significantly 

associate with ANG2 level and they were therefore excluded as confounding 

factors.  

 

5.2.2 Analysis of potential ANG2-associated biochemical markers 
The association of ANG2 levels with other biochemical parameters that I 

obtained for the RFH pNET cohort (n=60) from their clinical records was 

assessed to examine whether there was a relationship between these 

biochemical markers and ANG2 levels in the pNET patients. A total of 60 pNET 

samples for which ANG2 levels and CgA levels were looked at with these 

additional biochemical parameter. However, the additional biochemical 

parameters were not available for all 60 pNET samples and only available 

results were used for the analysis. The additional biochemical parameters 

included CEA, carbohydrate antigen (CA19-9), C-reactive protein (CRP), 

creatinine and bilirubin. CEA, CA-19-9, CRP, creatinine and bilirubin levels were 

assessed in these patients as part of their routine clinical care. Results for these 
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markers showed that CA19-9 alone was significantly associated with ANG2 

level (Table 5.2).  

 
Biochemical 
marker 

Available results 
(n) 

Pearson correlation 
coefficient 

Significance (2 
tailed) 

CEA 23 -0.30 0.892 
CA 19-9 28 0.790 *<0.01 
CRP 43 0.046 0.768 
Creatinine 60 0.098 0.454 
Bilirubin 60 0.138 0.294 

Table 5.2: Correlation between ANG2 and biochemical markers 
For the RFH pNET samples that had a CgA sera and an ANG2 result, CEA, CA 19-9, CRP, 
creatinine and bilirubin were assessed for a correlation with ANG2 level.  
 

Association between ANG2 level and serum or plasma CgA levels was 

assessed (Fig. 5.2), to see if there was a significant correlation in pNET patients 

for both assessed biomarkers. CgA plasma levels were determined for the RFH 

pNET patients as part of routine clinical care. 8 samples were excluded from the 

n=60 because CgA plasma levels were not available for these patients. 

Additional samples were also excluded which were at the lower or upper level of 

detection of the ANG2 sera and CGA sera assay. Thus, a total of 39 samples 

were examined.  

 

 

 

 

 

Figure 5.2: Association of ANG2 level with serum and plasma CgA level 
ANG2 levels were compared to serum CgA levels obtained by ELISA using the CisBio assay 
and to plasma CgA levels determined as part of routine clinical care using the Diasource Assay. 
(A) ANG2 and serum CgA association (n=39) (B) ANG2 and plasma CgA association (n=39). 
 

Pearson correlation analysis of ANG2 association with plasma CgA produced a 

slight positive correlation coefficient of 0.114 (p=0.491), while analysis of ANG2 

association with serum CgA produced a slight negative correlation coefficient of 

A B 
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-0.129 (p=0.433). Thus, ANG2 level was not statistically significantly correlated 

with either serum or plasma CgA level. In summary, ANG2 levels were found to 

associate only with CA 19-9 levels in RFH pNET samples. 

 
5.3 VGF External Validation 
VGF was validated in RFH pNET and UKCTOCs control samples. VGF was 

evaluated in the same RFH pNET and UKCTOCS control serum samples as 

those assessed for ANG2 and CgA validation with the inclusion of the 

RFHpNET sample that had not been assayed for CgA. VGF was unexpectedly 

found to be higher in controls compared to cases (Figure 5.3 and Table 5.3), 

although Mann Whitney U test results for the null hypothesis that case (n=30) 

and control (n=35) VGF levels were similar was not rejected as the difference 

was not significant (p=0.324). 

OCP and BMI usage in the control cohort were explored as potential 

confounding factors that might explain the increased levels of VGF seen in the 

control group as this information was available for the control group. However, 

Pearson correlation analysis of the control VGF and BMI data revealed a 

coefficient of 0.146 (p=0.403), indicating no significant association. In contrast, 

OCP usage was found to be a confounding factor for the control cohort as an 

independent-samples Mann-Whitney U test revealed a significant difference of -

2.360 (standardised test statistic) (p=0.017) between the OCP usage (n=18) 

and no-OCP-usage (n=17) groups. Although the levels of VGF were higher in 

the controls who were not on OCP compared to those who were. OCP as a 

confounding factor for pNET patients was not assessed due to this information 

not specifically collected for the pNET patients, thus comparing pNET patients 

not on OCP and controls was not carried out. 

VGF and grade was assessed in the RFHpNET patients. For this analysis one 

G3 RFHpNET sample was excluded due to insufficient numbers. The 

categories that were assessed were G1 (n=4), G2 (n=7), Not known (n=4) and 

Well differentiated (n=14). Independent Samples Kruskal Wallis Test results 

indicated that the distribution of VGF was the same across categories of grade 

was to be rejected as p=0.027. VGF and PPI usage was assessed in the 

RFHpNET samples. The distribution of VGF across the categories of PPI were 

assessed using an Independent-Samples Mann Whitney U Test, no (n=20) and 

PPI usage (n=10). Results were found to be not significant p=0.422. VGF and 
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metastasis was also assessed using Independent-Samples Mann-Whitney U 

test. No metastasis (n=14) and metastasis (n=15), one locally advanced sample 

was excluded. Results were found not to be significant with p=0.146. VGF and 

MEN1 was also assessed with one sample excluded using an Independent 

Samples Mann Whitney U Test MEN1 (n=3) no (n=26) with U=42.00 and 

p=0.866 and thus the null hypothesis was retained. VGF and location of tumour 

was assessed using Independent-Samples Kruskal-Wallis Test Body (n=3), 

Head (n=10), Neck (n=2), Not known (n=8), Tail (n=6).Test statistic 6.018 and 

p=0.198.  

 

Figure 5.3: VGF levels in RFH pNET and control serum. 
VGF levels of RFH pNET (n=30) and UKCTOCs control (n=35) samples were determined by ELISA. The 
results are presented as a box plot as described in the legend to Fig. 5.1. 
 

 Case Control 
Mean VGF level ± standard 
deviation (pg/mL) 

310.817 ± 314.736  523.471 ± 656.15		 

Table 5.3: Mean level of VGF in pNET cases and healthy controls 
VGF levels were lower in RFH pNET patients (n=30) compared to healthy controls (n=35). 
 

5.4 CgA External Validation 
Case-control differences in CgA level were also validated using the external 

RFH case and UKCTOCS control cohorts. The results showed that CgA levels 

were elevated in cases compared to controls (Figure 5.4, Table 5.4). The null 

hypothesis that case and control CgA levels were similar was assessed using 

an independent-samples Mann-Whitney U test, which revealed that case levels 
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were significantly higher than control levels (p<0.001) and the null hypothesis 

was rejected, as expected. 

 

 
Figure 5.4: CgA levels in RFH pNET and UKCTOCs controls. 
CgA levels in RFH pNET (n=60) and UKCTOCs control (n=51) samples were assessed by ELISA. The 
results are presented as a box plot as described in the legend to Fig. 5.1. 
 

 Case Control 
Mean CgA level ± 
standard deviation 
(ng/mL) 

277.765±362.558 100.996±299.132 

Table 5.4: Mean level of CgA in RFH pNET and healthy control samples.  
CgA levels were elevated in RFH pNET patients (n=60) compared to healthy controls (n=51). 

 

5.4.1 Analysis of potential confounding factors for CgA 
As previously described for control ANG2 and VGF levels, OC usage and BMI 

were explored as potential confounding factors for control CgA levels within the 

control cohort (n=51). The results revealed no significant correlation between 

CgA and BMI as assessed by Pearson corelation (coefficient of 0.134, p=0.350) 

or between CgA and OCP as assessed using an independent-samples Mann-

Whitney U test (OCP usage = 29, no OCP usage = 22; (p=0.746).  

PPI usage, diabetes, presence of another cancer, age and gender were also 

assessed as potential confounding factors for pNET CgA levels in the same 

way as performed for ANG2 and VGF. 

An independent-samples Kruskal-Wallis test was carried out for the three PPI 

groups (no PPI use, 37 samples; not known, 2 samples; PPI use, 21 samples). 

PPI use included lansoprazole (n=9), omeprazole (n=11) and pantoprazole 

(n=1). However, dissimilar to pNET ANG2 levels, the null hypothesis was 
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rejected (test statistic = 6.082, p=0.048) and PPI usage was determined to be a 

confounding factor for CgA levels in pNET serum. Figure 5.5 illustrates the 

levels of CgA in PPI users, non-PPI users and unknown status. PPI users had 

higher CgA levels then non-PPI users, although the two patients with not known 

PPI status had the highest median CgA levels (Figure 5.5). 

 

 
Figure 5.5: CgA levels in the RFHpNETs for PPI users and non-users.  
CgA levels were compared in the RFHpNET patients who were on PPIs (n=21), and those not on PPIs 
(n=37). 2 patients PPI status was not known. The results are presented as a box plot as described in 
the legend to Fig. 5.1. 
 

To assess whether diabetes was a confounding factor for CgA, an independent-

samples Mann-Whitney U Test was performed to compare two groups (no 

diabetes, 42 samples; type II diabetes, 16 samples). As for ANG2, the null 

hypothesis that the levels of CgA in the two groups were similar was not 

rejected (p=0.958) and diabetes was deduced not to be a confounding factor for 

pNET CgA levels. 

To assess whether the presence of another cancer was a confounder for pNET 

CgA levels an independent samples Mann-Whitney U test was carried out (no 

other cancer, 47 samples; other cancer, 13 samples). The results indicated that 

another cancer was not significant (p=0.535). Gender was also assessed using 

an independent-samples Mann-Whitney U test (males, 30 samples; females, 30 

samples) and found not to be a confounding factor for pNET CgA level 

(U=452.50, p=0.970). Age was also found not to be a confounding factor for 

pNET CgA level as the Pearson correlation coefficient was 0.125 (p=0.343). 
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In summary, PPI use was the only cofounding factor identified for CgA levels in 

the RFH pNET cohort. 

 
5.4.2 Analysis of potential CgA-associated clinical characteristics 
Association between CgA and selected clinical characteristics (metastasis, 

MEN1, grade, location of the tumour, and QCancer® score) of the RFH pNET 

cohort was assessed.  

For the assessment of an association between metastasis and pNET CgA level, 

one sample that was a locally advanced pNET was excluded, and the two 

groups used in the analysis were no metastasis (n=30) and metastasis (n=29). 

An independent-samples Mann-Whitney U test showed no significant difference 

between groups (U=515.00, p=0.225). 

As mentioned previously, three samples were excluded for the MEN1 analysis 

because one sample was from a patient with Zollinger Ellison syndrome and 

MEN1, another was from a patient with Zollinger Ellison syndrome, and the third 

was from a patient with unconfirmed MEN1. The results showed that MEN1 

status (MEN1 = 4, non-MEN1 = 53) were excluded from the assessment of an 

association between MEN1 and CgA level. An independent-samples Mann-

Whitney U test was carried out to assess whether the distribution of CgA levels 

was similar between the MEN1 (n=4) and non-MEN1 (n=53) samples. No 

significance was found (U= 96.00, p=0.775) and the null hypothesis was 

retained. 

For the assessment of association between grade and CgA levels in the RFH 

pNET samples, the grade 3 group was excluded as there were insufficient 

samples (n=1). The other 59 samples were distributed between G1 (n=10), G2 

(n=13), not known (n=12) and well differentiated (n=24) groups. An 

independent-samples Kruskal-Wallis test found no significant difference 

between these groups (test statistic of 2.493, p=0.477) and the null hypothesis 

was retained. 

Similarly, association between tumour location and CgA level was assessed 

using an independent-samples Kruskal-Wallis test, which found no significant 

difference (test statistic of 2.458, p=0.652) between body (n=8), head (n=17), 

neck (n=4), not known (n=12) and tail (n=12), and the corresponding null 

hypothesis was again retained.  

Pearson correlation analysis of QCancer® scores and CgA for the RFH pNET 
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samples revealed a coefficient of 0.102 (p=0.440) indicating no significant 

correlation. In contrast, correlation analysis of QCancerPancreas® scores and 

CgA levels revealed a coefficient of 0.258 (p=0.047), indicating a significant, 

weak correlation. Figure 5.6 illustrates the correlation between 

QCancerPancreas and CgA seen in the RFHpNET patients. In summary, the 

only clinical characteristic that was found to be significantly associated with CgA 

level was QCancerPancreas® score. 

 

 
Figure 5.6: CgA levels and QCancerPancreas score  
CgA levels and QCancerPancreas scores were compared in RFHpNET patients (n=60).  
 

 
5.4.2 Analysis of potential CgA associated biochemical markers 
CgA levels were assessed for association with biochemical parameters that 

were available in the patient records, including CEA (n=23), CA19-9 (n=28), 

CRP (n=43), creatinine (n=60) and bilirubin (n=60). The results showed that 

none of these biochemical marker levels was significantly correlated with serum 

CgA level (Table 5.5). 

 

Biochemical 
Parameter 

Available results Pearson correlation 
coefficient 

Significance (2 
tailed) 

CEA 23 out of 60 -0.49 0.823 
CA 19-9 28 out of 60 0.240 0.219 
CRP 43 out of 60 0.217 0.162 
Creatinine 60 out of 60 0.174 0.184 
Bilirubin 60 out of 60 -0.037 0.781 

Table 5.5: Association of CgA levels of the RFH pNET samples with biochemical marker 
levels  
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The association of CgA plasma levels and CgA sera levels in the RFH pNETs 

was assessed for which both results were available. Samples that were at the 

higher limit of the ANG2 (sera assay) and the higher and lower limit of the CgA 

(sera assay) were excluded, thus a total of 39 RFHpNET samples were 

assessed for this analysis (Figure 5.7). A Pearson correlation coefficient of 

0.278 was obtained p=0.086 indicating positive although not statistically 

significant correlation between CgA plasma and CgA serum levels, although 

plasma levels were generally higher than serum levels. 

 

 

Figure 5.7: Comparison of plasma and serum CgA levels in RFH pNET samples.   
Serum CgA levels obtained by ELISA using the CisBio assay were compared to plasma CgA 
levels determined as part of routine clinical care using the Diasource Assay (n=39). 
 
 
In summary, the results for the three individual markers revealed that ANG2 and 

CgA levels are significantly elevated in the RFHpNET cases compared to the 

UKCTOCs controls (Table 5.6). However, this was not the case for VGF-NGF.  

 
Marker Independent-samples Mann-Whitney U test (p) 
ANG2 0.018 
VGF 0.324 
CgA <0.001 

Table 5.6: Summary of results for ANG2, VGF and CgA levels in RFHpNETs vs UKCTOCs 
controls. 
 
 
When comparing clinical parameters and assessing confounding factors for 

ANG2, only ANG2 and CA 19-9 levels were shown to be significant (Table 5.7). 
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For CgA, QCancer Pancreas score and CgA as well as CgA and PPI usage 

were found to be statistically significant (Table 5.7). 

 

 Statistical Test Result 
QCancerPancreas score 

and CgA 

Pearson 

Correlation  

Correlation coefficient of 

0.258 (p=0.047) 

CgA and PPI usage Independent 

Kruskal-Wallis  

p=0.048 

ANG2 and CA 19-9 Pearson 

Correlation 

Correlation Coefficient 

of 0.790 

p*<0.01 

Table 5.7: Summary of statistically significant results seen for CgA and ANG2 
 
 
5.5 Algorithm Validation  
Models created using the UOL training dataset were externally validated using 

PNET sera in the RFH cohort. Due to the results in Section 5.3 demonstrating 

that VGF-NGF (V) was not a suitable marker, this marker was not assessed 

further and was not used in the external validation of algorithms. ELISA results 

for CgA and ANG2 samples that were at the upper and lower limit of detection 

were used for ML as well, as these results were likely not to be influenced by 

the thresholds used by the ML algorithms. Algorithms constructed from the AC 

combination, including C5.0 non-boosted decision tree, LR, SVM and RF 

models, using the UOL training dataset as described in Chapter 3 were 

evaluated. The validation results obtained for these models were compared to 

the corresponding results obtained for the A and C single-marker models. 

Sections 5.5.1 to 5.5.3 describe the results obtained for the AC, C and A 

models, respectively. 

 

5.5.1 AC Model Validation 
The AUC data obtained for the external validation cohort revealed that the best 

performing model was the RBF SVM with an AUC of 0.725 (Table 5.8, Figure 

5.8). This was followed by the LR model with an AUC of 0.724 (Table 5.9, 

Figure 5.9) and the Linear SVM model with an AUC of 0.719 (Table 5.10, Figure 

5.8). The worst performing models in the external validation were the RF 

models (Table 5.11) and C5.0 decision tree (Table 5.12, Figure 5.10).  
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AC Model AUC TPR (%) TNR (%) FPR (%) FNR (%) 
RBF SVM 0.725 65.00 64.70 35.30 35.00 

Table 5.8: External validation of the AC RBF SVM algorithm. 
 
 
 

 

 

Figure 5.8: ROC curve analysis for the Linear and RBF SVM for the AC combination. 
(A) ROC curve obtained for the Linear SVM algorithm with an AUC of 0.719. (B) ROC curve obtained for 
the RBF SVM algorithm with an AUC of 0.725. 
 

AC Model AUC TPR (%) TNR (%) FPR (%) FNR (%) 
LR 0.724 88.30 

 
31.40 68.60 11.70 

Table 5.9: External validation of the AC combination using LR. 
The AUC, TPR, TNR, FPR and FNR are shown for the external validation of this algorithm (n=111). 
 

 

 
 
 
 
 
 
 
 
 

Figure 5.9: ROC curve for the external validation of the AC combination using LR. 
ROC curve for the LR algorithm with an AUC of 0.724. 
 
 

Table 5.10 External validation of the AC Linear SVM algorithm. 
 

AC Model AUC TPR (%) TNR (%) FPR (%) FNR (%) 
Linear SVM 0.719 66.70 64.70 35.30 33.30 

A B 
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Run  AUC TPR (%) TNR (%) FPR (%) FNR (%) 
1 0.500 80.00 27.50 72.50 20.00 

2 0.613 78.30 27.50 72.50 21.70 

3 0.600 86.70 25.50 74.50 13.30 

4 0.616 85.00 21.60 78.40 15.00 

5 0.596 85.00 19.60 80.40 15.00 

6 0.597 78.30 31.40 68.60 21.70 

7 0.558 83.30 25.50 74.50 16.70 

8 0.576 83.30 25.40 74.50 16.70 

9 0.608 81.70 23.50 76.50 18.30 

10 0.560 81.70 27.50 72.50 27.50 

Table 5.11: External validation of the AC combination RF models.  
The models created for the 10 runs of the CA combination based on the UOL training dataset (n=106) 
were externally validated using the RFH cohort (n=111) of UKCTOCs controls and RFH pNETs.  
 

 
C5.0 Decision 
Tree AC 

AUC TPR (%) TNR (%) FPR (%) FNR (%) 

Non-boosted 
General 
setting 

0.543 91.70 15.70 84.30 8.30 

Non-boosted 
Accuracy 
setting 

0.543 91.70 15.70 84.30 8.30 

Table 5.12: External validation of the AC combination for the non-boosted C5.0 decision 
tree using both the general and accuracy settings.  
 

 
 

 

 
 

Figure 5.10: ROC curves for the external validation of the AC combination C5.0 Decision 
non-boosted decision tree.  
(A) ROC curve for the general C5.0 non-boosted decision tree with an AUC of 0.543 (n=111). (B) ROC 
curve for the accuracy C5.0 non-boosted decision tree with an AUC of 0.543 (n=111).  
 

 

The RF models had an AUC ranging from 0.500 to 0.616 (Table 5.11), while the 

C5.0 non-boosted decision tree had an AUC of 0.543 (Table 5.12) for both the 

general and accuracy models. The AC RF was evaluated across 10 runs, with 

A B 
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10 runs being chosen to assess whether there was a variation in AUC, 

sensitivity and specificity across the runs. The results for RF for the AC model in 

external validation show some variation across the AUCs, however this is to be 

expected due to the randomness involved in the generation of the tress of the 

RF. The TPRs across the runs ranged from 78.30% to 85%, the TNRs across 

the runs ranged from 19.60% to 27.50%, FPRs ranging from 68.60% to 80.40% 

and FNRs ranging from 15.00% to 27.50% (Table 5.11). This therefore 

suggests that across runs there is some variation. However, as the RF model is 

a black box model, understanding this in more detail is challenging. The 

external validation results across the different model algorithms (LR, C5.0 

decision tree, SVM and RF) for ANG2 and CgA also demonstrated that 

performance at the validation level was lower than at the development level for 

all models. 

The sensitivity and specificity levels set within each model were also assessed 

to allow a more detailed understanding model performance. The C5.0 decision 

tree model had the highest sensitivity (91.7%), but the associated specificity of 

this model was just 15.70% (Table 5.12). Similarly, the RF and LR models had 

high sensitivity (78.30 to 85.00 % and 88.30%, respectively), but poor specificity 

(19.60% to 31.40% and 31.4%, respectively;) (Table 5.11 and Table 5.9). In 

contrast, similar levels of sensitivity and specificity were apparent for the Linear 

SVM model (66.7% and 64.7%, respectively; Table 5.10) and the RBF SVM 

model (65.7% and 64.7%, respectively; Table 5.8). The best CA models based 

on AUC, sensitivity and specificity were therefore the SVM models. The TPR 

(true positive rate), TNR (true negative rate), FPR (false positive rate) and FNR 

(false negative rate) were also assessed for these models to reveal the impact 

of each model on each outcome group. The RF model had high TPRs (78.3 to 

86.7% across the 10 runs) and low TNRs (19.6% to 31.4%, Table 5.11), but 

these models suffered from a high FPRs (68.6 to 80.4%, Table 5.11). The C5.0 

non-boosted decision tree and LR models also had a high FPR (68.6% and 

84.3%, respectively; Table 5.12 and Table 5.9). Notably, the SVM models had 

the lowest FPR of 35.30%, albeit with the highest FNRs of 33.3 to 35.0% 

(Tables 5.8 and 5.10). 
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5.5.2  C Model Validation 
The single C marker RF, LR, and C5.0 decision tree models created using the 

UOL training dataset as described in Chapter 3 were externally validated using 

the independent sample cohort described in Section 5.4. SVM models cannot 

be generated for a single marker, as the simplest Linear SVM model requires 

two variables (x and y) to be separated by a hyperplane. For two input features 

the hyperplane is a line. The best-performing model based on external 

validation AUC was the LR model, which had an AUC of 0.698 (Table 5.13) with 

this model had a sensitivity of 60% and a specificity of 58.80%. This was 

followed by the C5.0 decision tree model, which had an AUC of 0.619 (Table 

5.14, Figure 5.11) with a sensitivity of 76.70% and specificity of 47.10%. 

Unexpectedly, the C5.0 decision tree performed better at validation than the AC 

C5.0 decision tree (Section 5.5.1), suggesting that the addition of ANG2 data 

reduced performance. 

 
C model AUC TPR (%) TNR (%) FPR (%) FNR (%) 
LR 0.698 60.00 58.80 41.20 40.00 

Table 5.13: Externally validation of the single C marker LR model. 
Results for the validation (n=111) of the LR model are shown.  
 

C model AUC TPR (%) TNR (%) FPR (%) FNR (%) 
Non-boosted 
General setting 

0.619 76.70 47.10 52.90 23.30 

Non-boosted 
Accuracy setting 

0.619 76.70 47.10 52.90 23.30 

Table 5.14: External validation of the single C marker C5.0 decision tree model. 
Results for the validation (n=111) of the non-boosted C5.0 decision tree models generated using the 
general and accuracy settings. 
 

  

Figure 5.11: External validation ROC curves for the single C marker non-boosted C5.0 
decision tree models. 
(A) ROC curve for the external validation of the general C5.0 decision tree (n=111) with an AUC of 0.619. 
(B) ROC curve for the accuracy model (n=111) with an AUC of 0.619.  
 

A B 
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The RF models performed the poorest, as found for AC model validation 

(Section 5.5.1) and produced AUCs across the ten runs ranging from 0.548 to 

0.609 (Table 5.15), suggesting high degrees of overfitting in these models. 

When looking at the sensitivities and specificities across the ten runs, for the RF 

model, the sensitivities ranged from (70% to 80%) and specificities ranged from 

(29.40% to 49.00%) Thus, there was variation across the runs in sensitivity and 

specificities as well as AUCs for RF. The best validation TPR (80.0%) was seen 

for one of the RF runs, however the associated TNR was just 31.4% (Table 

5.15). As seen for AC models, the FPR was high for the validation of all C 

models, ranging from 51.0% to 70.6% for the RF models (Table 5.15), 52.9% 

for the C5.0 decision tree (Table 5.14), and 41.2% for the LR model (Table 

5.13). Nonetheless, the FPR values for C model validation were lower in 

general than those seen for CA models (except for SVM models).  

 
Run  AUC TPR (%) TNR (%) FPR (%) FNR (%) 
1 0.590 78.30 29.40 70.60 21.70 
2 0.596 70.00 49.00 51.00 30.00 
3 0.584 76.70 31.40 68.60 23.30 
4 0.635 78.30 31.40 68.60 21.70 
5 0.586 76.70 29.40 70.60 23.30 
6 0.609 80.00 31.40 68.60 20.00 
7 0.584 78.30 29.40 70.60 21.70 
8 0.604 76.70 31.40 68.60 23.30 
9 0.598 76.70 33.30 66.70 23.30 
10 0.548 78.30 33.30 66.70 21.70 

Table 5.15: External validation of C marker RF models. 
RF models created for the 10 runs of the C marker data in the UOL training dataset (n=106) were 
validated using the RFH cohort (n=111) of UKCTOCs controls and RFH pNETs. 
 
 

5.5.3 A Model Validation 
The single A marker RF, LR, and C5.0 decision tree models created using the 

UOL training dataset as described in Chapter 3 were externally validated using 

the independent cohort described in Section 5.2. 

The best AUC (0.631) was seen for the LR model (Table 5.16, Figure 5.12), 

which was followed by the RF models which had AUCs ranging from 0.526 to 

0.575 (Table 5.17), and the C5.0 decision tree which had an AUC of 0.539 

(Table 5.18, Figure 5.13).  
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A Model AUC TPR (%) TNR (%) FPR (%) FNR (%) 
LR 0.631 80.00 29.40 70.60 20.00 

Table 5.16: External validation of the A LR algorithm 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.12: LR external validation for the A single marker 
(A) ROC curve obtained for the LR for A external validation with an AUC of 0.631. 
 

Run  AUC TPR (%) TNR (%) FPR (%) FNR (%) 
1 0.572 66.70 39.20 60.80 33.30 
2 0.526 66.70 39.20 60.80 33.30 
3 0.551 70.00 37.30 62.70 30.00 
4 0.563 68.30 37.30 62.70 31.70 
5 0.573 68.30 33.30 66.70 31.70 
6 0.573 80.00 27.50 72.50 20.00 
7 0.572 75.00 35.20 64.70 25.00 
8 0.564 66.70 35.30 64.70 33.30 
9 0.575 75.00 31.40 68.60 25.00 
10 0.559 66.70 35.30 64.70 33.30 

Table 5.17: Results for the external validation of the A single marker RF algorithm.  
The models created for the 10 runs of the A single marker based on the UOL training dataset (n=106) 
were externally validated using the RFH cohort of UKCTOCs controls and RFH pNETs total of (n=111). 
 

C5.0 Decision Tree A model AUC TPR (%) TNR (%) FPR (%) FNR (%) 
Non-boosted  
General setting 

0.539 78.30 29.40 70.60 21.70 

Non-boosted  
Accuracy setting 

0.539 78.30 29.40 70.60 21.70 

Table 5.18: External validation of the A single marker non-boosted C5.0 decision tree 
using both the general and accuracy settings.  
Results for the external validation (n=111) of the non-boosted C5.0 decision tree model for the general and 
accuracy setting. AUC, TPR, TNR, FPR and FNR are shown for both models.  
 

A 
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Figure 5.13: C5.0 Decision Tree external validation for the A single marker using the non-
boosted ROC curve 
(A) ROC curve for the general C5.0 decision tree external validation (n=111) with an AUC of 0.539. (B) 
ROC curve for the accuracy settings (n=111) with an AUC of 0.539.  
 

The sensitivity and specificity for the LR model was 80% and 29.40%, 

respectively (Table 5.16), and 78.30% and 29.40%, respectively, for the C5.0 

decision tree model (Table 5.18). The RF models had sensitivities across runs 

ranging from 66.70% to 80% and specificities ranging from 27.50% to 39.20% 

(Table 5.17). 

The best validation TPR (80.0%) was seen for the LR model, which had an 

associated TNR of 29.4% (Table 5.16), and the RF model run 6, which had an 

associated TNR of 27.5% (Table 5.17). The FPR was high for all three model 

types, ranging from 60.8% to 72.5% for the RF models (Table 5.17), 70.6% for 

the C5.0 decision tree model (Table 5.18) and 70.6% for the LR model (Table 

5.16). 
A Model AC A C 
LR AUC: 0.724 

Sensitivity:88% 
Specificity:31% 

AUC: 0.631 
Sensitivity:80% 
Specificity:29% 

AUC: 0.698 
Sensitivity: 60% 
Specificity:59% 

C5.0 Decision Tree 
(Generality) 

AUC: 0.543 
Sensitivity: 92% 
Specificity:16% 

AUC: 0.539 
Sensitivity: 78% 
Specificity:29% 

AUC:0.619 
Sensitivity: 77% 
Specificity: 47% 

RF  Run 9 
AUC:0.608 
Sensitivity:82% 
Specificity:24% 

Run 9 
AUC:0.575 
Sensitivity:75% 
Specificity31% 

Run 4 
AUC: 0.635 
Sensitivity:78% 
Specificity:31% 

Linear SVM C=10 AUC: 0.719 
Sensitivity: 67% 
Specificity:65% 

NA NA 

RBF SVM C=10 and 
gamma=0.7 

AUC: 0.725 
Sensitivity:65% 
Specificity:65% 

NA NA 

Table 5.19: Summary table for the External validation of the algorithms developed for the 
AC combination using SPSS Modeler. 
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CA model UOL Training cohort RFH and UKCTOCs  

External validation cohort 
LR AUC: 0.849 

Sensitivity: 72% 
Specificity:80% 

 AUC: 0.724 
Sensitivity:88% 
Specificity:31% 

C5.0 decision tree 
(Non-boosted 
Generality) 

AUC: 0.835 
Sensitivity:89% 
Specificity:76% 

AUC: 0.543 
Sensitivity: 92% 
Specificity: 16% 

RF (Run 1) AUC: 1.00 
Sensitivity: 100% 
Specificity: 100% 

AUC: 0.500 
Sensitivity: 80% 
Specifcity:28% 
 

Linear SVM C=10 AUC: 0.818 
Sensitivity:74% 
Specificity:76% 

AUC: 0.719 
Sensitivity: 67% 
Specificity:65% 

RBF SVM C=10 and 
gamma=0.7 

AUC:0.821 
Sensitivity:77% 
Specificity:74% 

AUC: 0.725 
Sensitivity:65% 
Specificity:65% 

Table 5.20: UOL training and RFH and UKCTOCs External validation cohort algorithm 
performance comparison for the 2 marker CA combination.  
 
 

C model UOL Training cohort RFH and UKCTOCs  
External validation cohort 

LR AUC:0.750 
Sensitivity:58% 
Specificity:86% 

AUC: 0.698 
Sensitivity:60% 
Specificity:59% 

C5.0 Decision Tree 
(Non-boosted 
Generality) 

AUC: 0.813 
Sensitivity:83% 
Specificity:76% 

AUC:0.619 
Sensitivity:77% 
Specificity:47% 

RF (Run 6) AUC: 1.00 
Sensitivity:100% 
Specificity:98% 

AUC: 0.609 
Sensitivity:80% 
Specificity:31% 

Table 5.21: UOL training and RFH and UKCTOCs External validation cohort algorithm 
performance comparison for the single marker C. 
 

A model UOL Training cohort RFH and UKCTOCs 
External validation cohort 

LR AUC:0.758 
Sensitivity:72% 
Specificity:76% 

AUC: 0.631 
Sensitivity:80% 
Specificity:29% 

C5.0 Decision Tree 
(Non-boosted Generality) 

AUC: 0.767 
Sensitivity:72% 
Specificity: 80% 

AUC: 0.539 
Sensitivity: 78% 
Specificity:29% 

RF (Run 3) AUC: 0.996 
Sensitivity:95% 
Specificity:98% 

AUC: 0.551 
Sensitivity:70% 
Specificity:37% 

Table 5.22: UOL training and RFH and UKCTOCs External validation cohort performance 
comparison for the single marker A. 
 
 
5.6 Further Algorithm Development 
The external validation results described in Section 5.5 showed that the models 

generally had high FPR rates (>60%) and low specificity (<60%) with some 

model exceptions. Moreover, only certain algorithms, such as the LR and SVM 
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algorithms, achieved an AUC above 0.70, with AUCs of > 0.70 seen in the UOL 

cohort, and certain models such as RF dropping by large amounts at external 

validation, thus highlighting the inability of these markers and models to perform 

well in external validation. As these poor validation results indicated model 

performance varied widely with different patient data, a Combined dataset 

comprising the UOL dataset (Chapter 3) and the External Validation dataset 

(Chapter 5) was created in order to develop new algorithms. The hypothesis 

was that a larger dataset would produce better performing models that could be 

used and further tested on other independent cohorts in the future. The greater 

number of pNETs and controls within this cohort compared to each individual 

cohort was expected allow algorithms to better capture the heterogeneity of 

pNETs. To this end, C5.0 decision trees, LR model, RF and SVM (2-marker 

only) models were explored. C5.0 decision tree, LR and RF models were 

developed using SPSS Modeler, whereas Optimised Linear and RBF SVM 

models were developed using MCLA using methods previously described. 

Models were created for the ANG2 and CgA combination, and the CgA and 

ANG2 single markers. 

The best ANG2 models developed using the Combined dataset were obtained 

for RF models, which produced an AUC between 0.978 and 0.994 (Table 5.23), 

followed by the LR model with an AUC of 0.663 (Figure 5.14). C5.0 decision 

trees obtained using the generality and the accuracy setting both produced an 

AUC of 0.656 (Figure 5.15).  

 

 
Run  AUC 
1 0.990 
2 0.981 
3 0.994 
4 0.986 
5 0.988 
6 0.989 
7 0.991 
8 0.978 
9 0.981 
10 0.984 

Table 5.23: Performance of the RF model developed from ANG2 data in the Combined 
dataset (n=217) 
A total of 10 runs were carried out with the AUC is shown for the RF model developed by each run. 
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Figure 5.14: LR model Predictor Importance and ROC curve developed from ANG2 data 
in the Combined dataset (n=217) 
(A) Predictor Importance=1.00 (B) ROC curve with an AUC of 0.663 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 5.15: C5.0 decision tree model, Predictor Importance and ROC curve developed 
from ANG2 data in the Combined dataset (n=217) 
(A) C5.0 Decision Tree model (B) Predictor Importance A=1.00 (C) ROC curve with an AUC of 0.656 
The same model was obtained for the accuracy setting 
 

 

Similarly, the best performing CgA models were the RF models which had an 

AUC ranging from 0.986 to 0.998 (Table 5.24), followed by the LR model with 

an AUC of 0.718 (Figure 5.16), and then the C5.0 decision tree model which 

had an AUC of 0.694 (Figure 5.17). 

 

 
Run  AUC 
1 0.986 

A B 

A B 

C 
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2 0.987 
3 0.998 
4 0.987 
5 0.988 
6 0.993 
7 0.992 
8 0.987 
9 0.986 
10 0.987 

Table 5.24: Performance of the RF models developed from CgA data in the Combined 
dataset (n=217) 
 

 
 
 
 

 

 

Figure 5.16: LR model and ROC curve for CgA using the combination dataset   
(A) Predictor Importance C=1.00 (B) ROC curve with an AUC of 0.718. 
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Figure 5.17: C5.0 decision tree model, Predictor Importance and ROC curve developed 
from CgA in the Combined dataset. 
(A) C5.0 decision tree model (B) Predictor Importance with C=1.00 (C) ROC curve with an AUC of 0.694 
The same decision tree and AUC were obtained for the accuracy setting. 
 
 
The Optimised RBF SVM and RF models were the best performing models 

developed from the CgA and ANG2 data taken together, as determined by their 

AUC values of 1.00 (Figure 5.18) and 0.996-1.000 (Table 5.25), respectively. 

The C5.0 decision tree was the next best performing model with an AUC of 

0.777 (Figure 5.19), followed by the LR model with an AUC of 0.758 (Figure 

5.20). The Optimised Linear SVM model was the worst performing model with 

an AUC of 0.660 (Figure 5.18). 
 
 
  

 

 
Figure 5.18: ROC curves for the Optimised Linear and RBF SVM models developed from 
AC data in the Combined dataset. 
(A) Optimised Linear SVM ROC curve with an AUC of 0.660 (B) Optimised RBF SVM ROC curve with an 
AUC of 1.000. 
 
 

C 
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Run  AUC 
Run 1 0.996 
Run 2 0.999 
Run 3 0.998 
Run 4 1.000 
Run 5 0.999 
Run 6 0.999 
Run 7 0.999 
Run 8 0.997 

Table 5.25: Performance of RF models developed from CA data in the Combined dataset. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.19: C5.0 decision tree model, Predictor Importance and ROC curve developed 
from CA data in the Combined dataset. 
(A) C5.0 decision tree model (B) Predictor Importance C=0.77 and A=0.23 (C) ROC curve with 
an AUC of 0.777 
 
 

A 
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Figure 5.20: Performance of the LR model developed from CA data in the Combined 
dataset. 
(A) Predictor Importance C=0.62 A=0.38 (B) ROC curve with an AUC of 0.758. 
 

In summary, AUC and sensitivity were higher for all two-marker combined 

dataset LR, C5.0 decision tree and RF models compared to single-markers 

combined dataset models (Table 5.26). However, specificity did not similarly 

improve for all the algorithms (Table 5.26). The high performance of RF models 

was similar to that seen with the UOL training data (Chapter 3) and merited 

caution due to the high likelihood of overfitting. When comparing the results for 

AC vs the single markers of just A and C using the combined dataset, the two 

marker models performed better compared to the single markers of A and C 

across LR, C5.0 decision tree and RF. A sensitivity of >80% (88.03%) was seen 

for the C5.0 decision tree with ANG2 and CgA which was higher than that seen 

for the single marker ANG2 and CgA decision trees (Table 5.26). For the LR 

model, sensitivity didn’t increase for the LR AC model compared to the A model, 

however sensitivity did increase for the LR AC model compared to the LR C 

model 59.80% vs 51.28% (Table 5.26). When comparing the model AUC results 

for the combined dataset  for the 2 marker ANG2 and CgA combination and 1 

marker ANG2 and CgA (Table 5.26) these AUC results were generally lower 

than the UOL training dataset (Tables 5.20, 5.21, 5.22).  

 
 

 AC A C 
LR AUC: 0.758 

Sensitivity: 59.80% 
Specificity: 79.00% 
 

AUC: 0.663 
Sensitivity: 63.25% 
Specificity: 63.00% 

AUC:0.718 
Sensitivity: 51.28% 
Specificity: 85.00% 

C5.0 Decision 
Tree 

AUC:0.777 
Sensitivity: 88.03% 
Specificity: 56.00% 

AUC: 0.656 
Sensitivity: 75.20% 
Specificity: 56.00% 

AUC:0.694 
Sensitivity: 53.85% 
Specificity: 85.00% 

RF  Run 4 
AUC:1.000 
Sensitivity: 99.15% 
Specificity: 100% 

Run 3 
AUC:0.994 
Sensitivity: 92.31% 
Specificity: 99.00% 

Run 3 
AUC: 0.998 
Sensitivity: 96.58% 
Specificity: 100% 

A B 
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Optimised 
Linear SVM 

AUC:0.660 
Sensitivity: 31.62% 
Specificity: 93.00% 

NA NA 

Optimised RBF 
SVM 

AUC:1.00 
Sensitivity: 100% 
Specificity: 100% 

NA NA 

Table 5.26: Summary of the results obtained for the performance of models developed 
from AC, A and C marker data in the Combined dataset. 
 
 
5.7 Discussion 
External validation using an independent cohort is important to detect overfitting 

to training data and to assess the generalisability of training-set models and 

markers. An example drawn from pancreatic cancer is the study by Melby et al., 

who developed a biomarker signature using a Scandinavian cohort and 

validated it using a cohort from the USA. They found that the biomarker 

signature was able to discriminate samples derived from patients with stage 1 

and 2 pancreatic cancer from controls with a AUC of 0.96 and that the 

performance of the signature in the independent patient cohort was also 0.96. 

As their test performed well in both cohorts, there was no indication of 

overfitting and it was suitable to take forward for prospective validation492. 

Independent cohorts have also been used in the development of a marker 

panel for small intestine NETs (si-NETs). The panel was refined in training 

cohorts of plasma samples from 40 metastatic si-NET patients and 40 controls, 

and then validated in independent cohorts of 120 metastatic si-NET patients 

and 120 controls and found that elevated circulating levels of miR-21-5p and 

miR-22-3p and low levels of miR-150-5p are characteristic in patients who have 

metastatic si-NETs493. Independent cohorts were also used in a study of the 

prognostic relevance of the pNET markers Ubiquitin C-terminal hydrolase L1 

(UCH-L1) and α-internexin and found that concurrent expression of both UCH-

L1 and α-internexin were correlated with clinicopathological features that 

included prognosis in each independent collective and in the combination of the 

two cohorts406. As a final example, the NETest was independently validated 

using a cohort of 67 pNET and 44siNET patients and 63 controls, and was 

shown to correlate with imaging494. Hence the importance of external validation 

using independent cohorts has been highlighted across the field and is an 

important step in the pathway to biomarker implementation. 
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The work described in this chapter sought to validate the top three markers 

identified using the approaches to pNET biomarker model development outlined 

in Chapter 3 (UOL training) and Chapter 4 (UOL internal validation). From this 

the three most suitable markers identified to take forward to external validation 

were CgA, ANG2 and VGF. However, results described in this chapter for the 

external validation tests using the RFH pNET cohort, revealed that VGF levels 

were not elevated in cases compared to controls and it was therefore excluded 

as a pNET marker (Table 5.3). This finding highlighted the importance of 

external validation, as a marker that seemed to hold promise in the training 

stages was shown not have any value for an independent cohort. The reasons 

underlying the difference in VGF levels in the two pNET cohorts were not 

identified, but merit discussion. 

VGF is a member of the chromogranin/secretogranin family. It is stored in large 

dense core vesicles located in neuroendocrine and neuronal cells,161 and is 

localised to a number of neuroendocrine tissues including pancreatic endocrine 

cells160. Matsumoto et al. identified VGF in the conditioned medium of cells 

derived from a large cell neuroendocrine carcinoma via high-throughput mass 

spectrometry and thus proposed VGF to be a novel maker of NETs495. 

However, the mechanisms that elevate VGF expression in NETs and the 

biological effects of elevated VGF expression remain to be established. In 

pNENs, VGF binds to long non-coding RNA to activate the PI3K/AKT/CREB 

signalling pathway and promote the malignant phenotype and growth of 

pNENs166. Consequently, VGF was expected to be a marker for pNETs. While 

VGF has previously been shown to be elevated in pNEN tissue166, it has not 

been identified as a pNET serum marker. However, despite VGF showing 

promise as a pNET marker for the UOL training cohort, this was not sustained 

in the external validation cohort. Further issues concerning VGF as a potential 

pNET marker arise from its role in a range of other conditions including 

Alzheimer’s disease496, Parkinson’s disease497, major depressive disorder164, 

bipolar disorder164, neuropathic pain498, circadian rhythm499, body fluid 

balance500, diabetes377, obesity501, infertility499 and sexual dysfunction499; as 

well as its elevation in NETs of the breast502, large cell lung cancer495, 

glioblastoma503 and ovarian cancer504. 
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The UKCTOCS healthy control external validation cohort had a mean serum 

VGF level of 523 ± 656.15 pg/m, while the RFH pNET external validation cohort 

had a mean serum VGF level of 311 ± 314.736 pg/ml (Table 5.3). These results 

could be interpreted as the control group value being much higher than 

expected or the pNET group value being much lower than expected, or both. To 

understand this further, other healthy control group data would need to be 

compared. The UOL training cohort consisted of healthy controls with a mean 

serum VGF level of 4500 ± 4711.56 pg/ml and pNET cases with a mean value 

of 8423 ± 7438.48 pg/ml. Thus, within the UOL cohort (n=106) the control and 

pNET groups had much higher mean VGF levels than seen at external 

validation. In the published literature control groups have mean VGF levels that 

are lower than that determined for the UOL training pNET groups but higher 

than that obtained for the external validation groups. For example, Chen et al. 

compared VGF levels in MDD patient, bipolar patient and healthy control 

sera164. The healthy controls used in the Chen et al. study had a mean VGF 

level of 1041 ± 54 pg/ml, compared to 994 ± 57 pg/ml for the MDD group and 

1155.27± 45.72 pg/ml for the BD group. A study by Li et al., which compared 

healthy control to high- and low-risk suicide groups, found mean VGF 

concentrations of 1107 ± 155, 883 ± 140, and 1021 ± 132 pg/ml, respectively505. 

Thus, the mean levels of VGF in control groups were similar in the Chen et al. 

and Li et al. studies, but different from those I obtained for the UOL training 

cohort and UKCTOCS external validation cohort. Finally, there is no established 

reference range for healthy individuals. Taken together, these observations 

highlight the variability in control cohort results, but they do not shed light on the 

underlying reason for these differences. The VGF ELISA kit used for the training 

ELISAs was the VGF (Cloud-Clone Corp) which was the same kit used for 

validation ELISAs, thus kit variation is unlikely to be a factor for VGF. However, 

training and validation ELISAs were performed several years apart. 

A limitation of the external validation cohort is that many of the patients were 

receiving different NET-related treatments, which could have influenced VGF 

levels. Some of the patients had previously received chemotherapy or were on 

NET-related medications such lanreotide or octreotide. Ideally treatment-naïve 

patients would have been recruited to minimise the impact of treatments, but 

this was not possible as patients were recruited at different stages of their care, 
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and at different disease stages. This reflects the real diversity of patients 

presenting with pNETs. 

Further studies are needed to establish VGF mean values and reference 

ranges in pNET cohorts, and to identify confounding factors before VGF can be 

taken forward as a pNET marker. Gender is not a known confounding factor for 

VGF levels as its role as a confounder has not been explored in certain 

studies164,505, and as this remains a possibility it would have been better for the 

all-female UKCTOCs controls to have matched the male and female RFH pNET 

group. Moreover, other currently unidentified confounders could have 

contributed to the higher VGF level in controls compared to cases, independent 

of pNET status. Identification of these confounding factors will be important to 

the future assessment of the suitability of VGF as a pNET marker. Ultimately, 

this could only be verified with further independent analyses with a much larger 

group of controls to allow the effects of multiple other conditions such as 

obesity, bipolar disorder or pain disorders, on VGF level to be assessed. 

Indeed, a relationship between VGF and obesity has been indicated by Rahimi 

et al., who found high VGF levels in the plasma of obese individuals with type 2 

diabetes and of lean individuals (BMI<25)377. However, in the UKCTOCs 

controls used for the external validation, I found no association of VGF levels 

with BMI. A limitation for the UKCTOCs controls was that limited clinical data 

were available, including OCP usage, BMI, gender (all female) and ethnicity (all 

white). OCP usage was found to be a confounding factor in the controls and 

thus future studies should employ OCP usage as an exclusion factor. The 

number of controls on OCPs examined for VGF were 18 samples, with 17 

samples from patients not on OCPs, thus exclusion of the OCP samples would 

not be possible due to the number involved being over half of the examined 

samples. The impact of OCP usage on pNET samples could not be explored as 

information on OCP usage by these patients was not specifically collected. 

Functionality of a pNET may also have influenced VGF levels, similar to the 

effect on CgA. However, functionality information was not available for the RFH 

pNETs, precluding this analysis. In conclusion I decided that VGF was not a 

suitable marker to take forward until further validation can be performed using 

additional, larger cohorts of pNET and healthy control samples.  
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ANG2 is a growth factor involved in angiogenesis, the well-studied and vital 

process of increased vascularisation in cancer growth maintenance and 

metastasis470. The external validation results reported in this chapter 

demonstrated that ANG2 levels were significantly elevated in pNET compared 

to control samples (p=0.018), with mean levels of 3999 ± 3354.01 and 2610 ± 

1545.31 pg/ml, respectively (Table 5.1). This finding is consistent with work 

carried out by Srirajaskanthan et al., which found that serum ANG2 levels were 

significantly elevated in 47 GEP-NET patients compared to controls (median 

values of 4756 and 2495 pg/ml, respectively; P<0.001)470. However, while 

Melen-Mucha et al. found that plasma ANG2 levels were higher in 36 GEP-NET 

patients compared to controls, the difference did not reach significance140. It is 

also worth noting that these two published studies included different types of 

GEP-NETs; for example, the Srirajaskanthan et al. cohort had 17 pNET 

samples (36%), while the Melen-Mucha et al. cohort had 2 (6%). 

While specific clinical parameters, including metastasis, grade and location of 

the tumour, did not significantly associate with ANG2 levels in the external 

validation results, it is worth noting that metastasis patients had a higher mean 

ANG2 level compared to non-metastatic patients in the external validation. I 

inferred from these results that ANG2 level may be related to tumour size and 

that studies with larger patient cohorts may allow significance to be reached. 

Srirajaskanthan et al. found that serum ANG2 levels were statistically 

significantly elevated in GEP-NET patients with distant metastases compared to 

those without metastasis (median 5080 vs 3360 pg/ml P=0.01)470. Their study 

also found a significant association between ANG2 level and volume of liver 

metastases (P=0.014), and time to disease progression was worse in patients 

with serum ANG2 levels >4756 pg/ml (P=0.04)470. A relationship between 

metastasis and ANG2 is also supported by Melen-Mucha et al., who found that 

plasma ANG2 levels were significantly higher in GEP-NET patients with 

metastatic disease than those with localised disease140. The results I obtained 

for grade in the external validation cohort indicated no significant association 

but were compromised by the presence of only one G3 pNET sample, which 

was too low to be included in my analysis.  

My external validation results showed that BMI and OCP usage were not 

confounding factors of ANG2 level in the control samples. PPIs, having another 

cancer, diabetes and gender were not confounding factors for ANG2 level in the 
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external validation pNET samples. Similarly, there was no significant correlation 

between ANG2 and either QCancer® or QPancreas® score. My analysis of the 

CEA, CA19-9, CRP, creatinine and bilirubin biochemical markers, which were 

taken as part of the RFH pNET patient clinical work up, showed that only CA19-

9 level (p<0.01) correlated significantly with serum ANG2 level (Table 5.2). This 

finding was interesting as CA19-9 has not previously been reported to be a 

pNET diagnostic marker. However, a study by Luo et al., indicated that CA-19-9 

was a prognostic biomarker in pNETs with a cut off value of CA19-9 > 16U/ml 

being an adverse prognostic factor for patients overall survival506. They also 

found that CA19-9 > 16U/ml group had a statistically higher proportion of stage 

III or stage IV patients compared with CA 19-9<16U/ml. Thus, suggesting that 

CA19-9 is a prognostic biomarker for pNETs with this reflecting aggressiveness 

and severity of disease. The statistically significant correlation seen between 

CA19-9 and ANG2 in the RFH pNET patients in my study could be a reflection 

of increased aggressiveness and severity of disease. However, CA19-9 is an 

established PDAC marker507. Although CA19-9 has been suggested to 

accelerate PDAC angiogenesis508, and while PDACs are characterised by an 

extremely high potential for invasion and metastasis with angiogenesis playing 

a crucial role in this process509, ANG2 is not known to be a PDAC marker. 

Consequently, the correlation between ANG2 and CA19-9 levels seen in pNET 

patient sera appears not to arise from any similarity with PDAC patients. 

A limitation on ANG2 usage clinically is the large number of confounding factors 

associated with this marker (Section 1.5.5) and implementation of this marker 

clinically may be challenging as a result. 

External validation of higher CgA levels in pNET relative to healthy control 

serum (Table 5.4) showed that case levels (mean 278 ± 362.558 ng/ml) were 

indeed elevated compared to control levels (mean 101 ± 299.132 ng/ml). These 

results were similar to those obtained for the UOL training cohort, for which the 

mean CgA serum levels in the UOL pNET and control cases were 237 ± 434.48 

ng/ml and 48.68±	49.42 ng/ml, respectively. Hence, both cohorts provided 

support for CgA as a pNET marker, which was expected based on the volume 

of similar published evidence. 

My assessment of confounding factors in the external validation cohort showed 

that OCP usage and BMI were not statistically significantly correlated with CgA 

sera levels in UKCTOCs control samples, while PPI usage was a confounding 
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factor for the CgA level of pNET samples (p=0.048), consistent with previous 

studies462,510,511. This is an important limitation of CgA as a pNET marker as 

patients would need to stop taking PPIs to allow reliable CgA analysis. Clinical 

characteristics including MEN1 genotype, metastasis status, and grade were 

found not to associate significantly with CgA level. However, as previously 

mentioned, there were limitations to the grade analysis. The only clinical 

characteristic found to significantly associate with CgA serum levels was the 

QPancreas® score, which is a specific value developed from the QCancer® 

questionnaire by Professor Julia Hippisley-Cox. This QCancer® questionnaire 

aims to provide a prediction of cancer risk (a QCancer® score) based on 

symptoms and risk factors with specific questionnaires for males and females. 

The QPancreas® score is one of the additional scores provided in the QCancer® 

questionnaire that assesses the risk of pancreatic cancer in patients based on 

specific symptoms and risk factors. Thus, it is particularly interesting that CgA 

serum levels in the RFH pNET cohort associated with QPancreas® scores. This 

was not seen with QCancer® scores, suggesting that a specific combination of 

symptoms and risk factors that associate with pancreatic cancer are also 

associated with increased CgA level. Further study into this, including a more 

granular analysis of individual symptoms, would be useful in the future.  

A limitation of the QPancreas® score is that it does not distinguish between 

PDAC and pNET patients. Serum CgA association with other biochemical 

parameters including CEA, CA19-9, creatinine, CRP and bilirubin in the external 

validation pNETs was not significant. When assessing the relationship between 

CgA sera and CgA plasma a Pearson correlation coefficient of 0.278 was 

obtained p=0.086 indicating a positive although not statistically significant 

correlation between CgA plasma and CgA serum levels, although plasma levels 

were generally higher than serum levels. CgA plasma levels could only be 

assessed in the RFHpNETs due to this test being routinely carried out for the 

patients in the RFH clinic, however this could not be assessed in the UKCTOCs 

controls and this is a limitation for the analysis. Assessment of whether plasma 

levels of CgA were higher compared to sera irrespective of disease status could 

not be examined as a result. However, a study by Lim et al., found that serum 

and plasma samples from self-reported healthy doors had a reference range 

determined to be 6-95ng/ml in serum and 20-146 ng/ml in plasma512, as 

measured by the CisBio CgA ELISA kit. Hence, suggesting that plasma levels 
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of CgA are higher than sera levels regardless of disease status. The higher sera 

levels of CgA compared to plasma levels of CgA is an important assessment 

and has implications as to whether sera or plasma CgA ML models are more 

optimal to develop, if the ideal model should have generalizability to both sera 

and plasma results. ML models built using plasma levels of CgA are likely to 

have thresholds that are higher than that used for sera CgA to discriminate 

between pNETs and controls, meaning that sera CgA pNET data if used on 

these developed models is likely to be lower than the threshold used for plasma 

and thus these patients would not be picked up by the plasma developed ML 

models.  However, models developed using sera CgA would likely have 

discriminant thresholds that between case and control that are lower, hence 

these generated models would still be able to identify pNET patients based on 

CgA plasma results.  

CgA is currently the most useful NET marker for establishing a diagnosis. It has 

also been shown to have value in the prediction of disease recurrence, patient 

outcomes and efficacy of treatment513. However, there is no Food and Drug 

administration (FDA)-approved CgA assay for NET diagnosis512. CgA can be 

measured using different antibody-dependent assays including ELISA, 

immunoradiometric assay (IRMA), radioimmunoassay (RIA), and a more recent 

immunofluorescence assay based on Time-Resolved Amplified Cryptate 

Emission (TRACE)514. The RFH uses the Health Services Laboratories (HSL 

labs) for plasma CgA analysis as part of their routine care of NET patients, and 

HSL labs use the DiaSource CgA ELISA assay. The UOL training dataset was 

produced using the DAKO CgA ELISA assay, whereas the RFH external 

validation dataset was produced using the CisBio ELISA assay. The use of 

different ELISA assays may have been a limitation in comparing the training 

and validation data due to a lack of standardisation, however as the UOL cohort 

and RFH cohort samples were not tested with both ELISA kits, the impact that 

this could have had is not known. 

In this regard, a study by Lim et al. found that different CgA ELISA kits for the 

same sample type (sera) obtained different results, as serum levels measured 

by the CisBio ELISA were 8-9 times higher than those obtained by a reference 

laboratory (Quest Diagnostics) CgA ELISA assay512. If CgA is to be employed 

widely as a NET marker, CgA assays will need to be standardised. Other issues 

remaining for CgA assay measurements and their utility, which include 
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determining the upper limit of normal in a population, sample stability (which is 

the temperature at which the sample is maintained prior to assay)515 and 

developing systems that can measure the presence and absence of specific 

CgA peptide fragments516. Study design issues also remain for CgA including 

the lack of age and gender matching and addressing known confounding 

factors for CgA. This also complicates algorithm development and threshold 

selection. Thus, ideally longitudinal analyses should use the same CgA assay 

and a patient should be re-baselined if the CgA assay changes.  

A study by Hijoka et al., found that the mean CgA levels of patients with pNET 

was significantly higher than controls, with this being 407.8 ± 984.6 ng/ml 

(n=69) compared to 62.5 ± 48.3 ng/ml (n=112)517. Another study by Qiao et al., 

found in pNET patients that sera levels of CgA in insulinomas (n=57) (median 

64.8 ng/ml, range 25-164) were slightly higher than in healthy controls (n=86) 

(median 53.4 ng/ml range 39-94) but lower than the non-insulinomas (n=32) 

(median 193ng/ml range 27-9021)90. The RFpNETs from the external validation 

in my study had a mean CgA of 277.765 ± 362.56 ng/ml compared to 100.996 ± 

299.132 ng/ml in the UKCTOCs controls. Thus, the elevations seen in CgA in 

pNETs was consistent to that of other pNET cohorts. The UOL pNET cohort 

from the training cohort in my study had a mean CgA of (237.48 ±	434.48 

ng/ml) (n=57) and the UOL training healthy controls had a mean CgA of 48.68 

±	49.42 ng/ml (n=49). Thus, the findings from the UOL and RFH cohorts are 

consistent with other pNET cohorts which reported elevations in CgA compared 

to controls. 

Moreover, CgA has been suggested not to be a good clinical marker for NETs. 

Factors for CgA not being a suitable marker include confounding factors 

associated with CgA. CgA is known to be elevated in various malignancies as 

mentioned in Section 1.5.1 of the thesis. CgA elevations in other malignancies 

means that it hampers utility of CgA as a marker for NETs in patients. However, 

it isn’t also malignancies in which CgA levels have been shown to be elevated 

in, but in cardiac inflammatory and renal insuficiency449. Moreover, background 

levels are variable in different populations and a study has shown that 

postprandial serum CgA levels increase significantly in patients with ECL cell 

hyperplasia secondary to long term PPI usage as well as similar trend observed 

in normal controls. Thus, when CgA is measured in NET patients it should be 

measured in blood samples from fasting patients518. Moreover a study by Tseng 
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et al., showed that plasma CgA level was associated with tumour size, 

metastasis and tumour stage and that for early stage pNETs CgA exhibited a 

limited role in diagnosis519. 

A study examining NF-pNETs with low metastatic burden showed that 

preoperative CgA levels were elevated in only 10 out of 47 patients520. In a 

study of Japanese pNETs, CgA ELISA showed sensitivities and specificities of 

53.6% and 78.6%517.  

When comparing algorithm performance between the UOL training dataset and 

the RFH external validation cohort for the CA combination, C and A single 

markers, the training AUC was always greater than the validation AUC. This 

was to be expected as the models were based on the training data. However, 

the impact of overfitting was higher for certain models than for others. The 

impact for the CA combination were particularly evident for the RF and C5.0 

decision tree models, for which the training AUCs of 1.00 and 0.835, 

respectively, dropped in external validation to 0.500 and 0.543, respectively. 

The poor performance of the CA C5.0 decision tree could be explained by the 

thresholds specified by the tree. Specifically, the higher FPR and lower TNR 

rates suggest the ANG2 threshold of 1.758 ng/ml and CgA threshold of 1.894 

nmol/L were too low for the external validation cohort. An explanation for the 

poorer performance of the CA RF model at external validation could be based 

upon the original model being too highly complex in that it focussed more on 

noise as opposed to real patterns within the data and thus had an inability to 

generalise to an independent dataset. The CA LR, Linear SVM and RBF SVM 

models proved to be more robust. The LR CA model had a training AUC of 

0.849 which dropped to 0.724 in the external validation. The CA LR model had 

a training sensitivity and specificity of 72% and 80% with the sensitivity and 

specificity in external validation for this model being 88% and 31% respectively. 

Thus, showing the specificity was impacted at external validation and not the 

sensitivity. The CA Linear SVM model which had a training AUC of AUC of 

0.818 dropped to an AUC of 0.719 at external validation. The training Linear 

SVM CA model had a sensitivity and specificity of 74% and 76% respectively 

with both the sensitivity and specificity dropping at external validation to 67% 

and 65%. RBF SVM CA model which had a training AUC of 0.821 with this 

dropping to an AUC of 0.725 in external validation. The sensitivity and 

specificity were also impacted, with the sensitivity and specificity at the UOL 



 251 

training cohort for this model being 77% and 74% compared to 65%. Thus, 

when factoring AUC, sensitivity and specificity, the RBF SVM CA model 

performed the best in the external validation. 

Amongst the CgA single-marker models, the LR model was the most robust 

with an AUC of 0.750 in training which decreased to 0.698 in the validation 

cohort. For the C5.0 decision tree and RF models, despite having stronger 

performances in the UOL training cohort of 0.813 and 1.00, respectively, these 

dropped to 0.619 and 0.609, respectively. Consequently, the LR model had the 

lowest difference between training and validation AUCs, indicating it was the 

least impacted by overfitting. The poorer performance of the C5.0 decision tree 

model at external validation could be explained by the thresholds that were 

used in the training decision tree model. Specifically, the CgA C5.0 decision 

tree training model contained splitting nodes with threshold CgA values of 1.305 

nmol/L followed by 1.126 nmol/L, followed by 1.026 nmol/L. When looking at the 

nodes of the CgA non-boosted decision tree that was created using the training 

data, the additional smaller threshold splits at 1.126 nmol/L and 1.026nmol/L 

were utilised to further separate controls and cases due to the initial 

1.305nmol/L threshold not being sufficient to do this. These thresholds for 

identifying pNETs appeared to be not high enough for the RFH external 

validation. To explore what thresholds would be suitable for the RFHpNET and 

UKCTOCs external validation cohort, this cohort of n111 was used as a training 

cohort with a C5.0 non boosted decision tree created for CgA to explore what 

threshold would be suitable based on that cohort. From this, it was seen that 

the C5.0 non-boosted decision tree that was used a threshold of 5.815nmol/L 

which was much higher than that seen based on the UOL training data and 

illustrating that discriminating against case and control based on lower 

thresholds would not be suitable for the RFH and UKCTOCs data and highlights 

the challenges in model development.   

Additionally, the more nodes a decision tree has the more likely that the tree 

has been overfitted to the training data, reducing its ability to generalise to other 

datasets. The more complex a decision tree model is, the less reliable it would 

be to predict future records, with an extreme scenario for this being a very 

complex decision tree model that spreads wide in making the records in each 

lead node 100% pure (all assessed records having the target outcome)397. 

However, such a decision tree would be overfitted to the used observations and 
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have few records in each leaf and thus not reliably predicting future cases 

which means it would have poor generalisability397. Prevention of this involves 

incorporating stopping rules with stopping rules including the minimum number 

of records in a leaf, the minimum number of records in a node prior to splitting 

and the depth (number of steps of any leaf from the root node397.  

A similar trend was seen for the ANG2 single-marker models, with the LR model 

being least impacted by overfitting, while the RF and C5.0 decision tree models 

were substantially impacted. Consequently, the threshold of 1.758 ng/ml in the 

ANG2 decision tree training model was likely lower than that required for the 

external validation ANG2 data, resulting in high FPR and low TNR values. To 

assess the threshold of the C5.0 non-boosted decision tree when using the 

external validation cohort for decision tree creation, a decision tree model was 

not shown in the software and the resulting AUC of the C5.0 decision tree 

model was 0.500, suggesting that based on this one model type that ANG2 

based on the external validation data used for training was poor and not a 

suitable marker. The AC C5.0 non-boosted decision tree model created using 

the external validation cohort reproduced the same decision tree threshold 

model when just CgA with a threshold of 5.815 nmol/L used (Appendix E). This 

further highlighted that ANG2 did not have any utility for C5.0 non boosted 

decision tree models and highlighted different training cohorts could reveal 

different markers that were more suitable. 

The low validation AUCs of CgA single-marker models relative to corresponding 

training AUC values reveals a generally poor validation performance of CgA as 

a single pNET marker. These findings are similar to those seen in other case-

control studies of CgA level in pNET patients. For example, a study by Pulvinetti 

et al., which assessed CgA levels in 99 pNET patients and 21 healthy controls, 

revealed an AUC of 0.77462, while Miki et al. found an AUC of 0.78 in their study 

of 91 patients and 104 healthy controls521. ANG2 single-marker models 

performed worse in external validation than CgA models, achieving AUC values 

of 0.631 (LR model), 0.539 (C5.0 decision tree model) and 0.575 (RF model). 

This similarly highlights the unsuitability of ANG2 as a single marker for pNET 

detection. 

The CA two-marker approach performed slightly better in external validation 

than the respective single markers. The CA models produced the highest AUC 

values at validation for the RBF SVM and LR models, with AUCs of 0.725 and 
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0.724, respectively. However, these AUCs were still low <0.80, and the LR 

model despite having a high sensitivity of 88% suffered from a poor specificity 

of 31%. The Linear SVM model and RBF SVM model had higher sensitivities of 

67% and 65%, respectively with specificities of 65%. Thus, suggesting that 

better performing models and markers were needed. 

Thus, based on the findings from the external validation of single CgA and 

ANG2 models and CA combination models across model types, these model 

performances were not good enough when compared to training performance. 

Thus, an alternative approach was created, whereby the training dataset and 

the external dataset were combined to create a larger dataset. The rationale for 

this being that this larger dataset could allow for more suitable thresholds and 

models to be created, that encompass the variations that are seen between the 

training and the validation cohort.  

To improve model performance by using a larger training dataset, new C, A and 

CA models were derived from a combination of the UOL and RFH cohorts. 

These will require future validation using independent, large pNET cohorts, 

which was beyond the scope of my thesis. The same types of algorithm as 

those explored in Chapter 3 (UOL training), namely Optimised Linear and 

Optimised RBF SVM, non-boosted C5.0 decision tree, LR and RF algorithms 

were used for model development. Linear and RBF SVM using the SPSS 

Modeler approach of manual grid optimisation were not carried out due to the 

disadvantages to this approach compared to the MCLA approach, 

disadvantages of the SPSS Modeler approach including the inability to optimise 

directly within the software and a parameter selection which may not 

necessarily contain the best performing model, and the time consuming nature 

of a manual grid optimisation in SPSS Modeler in comparison to an automated 

grid search approach in MCLA. The best-performance was seen for the RF 

model (Run 4) with an AUC of 1.000, and the Optimised RBF SVM model which 

had an AUC of 1.00 for the CA combination, while the LR and the C5.0 decision 

tree models had lower AUCs of 0.758 and 0.777, respectively. The performance 

of CgA LR, C5.0 decision tree and RF models was again better than the 

corresponding ANG2 models. When looking at the combined dataset results, 

the AUCs were lower than that seen for when the UOL training set individually 

was used for the CA marker for LR and C5.0 decision trees. The UOL training 

dataset had AUC for the CA markers of 0.835 for the C5.0 decision tree and 
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0.849 for the LR model, thus comparing this to the LR and C5.0 decision tree 

model results obtaining the combined dataset, the performance of these 

markers is poorer in the larger combined training set compared to the smaller 

UOL alone training set. Thus, based on these results, CgA and ANG2 in 

combination may not be the most suitable model to take forward and thus, other 

markers would also need to be analysed in conjunction. The higher 

performances seen for RF and Optimised SVM were similar to that seen with 

the UOL alone training cohort with the UOL training cohort having an average 

AUC for the CA markers of 0.998 and the Optimised SVM model performing the 

same in the combined training dataset and the UOL training dataset with this 

being an AUC of 1.00. 

A limitation for my work, is that only certain ML algorithms were explored, 

including C5.0 decision trees, RF, LR and SVM. There are other known 

supervised ML algorithms which haven’t been explored as part of this work, 

which may have performed better in comparison to these other algorithms. 

Examples of other supervised ML algorithms which have been assessed in the 

context of other biomarker research include neural networks used in the 

development of an early diagnosis biomarker model for Alzheimer’s disease 522, 

naïve bayes and k-nearest neighbour with both modes used in the identification 

of MDD markers523 and LDA524. However, these algorithms also have 

disadvantages, such as with neural networks being black box525 and LDA 

assuming the data to be normally distributed526. Thus, as with the algorithms 

used within the thesis, the disadvantages of other supervised ML algorithms 

would need to be considered before these are assessed in this work.  

Moreover, future studies should include other markers, such as TIMP1 and 

MAC2BP, in this larger cohort to assess the performance of models derived 

from combinations of these markers with CgA, ANG2, or both. 

Information on functionality will be important to understanding variations 

between different types of pNETs, including non-functional and functional types 

as well us functional subtypes, as a lack of functionality data limited my work, 

and it is likely that different types of pNET have increased or decreased levels 

of a marker. For example, it is known that CgA levels are not a good predictor of 

insulinomas90. 

An important limitation of my pNET cohorts was their size, and large multicentre 

pNET cohorts are needed in the future for biomarker and algorithm 
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development and validation. Studies such as the Malczwewska et al., study of 

the NETest for the diagnosis of pNETs had a small cohort of pNETs n=67494, 

and the Lv et al., study of CgA and NSE in NF-pNETs had a cohort of NF-

pNETs n=167468. Hence pNET marker studies have variations in the number of 

pNET samples used in their assessment. This variation in sample size is 

perhaps due to the rarity of pNETs and availability of pNET samples. Thus, 

large cohort studies for biomarkers being more challenging. When the 

sensitivity of a diagnostic test is not known a range of sensitivities would need 

to be considered in order to cover a range of potential sensitivities of the 

diagnostics test for example from 60% to 90%, across a range of d (maximum 

marginal error values) for example 0.1 to 0.2. When the sensitivity of test is 

lower the of pNETs based on sensitivity needed would be higher than that 

needed if the diagnostic test was 90% sensitive vs 60% sensitive. The higher 

the maximum margin of error the fewer samples that are required. Moreover, 

having large multicentre cohorts would be important particularly for generating 

large training and validation cohorts and to assess biomarkers based on pNET 

functionality, stage and grade as it is important that the impact of biomarkers on 

these characteristics can be assessed without limitations of insufficient numbers 

of a particular grade or type of pNET based on the available samples and 

hence having a larger number of samples allows for a greater granular 

assessment to be made.  

 

Further understanding of the heterogeneity of pNETs is needed for better 

marker development in the future. pNETs themselves are extremely diverse, 

due to the differences in functionality (functional or non-functional) types, 

differences in clinical presentation and prognosis which is due to functional 

status, genetic associations and variability in disease aggressiveness. Thus, 

studies exploring biomarker utility for diagnosis of pNETs should include cohorts 

which can fully explore these factors in a detailed way, which could lead to 

certain markers being identified for certain types of pNETs compared to others, 

as seen in the case of insulinomas and CgA not being a suitable marker90. 

When understanding the impact of the findings at validation compared to 

training the cohort heterogeneity is something considered. The UOL training 

cohort was diverse in terms of tumour grade and type of pNET. The cohort 

mirrored the heterogeneity of pNETs that are most encountered in clinical 
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practice but was not identical to the RFH external cohort in terms of certain 

characteristics such as staging. Staging for the UOL cohort was limited as 

previously described and a limitation for this cohort. For the external validation 

RFH pNET for ANG2 and CgA a similar number of metastatic and non-

metastatic pNETs were present within the cohort. Understanding the staging 

composition of the cohort is important as a training cohort with more metastatic 

cases and less early-stage cases is different to a training cohort with which 

there are less metastatic and more early-stage cases, and the composition of 

such a cohort on which the models are developed is a consideration. Hence the 

composition of the different pNET cohorts themselves could have impacted 

performance at validation. However incomplete staging for the UOL cohort 

hinders further understanding of this. The UOL cohort contained a similar 

number of 4 confirmed insulinomas (n=4), gastrinomas (n=3) and MEN1 

disease (n=4). Therefore, the number of confirmed insulinomas, gastrinomas 

and MEN1 related pNETs were similar and insulinomas did not make up a large 

portion of the group within this cohort. For the RFH pNET cohort for CgA and 

ANG2, the cohort consisted of 4 MEN1 cases but there was also Zollinger 

Ellison syndrome and MEN1 (n=1), Zollinger Ellison syndrome (n=1), and 

unconfirmed MEN1 (n=1). There were a similar number of MEN1 cases in both 

the RFH and UOL cohort. However, the lack of functional information for the 

RFH pNETs was a limitation. Having complete staging, functionality, MEN1 

status and grading is important when comparing both cohorts and to assess the 

impact of biomarkers. The incompleteness of clinical characteristics in the 

cohorts is a limitation. As markers and models taken forward are based on the 

types of pNETs that were part of the UOL cohort and hence if the RFH cohort is 

different to the UOL cohort in terms of the heterogenous composition this could 

be a factor that influences the performance of algorithms at validation that were 

designed on a specific training cohort. 

 

The external validation results illustrate the challenges of biomarker discovery 

and validation in terms of cohort size, detailed clinical information, control 

matching, and marker and assay quality, as well as the need for better 

algorithms. In the next chapter, the levels of CgA, ANG2 an VGF-NGF were 

determined in the ADEPTs cohort to compare levels of these markers in pNET, 
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PDAC, CP and AP patients. This part of my thesis aimed to assess if these 

markers could distinguish pNETs from common pancreatic conditions. 

 

Chapter 6 - Application of the biomarker panel to the ADEPTs 
pancreatic diseases cohort 

 

6.1 Introduction 

A patient who has a pNET may need to be distinguished from a patient who has 

PDAC or a benign pancreatic condition when they present to a clinician. 
Advanced PDAC patients symptoms include abdominal pain (78-82%), anorexia 

(64%), early satiety (62%), jaundice (56-80%), sleep disorders (54%), weight 

loss (66-84%), diabetes (97%), back pain (48%), nausea and weight loss (50-

86%)527. PDAC can also be identified asymptomatically, with asymptomatic 

PDAC characterised by smaller tumour size, early disease stage and higher 

resectability than those of symptomatic PDAC and associated with better 

prognosis compared to symptomatic PDAC528. pNET symptoms can vary 

depending on the type of functioning pNET that is present (VIPoma, 

gastrinoma, insulinoma, glucagonoma, somatostatinoma, ACTHoma, 

PTHRPomas and PPoma), with the associated symptoms dependent on the 

hormone that is secreted. For VIPomas associated symptoms include (watery 

diarrhoea, dehydration, hypokalaemia, abdominal pain, bloating and a flushed 

face), for gastrinomas (chest and or abdominal pain, acid reflux, heartburn, 

diarrhoea and tiredness), for insulinomas (dizziness, light headedness, 

sweating, hunger, confusion and irritability), for glucagonomas (distinct type of 

skin rash on the face stomach bottom and feet, diabetes, diarrhoea, weight 

loss, change in mood, anaemia, blood clots and sore mouth and tongue), for 

somatostainomas (gallstones, steatorrhea, anaemia, abdominal pain, high 

blood sugar levels and jaundice), for ACTHomas (weight gain, easy bruising, 

anaemia, depression, increased infection risk and darkened skin), for 

PTHRPomas (high calcium levels, abdominal pain, constipation, vomiting, bone 

pain, osteoporosis and fatigue) and for PPomas (diarrhoea, abdominal pain and 

weight loss)529. 

NF-pNETs tend to be diagnosed on imaging due to a lack of symptoms.  
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As pNETs are a rarer type of cancer, there is still no large scale study 

characterising symptomatology of pNETs nor are there studies that 

comprehensively compare the symptomatology of PDAC and PNEN66. The Liao 

et al., study tried to address this and found that of the symptoms identified 

twenty-three were significantly associated with PDAC, and nine symptoms with 

pNEN. They identified two alarm symptoms for both pNETs and PDAC which 

were jaundice and gastrointestinal bleeding. They also found that the risk of 

unintentional weight loss may be longer than two years before the diagnosis of 

pNEN66.  

The problem that clinicians face is that such patients can present with similar 

symptomology or imaging findings, which hampers making a diagnosis. For 

example, conditions mimicking pNETs in CT imaging include pancreatic 

metastases, acinar cell carcinoma, pancreatoblastoma, solitary fibrous tumour, 

pancreatic haematoma, serous adenoma, intrapancreatic spenules, exophytic 

gastrointestinal stromal tumours and peripancreatic paragangliomas530. 

Similarly, pathologies that can mimic PDAC in CT imaging include inflammatory 

conditions such as the various forms of pancreatitis (chronic-focal, mass-

forming, autoimmune and groove pancreatitis), pNETs, solid pseudopapillary 

tumours (SPNs), metastasis (solid non-lymphomatous and hematologic), 

congenital variants (annular pancreas) peripancreatic lesions (accessory 

spleen, adrenal masses, duodenal masses, lymph nodes and vascular lesions), 

as well as certain rare pancreatic tumours (acinar cell tumours, solid serous 

tumours, hamartoma and solitary fibrous tumours)531. The number of differential 

potential diagnoses highlights some of the challenges that a clinician faces 

when trying to accurately diagnose a patient. 

Diagnosing SPNs is difficult due to the non-specific clinical presentation and 

highly variable radiological and pathological features532. The predominantly 

solid lesions can mimic PDAC, however, younger patient age, identification of 

intratumoral haemorrhage or a capsule assist the differential diagnosis of the 

two types of tumour531. Another condition known as pancreatic abscesses are a 

rare condition seen in patients with pancreatic inflammation and patients with 

pancreatitis, with the condition being complicated by pseudocyst formation, in 

which pancreatic tissue necrosis, liquefaction and bacterial infiltration result in 

abscess formation533. In terms of symptoms, patients with pancreatic abscesses 

may have abdominal pain, fever, chills, nausea and vomiting or may present 
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with an inability to eat. Alternate symptomology for this condition is extremely 

unusual533. These symptoms overlap with those that can present for other 

pancreatic conditions including pNETs and PDAC. Case reports have been 

published in which a patient had pancreatic abscesses (infected pancreatic 

necrosis) which would have been narrowly misdiagnosed as a pancreatic 

malignancy534,533,535. Inflammatory conditions that commonly mimic PDAC at 

imaging include mass forming CP, focal autoimmune pancreatitis and 

paraduodenal pancreatitis536. Moreover, obstructive CP with the characteristics 

of diffuse ductal dilatation and diffuse pancreatic parenchymal atrophy can 

mimic ampullary masses or an intraductal papillary mucinous neoplasm 

(IPMN)536. Some patients with chronic inflammatory masses undergo the 

Whipple procedure for symptom management, whilst others undergo pancreatic 

resection because of a high clinical suspicion of malignancy and concern that 

biopsies have yielded false-negative results. Moreover, in 5-35% of Whipple 

procedures, the final pathologic diagnosis is a non-neoplastic inflammatory 

disease537,538. In patients suspected of having pancreatic cancer at an operable 

stage, surgical resections may be preferred in the absence of any other invasive 

pathologic diagnosis539. However, in clinical practice there is a risk of 

misdiagnosis and subsequent unnecessary resection of benign pancreatic 

disease539. 5-21% of pancreatectomies for presumed cancer were actually for 

benign pancreatic disease540,541. These problems with differential diagnosis 

highlight the clinical need for biomarker tests that could be utilised in the context 

of accurately discriminating pancreatic cancer from benign conditions. This 

would lead to quicker diagnoses and reduce unnecessary interventions. 

AP, CP and pancreatic cancer are distinctive pancreatic diseases that have 

different prognoses and treatment options542. However, despite these three 

conditions being separate disease entities, inflammation and cancer can co-

exist. Inflammation can be a cause of cancer, and cancer can be a cause of 

inflammation, making it challenging to discriminate one from the other542. In 

imaging, pancreatic inflammation may mimic pancreatic cancer by appearing as 

a focal mass on imaging542. Differentiation of AP, CP and pancreatic cancer 

may be helped by specific features like duct-penetrating signs and the duct to 

parenchyma ratio542. 
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AP has been defined as an acute condition typically presenting with abdominal 

pain and usually associated with raised pancreatic enzymes in blood or urine as 

a result of an inflammatory disease of the pancreas538.  

In contrast, CP has been defined as a continuing inflammatory disease of the 

pancreas that is characterised by irreversible morphological changes, which 

typically cause pain and loss of exocrine and endocrine pancreatic 

fucntion543,538. Common causes of CP include alcohol, gall stones, pancreatic 

duct strictures, cystic fibrosis, chronic renal failure, hypercalcaemia, 

hyperlipidaemia, autoimmunity, smoking, pancreatic trauma, and 

hereditary/genetic pancreatitis, as well as idiopathic CP538.  

AP may also be a first symptom of pancreatic cancer, particularly in patients 

aged between 56 and 75 who have had a concomitant diagnosis of new onset 

diabetes mellitus or patients with a history of CP544. In such patients, additional 

imaging is warranted, with CT and EUS being prefered542. CP can also lead to 

pancreatic cancer through oncogenic mutation; this is mostly being seen in 

hereditary CP patients and in patients with risk factors for pancreatic cancer, 

such as nicotine and alcohol abuse542. Additionally, patients with PRSS1-

mediated CP and patients with a history of autosomal dominant hereditary CP 

without any known genetic mutations may be considered for pancreatic cancer 

surveillance542.  

In addition to the risk of CP progressing to PDAC, there is also a risk of PDAC 

being misdiagnosed as CP because discrimination between these diseases can 

be difficult. Indeed, a retrospective study found that 5% of PDAC patients had 

been misdiagnosed with CP545. Moreover, patients with CP often have elevated 

levels of the commonly used PDAC biomarker, serum CA19-9, which may not 

be indicative of malignancy but a result of pancreatic inflammation546. This 

example illustrates the need for better biomarker tests to discriminate PDAC 

from CP. 

Thus, a test that could distinguish patients who have a pNET from PDAC, AP 

and CP is a current unmet clinical need. The biomarkers CgA, ANG2 and VGF-

NGF were identified as the most suitable biomarker combination in Chapter 3, 

with these findings being confirmed in internal validation as seen in Chapter 4. 

Thus, these markers were then further tested using external validation as 

described in Chapter 5. From the external validation results, VGF-NGF was 

shown to be unsuitable as a marker to discriminate pNET cases from controls in 
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the external validation cohort, whereas CgA and ANG2 were suitable markers 

to take forward to assess in the algorithms developed in Chapter 3. 

Section 6.2 describes the sample size calculation used to decide the optimal 

number of ADEPTs samples, Section 6.3 outlines the clinical characteristics of 

the ADEPTs pancreatic diseases cohort. The ADEPTs (Accelerated Diagnosis 

of neuroendocrine and pancreatic tumours) cohort (previously TRANSBIL) 

consisted of blood samples from patients attending endoscopy procedures and 

two week wait gastroenterology clinics. Thus, pNET, PDAC, AP and CP 

samples identified from samples within this cohort were used for my study. 

In Section 6.4 CgA and ANG2 levels in the ADEPTS cohort were first assessed 

individually for their ability to discriminate pNETs from PDAC, AP and CP. VGF-

NGF levels were also assessed in this cohort to test my findings from Chapter 5 

regarding the levels of VGF in pNETs. In Section 6.5 the best algorithms 

developed for ANG2 and CgA individually and in combination based on the 

UOL cohort (Chapter 3) were tested for their ability to distinguish pNETs from 

other pancreatic diseases in the ADEPTS cohort. Models developed using the 

UOL training cohort and the RFH external validation cohort were then similarly 

assessed. Finally, models were developed using just the ADEPTs pancreatic 

disease cohort were assessed. 

 

6.2 Sample Size calculation results for the ADEPTs pancreatic 
disease cohort analysis 

Sample size calculations were carried out to estimate the optimum number of 

AP, CP, PDAC and pNET samples needed for the application of the biomarker 

panel.   This was based on varying the sensitivity between 60 and 90% and the 

maximum margin of error between 0.1 and 0.25. A detailed methodology for this 

is in Section 2.11.2 and was based on the methodology described by Hajian et 

al.,452. Table 6.1 and Figure 6.1 show the resulting number sensitivity, which 

refers to the number of samples needed to achieve each specific sensitivity and 

maximum margin of error value. The number sensitivity was then divided by 4 to 

provide the number of samples for each of the disease groups (AP, CP, pNET 

and PDAC). The results showed that the number per group decreased as the 

sensitivity or maximum margin of error value increased. As the sensitivity for 

this test was not known a range of sensitivities were employed. Based on these 
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results, a suitable number of samples were chosen for each group. 

Retrospectively, the combinations that worked for the available pNET sample 

number was using a maximum margin error of 0.25 and a sensitivity of 0.9 or 

0.8 or a maximum margin error of 0.20 and a sensitivity of 0.9 because of the 

low number of available pNET samples (n=11) (Table 6.1). Thus, whilst carrying 

out these calculations was important in order to assess how varying sensitivity 

and maximum margin of error impacts the number of samples needed per 

group in practice only a certain number of samples were available thus 

highlighting a limitation of such a calculation due to practical considerations. 

 
Sensitivity Maximum margin of 

error 
Number 
sensitivity 

Number per group 
sensitivity 

0.6 0.10 369 92.25 
0.6 0.15 164 41 
0.6 0.20 92 23 
0.6 0.25 59 14.75 
0.7 0.10 323 80.75 
0.7 0.15 143 35.75 
0.7 0.20 80 20 
0.7 0.25 52 13 
0.8 0.1 246 61.5 
0.8 0.15 109 27.25 
0.8 0.2 62 15.5 
0.8 0.25 39 9.75 
0.9 0.1 138 34.5 
0.9 0.15 62 15.5 
0.9 0.2 35 8.75 
0.9 0.25 22 5.5 

Table 6.1: Summary of power calculations  
The effect of altering the d value and sensitivity in order to calculate the number of samples needed per 
group. 
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Figure 6.1: Graphical illustration of the relationship between sensitivity, maximum 
margin of error and number per group. 
 

6.3 Clinical characteristics of the ADEPTs pancreatic disease 
cohort 

For the ADEPTs cohort of samples used for this work, the inclusion criteria were 

patients who were diagnosed with pNET, PDAC, CP and AP. An exclusion 

criterion that was originally proposed was pregnancy, patients diagnosed with 

another cancer, patients on PPIs, patients with any mental health conditions 

(diagnosed depression, schizophrenia and bipolar disorder), however in 

practice an exclusion criteria including depression and PPI usage was not 

possible with the available samples. A range of symptoms was seen in the 

patients including abdominal pain, anaemia, bloating, jaundice, night sweats, 

rectal bleeding, reflux, and vomiting. More patients had abdominal pain with AP 

(8/16) compared to CP (5/16), although some AP (4/16), CP (5/16) and pNET 

(2/11) patients were also asymptomatic (Table 6.2). The most common 

symptom seen in pNETs was weight loss/unintentional weight loss (5/11), for 

Symptom AP (n=16) CP (n=16) pNET (n=11) PDAC (n=16) 
Abdominal pain 8 5 4 6 
Abnormal LFTs 3 0 0 2 
Anaemia 0 1 0 0 
Asymptomatic 4 5 2 0 
Bloating 1 1 1 0 
Breast pain 0 0 1 0 
Change in bowel habit 2 4 1 2 
Constipation 0 0 0 1 
Dyspepsia 0 0 1 0 
Dysphagia 1 2 0 0 
Epigastric pain 0 1 0 0 
Gastritis 0 0 1 0 
Heartburn 0 0 2 0 
Jaundice/obstructive 1 0 0 8 
Loss of appetite 0 0 2 0 
Nausea 0 0 0 1 
Not known 0 0 1 0 
Night sweats 0 0 1 0 
Rectal bleeding 0 0 0 1 
Reflux 1 1 0 0 
Vomiting 0 0 1 3 
Weight 
loss/unintentional 
weight loss 

2 4 5 8 

Table 6.2: Symptoms reported for the ADEPTs pancreatic disease cohort. 
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CP and AP it was abdominal pain (5/16 and 8/16, respectively), and for PDAC it 

was weight loss/unintentional weight loss (8/16) and jaundice (8/16) (Table 6.2). 

The variation in non-specific symptoms combined with the lack of pNET-specific 

symptoms highlights a challenge in diagnosing pNET patients (Sections 1.2.4 

and 6.6). 

 

The pNET samples also varied in their respective tumour size, grade and 

location, and stage information was incomplete (Table 6.3). For most AP 

patients the cause of the AP was not known (8/16), and there were lower 

numbers of other aetiologies (Table 6.4). Functionality status was not available 

for the pNETs in the study, which was a limitation. 

 

pNET sample Grade Size (cm) Location Ki67 Stage 
1 NK 4 TOP NK NK 
2 G1-2 1 NOP NK NK 
3 G1 14 NOP 0.02 pT3 N1 (2/16) Mx R0 
4 G2 3 HOP 0.1 pT3 N1 (1/20) R0 
5 G3 5 TOP 0.23 NK 
6 G3 3 HOP 0.3 NK 
7 G1 8 NOP <3 NK 
8 G1 1 NOP NK NK 
9 G1-2 2 TOP <2 NK 
10 G1 NA HOP <1 PT1 N0 Mx 
11 G2 6 BOP/TOP NK PT3 N0 Mx 

Table 6.3: pNET subgroup (n=11) clinical characteristics. 
 

Gall stones Autoimmune PRRS-1 Idiopathic Necrotising Not known 
4 1 1 1 1 8 

Table 6.4: AP subgroup (n=16) clinical characteristics. 
 

The CP cohort (n=16) mostly had unknown aetiologies (n=8), with other causes 

including alcohol related, IgG4, PRRS1 and gall stones (Table 6.5).  

 

Necrotising Gall stones Alcohol IgG4 PRRS-1 Not known 
2 2 1 1 10 

Table 6.5: CP subgroup (n=16) clinical characteristics. 
 

For the PDAC patients (n=16) most staging information was unavailable (Table 
6.6). 
 

PDAC sample Tumour characteristics Staging 
 1 Unknown Unknown 
 2 HOP  Unknown 
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 3 Unknown Unknown 
 4 Unknown Inoperable vascular involvement 
 5 Unknown Unknown 
 6 HOP  Candidate for chemotherapy 
 7 Unknown Locally Advanced PDAC arising 

from IPMN, metastatic  
 8 BOP 40mm Unknown 
 9 BOP Unknown 
 10 HOP Dilated pancreatic duct 
 11 NOP Technically resectable 
 12 Unknown Unknown 
 13 HOP (5-6cm), NOP SMV involvement 
 14 HOP (3.3 cm) Locally Advanced 
 15 Unknown Unknown 
 16 HOP Unknown 

Table 6.6: PDAC subgroup (n=16) clinical characteristics.  
The tumour characteristics include HOP (Head of Pancreas), BOP (Body of pancreas), NOP 
(Neck of Pancreas), unknown. Staging information included whether there was vascular 
involvement, a candidate for chemotherapy, locally advanced, unknown, superior mesenteric 
vein (SMV), and resectable. 
 

6.4 Analysis of biomarkers within the ADEPTs pancreatic 
disease cohort 

Levels of the VGF, ANG2 and CgA biomarkers were determined for the 

pancreatic diseases cohort samples that had been selected from the ADEPTs 

cohort. For VGF a main question concerned whether my findings in Chapter 3 

regarding non-elevation of VGF levels in pNET samples was supported in this 

independent cohort. Sections 6.4.1 to 6.4.3 describe the results of the VGF-

NGF, ANG2 and CgA assays, respectively. 

 

6.4.1 Analysis of VGF-NGF levels in the ADEPTs pancreatic disease 
cohort 
VGF levels were analysed in the selected ADEPTs AP, CP, pNET and PDAC 

serum samples using the ELISA method described in Section 2.12.4. The 

hypothesis that the distribution of VGF is similar across the four disease groups 

was assessed using an Independent-Samples Kruskal Wallis Test, which 

indicated a statistically significantly difference (p=0.01) between these groups. 

The mean ± standard deviation values for AP (n=11), CP (n=12), PDAC (n=8) 

and pNET (n=6) samples were 98.53 ± 54.06, 1129.22 ± 3192.74, 374.45 ± 

291.71	and 91.46 ± 42.18 pg/ml, respectively (Figure 6.2).   
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Figure 6.2: VGF levels in the pancreatic disease cohort. 
The box plot shows the minimum and maximum (box whiskers) and the median (horizontal line) values for 
AP,CP, PDAC and pNET. One CP value which was particularly high was excluded when plotting the 
graph. A PDAC outlier is illustrated in the graph. 
 

Statistically significant differences were identified between the pNET and CP, 

pNET and PDAC, AP and CP, and AP and PDAC groups (Table 6.7). pNET 

values for VGF were not elevated which was consistent to what was seen in 

Chapter 5, however not compared to healthy control levels here in Chapter 6. 

When assessing the pairwise comparisons for the different conditions for VGF, 

AP and PDAC were revealed to be significantly different from each other (Table 

6.7).   

 

Comparison Significance Adjusted Significance 
pNET vs AP 0.741 1.000 
pNET vs CP 0.019 0.113 
pNET vs PDAC 0.002 0.014 
AP vs CP 0.016 0.096 
AP vs PDAC 0.002 0.009 
CP vs PDAC 0.307 1.000 

Table 6.7: Statistical analysis of VGF levels in the pancreatic disease cohort. 
Adjusted significance values using the Bonferroni correction are shown. 
 

6.4.2 Analysis of ANG2 levels in the ADEPTs pancreatic disease cohort 
ANG2 levels in sera were analysed in the ADEPTs pancreatic disease cohort 

using the ELISA approach described in Section 2.12.2. The mean ± standard 

deviation levels for AP (n=16), CP (n=16), pNET (n=11), and PDAC (n=16) 

were 2990.99 ± 984.72, 3130.94 ± 1462.55, 2602.92 ± 760.27 and 3980.25 ± 

2879.04 pg/ml, respectively (Figure 6.3). An Independent-Samples Kruskal-
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Wallis Test revealed that the null hypothesis was retained (p=0.742). Moreover, 

this analysis implies that the usefulness of ANG2 as a pNET marker is poor 

based on these pNET samples (n=11) due to it having the lowest ANG2 median 

in the context of comparison with the other conditions (AP, CP and PDAC).  

 

 
Figure 6.3: ANG2 levels in the pancreatic disease cohort. 
The box plot shows the minimum and maximum (box whiskers) and the median (horizontal line) values. 
Outlier values are shown for Chronic Pancreatitis and PDAC. 
 

6.4.2.1 Analysis of confounding factors for ANG2 
Potential confounding factors for ANG2 within the ADEPTs pancreatic disease 

cohort were explored. These included gender, diabetes, symptomatic status 

(asymptomatic (n=11), symptomatic (n=47); one patient was excluded for 

symptomatic status analysis because symptomatic status was not available for 

this patient, diabetes medication and PPI usage. Gender (female (n=24), male 

(n=35)), diabetes (no (n=40), type II (n=19)), and symptomatic status were not 

confounding factors as assessed by Independent-Samples Mann Whitney U 

Test (p=0.829, 0.770 and 0.913, respectively). PPI status (Lansoprazole (n=7), 

not known (n=13), no (n=25), Omeprazole (n=14)) was found not to be a 

confounding factor as assessed by an Independent-Samples Kruskal-Wallis test 

(p=0.376). Thus, no confounding factors were found for ANG2 in the ADEPTs 

pancreatic disease cohort. 
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6.4.3 Analysis of CgA levels in the ADEPTs pancreatic disease cohort 
Serum CgA levels were also assessed in the ADEPTs pancreatic disease 

cohort using ELISAs (Section 2.12.3). The mean ± standard deviation values for 

AP (n=16), CP (n=16), pNET (n=11) and PDAC (n=16) sample CgA levels were 

295.47 ± 405.94, 229.51 ± 311.90, 39.75 ± 30.89 and 165.10 ± 223.20 ng/ml, 

respectively (Figure 6.4). The pNET levels of CgA were lower compared to AP, 

CP, PDAC. This was unexpected due to CgA being an established pNET 

marker. However the number of pNETs in this study are just (n=11) and with a 

lack of functional information available for the pNETs in the ADEPTs cohort it 

may be possible that the ADEPTs pNET cohort contain a large number of 

insulinomas for which CgA is known to be a poor marker90. CgA levels are also 

known to be lower in early stage pNETs and lower grade pNETs. However, the 

11 pNETs contain four G1 tumours, two with G1-2 tumours, two with G2 

tumours, two with G3 tumours and one with a tumour of unknown grade. Thus, 

the grade of tumours in the group was diverse and did not consist of lower 

grade tumours. However, none of the tumours in the pNET group were known 

to be metastatic which could also be a factor to explain these results. However, 

the CgA levels in the pNET group were particularly low, even lower than that 

seen in the UKCTOCs healthy controls which were assessed in Chapter 5 for 

CgA. A limitation also in the ADEPTs cohort analysis is that healthy controls 

were not collected as part of the ADEPTs study and thus a group of healthy 

 
 
Figure 6.4: Comparison of CgA levels in the pancreatic disease cohort. 
The box plot shows the minimum and maximum (box whiskers) and the median (horizontal line) values. 
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controls collected and stored in the same way could not be used in my analysis 

and as an additional fifth group. An Independent Samples Kruskal Wallis Test 

led to rejection of the null hypothesis (p=0.09), and a post hoc Dunn’s test 

revealed statistically significantly differences between the pNET and PDAC, 

pNET and AP, and pNET and CP groups. Significance and adjusted 

significance levels using Bonferroni corrections are shown for each pair-wise 

comparison (Table 6.8). The results from the pair-wise comparison, further 

illustrated that CgA was much lower in the pNET group compared to these other 

groups and suggested that based on these 11 pNET samples that CgA was not 

a useful pNET marker 

 

 
Comparison Significance Adjusted Significance 
pNET vs PDAC 0.021 0.128 
pNET vs AP 0.006 0.034 
pNET vs CP 0.001 0.007 
PDAC vs AP 0.610 1.000 
PDAC vs CP 0.291 1.000 
AP vs CP 0.585 1.000 

Table 6.8: Statistical analysis of VGF levels in the pancreatic disease cohort. 
Adjusted significance values using the Bonferroni correction are shown. 
 
6.4.3.1 Confounding factor analysis for CgA  
Gender, PPI status, diabetes status, and symptomatic status were assessed as 

confounding factors for CgA in the ADEPTs pancreatic disease cohort.  

Gender (female (n=24), male (n=35)), diabetes status (no (n=40), type II 

diabetes (n=19)), and symptomatic status (asymptomatic (n=11), symptomatic 

(n=47); one sample was excluded as the symptomatic status was not known) 

were assessed using an Independent-Samples Mann Whitney U Test.  

Gender was found to be a confounding factor for CgA levels (p=0.039), but 

diabetes status and symptomatic status were not significantly associated with 

CgA levels (p=0.256 and 0.766, respectively). PPI usage (Lansoprazole (n=7), 

Omeprazole (n=14), not known (n=13), and no (n=25)) was assessed using an 

Independent-Samples Kruskal-Wallis Test and was found to be a confounding 

factor for CgA levels (p=0.011). The pairwise comparison of PPI and CgA 

revealed that the no PPI and Omeprazole group were statistically significantly 

different from each other with the adjusted significance of p=0.014 (Table 6.9). 

 
Comparison Significance Adjusted significance 
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No vs NK 0.328 1.000 

No vs Lansoprazole 0.031 0.185 

No vs Omeprazole 0.002 0.014 

NK vs Lansoprazole 0.209 1.000 

NK vs Omeprazole 0.077 0.465 

Lansoprazole vs Omeprazole 0.843 1.000 

Table 6.9: Pairwise comparison of PPI and CgA 
Adjusted significance values using the Bonferroni correction are shown. 
 

6.5 Application of ML algorithms to the ADEPTs pancreatic 
disease cohort 

Two sets of ML algorithms (RF, C5.0 decision tree, and LR as well as SVM for 

the two-marker combination described in Chapters 3 and 5) that I had 

developed for the single markers CgA and ANG2, and for the combination of 

CgA and ANG2, were assessed against the ADEPTs pancreatic disease cohort. 

The ML application described in Section 6.5 was carried out to assess whether 

the models developed using a case and healthy control cohort as described in 

previous chapters could be used to identify pNETs. The ELISA results obtained 

for CgA (Figure 6.4) and ANG2 (Figure 6.3) for the ADEPTs cohort for the 

pNETs behaved in a way that was unexpected due to the low levels of these 

markers in the pNETs (n=11). Thus, based on this finding, it was likely that the 

models would not perform particularly well on the ADEPTs cohort for the 

identification of pNETs, however, applying the ML models, allowed for insights 

such as FPR, TPR, FNR and TNR and assisted in the understanding of where 

specifically models had drawbacks based on the ADEPTs cohort. This would 

also help refine model development in the future. 

Both sets of algorithms had been created by comparing pNET to healthy control 

data and it was therefore important to determine whether these algorithms could 

also differentiate pNET from CP, AP and PDAC patients, which present with 

similar symptoms (Section 6.1), or whether newer algorithms or biomarkers 

were needed to distinguish these conditions. These analyses were carried out 

using SPSS Modeler with previously described methodology (Section 2.1) with 

the CP, AP and PDAC groups defined as controls. 

Separately, LR, RF, C5.0 decision tree models (SPSS Modeler) and Optimised 

Linear and Optimised RBF SVM (MATLAB Classification App) were created 

using the ADEPTs pancreatic disease CgA and ANG2 data in order to assess 
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whether such models could differentiate pNETs from the other conditions. This 

was carried out using methodology described in Section 2.1. 
 

6.5.1 Application of the UOL algorithms to the ADEPTs pancreatic disease 
cohort 
All the assessed models (RF, C5.0 decision tree, LR and SVM) for the ANG2 

and CgA combination in the UOL dataset performed poorly in the ADEPTs 

pancreatic diseases cohort (Tables 6.9 – 6.12). This was as expected based on 

the ELISA results obtained from the pancreatic diseases for ANG2 and CgA 

(Figure 6.3 and Figure 6.4). More specifically, the RF algorithms produced 

AUCs ranging from 0.349 to 0.516 (Table 6.10), suggesting that these 

algorithms were unsuitable for discriminating pNETs from PDAC, CP and AP. 

This also suggests that the thresholds used in the ML models developed based 

on case and control data were not suitable for use in an instance where AP, CP 

and PDAC were used as a control group, as it is likely that these patients have 

elevated levels of these markers compared to healthy controls, thus the 

threshold was too low. When assessing each individual run, the TPR rates 

(sensitivity, defined as the ability to identify a pNET sample correctly) were high 

across the 10 runs (72.70% to 91.00%) however the FPR rates were also high 

across all the runs (85.40% to 93.80%). This therefore illustrates that the other 

conditions were incorrectly being identified as positives and thus suggesting 

that the RF model was not suitable. 

 
  

Run AUC TPR (%) TNR (%) FPR (%) FNR (%) 
1 0.477 72.70 14.60 85.40 27.20 
2 0.394 90.90 14.60 85.40 9.00 
3 0.498 72.70 12.50 87.50 27.30 
4 0.349 91.00 10.40 89.60 9.00 
5 0.418 81.80 6.30 93.80 18.20 
6 0.365 81.80 10.40 89.60 18.20 
7 0.473 81.80 14.60 85.40 18.20 
8 0.516 90.90 8.30 91.70 9.00 
9 0.441 81.80 8.33 91.70 18.20 
10 0.465 72.70 14.60 85.40 27.30 

Table 6.10: Assessment of the UOL ANG2 and CgA combination RF models using the 
pancreatic disease cohort. 
The models created for the 10 runs of the CA combination based on the UOL training dataset (n=106) 
were externally validated using the pancreatic disease cohort (n=59). 
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Although the C5.0 decision tree models performed slightly better with an AUC of 

0.573 (Table 6.11), this performance was still poor. Similar to the RF models, 

the TPR (100%) and FPR (100%) were both maximal, meaning that the test 

classified all the ADEPTs samples as pNETs, and again indicating that the 

threshold values were too low for this cohort (Table 6.11). However, a problem 

is that the ADEPTs pNET marker data is different to the training data, and thus 

based on the ADEPTs pNET results the model performance was poor and 

unsuitable, however if the ADEPTs results are not representative widely of 

pNETs then the models itself may have some utility in other pNET cohorts. 
 

AC C5.0 Decision Tree  AUC TPR (%) TNR (%) FPR (%) FNR (%) 
Non-boosted General 0.573 100.00 0.00 100.00 0.00 
Non-boosted Accuracy 0.573 100.00 0.00 100.00 0.00 

Table 6.11: Assessment of the ANG2 and CgA UOL C5.0 non boosted decision tree 
models using the pancreatic diseases cohort. 
 

The LR and SVM models performed the worst with AUC values of 0.203 to 

0.216 (Tables 6.12 and 6.13), highlighting the unsuitability of these models for 

differential diagnosis. 
 

AUC TPR (%) TNR (%) FPR (%) FNR (%) 
0.203  90.90 2.00 97.90 9.00 

Table 6.12: Assessment of the UOL ANG2 and CgA combination LR model using the 
pancreatic disease cohort. 
 

SVM AUC TPR (%) TNR (%) FPR (%) FNR (%) 
Linear SVM 
C=10 

0.216 18.20 43.80 56.30 81.80 

RBF SVM C=10 
gamma=0.7 

0.203 18.20 39.60 60.40 81.80 

Table 6.13: Assessment of the UOL ANG2 and CgA combination Linear SVM and RBF 
SVM models using the pancreatic disease cohort. 
 

All the assessed models (RF, C5.0 decision tree and LR) for the single ANG2 

marker performed poorly in the ADEPTs pancreatic disease cohort (Tables 6.14 

- 6.16). 

For the RF models the AUC values across the runs ranged from 0.466 to 0.583, 

the TPR ranged from 81.80% to 90.90%, and the FPR ranged from 68.75% to 

77.10%. The high FPR again indicated these models were unsuitable for 

differential diagnosis (Table 6.13). Hence, illustrating the underlying problem 

with the ADEPTs data being different from that of the UOL data. In the 
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pancreatic diseases there was no significant difference between ANG2 levels of 

any of the disease types. This then would imply that the ML models created 

whereby there was a difference in case and control ANG2 levels (UOL training) 

are likely not to perform well for this single marker in the ADEPTs cohort. 

 
Run AUC TPR (%) TNR (%) FPR (%) FNR (%) 
1 0.513  90.90 31.30 68.75 9.00 
2 0.519 90.90 29.20 70.80 9.00 
3 0.466 90.90 29.20 70.80 9.00 
4 0.583 90.90 25.00 75.00 9.00 
5 0.568 90.90 25.00 75.00 9.00 
6 0.509 81.80 23.00 77.00 18.00 
7 0.528 90.90 27.10 72.90 9.00 
8 0.547 90.90 22.90 77.10 9.00 
9 0.538 90.90 25.00 75.00 9.00 
10 0.487 90.90 29.20 70.80 9.00 

Table 6.14: Assessment of the UOL ANG2 RF models using the pancreatic disease 
cohort. 
 

The ANG2 LR and C5.0 non-boosted decision tree models also performed 

poorly with AUC values of 0.393 (Table 6.15) and 0.573 (Table 6.16), 

respectively. Thus, none of these models was able to discriminate pNET from 

PDAC, CP and AP samples. 
 

AUC TPR (%) TNR (%) FPR (%) FNR (%) 
0.393 100.00 8.30 91.70 0.00 

Table 6.15: Assessment of the UOL ANG2 LR model using the pancreatic disease cohort. 
 

 

C5.0 Decision Tree AUC TPR (%) TNR (%) FPR (%) FNR (%) 
Non-boosted General 0.573 100.00 14.60 85.40 0.00 
Non-boosted Accuracy 0.573 100.00 14.60 85.40 0.00 

Table 6.16: Assessment of the UOL ANG2 non-boosted C5.0 decision tree models using 
the pancreatic diseases cohort 
 

The RF, C5.0 decision tree and LR models for CgA also performed poorly in 

discriminating pNETs from PDAC, CP and AP samples (Table 6.17 - 6.19). The 

RF models had AUC values ranging from 0.380 to 0.486, with TPRs from 

54.50% to 81.80% across the runs (Table 6.17). 
 

Run AUC TPR (%) TNR (%) FPR (%) FNR (%) 
1 0.439 81.80 31.30 68.80 18.20 
2 0.414 54.50 29.20 70.80 45.50 
3 0.434 72.70 29.20 70.80 27.30 
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4 0.421 72.70 29.20 70.80 27.30 
5 0.38 81.80 29.20 70.80 18.20 
6 0.486 81.80 27.10 72.90 18.20 
7 0.366 63.60 27.10 72.90 36.40 
8 0.449 63.60 33.30 66.70 36.40 
9 0.414 72.70 31.30 68.80 27.30 
10 0.488 72.70 31.30 68.80 27.30 

Table 6.17: Assessment of the UOL CgA RF models using the pancreatic diseases 
cohort. 
 

The CgA non-boosted C5.0 decision tree and LR models also performed poorly 

with AUC values of 0.286 (Table 6.18) and 0.184 (Table 6.19), respectively, 

again illustrating the unsuitability of the case-control models for the ADEPTs 

pancreatic disease cohort. 
 

C5.0 Decision Tree AUC TPR (%) TNR (%) FPR (%) FNR (%) 
Non-boosted 
General  

0.286 36.40 22.90 77.10 63.60 

Non-boosted 
Accuracy 

0.286 36.40 22.90 77.10 63.60 

Table 6.18: Assessment of the UOL CgA non-boosted C5.0 decision tree models using 
the pancreatic disease cohort. 
 

AUC TPR (%) TNR (%) FPR (%) FNR (%) 
0.184 9.00 43.80 56.30 90.90 

Table 6.19: Assessment of the UOL CgA LR model using the pancreatic disease cohort. 
 

6.5.2 Application of the combined UOL and RFH cohort algorithms to the 
ADEPTs pancreatic disease cohort 
Models were also created in Chapter 5, for the larger combined UOL and RFH 

cohort for ANG2 and CgA. Though performance of these combined training 

models compared to the UOL training cohort was generally poorer, assessment 

of these models on the pancreatic disease ADEPTs cohort was carried out as 

an additional assessment of the ADEPTs cohorts performance using these 

models. 

The combined UOL and RFH cohort (n=217) LR, C5.0 non-boosted decision 

tree and RF algorithms for ANG2, CGA, and the ANG2 and CGA combination 

were applied to the ADEPTs pancreatic disease cohort to assess model 

performance. 

The algorithms performed poorly for the ANG2 and CGA combination as 

reflected by the resulting AUC values of 0.199 to 0.301 for the RF models 
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(Table 6.20), 0.189 for the LR model (Table 6.21) and 0.275 for the C5.0 

decision tree models (Table 6.22). 

 

Table 6.20: Assessment of the combined UOL and RFH external cohort ANG2 and CgA 
combination RF model using the pancreatic disease cohort. 
 

AUC TPR (%) TNR (%) FPR (%) FNR (%) 
0.189 36.40 20.80 79.20 63.60 

Table 6.21: Assessment of the combined UOL and RFH external cohort ANG2 and CgA 
combination LR model using the pancreatic disease cohort. 
 

C5.0 decision tree AUC TPR (%) TNR (%) FPR (%) FNR (%) 
General non-boosted 0.275 100.00 0.00 100.00 0.00 
Accuracy non-
boosted 

0.275 100.00 0.0 100.00 0.00 

Table 6.22: Assessment of the combined UOL and RFH external cohort ANG2 and CgA 
combination C5.0 non-boosted decision tree model using the pancreatic disease cohort. 
 

For ANG2 alone the AUC values were 0.579 to 0.620 for the RF model (Table 

6.23), 0.393 for the LR model (Table 6.24) and 0.573 for the C5.0 decision tree 

models (Table 6.25). 
 

Run AUC TPR (%) TNR (%) FPR (%) FNR (%) 
1 0.607 81.80 39.60 60.40 18.20 
2 0.586 72.70 35.40 64.60 27.30 
3 0.597 81.80 43.80 56.30 18.20 
4 0.600 72.70 41.70 58.30 27.30 
5 0.618 81.80 39.60 60.40 18.20 
6 0.579 72.70 47.90 52.10 27.30 
7 0.620 72.70 43.80 56.30 27.30 
8 0.615 72.70 43.80 56.30 27.30 
9 0.581 81.80 39.60 60.40 18.20 
10 0.588 81.80 45.80 54.20 18.20 

Table 6.23: Assessment of the combined UOL and RFH external cohort for the ANG2 RF 
model using the pancreatic disease cohort. 
 

Run AUC TPR (%) TNR (%) FPR (%) FNR (%) 
1 0.248  27.30 25.00 75.00 72.70 
2 0.228 18.20 22.90 77.10 81.80 
3 0.224 27.30 25.00 75.00 72.70 
4 0.236 27.30 25.00 75.00 72.70 
5 0.239 36.40 27.10 72.90 63.60 
6 0.205 45.50 29.20 70.80 54.50 
7 0.301 27.30 39.60 60.40 72.70 
8 0.199 27.30 27.10 72.90 72.70 
9 0.337 45.50 27.10 72.90 54.50 
10 0.283 27.30 31.30 68.80 72.70 
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AUC TPR (%) TNR (%) FPR (%) FNR (%) 
0.393 72.70 18.80 81.30 27.30 

Table 6.24: Assessment of the combined UOL and RFH external cohort ANG2 LR model 
using the pancreatic disease cohort. 
 

C5.0 Decision Tree AUC TPR (%) TNR (%) FPR (%) FNR (%) 
General non-boosted 0.573 100.00 14.60 85.40 0.00 
Accuracy non-boosted 0.573 100.00 14.60 85.40 0.00 

Table 6.25: Assessment of the combined UOL and RFH external cohort ANG2 C5.0 non-
boosted decision tree model using the pancreatic disease cohort. 
 

 

For CgA alone the AUCs were 0.310 to 0.391 for the RF model (Table 6.26), 

0.184 for the LR model (Table 6.27), and 0.275 for the non-boosted C5.0 

decision tree models (Table 6.28). 
 

Run AUC TPR (%) TNR (%) FPR (%) FNR (%) 
1 0.313 45.50 33.33 66.70 54.50 
2 0.310 36.40 35.40 64.60 63.60 
3 0.343 45.50 33.30 66.70 54.50 
4 0.344 63.60 37.50 62.50 36.40 
5 0.333 36.40 33.30 66.70 63.60 
6 0.391 45.50 37.50 62.50 54.50 
7 0.310 45.50 35.40 64.60 54.50 
8 0.324 45.50 31.30 68.80 54.50 
9 0.333 36.30 27.10 72.90 63.60 
10 0.315 27.30 33.30 66.70 72.70 

Table 6.26: Assessment of the combined UOL and RFH external cohort CgA RF model 
using the pancreatic disease cohort. 
 

AUC TPR (%) TNR (%) FPR (%) FNR (%) 
0.184 9.00 45.80 54.20 90.90 

Table 6.27: Assessment of the combined UOL and RFH external cohort CgA LR model 
using the pancreatic disease cohort. 
 

C5.0 Decision Tree  AUC TPR (%) TNR (%) FPR (%) FNR (%) 
General non-boosted 0.275 9.10 45.80 54.20 90.90 
Accuracy non-
boosted 

0.275 9.10 45.80 54.20 90.90 

Table 6.28: Assessment of the combined UOL and RFH external cohort CgA C5.0 non-
boosted decision tree model using the pancreatic disease cohort. 
 

From these results it was clear that models trained on the pancreatic disease 

cohort itself were needed to classify the four disease types, and that models 

created using healthy control and pNET data were not generalisable to this 

cohort. The FPR levels across all the models were consistently high, meaning 
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that PDAC, CP and AP cases were incorrectly identified as pNET cases. Thus, 

based on the findings from Section 6.5.1 and 6.5.2 newer algorithms are 

required. 
 

6.5.3 Creation of algorithms from the ADEPTs pancreatic disease cohort 
data 
When case-control cohort models were tested on the ADEPTs pancreatic 

disease cohort, the results showed high FPR values, but the models also 

tended in general to have high sensitivity. C5.0 non-boosted decision trees, RF 

and LR algorithms were created for the ADEPTs pancreatic disease cohort 

(n=59) itself using the ANG2, CGA, and ANG2 and CGA combination. This 

approach was undertaken to assess whether suitable models could be built to 

better differentiate pNET from PDAC, AP and CP patients and to assess the 

FPR, TPR, FNR and TPR. There are some limitations to this approach, 

including that the numbers of the PDAC (n=16), AP (n=16), CP (n=16) and 

pNET (n=11) patients are particularly small, and the results generated from this 

analysis would not be particularly meaningful without subsequent validation. 

The issues for certain algorithms such as RF being susceptible to overfitting 

remain. However, creation of models using the ADEPTs cohort would help to 

further analyse the data further and provide insights into thresholds, FNR, TPR, 

TNR and FPR which provide an overview of how the ELISA results can be used 

in practice. However, based on the ELISA data that was obtained for the 

ADEPTs pancreatic diseases cohort, the CgA (Figure 6.4) and ANG2 (Figure 

6.3) levels were lower for the pNETs in this cohort compared to AP, CP and 

PDAC. Thus, it is likely that the ML models that would be created for the 

ADEPTs pancreatic disease cohort with the aim of identifying pNETs would 

adopt an approach of lower marker levels as opposed to higher marker levels of 

CgA and ANG2 when compared to these other conditions. However, this would 

be different to that seen in the UOL cohort, as higher marker levels of CgA and 

ANG2 were indicative of pNETs as opposed to lower levels of these markers.  

The results revealed that the RF models had the best performance with AUC 

values ranging from 0.994 to 1.000 for the ANG2 and CGA combination. These 

models also had TPR rates ranging from 63.60% to 100% and a TNR of 100% 

(Table 6.29). However, the issue of overfitting remains, and without validation 

the impacts of this would not be known. 
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Run AUC TPR (%) TNR (%) FPR (%) FNR (%) 
1 0.999 90.90 100.00 0.00 9.10 
2 1.000 72.70 100.00 0.00 27.30 
3 0.999 81.80 100.00 0.00 18.20 
4 0.999 90.90 100.00 0.00 9.00 
5 1.000 100.00 100.00 0.00 0.00 
6 1.000 63.60 100.00 0.00 36.40 
7 1.000 100.00 100.00 0.00 0.00 
8 0.997 81.80 100.00 0.00 18.20 
9 0.994 81.80 100.00 0.00 18.20 
10 1.000 81.80 100.00 0.00 18.20 

Table 6.29: Performance of the RF models created using the ANG2 and CgA markers in 
the pancreatic disease cohort. 
 

The ANG2 and CgA combination LR model had an AUC of 0.856, however this 

model suffered from a poor TPR of 27.30% despite a TNR of 100% (Table 

6.30). Thus, despite having a strong AUC, these results suggest that this model 

was not sensitive enough for pNET detection and thus not suitable.  

 
AUC TPR (%) TNR (%) FPR (%) FNR (%) 
0.856 27.30 95.80 4.2 72.70 

Table 6.30: Performance of the LR model created using the ANG2 and CgA markers in 
the pancreatic disease cohort. 
 

The ANG2 and CgA combination C5.0 non-boosted decision tree models had 

an AUC of 0.841, a TPR of 27.30% and TNR of 100% (Table 6.31), again 

suggesting the test was highly specific but not sensitive enough for pNET 

detection. Interestingly the C5.0 decision tree, utilised just CgA and not ANG2, 

suggesting that ANG2 as a marker was not important. Two thresholds for CgA 

were used in the decision tree, the first was a threshold of CgA <1.558nmol/L, 

and a second of CgA <0.438 nmol/L for the identification of the pNETs (Figure 

6.5).  

 

 
Figure 6.5: General C5.0 non boosted tree for ADEPTs pancreatic diseases cohort which 
only utilised CgA 
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C5.0 decision tree AUC TPR (%) TNR (%) FPR (%) FNR (%) 
General non-boosted 0.841 27.30 100.00 0.00 72.70 
Accuracy non-
boosted 

0.841 27.30 100.00 0.00 72.70 

Table 6.31: Performance of C5.0 non-boosted decision tree models created using the 
ANG2 and CgA markers in the pancreatic disease cohort. 
 

The Optimised SVM results for the Linear and RBF SVM for the two-marker 

combination of ANG2 and CgA revealed results of an AUC of 0.84 for the 

Optimised Linear SVM and 1.00 for the Optimised RBF SVM. The TPR and 

TNR were 100% for the Optimised RBF, however for the Optimised Linear 

SVM, the TPR was 0% with a FNR of 100%. Thus, suggesting that the 

Optimised Linear SVM model is unsuitable due to a FNR of 100% meaning that 

the pNETs were incorrectly classified as control (Table 6.32).   

 

SVM 
model 

Kernel 
Scale 

Box 
constraint 

Number 
of grid 
divisions 

Maximum 
training 
time (s) 

Accuracy 
(%) 

AUC TPR 
(%) 

TNR 
(%) 

FPR 
(%) 

FNR 
(%) 

Optimised 
Linear 

n/a 0.46416 10 300 81.4 0.84 0.00 100 0.00 100 

Optimised 
RBF 

0.0046416 10 10 300 100.00 1.00 100.00 100.00 0.00 0.00 

Table 6.32: Performance of SVM models created using the ANG2 and CgA markers in the 
pancreatic disease cohort. 
 

For the single marker ANG2, the RF models had AUC values ranging from 

0.978 to 0.999, TPR values of 63.60% to 81.80%, and TNR values of 97.90% to 

100.00% (Table 6.33).  

 
Run AUC TPR (%) TNR (%) FPR (%) FNR (%) 
1 0.995 81.80 97.90 2.00 18.20 
2 0.993 72.70 100.00 0.00 27.30 
3 0.991 81.80 97.90 2.00 18.20 
4 0.978 81.80 97.90 2.00 18.20 
5 0.995 90.90 100.00 0.00 9.00 
6 0.999 81.80 100.00 0.00 18.20 
7 0.986 72.70 100.00 0.00 27.30 
8 0.986 81.80 100.00 0.00 18.20 
9 0.999 81.80 100.00 0.00 18.20 
10 0.999 63.60 100.00 0.00 36.40 

Table 6.33: Performance of the RF models created using the ANG2 single marker in the 
pancreatic disease cohort. 
 

The ANG2 LR and C5.0 non-boosted decision tree (general and accuracy) 

models performed poorly with AUC values of 0.607 (Table 6.34) and 0.500 

(Table 6.35), respectively. Their specificities of 95.80% and 100%, respectively 
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(Table 6.34 and 6.35), highlighted their strong ability to identify the control (AP, 

CP and PDAC) as a single group accurately. However, both models were 

unsuitable as classifier algorithms as their TPRs were both 0%, showing a 

complete inability to identify pNET cases. Moreover, for the ANG2 C5.0 

decision tree, that model itself outlining the thresholds was not provided by the 

software. 

 
AUC TPR (%) TNR (%) FPR (%) FNR (%) 
0.607 0.00 100.00 0.00 100.00 

Table 6.34: Performance of the LR model created using the ANG2 single marker in the 
pancreatic disease cohort. 
 

C5.0 decision tree AUC TPR (%) TNR (%) FPR (%) FNR (%) 
General non-boosted 0.500 0.00 100.00 0.00 100.00 
Accuracy non-boosted 0.500 0.00 100.00 0.00 100.00 

Table 6.35: Performance of the C5.0 non-boosted decision tree model created using the 
ANG2 single marker in the pancreatic disease cohort. 
 

For the CgA RF model AUCs ranged from 0.995 to 1.000 with TPR ranging 

from 81.80% and 100.00% and TNR ranging from 97.90% and 100.00% (Table 

6.36). 

 
Run AUC TPR (%) TNR (%) FPR (%) FNR (%) 
1 0.995 90.90 97.90 2.10 9.10 
2 0.997 81.80 100.00 0.00 18.20 
3 0.996 81.80 97.90 2.10 18.20 
4 1.000 100.00 100.00 0.00 0.00 
5 0.995 90.90 97.90 2.10 9.10 
6 1.000 100.00 100.00 0.00 0.00 
7 0.997 100.00 97.90 2.10 0.00 
8 1.000 100.00 100.00 0.00 0.00 
9 0.996 81.80 100.00 0.00 18.20 
10 1.000 81.80 100.00 0.00 18.20 

Table 6.36: Performance of RF models created using the CgA single marker in the 
pancreatic disease cohort. 
 

The LR model had an AUC of 0.816 a TPR of 0% (Table 6.37), while the non-

boosted C5.0 decision tree had an AUC of 0.84 and a TPR of 27.30% (Table 

6.38). The thresholds for the CgA C5.0 decision tree were the same as seen 

when the two markers ANG2 and CgA were entered to create a decision tree 

(only CgA used), the thresholds used for pNET detection in the decision tree 

were firstly CgA <1.558 nmol/L, and secondly CgA <0.438 nmol/L for the 
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identification of the pNETs (Figure 6.6). Due to the poor performance in 

identifying pNETs these models were both unsuitable for pNET detection. 

 
AUC TPR (%) TNR (%) FPR (%) FNR (%) 
0.816 0.00 100.00 0.00 100.00 

Table 6.37: Performance of the LR model created using the CgA single marker in the 
pancreatic disease cohort. 
 
C5.0 Decision Tree AUC TPR (%) TNR (%) FPR (%) FNR (%) 
General non-
boosted 

0.841 27.30 100.00 0.00 72.70 

Accuracy non-
boosted 

0.841 27.30 100.00 0.00 72.70 

Table 6.38: Performance of the C5.0 non-boosted decision tree model created using the 
CgA single marker in the pancreatic disease cohort. 
 

 
Figure 6.6: General C5.0 non boosted tree for ADEPTs pancreatic diseases cohort for 
CgA. 
 

6.5.4 Summary of cohorts 
The UOL cohort, RFH external validation cohort and ADEPTs training cohort 

had showed varying distributions of CgA in pNET patients (Figure 6.7). CgA 

 
Figure 6.7: Comparison of the CgA distributions of the different pNET cohorts 

RFHpNETs (n=60) UOLpNETs (n=57) and ADEPTs pNETs (n=11)  
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distributions across the different the control cohorts were also varied (Figure 

6.8).  

 

 
Figure 6.8: Comparison of the CgA distributions of the different control cohorts. 

 

The mean pNET ANG2 levels were highest in the RFH external validation, 

followed by the ADEPTs pNET cohort and lowest in the UOL pNET cohort 

(Table 6.39). The pNET CgA distributions of the different. The mean pNET CgA 

level was found to be highest in the RFH external cohort, followed by the UOL 

training cohort and the ADEPTs cohort had the lowest mean CgA levels (Table 

6.40).  

 

 UOL training dataset 
 

RFH external 
validation cohort 

ADEPTs training 
cohort 

 
pNET mean 
Ang2 ± SD 

2260.60 ± 1074.27 

pg/ml  (n=57) 

	3999.74	± 3354.01 

pg/ml (n=60) 

2602.92 ± 760.27 pg/ml  

(n=11) 

Table 6.39: Summary of UOL (n=57), RFH external validation (n=60) and ADEPTs (n=11) 

pNET ANG2 results for pNETs. 
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The cohorts were revealed to be significantly different for CgA in the pNETs of 

the ADEPTs and UOL cohorts, which has an adjusted significance of p = 0.019, 

and the ADEPTs pNETs and RFH pNET cohorts, which had an adjusted 

significance of p=0.004 (Table 6.41). Whereas the distributions between the 

CgA pNET levels of the UOL and RFH cohorts were not statistically significantly 

different from each other (Table 6.41).  

The ANG2 distributions were varied across the pNET patient cohorts (Figure 

6.9). The ANG2 distributions also varied across the control groups (Figure 

6.10). The lowest mean control ANG2 level was seen in UOL cohort (Figure 

6.42). 

 

 UOL training dataset RFH external 
validation cohort 

ADEPTs training 
cohort 

pNET mean 
CgA ± SD 

237.48 ± 434.48 ng/ml 

(n=57) 

277.77 ± 362.558 ng/ml 

(n=60) 

39.75 ± 30.89 ng/ml 

(n=11) 

Table 6.40: Summary of UOL (n=57), RFH external validation (n=60) and ADEPTs pNETs 
(n=11) CgA results for pNETs. 

Groups Significance  Adjusted Significance 
ADEPTs pNETs vs UOL pNETs 0.006 0.019 

ADEPTs pNETs vs RFH pNETs 0.001 0.004 

UOL pNETs vs RFH pNETs 0.369 1.000 

Table 6.41: Pairwise comparison between the ADEPTs pNETs (n=11), UOL pNETs (n=57) 
and RFHpNETs (n=60) CgA distribution. 
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Figure 6.9: Comparison of the ANG2 distributions of the different pNET cohorts 
RFHpNETs (n=60) UOLpNETs (n=57) and ADEPTs pNETs (n=11)  
 

 
Figure 6.10: Comparison of the ANG2 distributions of the different control cohorts. 
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The RFH pNETs were statistically significantly different from each other 

adjusted significance p=0.001, whereas the ANG2 pNET distributions between 

the ADEPTs and UOL, and the UOL and RFH cohorts were not statistically 

significant from each other (Table 6.43). 

 
Groups Significance Adjusted Significance 
ADEPTs pNETs vs UOL pNETs 0.231 0.694 

ADEPTs pNETs vs RFH pNETs <0.001 0.001 

UOL pNETs vs RFH pNETs 0.406 1.000 

Table 6.43: Pairwise comparison between the ADEPTs pNETs, UOL pNETs and 
RFHpNETs ANG2 distribution 
 

 

When comparing the different control groups with the pairwise comparison for 

ANG2, it was seen that the UOL controls and the UKCTOCs controls were 

statistically significantly different from each other (p=0.000) (Table 6.44), 

similarly the UOL controls and the ADEPTs CP, AP and PDAC groups were 

statistically significantly different from each other (p=0.000) for ANG2 (Table 

6.44). 

 
Groups Significance Adjusted Significance 
UOL controls vs UKTCTOCs controls <0.001 0.000 
UOL controls vs ADEPTs CP <0.001 0.000 
UOL controls vs ADEPTs AP <0.001 0.000 
UOL controls vs ADEPTs PDAC <0.001 0.000 
UKCTOCs controls vs ADEPTs CP 0.119 1.000 
UKCTOCs controls vs ADEPTs AP 0.087 0.868 
UKCTOCs controls vs ADEPTs PDAC 0.065 0.650 
ADEPTs CP vs ADEPTs AP 0.902 1.000 
ADEPTs CP vs ADEPTs PDAC 0.817 1.000 
ADEPTs AP vs ADEPTs PDAC 0.915 1.000 

Controls 𝑴𝒆𝒂𝒏	𝑨𝑵𝑮𝟐	(𝒑𝒈/𝒎𝒍) ± 𝑺𝑫 𝑴𝒆𝒂𝒏	𝑪𝒈𝑨	(𝒏𝒈/𝒎𝒍) ± 𝑺𝑫 
UOL (n=49) 1494.42 ± 546.94 48.68 ± 49.42 

UKCTOCs (n=51) 2610.65 ± 1545.31 101.00 ± 299.13 

ADEPTs CP (n=16) 3130.94 ± 1462.55 229.51 ± 311.90 

ADEPTs AP (n=16) 2990.99 ± 984.72 295.47 ± 405.94 

ADEPTs PDAC (n=16) 3980.25 ± 2879.04 165.10 ± 223.20 

Table 6.42: Summary of control group mean ANG2 and CgA. UOL (n=49), UKCTOCs 
(n=51), ADEPTs CP (n=16), ADEPTs AP (n=16), ADEPTs PDAC (n=16). 
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Table 6.44: Pairwise comparison between the different control groups (UOL controls, 
UKCTOCs controls, ADEPTs CP, ADEPTs AP and ADEPTs PDACs) for ANG2 distribution. 
 

When comparing the different control group distributions for CgA using the 

pairwise comparison, the UOL controls and the ADEPTs CP group were 

statistically significantly different from each other (p=0.002) (Table 6.45), and 

the UKCTOCs controls and the CP group were statistically significantly different 

from each other p=0.015 (Table 6.45). 

 
Groups Significance Adjusted Significance 
UOL controls vs UKCTOCs 
controls 

0.436 1.000 

UOL controls vs ADEPTs 
PDAC 

0.016 0.162 

UOL controls vs ADEPTs AP 0.003 0.033 
UOL controls vs ADEPTs CP <0.001 0.002 
UKCTOCs controls vs 
ADEPTs PDAC 

0.061 0.613 

UKCTOCs controls vs 
ADEPTs AP 

0.016 0.160 

UKCTOCs controls vs 
ADEPTs CP 

0.002 0.015 

ADEPTs PDAC vs ADEPTs 
AP 

0.664 1.000 

ADEPTs PDAC vs ADEPTs 
CP 

0.294 1.000 

ADEPTs AP vs ADEPTs CP 0.539 1.000 
Table 6.45: Pairwise comparison between the different control groups (UOL controls, 
UKCTOCs controls, ADEPTs CP, ADEPTs AP and ADEPTs PDACs) for CgA 
 

 

6.6 Discussion 

This chapter sought to assess whether the biomarkers ANG2 and CgA could be 

used to distinguish pNETs from other pancreatic conditions that share similar 

presentations and symptoms. ELISA data for CgA (Figure 6.4) revealed that 

there were significant differences in CgA level between these conditions. The 

mean CgA level of pNET samples was significantly lower than that of PDAC 

(p=0.021), CP (p=0.001) and AP (p=0.006) samples, and the mean CgA levels 

of PDAC, AP and CP samples were not significantly different from each other 

(Table 6.8). Moreover, there was a high level of variation within the disease 

groups as reflected by the standard deviations obtained (Section 6.4.3). As CgA 

is an established pNET marker, it was surprising that this marker had the lowest 
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mean levels of 39.75 ± 30.89 ng/ml (mean ± standard deviation) in the ADEPTs 

pNET samples (n=11). 

In the absence of an accepted reference level for CgA, a comparison of the 

mean CgA level of ADEPTs pNET samples with the mean levels in my other 

pNET cohorts revealed that it was lower than that obtained for the RFH (277.77 

± 362.558 ng/ml, n=60) and the UOL pNET cohorts (237.48 ± 434.48 ng/ml, 

n=57) and when comparing whether the pNET cohort distributions of CgA were 

significantly different from one another, CgA distributions in the pNETs of the 

ADEPTs and UOL cohorts were statistically significantly different, adjusted 

significance of p=0.019 and in the ADEPTs pNETs and RFH pNET cohorts, 

adjusted significance p=0.004 (Table 6.41), whereas this was not the case for 

the UOL and RFH pNETs. In fact, the mean CgA level of the ADEPTs pNET 

cohort fell between the levels of the UOL (48.68 ± 49.42) ng/ml (n=49) and 

UKCTOCs (100.996 ± 299.132 ng/ml, (n=51)) healthy control cohorts, with the 

UOL CgA levels lower than that seen in the UKCTOCs healthy controls and in 

other studies. The Spadaro et al., study found healthy control levels of 48 ±18 

ng/ml182, the Qiao et al., study found healthy controls had a range of CgA of 39-

94 ng/ml90. When comparing the distributions of CgA in the UOL cases vs the 

controls, the control CgA levels were statistically significantly different than the 

controls, and the mean levels of CgA in the UOL cases vs controls was higher 

(237.5 vs 48.7 ng/ml). Likewise, when comparing the distributions of CgA in the 

RFH pNET cases vs the UKCTOCs controls, these were statistically 

significantly p<0.001, and the mean levels of CgA in the RFHpNET cases 

(n=60) was higher 277.765	±	362.558 ng/ml than the UKCTOCs controls (n=51) 

100.996 ±	299.132 ng/ml. 

In terms of the ELISA kits used in this work for assaying CgA, two different 

types of kits were used; the CgA CisBio and CgA DAKO ELISA kit. The UOL 

training cohort was the DAKO CgA ELISA kit, the combination training dataset 

(UOL and RFH) consisted of CgA assayed using DAKO and CisBio ELISA kit 

however for the ADEPTs cohort the CisBio ELISA kit was used. The use of two 

different ELISA kits is a limitation in this work due to the lack of CgA 

standardisation. Moreover, there is no FDA approved CgA test. The same CgA 

ELISA kit should have been used for both the UOL training cohort and the 

ADEPTs cohort however this was not possible. In terms of the kits themselves, 

the CgA Chromoa CisBio ELISA assay targets the core of the molecule (145-
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245) to measure intact and fragmented CgA (CisBio). The DAKO CgA ELISA kit 

is specific for the 23kDa C-terminal fragment, so it will measure whole 

molecules and fragments547.  

The ADEPTs cohort	for AP CgA levels were 295.47 ± 405.94 ng/ml (n=16), for 

CP 229.51 ± 311.90 ng/ml (n=16), PDAC 165.10 ±	223.20 ng/ml (n=16) and 

pNET 39.75 ±	30.89 ng/ml (n=11). Amongst the ADEPTs disease groups only 

the pNET group had a mean CgA level lower than that the mean levels seen in 

healthy control groups, while the other disease groups all had mean CgA levels 

higher than the mean levels of healthy controls. The higher CgA levels in the 

other pancreatic conditions indicated the assay itself was not compromised. The 

CgA level in the ADEPTs pNET group (n=11) was therefore determined to be 

low compared to the other pNET groups (RFH and UOL) and similar to healthy 

control levels, indicating that the ADEPTs pNET samples were somehow 

unusual. Moreover, the number of ADEPTs samples was low and therefore 

prone to sampling error and the SD of the disease groups was very high and 

there is a higher chance of sampling bias and the samples not being most 

representative of the population. 

The 11 ADEPTs pNET samples were from four patients with G1 tumours, two 

with G1-2 tumours, two with G2 tumours, two with G3 tumours and one with a 

tumour of unknown grade. The tumour size was also diverse and ranged from 

1-14cm with one not known. Ki67 data were only available for seven of the 

tumours and ranged widely from 0.02 to <3. Staging information was only 

available for four of the pNET samples and revealed that none of the four 

tumours was metastatic (Table 6.3). 

Hijoka et al. found that factors associated with elevated CgA levels in pNET 

patients were tumour classification, tumour size and presence of liver 

metastases based on univariate analyses, and PPI use and liver metastases 

based on a multivariate (LR) analysis517. The functionality of the pNET samples 

could have been one factor that contributed to the unexpectedly low CgA levels, 

as CgA has been reported to have a lack of utility for the diagnosis of 

insulinomas compared to other types of pNET90. However, functionality data for 

the ADEPTs pNETs were unavailable. An absence or low number of metastatic 

disease samples was another factor that potentially contributed to the 

unexpectedly low CgA levels as the UOL and RFH cohorts contained metastatic 

and non-metastatic pNET patients. It is also possible that the ADEPTs cohort 
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contained an unusual number of small tumours compared to other cohorts and 

that these patients were earlier in the clinical pathway compared to the UOL 

and RFH patients, however this information is not available for comparison. 

Unfortunately, the incomplete clinical data and the small number of pNETs 

within the ADEPTs cohort precluded further assessment of these factors.  

The CgA levels of patients with pancreatic diseases have previously been 

examined by Hijioka et al.517, who found that the mean levels of pNET, CP, 

PDAC, and autoimmune pancreatitis (AIP) patients as well as controls were 

407.8 ± 984.6 (n=69), 93.6 ± 57.5 (n=50), 91.8 ± 101.8 (n=50), 69.9 ± 52.4 

(n=20), and 62.5 ± 48.3 (n=112) ng/ml, respectively. The highest levels were 

therefore found in pNET samples, followed by modestly elevated levels in AIP, 

CP and PDAC samples. These results are consistent with my own results, with 

the exception of the ADEPTs pNET samples. 

The Hijoka et al. study also found that PPI usage increased CgA levels in 

PDAC, CP and AIP patients, which indicated that serum CgA level could only 

differentiate between pNET, other pancreatitis disease and control samples 

from patients who do not take PPIs. Interestingly when limiting the analysis to 

patients who were not on PPIs, the levels of CgA in patients with PDAC or CP 

were not significantly different from the controls. The issue of PPI usage as a 

confounding factor is of particular importance to my study, because PPI use 

was found to be a confounding factor for CgA level (p=0.011) in the ADEPTs 

pancreatic disease cohort. Specifically, the no vs Omeprazole group with an 

adjusted significance of p=0.014. PPI usage elevates CgA levels in pNET 

patients in general, however the confounding nature of the PPI usage could 

have elevated the other disease groups relative to the pNET group. This 

therefore highlights a limitation and ideally, patients not on PPIs should have 

been a part of the cohort, however this was not possible due to the availability 

of samples. This result, combined with the inability to stratify the pNET patients 

by PPI use due to the small number of patients, led to PPI usage by patients in 

the ADEPTs cohort compromising my analysis. To more accurately distinguish 

pNET from other pancreatic disease samples, PPIs should have been 

discontinued or replaced by Histamine Receptor antagonists for two weeks 

before blood sampling510, 547. 
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ANG2 levels varied less than CgA levels between the different pNET cohorts 

(Table 6.39 and Table 6.40) with ANG2 levels seen in the UOL pNETs cohort 

being 2260.60 ±	1074.27 pg/ml (n=57) in the RFH cohort pNETs 3999.74 

±	3354.01 pg/ml (n=60) and in the pNETs of the ADEPTs pancreatic diseases 

cohort 2602.92 ± 760.27 pg/ml (n=11). For the ANG2 variation seen between 

the cohorts, the ELISA kits used is not a factor, due to the same ELISA kit being 

used for the training cohort, RFH pNET cohort and the ADEPTs cohort 

(Quantikine).  

The UOL healthy control samples had ANG2 levels of 1494.42 ± 546.94 pg/ml 

(n=49), the UKCTOCs healthy controls had ANG2 levels of 2610.65 ± 1545.31 

pg/ml (n=51). ANG2 levels in AP were 2.990 ± 0.984 ng/ml (n=16), in CP 3.130 

± 1.462 ng/ml (n=16), in pNET 2.602 ± 0.760 ng/ml (n=11), in PDAC 3.980 ± 

2.879 ng/ml (n=16).  

AP, CP and PDAC samples all had higher mean ANG2 levels than those 

observed in the UOL and UKCTOCs healthy control samples (Figure 6.10) and 

the distributions of the UOL controls compared to the ADEPTs CP, AP and 

PDAC samples were significantly different from each other with significance of 

p<0.001 and adjusted significance p=0.000 (Table 6.44). Hence, ANG2 may be 

a marker for PDAC, CP and AP, however further studies with larger cohorts 

would be required to explore this further. Interestingly, the pNET samples in the 

UOL cohort had the lowest mean ANG2 levels (Table 6.40). ANG2 is an 

angiogenic marker associated with vascularisation, that drives lymphatic 

metastasis of pancreatic cancer. In a study by Juusola et al., 

immunohistochemistry scores and circulating ANG2 levels of 196 PDAC 

patients were compared to clinical data and patient outcomes. They found that 

a higher than median level of circulating ANG2 (>2.72ng/ml) was associated 

with shorter disease-specific survival. Neither circulating nor tumour ANG2 

expression was impacted by age or sex and there was no relationship with 

tumour size, stage, grade or lymph node metastasis, but a negative association 

between serum ANG2 level and tumour ANG2 expression was seen548. In 

another study, PDAC patients had an overall median survival of 28.4 months, 

but only 7.7 months in those with circulating ANG2 levels >75th percentile 

(P=0.0005). Moreover, in this study elevated circulating ANG2 levels correlated 

with the extent of lymphatic metastasis, and orthotopic PDAC xenografts with 

forced expression of ANG2, but not ANG1, displayed increased blood and 
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lymphatic vessel density and an enhanced rate of lymphatic metastasis. 

Interestingly in this study, patients with PDAC without lymph node involvement 

presented with ANG2 serum levels similar to controls, but different from patients 

with lymph node metastasis, suggesting that circulating ANG2 may serve as a 

non-invasive diagnostic indicator of tumour stage549.  

Serum ANG2 levels of CP patients have not been assessed in any published 

studies. However, serum ANG2 levels of AP patients has been assessed by 

Huang et al330, who showed that AP patients had a significantly higher serum 

ANG2 concentration (6.51 ± 8.73 ng/ml) than controls (5.11 ± 1.74 ng/ml). 

ANG2 were also found to be more elevated among patients categorised as 

having severe AP (15.45 ± 13.60 ng/ml) compared to those having mild AP 

(4.88 ± 2.34 ng/ml)330. Moreover, ANG2 predicted poor prognosis and adverse 

events including mortality in AP patients.  

The ANG2 models trained using either the UOL dataset (Tables 6.14 - 6.16) or 

the UOL RFH combined dataset (Tables 6.23 - 6.25) all suffered from high 

FPRs when applied to the ADEPTs dataset. This was due to the pNET data 

being lower than the UOL training dataset. This highlighted the unsuitability of 

these ML models and ANG2 as a discriminatory marker. In contrast, the ANG2 

models created using just the ADEPTs dataset performed very differently to 

each other. Specifically, the LR and non-boosted C5.0 decision tree models 

suffered from a complete lack of discrimination between different disease types 

(Tables 6.34 and 6.35), while the RF model performed with extremely high 

sensitivity and specificity across runs (Table 6.33). Nonetheless, it is likely that 

the RF model was overfitted to the training data and would not generalise and 

thus, this model alone would not be reliable to take forward when considering 

that the C5.0 and LR models performed so poorly in comparison. 

As seen with CgA and ANG2, the lowest levels of VGF (91.46 ± 42.18 pg/ml) 

were in the pNET samples of the ADEPTs cohort. The highest VGF levels were 

seen in CP and PDAC samples (1129.22 ± 3192.74 pg/ml and 374.45 ± 291.71 

pg/ml, respectively). The low VGF levels in the ADEPTs pNET samples were 

consistent with the level in RFH pNET samples that were lower than controls 

but differed from the level in UOL pNET samples that were higher than all other 

cohorts in this study.  
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VGF and VGF-derived neuropeptides are biologically associated with pain, with 

rapid upregulation of VGF in sensory neurones after nerve and injury and 

inflammation and activation of microglial p38 by VGF peptides550. TLQP-21 

which is a VGF-derived peptide’s role in nociception was explored in mice and 

the formalin test revealed a significant increase of pain related licking response 

in mice following injection of TLQP-21 and an increase in licking response was 

also detected when TLQP-21 was injected alone without formalin551. Thus, the 

study illustrated that VGF-derived peptides may be involved in inflammatory 

pain in vivo. AP is defined as an acute condition that typically presents with 

symptoms of abdominal pain and raised pancreatic enzymes in the blood or 

urine due to an inflammatory disease of the pancreas538, whereas CP has been 

defined as a continuing inflammatory disease of the pancreas characterised by 

irreversible morphological changes. These changes typically cause pain and 

loss of exocrine and endocrine pancreatic function. Pain is the predominant 

symptom in CP and 80-90% of CP patients present with pain as the primary 

symptom either at the first attack of AP or as the main reason for hospital 

readmission in the following months and years as a result of the disease 

progressing to what could be defined as CP538. VGF elevations in PDAC 

patients could be perhaps be explained by VGFs role in perineural invasion 

(PNI), which is a characteristic feature of PDAC associated with tumour 

recurrence, poor prognosis and the generation of pain552. However, the extent 

of perineural invasion in the PDAC patients assessed in the ADEPTs cohort is 

unknown. Despite AP also being associated with pain, VGF levels were not 

high in the AP ADEPTs patients and were less than that seen in CP ADEPTs 

patients. Hence although pain could be a factor in the increase in VGF levels 

seen for CP ADEPTs patients, it does not provide an explanation for the lower 

levels of VGF in the AP compared to the CP and PDAC ADEPTs patients. One 

explanation could be that the chronic nature of the pain seen in CP patients and 

the persistence of the pain over time could cause the VGF levels to be higher in 

these patients compared to AP patients, however this is to be determined. 

Moreover, pain is also a factor in pNET patients, with some pNET patients 

having abdominal pain as a symptom within this ADEPTs cohort (4/11), this was 

compared to 8/16 AP patients, 5/16 CP patients and 6/16 PDAC patients in the 

cohort. Thus, based on this observation, VGF levels would be expected to be 

the highest in the AP patients but this was not shown to be the case in these 
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patients. Hence, the elevations in VGF seen in the PDAC and CP patients may 

not be completely related to pain. 

A limitation of the ADEPTs pNET cohort was the small pNET sample size 

(n=11). Despite the power calculation suggesting that a group size of ~11 could 

be used if the sensitivity of the test was 80% (maximum margin of error = 0.25), 

not knowing the actual sensitivity at which each test would perform in the 

ADEPTs pancreatic disease cohort setting precluded targeting an adequate 

sample number. The problem of sample number is difficult to address in 

practice due to the rarity of pNETs (prevalence/incidence) and the low rate of 

diagnosis. pNETs consist of less than 5% of all pancreatic tumours and 7% of 

all NETs553,78. They themselves are the second most common pancreatic 

neoplasm with an overall incidence of approximately 5 per 1,000,000 new 

cases/year78,1. Assuming a test sensitivity of 60% and a maximum margin error 

of 0.1 then the number of samples needed would be 92 per group. However, for 

the models that were developed using the ADEPTs cohort itself, the TPR varied 

greatly for the different models ranging from (0% to 100%), this highlights a 

particular challenge in adequately choosing a sensitivity by which most models 

would be covered. 

A second limitation in this part of the study was applying algorithms designed to 

distinguish pNET from healthy control samples to distinguish pNET from AP, CP 

and PDAC samples. AP, CP and PDAC groups were found not to have CgA 

and ANG2 levels similar healthy controls; instead, CgA and ANG2 levels in the 

pancreatic diseases were elevated relative to healthy controls and covered a 

much wider range. This would therefore require a different strategy in the future, 

with one stream focussed on differential markers for pNETs vs other pancreatic 

conditions and another stream focussed on markers that could distinguish 

pNETs from healthy controls. Moreover, based on findings from this chapter 

neither ANG2 nor CgA perform particularly well in the context of a ML model to 

identify pNETs from these other conditions, however due to the unexpected 

findings from this work particularly due to the low levels of CgA and ANG2 in the 

pNETs (n=11) examined, a larger cohort of pNET samples would be required to 

assess this further.  

 Thus, the results obtained for the ADEPTs cohort highlight the need for a much 

larger cohort of pNET samples, ideally  stratified according to grade, stage, 

functionality and metastatic stage, for the creation of newer models that can 
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discriminate between pNET, AP, CP, PDAC and healthy samples. Work by 

Srirajaskanthan et al., and Melen Mucha et al illustrated that ANG2 levels were 

statistically significantly elevated in patients with metastasis compared to those 

without metastasis140,470. Multivariate analysis from the Srirajaskanthan et al., 

study also revealed that higher ANG2 levels were associated with higher grade 

tumours470. For CgA, pNETs with metastasis have been shown to have 

significantly higher levels compared to pNETs with no metastasis90. Moreover, 

insulinomas have shown to serum CgA levels that were lower than non-

insulinoma pNETs90. In a study by Pulvineti et al., increased CgA was identified 

in 7/19 of G1 cases, 22/35 G2 cases and 6/6 G3 cases, illustrating the role that 

grade can have on CgA levels462. 

 Moreover, PDAC, CP and AP sample stratification may also be needed as it is 

likely with a marker such as ANG2 that more severe disease will correlate with 

increased marker level. Different algorithms and different marker combinations 

may be needed to distinguish pNET from AP, CP, PDAC and healthy samples. 

In addition, ANG2 or CgA may each have more relevance as markers for 

certain types of pNET, potentially evidenced by their stronger performance as 

discriminatory markers for the UOL and RFH pNET cohorts and poor 

performance in the ADEPTs pNET cohort. The larger UOL and RFH pNET 

cohorts appeared to better represent of the heterogeneity of pNETs compared 

to the ADEPTs pNETs used in this study, but larger, stratified cohorts will be 

required to assess this issue. 

Overfitting by the RF and optimised RBF SVM models, and the lack of 

sensitivity of the LR, decision tree and optimised linear SVM models indicate 

that models developed using the ANG2 and CgA combination are likely to 

require additional markers including previously assessed pNET markers, as well 

as newer markers to be identified through secretome studies, to differentiate 

pNETs from other pancreatic diseases. These additional markers may include 

markers previously assessed in Chapter 3 including MAC2BP. From the current 

evidence based on this chapter ANG2 and CgA are not suitable for 

discriminating pNET from pancreatic diseases, however there are important 

limitations to this cohort including low sample number, and unexpectedly low 

levels of these markers than was expected based on the UOL and RFH data 

and hence, removal of these markers at this stage would not be the best 

approach, but instead further studies with larger cohorts of AP, CP, PDAC and 
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pNET patients are needed to assess this issue before CgA and ANG2 are not 

kept. Studies have widely sought to assess markers that can differentiate 

pNETs from healthy controls90,445, but the differential diagnosis of pNETs from 

other pancreatic conditions that requires further work and a one size fits all 

approach for a marker panel and associated and ML algorithm may not be the 

best approach as different thresholds are likely to be present for each of these 

conditions for CgA and ANG2, thus, treating these other pancreatic conditions 

in the most simple way as similar to healthy controls is likely not the best 

approach.Future studies should also include important aspects of the clinical 

data that were absent in the ADEPTs data, such as the functional and 

metastatic status of each pNET. 

  



 296 

Chapter 7 - Wider Discussion 

 

My work described in this thesis began with the development of ML classifier 

algorithms derived from a dataset comprising the levels of seven previously 

identified GEP-NET markers in pNET cases and healthy controls (UOL cohort). 

Three important conclusions were drawn from this training stage. First, strong 

performances were seen for RF algorithms derived from all combinations 

containing three to seven markers, with no clear preference for any specific 

marker combination, as discussed in Chapter 3. The extremely high AUCs of 

these RF algorithms were thought to be caused by overfitting and this inference 

was confirmed by validation of these algorithms in a train-and-test approach 

using the UOL cohort data, as discussed in Chapter 4. This result illustrated the 

value of algorithm validation, albeit using a less informative internal validation 

method. Second certain markers (TB4 and NSE) were not found to be suitable 

markers for the assessed algorithms (Chapter 3). Third, the three markers CgA, 

VGF-NGF and ANG2 performed well across all algorithms and this result 

provided the rationale to take these three markers forward for external 

validation as explored in Chapter 5. 

Further confirmation that CgA, VGF and ANG2 were the most suitable of the 

seven markers that were initially employed for pNET detection was evident from 

the performance of different seven-marker algorithms in kFCV and train and test 

validation (Chapter 4). This was particularly clear for Optimised Linear and RBF 

SVM algorithms assessed using kFCV, which showed that the CVA 

combination performed strongly at 5FCV, 10FCV and 20FCV. In addition to 

SVM model performance, boosted C5.0 decision trees generated from seven-

marker data showed that only CgA, VGF and ANG2 alongside MAC2BP were 

utilised across all 10FCV runs. 

One particular finding from the work from this thesis was that VGF was not 

shown to be a suitable marker in the external validation and ADEPTs pNETs.  

The same VGF ELISA kit producer and product were used for all training and 

validation cohorts, providing methodological consistency and reducing 

experimental error. However, during external validation levels of VGF were not 

elevated in the independent RFH pNET cohort compared to the UKCTOCs 

healthy controls (Chapter 5), and VGF was therefore discounted as a suitable 

pNET marker.  
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Post protein translation VGF undergoes proteolytic processing in the regulated 

secretory pathway to produce active VGF-derived peptides. VGF peptides can 

be classified by their cleavage sites in VGF1-615, the responsible protease, their 

mechanism of action and cellular function their physiological function and how 

they were identified., with at least 12 VGF derived peptides identified554. Thus, a 

deeper understanding of these VGF derived peptides is also needed, as some 

VGF-derived peptides might be of greater relevance than others for pNET 

detection.  

The VGF results illustrated one of the difficulties with biomarker research, 

namely that markers which perform well in initial stages can fail at validation555. 

This result also emphasises the importance of eliminating markers at an early 

stage via external validation due to practical, time and cost implications. VGF-

NGF is a neuroendocrine tissue marker556, however its role as a serum marker 

has not previously been investigated, hence the reasons for VGF-NGF not 

performing as well within this cohort are unclear. Potential areas for further 

investigation include tumour heterogeneity, and clinical and demographic 

differences between the cohorts. The finding that VGF was not a suitable pNET 

marker was further supported by the results from the ADEPTs pNET cohort 

(Chapter 6), which showed no elevation over AP, CP and PDAC levels. Further 

analysis of VGF in other pNET cohorts are needed to confirm these findings.  

External validation using an independent cohort (Chapter 5) allowed the 

generalisability of algorithms trained on CgA, ANG2 and VGF levels in UOL 

samples (Chapter 3) to be assessed with reduced bias compared to internal 

validation methods. The results revealed that levels of ANG2 and CgA were 

higher in pNET cases compared to controls, however this was not seen for 

VGF. Despite the higher levels of CgA and ANG2, the performance of LR, SVM, 

C5.0 decision tree and RF algorithms based on the AC combination dropped 

compared to that seen at training. While LR sensitivity increased from 72 to 

88%, AUC fell from 0.849 to 0.724, and specificity fell from 80% to 31%. 

Decreased AUC, sensitivity and specificity were seen for the other assessed 

models (C5.0 decision tree, RF, Linear SVM and RBF SVM) with no model 

having a specificity >65% in the external validation. The poor validation 

performance across different algorithms indicated differences between the 

training and validation cohort datasets and pointed to a need for larger cohorts. 
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Thus, newer models were trained on the combined training and external 

validation cohorts for ANG2 and CgA (this treated as a single training set). This 

combined dataset has not been internally validated and thus, internal validation 

of this joint cohort would provide a further insight into the suitability of these 

markers utilising a larger train and test portion and future validation of this joint 

cohort will require access to large independent cohorts. Moreover, other 

previously assessed markers such as MAC2BP and TIMP1 in the UOL training 

cohort (Chapter 3), should be assessed using external validation. For example, 

the CgA and MAC2BP C5.0 non boosted decision tree had an AUC of 0.850 

using the training UOL dataset and the APMV general non boosted decision 

tree which had an AUC of 0.888 in the training UOL dataset. The CVAM 

combination performed well across SVM, LR and RF in the UOL training 

dataset assessment (Chapter 3), thus for these algorithms exploring the 

addition of MAC2BP in an external validation cohort would also be useful to 

assess the impact of MAC2BP addition on performance. 

The ADEPTs cohort contained pNET, PDAC, AP and CP patient samples, 

selected to resemble a typical clinical challenge of discriminating suspected 

pNET patients from patients with other conditions that present with similar 

symptoms. Accordingly, my specific aim was to use CgA, VGF and ANG2 levels 

to discriminate pNETs from these other conditions. Higher levels of CgA and 

ANG2 were expected based on my UOL and RFH cohort findings, but the 

expected level of VGF was uncertain as it was higher than controls in the UOL 

cohort but lower in the RFH cohort. However, within the ADEPTs cohort, the 

levels of all three markers were lower in the pNET group than the other disease 

groups. The unexpected marker levels could have occurred due to (i) random 

sampling variation due to the low pNET sample number (n=11); (ii) a lack of 

advanced stage pNETs (Section 6.3); (iii) a potential prevalence of unusual 

pNET subtypes and (iv) use of different CgA ELISA kit for the UOL cohort to 

that employed for the RFH and ADEPTs cohorts (although the same type of 

ELISA kits were used throughout for ANG2 and VGF). The lack of data 

concerning ADEPTS pNET stage and subtype precluded further analysis. 

Nonetheless, further studies with far larger pNET cohorts consisting of a wide 

range of pNET grades, metastatic status and functionality are needed to better 

assess these variables. 
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7.1 Clinical value of point-of-care pNET detection 
In clinical practice the diagnostic work-up for pNETs depends on whether the 

pNET is suspected to be functional or non-functional. When a gastrinoma is 

suspected, a serum gastrin level which is 10-times greater than the upper limit 

of the normal range along with a gastric pH <2 is diagnostic of a gastrinoma557. 

When an insulinoma is suspected, the serum levels of insulin and C-peptide 

along with glucose during prolonged fasting (up to 72h) are useful for the 

diagnosis of insulinomas if symptoms of hypoglycaemia are present or plasma 

glucose level is below 49mg/dL. In patients with insulinomas, insulin levels are 

not decreased during hypoglycaemia whereas C-peptide levels are elevated 

during hypoglycaemia. The diagnosis of VIPoma and somatostatinoma is 

confirmed through the fasting level of VIP and somatostatin in patients who 

have suspected symptoms557. Functional pNETs, (including insulinomas, 

gastrinomas, and somatostatinomas) and NF-pNETs can be associated with 

MEN1 mutation, which typically includes pituitary adenoma and parathyroid 

hyperplasia and often also includes duodenal gastrinoma. In general, when 

MEN1 involvement is suspected, serum prolactin, parathyroid hormone and 

gastrin levels are evaluated557. 

NF-pNETs are more common than their functional counterparts. They cause a 

lack of symptoms that would otherwise make a patient present to a clinician, 

and therefore they tend to be identified at a later stage. A single point-of-care 

test for F- and NF-pNETs would both reduce time to diagnosis and spare 

patients from undergoing multiple different examinations, particularly for NF-

pNET patients.  

There is an unmet clinical need for diagnosing pNETs at an earlier stage, when 

treatment is more likely to provide better outcomes with lesions being surgically 

resected when possible as this is the only potentially curative therapy; however, 

patients tend to be diagnosed at a metastatic stage. Thus early diagnosis of 

pNET patients is problematic558. For example, a study of UK pNET patients 

revealed a median diagnosis time to diagnosis of 24 months after initial 

presentation although respondents saw their GPs regarding their symptoms five 

times over a median period of 18 months65. A primary reason for late referral for 

further investigation and diagnosis is that GPs face a considerable challenge in 

distinguishing patients with suspected malignancy from multiple benign 

conditions. Moreover, it is extremely unlikely that a typical GP will encounter 



 300 

many patients with pNETs in a year, due to the low incidence 1/100,000 per 

year of pNETs.559. There is also the challenge of a lack of specific pNET 

symptoms. For example, the Liao et al. study examined the symptomology of 

PDACs and pNETs with the aim of identifying PDAC- and pNET-specific 

symptoms66. However, no pNET-specific symptoms were found. Thus, an 

affordable test that could be used on patients with non-specific symptoms would 

be most valuable in a primary care or MDC setting. The feasibility of molecular 

tests in these settings is supported by the existence of several point-of-care 

molecular tests that have been developed including the GRAIL test, 

CancerSEEK test and the NET test. These tests work with a multiplex approach 

for cancer diagnosis, and if in cooperated into routine clinical practice, offer a 

route for pNETs to be diagnosed. 

The Galleri (GRAIL) test is currently being trialled in the NHS as a multi cancer 

screening tool, with the NHS-Galleri study enrolling over 140,000 people invited 

from the general population of England aged 50-77 who did not have or were 

not being investigated for cancer560. Approximately 70,000 participants have 

been either assigned to having the GRAIL test or not having the test (controls). 

For participants in which a signal is detected from the test, the results are 

reported back to the participant and they are referred to a diagnostic pathway, 

with either cancer diagnosed, or no cancer diagnosed, with the no cancer 

diagnosed participants returning for 1 and 2 year follow up visits. For the control 

participants who are not provided with a GRAIL test, the sample is stored for 

potential future testing. The NHS-Galleri trial is the first randomised controlled 

trial, that is statistically powered to assess the clinical utility, including harms 

and benefits, of a blood based multi-cancer early detection test. However, the 

trial has some limitations, including the test only being evaluated only in a 

population of participants aged 50-80 years, the trial not being powered to 

evaluate the benefit of screening separately in specific socioieconomic, or 

ethnic subgroups, or not evaluating the clinical utility of each individual cancer 

type detected or the relative benefits of different screening schedules such as 

biannual or biennial screening. The trial is also not designed to answer whether 

a multicancer early diagnosis test could replace or change the frequency of 

other current single cancer screening programmes. There is also the concern 

that early diagnosis may not ultimately alter the disease course and participants 

with cfDNA detectable amounts still die at the same point in the absence of this 
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intervention. The scope for overdiagnosis however is limited with the test signal 

being based upon circulating tumour fraction which is the proportion of ctDNA in 

cfDNA. The GALLERI test has been shown to detect pancreatic cancer with a 

sensitivity of 63%, with the sensitivities ranging across stages (stage I= 63%, 

stage II= 83%, stage III= 75% and stage IV 100%)79.  Thus, in the future, if this 

test were to be rolled out into the NHS routinely, pNETs are likely to be 

identified from this test and thus implementation of this test in a diagnostic 

pathway would provide another route for pNET diagnosis in the future. 

The CancerSEEK test is another test that could be used in the context of 

diagnosing patients who may have non-specific symptoms. Developed in the 

US for the detection of eight cancers (liver, stomach, ovary, pancreas, 

oesophagus, colon, lung and breast), through assessment of mutation in cfDNA 

and levels of circulating proteins, the test was found to have sensitivities 

ranging from 69% to 98% at a fixed specificity of 99% and localised the site of 

cancer in a median of 83%82. The features of the test that were most important 

to the algorithm were the presence of a ctDNA mutation followed by elevations 

of CA-125, CEA, CA19-9, pro-lactin, hepatocyte growth factor, osteopontin, 

myeloperoxidase and TIMP1 protein levels. The CancerSEEK study found that 

the sensitivity for the earliest stage cancers (Stage 1) was highest for liver 

cancer (100%) and lowest for oesophageal cancer (20%). However, a major 

limitation of the study was that the patient cohort consisted of participants with 

known cancer and the true extent of false positives could not be explored, 

because the controls were limited to healthy individuals, and in reality non-

cancer patients would exist including patients with inflammatory or other 

diseases which could have produced a greater proportion of false positives than 

what has been identified in this study. They also used cross validation an 

internal validation approach and did not independently externally validate the 

test. The portion of cancers of each type in the cohort was purposefully not 

representative of those in the US due to the study wanting to evaluate at least 

fifty examples of each cancer type with the resources available. CancerSEEK 

have also considered costs, with the estimation of the test costing less than 500 

dollars which is comparable and lower than other screening tests for single 

cancers such as colonoscopy. Thus, the utility of CancerSEEK as a multi-

cancer diagnostic test used in a similar way to the Galleri test for patients, might 
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provide another opportunity for diagnosis for pNET patients with non-specific 

symptoms.  

The NETest which utilised 51 different RNAs for NET detection, has been found 

to perform well as a pNET diagnostic test with an AUC of 0.939 (n=87) for 

pNETs83. However, despite this test being comparatively better to CgA, costs, 

reproducibility and practicalities means that better diagnostics for pNET 

detection are needed for a point of care test. 

 

7.2 Performance of the selected pNET markers 
Biomarkers for both F-pNETs and NF-pNETs include CgA93, but the use of this 

marker is compromised by the absence of an approved FDA test512, with CgA 

levels varying between assaying methods, the type of biological material used 

(plasma or serum) or even between specific ELISA tests512. In this respect, the 

UOL cohort used a different CgA ELISA kit to that employed for the RFH and 

ADEPTs cohorts. This lack of standardisation limits the use of CgA for 

diagnosis, comparison of different cohorts, and studies of this marker. The use 

of CgA is further limited in man by non-pathological, day-to-day factors including 

food intake, and by many confounding factors, including malignancies, non-

malignant conditions and certain medications (Section 1.5.1). Thus, if CgA were 

to be included in a biomarker panel, these factors would need to be controlled 

to reduce false positive results. When assessing CgA in the external validation 

cohort assessing for clinical for confounding factors, it was found that that CgA 

was associated with PPI usage, p=0.048. Thus, this is definitely a factor that 

limits its utility as a biomarker for pNETs and supports findings from other 

studies202,510.  

An algorithm that is developed for CgA should ideally be able to use plasma or 

serum interchangeably with a suitable quantitative adjustment built into the 

algorithm as plasma CgA levels are generally higher than serum levels. In this 

thesis the thresholds used for the serum algorithms were expected to be 

applicable to pNET plasma but may have been too low for control plasma. 

Whether to use serum or plasma for future algorithm development will likely 

depend primarily on the clinical availability of serum or plasma from pNET 

patients and tissue banks. 
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NSE is a second marker that has been assessed previously as a F- and NF-

pNET marker, but it has proven to be less accurate than CgA in identifying 

GEP-NETs561. For example, in a study by Baudin et al. serum NSE and CgA 

levels were measured in 128 NET patients and 53 controls with non-endocrine 

tumours to compare their sensitivity and specificity. In all groups of NET 

patients, CgA proved to be more sensitive than NSE. NSE and CgA had a 

specificity of 73% and 68%, respectively and were elevated in 48 (38%) and 74 

(59%) of the patients562. Raised NSE levels were significantly associated with 

poor tumour differentiation as raised levels were found in 12/19 patients with 

poorly-differentiated or intermediate GEP-NETs compared to 23/71 patients 

with well-differentiated GEP-NETs562. They also found that among six NET 

patients who were followed for 11-37 months, CgA appeared to be a better 

marker of tumour evolution. Indeed, the authors suggested that CgA ought to 

be the only general marker used to monitor NET patients562. However, when Lv 

et al. assessed 784 serum samples using a test that combined serum CgA and 

NSE levels, they found an improved power of prognosis for NF-pNET 

patients468.  The Lv et al., study focussed on the impact that a combination of 

NSE and CgA and  CgA alone would have on diagnosis of a more focussed 

group of pNET patients (NF-pNETs), whereas the Baudin et al., study explored 

CgA and NSE separately in a NET patient cohort. Thus, the differences in the 

findings for the suitability of NSE, could be due to specific characteristics of a 

NF-pNET cohort compared to a more broader NET cohort group.  

From my assessment of NSE as a pNET single marker in the UOL cohort in 

Chapter 3, it was found to be one of the markers that across C5.0 non boosted 

decision trees and LR performed poorly. Moreover, when assessed as a 

combination with CgA for the C5.0 non boosted decision tree, the model 

created omitted NSE and instead created a model with just CgA suggesting that 

NSE was not important for that model (Chapter 3). For the LR algorithm NSE 

individually was one of the poorer single markers with an AUC of 0.564, with 

CgA individually in comparison having an AUC of 0.750. The NSE and CgA LR 

model for the UOL training cohort had an AUC of 0.767, thus compared to CgA 

alone, the combined model performed slightly better with the addition of NSE, 

however other CgA two marker combinations performed better such as the CgA 

and ANG2 combination which had an AUC of 0.849 for LR in the UOL training 
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cohort. Thus, suggesting that addition of other markers to CgA compared to 

NSE was better.  

ANG2 was identified in the UOL case control analysis as a pNET marker, which 

was supported by the RFH case control analysis. However, ANG2 levels were 

not significantly different for pancreatitis, PDAC and pNET patients in the 

ADEPTS cohort, indicating that ANG2 utility may be limited in a clinical setting 

although larger cohort analyses are required to confirm this point. ANG2 levels 

in pNET plasma samples should also be assessed, because if, like CgA, 

plasma levels for these markers are higher than in sera, it is likely that plasma 

ANG2 would be more suitable for future algorithm development than serum. 

ANG2 also has many confounding factors, including a range of cancers, non-

malignant conditions and certain medications (Section 1.5.5). 

Thus, the use of ANG2 and CgA for pNET diagnosis in a primary care setting 

would be challenging, although ML models may be able to employ fine tuning of 

the thresholds used for the for pNET detection combined with confounding 

factor assessment to allow successful diagnosis.   

 

7.3 Discovery of early detection biomarkers using pNET patients 
Cancer biomarker discovery has progressed slowly with the currently clinically 

used serological tumour markers being discovered at least 30 years ago. Since 

that time no new serological tumour markers have been brought to the clinic563. 

Biomarkers that are identified when a person has symptomatic cancer are likely 

to reflect changes that occur a long time after the initiation of cancer and hence 

have little value for the early detection of cancer. This is a major problem with 

early biomarker research, typically due to the practical issue that diagnosed 

cohorts tend to be representative of later rather than early-stage disease. The 

ideal early biomarker test would have been developed using specimens from 

patients with no symptoms of the target cancer at the time of collection and who 

later developed the target cancer. In practice this is only feasible for either 

extremely large, untargeted specimen collections such as the UKCTOCS and 

UK Biobank collections, or for high-risk groups carrying specific gene mutations, 

such as MEN1. The very low incidence of pNETs favours the latter approach, 

but it remains to be seen whether MEN1 serum markers can also be used to 

detect other pNETs. 
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For the early detection of cancer with a biomarker, there should be a moderate 

or preferably high TPR associated with a low FPR. Low FPR is important to 

prevent unnecessary further investigations and patient anxiety; however, a low 

FNR is important to prevent patients from not being picked up by the test. 

Another limitation of cancer biomarker research is that little attention has been 

given to the frequency of specimen collection and storage564. For practical 

reasons, specimens are often collected infrequently, typically only once or twice 

from a patient564. Thus, longitudinal changes in a patient cannot be detected 

and biological changes in patients cannot be tracked over time. These 

biological changes could allow the optimum point for detecting different types of 

pNET to be assessed for different markers. A longitudinal study with a 

statistically adequate number of pNET patients would be useful for improving 

biomarker tests but has never been carried out. 

Carcinogenesis is centred on two different theories, somatic mutation and tissue 

organisation field theory. Somatic mutation is centred at the cellular level of 

biological organisation and states that carcinogenesis is a problem of cell 

proliferation control. However the tissue organisation field theory considers 

carcinogenesis to be a process that is similar to organogenesis that has gone 

wrong and is centred at the tissue level565. Under the somatic mutation theory 

cancer begins with an initial mutation which proceeds through subsequent 

mutations565. Thus, infrequently collected specimens could still identify long-

term irreversible genetic changes that would lead to a good biomarker test for 

the early detection of cancer564. Under the tissue organisation field theory565, 

the cause of cancer is a disruption of cell communication that precedes 

irreversible changes associated with cancer. Biomarkers that are related to the 

disruption of cell communication may not detect cancer early because such 

disruptions may be reversible or not sufficient in duration to initiate cancer564. If 

tissue organisation field theory is correct then frequent specimen collection is 

recommended in order to identify biomarkers that arise in the small time 

window564.  

 

7.4 Discovery of early detection biomarkers using pNET models 
pNET early diagnosis biomarker discovery has been hindered due to the lack of 

suitable biological models available for pNETs. Establishing experimental 

models that recapitulate the genesis and progression of pNETs is important to 
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increase understanding of the biology of this disease, but models are typically 

limited by their inability to recapitulate the genetic mutations and features of 

human neoplasia. pNET models include cell lines566, mouse models567, patient-

derived xenografts (PDXs)568, spheroids569 and islet-like tumoroids570.  

GEP-NET cell lines have the advantages of low cost, empirical reproducibility, 

availability and being well characterised. However, a limitation is the genetic 

modification of the primary cell line over time571. Each model type has its 

associated advantages and disadvantages. 2D cell culture models of pNET cell 

lines, such as BON1, QGP1 and NT3, do not recapitulate the tumour well and 

have limitations. Kaku et al. established the QGP-1 cell line from a 

somatostatin-producing islet cell carcinoma572, while the BON1 cell line was 

established in 1991 from a lymph node metastasis of pNET patient573. The 

QGP1 and BON1 cell lines have been widely used but they do not display a 

well differentiated neuroendocrine phenotype566. Moreover, they do not serve 

as a model to study radionuclide imaging and SSTR expression574. For the 

BON1 cell line the doubling time is less than 48 hours, which means that this 

cell line does not recapitulate characteristically slow growing NETs575. The NT3 

cell line566 is well differentiated with a low proliferation rate, but it was isolated 

from a lymph node metastasis rather than the primary tumour, a functional 

insulinoma. While candidate pNET markers have been identified from these cell 

lines107 , better biological models of early pNETs are required to support the 

identification of new, early GEP-NET and pNET markers. 

PDX models have been developed for pNETs, and used to evaluate two mTOR 

inhibitor drugs, everolimus and sapanisertib568. The PDX-pNETs maintained 

pNET morphology and pNET specific gene expression signature with serial 

passage and harboured mutations in genes that were previously associated 

with pNETs including MEN1 and PTEN, as well as activation of the mTOR 

pathway which was detected by Gallium PET-CT. Moreover, treatment of the 

PDX-pNETs with either everolimus or sapanisertib inhibited growth, as well as 

in some PDX-pNETs there was resistance to everolimus. Work by Lines et al., 

in the development of a pNET mouse model which is under temporal control 

allowed to study the impact of early tumorigenic events and overcome 

limitations of other MEN1 knockout models, whereby menin is lost from 

conception. They developed the pancreatic 𝛽	cell specific NET model under 

temporal control (MEN1L/L/RIP2-CreER) mouse model. These mice at 
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approximately 3 months old were given tamoxifen in the diet for 5 days, and 

pancreata then harvested, at 2-2.5, 2.9-3.5 and 4.5-5.5 months later. The 

control mice did not express Cre and did not receive tamoxifen, and the 

tamoxifen treated MEN1L/L/RIP2-CreER mouse compared to the control mice 

showed at all ages, loss of menin in all islets, increased islet area, increased 

proliferation of insulin immunostaining 𝛽	cells and decreased proliferation of 

glucagon immunostaining alpha cells. Their mouse model, of a time-controlled 

loss of menin may assist in providing a useful model for investigating early 

genetic and molecular mechanism that may occur in pancreatic islet cells, 

before, during and after menin loss. Hence development of such models is 

important in further understanding the early-stage biology of pNETs.  

Genetically engineered mouse models have the advantage of the tumour being 

present within the context of an intact immune system, an established causal 

relationship with genetics and phenotypes, and suitability for drug screening 

applications. However, limitations include biological differences between human 

and mice, and familial GEP-NET models may not be suitable for drug 

development, as most GEP-NETs are not familial, hence findings from familial 

GEP-NET models that harbour germline mutations may not be generalisable to 

sporadic pNETs. PDXs have the advantage of close resemblance of pathology 

to human samples including stromal interaction, however a limitation is that the 

engraftment rate of GEP-NENs is less than 10%571. Organoids have associated 

advantages including the ability to generate organoid libraries, be utilised for 

drug screening and for testing of personalised medicine, and to offer the 

potential to model the cancer pathway of GEP-NENs through genetic 

engineering, however they also have disadvantages including a lack of native 

environments which includes the tumour stroma, vasculature and immune 

system, a loss of heterogeneity and there being insufficient data on GEP-

NENs571. Advantages of spheroids include being inexpensive, high efficiency 

and keeping physical interactions which are more closely reflective of behaviour 

in the 3D native tissue. Whilst disadvantages include having variable diameter 

and size, intense work and the diffusion gradient depending on the size 

(oxygen, nutrient, paracrine factor) that decreases inwards576. Tumoroids which 

are derived from patient derived tumour cells, have the advantage of 

recapitulating the tumour architecture in vivo and resembling the heterogeneity 

of the original tumour, however a disadvantage of spheroids is difficulty in 
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producing a large number of homogenous tumoroids for high-throughput drug 

testing577.  

The initial seven GEP-NET markers used as the basis for exploration in this 

thesis were based on secretomic analysis of the pNET BON1 cell line as well as 

the lung NET cell lines NCI-H727 and SHP77 NET. In this analysis a pNET-

targeted approach was not initially adopted when these seven markers were 

selected. Markers more suitable specifically for pNET diagnosis thus may have 

been excluded. Future work should focus on pNET specific cell lines only, 

including the QGP1 cell line and the newer NT3 cell line, for pNET-specific 

marker identification using secretomics. When comparing whether to use a 2D 

or 3D of these cell lines for the identification of newer markers, factors such as 

cost, difficulty, reproducibility and likeness to in-vivo are to be considered. 2D 

cultures have the advantage of being low cost, replicable and interpretable, 

however a 3D culture system offers a greater insight and has more similarities 

to in vivo. Advantages of the 3D system is that the natural cell shape is 

preserved and that cells grow into 3D aggregates/spheroids with the spheroids 

containing multiple layers. Additionally, cell junctions are common and allow for 

cell-to-cell communication whereas in 2D culture cell junction are less common 

and less accurately represent real junctions. In 2D cell lines, cell differentiation 

is poor, whereas in 3D cell culture cells are well differentiated. Drug sensitivity 

in 2D cells, are that cells often have little resistance to drugs compared to in 3D 

whereby cells often have more resistance to drug treatment, thus giving a more 

accurate representation of the drug’s effects. Cell proliferation is also at an 

unnatural pace in 2D cell cultures compared to in 3D cell cultures which are 

more realistic and can be high or low dependent on technique and types of 

cells. Finally, expression levels, with gene and protein expression levels in 2D 

cell cultures often vastly different compared to in vivo models, whereas with 3D 

models gene and protein expression levels resemble levels found in cells in 

vivo578. Thus, adopting a 3D culturing approach for these pNET cell lines would 

be better. 

3D culture systems have been developed and used in the context of pNET 

research569,579. The Bresciani et al., study evaluated spheroid 3D culture 

methods to study the BON1 cell line used as a model alongside sunitinitb569. 

The authors compared different 3D scaffold-free culture systems, including 96 

well hanging drop plates (HD plates), 24-well plates with a cell repellent surface 



 309 

and ultra-low attachment 96 well plates with clear round bottom (ULA plates) in 

order to understand which methodology was the best option in the study of 

pNETs in terms of easiness of culture method and reproducibility. They found 

that the ULA plates method allowed to obtain the most reproducible results 

when assessing perimeter evaluation in BON1 spheroids compared to other 

assessed methods. A study by Gulde et al., explored the single and 

combination treatment of buparlisbib (PI3K inhibitor) and ribociclib (CDK4/6 

inhibitor) in different preclinical models579. This included using cell lines 

representative of well differentiated (INS-1E and NT3) and poorly differentiated 

(BON1) pancreatic neoplasms grown in 2D and 3D, primary 3D microtissues 

from MEN1 knockout and control mice and patient derived primary 3D tumoroid 

cultures (specifically 3D tumoroids from four human pNET tissues (two primary 

tumours and two metastases)). The findings across the model types indicated 

that the combined inhibition of PI3K and CDK4/6 pathways is a potentially 

effective therapeutic option for pNETs. They also demonstrated that the 

combination treatment inhibits the viability of primary islets from a genetic 

animal model of pNETs (MEN1-dffecient mice) without significantly affecting 

viability and function of primary islets from wild type mice. Hence, this study has 

adopted multiple pre-clinical pNET model approaches to explore buparlisbib 

and ribociclib and utilised models other than and along with 2D cell lines to 

explore this.  

Conditioned media from different, early stage, primary pNET models could help 

to identify commonly secreted proteins in both the cell lines and the organoids 

which would aid the selection of markers to take forward for the development of 

a pNET detection test. However, an issue is that early-stage cell lines are not 

available. Thus, the lack of these cell lines, limits the opportunities for early 

biomarker identification. It is possible that some of the markers explored in this 

thesis would be identified in these analyses, which would support their inclusion 

in a biomarker panel. A more informed and targeted method for selecting pNET 

markers is likely to improve the ML approach and algorithms compared to those 

developed in this thesis.  

 

7.5 Challenges in biomarker development 
Numerous biomarkers have been combined in several cancer tests such as 

GRAIL560, NETest83 and CancerSEEK82, but in practice, simple biomarker tests 
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are more likely to be employed early in clinical pathways on the basis of cost 

and point of care use, if of course their classification accuracy is adequate564. 

The work described in this thesis aimed to address this need by developing an 

algorithm that could perform well with a few biomarkers. The ANG2 and CgA 

combination achieved this with the UOL training cohort and when externally 

validated using the RFH cohort. However, an unresolved issue arose with 

ANG2 and CgA concerning its low levels in the ADEPTs pNET cohort, meaning 

that further studies are needed with a much larger group of pNETs, as used in 

the UOL and RFH cohorts.  

The work described in this thesis also illustrates several more general 

challenges in biomarker discovery and validation. First, the training cohorts 

used for model development were selected to target discrimination between 

cases and healthy controls, similar to most published studies on NET 

biomarkers. However, as the main end goal of a pNET test would not be just to 

differentiate pNET from healthy individuals, but to differentiate pNET cases from 

individuals with similar presentation caused by other diseases, the composition 

of the training cohort is critical to achieve this goal, and the samples that were 

collected for this work and many other research studies do not reflect this. 

Although, case and control models remain relevant, as models need to be able 

to make a distinction between both in a clinical setting. Second, an early 

diagnosis test requires patients to be picked up earlier in the clinical pathway, 

hence biomarker discovery and model development ideally need to be carried 

out using a cohort of low stage pNET patients. However, as pNET patients are 

typically diagnosed later580, with the SEER registry from 1973-2000 

characterising out of 1483 patients with pNETs that 60.2% of patients were 

either metastatic and 20.7% regionally advanced at the time of diagnosis. Thus, 

if these patients provided samples for research, the samples accumulated for 

pNET research samples would tend to be more of a late stage and thus 

biomarkers that are identified and researched would tend to be more suitable 

for advanced disease and prone to failure in downstream validation for early-

stage detection. This issue is a clear hindrance to biomarker discovery and 

validation that needs to be addressed in future studies aiming to diagnose 

pNET patients at an earlier stage. It would also be ideal to train on real clinical 

cohorts which are drawn retrospectively from primary care. 
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A third major consideration is the inappropriate selection of controls, which is a 

major cause of systemic bias. In prospective studies, samples taken from 

apparently healthy volunteers or from patients with a short follow up period that 

does not lead to a diagnosis may be used as controls. The ADEPTs cohort of 

PDAC, AP, CP patients which were used as ‘controls’ compared to the pNET 

group (Chapter 6), illustrates this issue of lack of follow up, as the patients have 

not been followed up for this work. Without longer follow-up and assessment of 

disease status, a study may therefore underestimate a biomarker’s capacity to 

discriminate between individuals with and without disease. In this regard, very 

limited information was available regarding controls in the UOL control cohort. 

Fourth, potential confounding factors for the biomarkers explored in this thesis 

were identified in the literature as illustrated in Section 1.5. Some confounding 

factors explored such as PPI usage were found to be confounding for CgA in 

my work which is in keeping with the literature. However, in practice, when 

having an inclusion and exclusion criteria for patients, it is not possible to 

control for all potential confounding factors. This is due to the reality that 

patients exist with multiple co-morbidities, a major challenge to health care 

systems around the world581. Patients with multiple comorbidities, also tend to 

be on different medications and thus there are polypharmacy comorbidities, 

including increased drug-disease and drug-drug interactions in these 

patients581. Also, for biomarkers, not all potential confounders would have been 

researched and identified. Exclusion of such participants would be important to 

assess the clear relationship between the disease of interest and the biomarker 

assessed, and to minimise the risk of additional confounders. However, 

exclusion of such patients from studies, means that the cohort size may be too 

small. Moreover, exclusion of such patients in a real-world scenario clinical 

scenario is not possible. Clinicians would need to be able to use a biomarker 

test on all suspected patients. Hence, in the future, algorithms would need to be 

developed that can accommodate their inclusion. This could potentially be via 

altered thresholds taking into account known confounding factors.  

The importance of identifying confounding factors has been noted in many other 

biomarker studies. For example, a researcher group that aimed to develop an 

algorithm to detect prostate cancer found that their decision algorithm was 

unsuccessful in discriminating prostate cancer from controls with any predictive 

utility due to confounding factors arising from disparities in sample storage582. 
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When developing a test for pNETs the biomarker should identify a wide range of 

pNETs with minimal false positives. For functioning NETs which are often 

clinically silent for many years with signs and symptoms often only becoming 

clinically manifest when metastases are already present, however among the 

many bioactive substances secreted by NETs some may be included in the 

diagnostic process583. However, given the rarity of NETs and the confounding 

factors associated with them screening for NETs would be challenging. NET 

markers can be divided into two types categories either specific or non-specific. 

With specific NET biomarkers produced by functioning NETs and non-specific 

being produced by all virtually all NETs. Non-specific markers for NETs include 

CgA, NSE, pancreatic polypeptide, human chorionic gonadotropin and alpha-

fetoprotein. Specific NET markers include gastrin, serotonin, insulin, glucagon, 

somatostatin and vasoactive intestinal peptide, however these would be specific 

for a particular type of functional pNET and not broad enough to detect other 

types of pNET. Ultimately a pNET test that is developed should be sensitive 

enough to identify all types of pNET, with specific NET markers only suitable for 

functional types. Despite non-specific markers being suitable for detecting a 

wider range of NETs. Measurement of biologically active amines is not 

suggested for screening, with generic tumour markers such as the non-specific 

marker CgA being increased in several clinical conditions which could possibly 

lead to false positives. Hence leading to its unsuitability for a use also as a 

marker for detecting pNETs in a screening context. 

In addition, although a test may show reasonable sensitivity and specificity 

during development, the test itself may not be adopted clinically if the positive 

predictive value (PPV) and negative predictive value (NPV) are below clinically 

defined thresholds555. The PPV of a test is the chance of having a disease if the 

test is positive. The PPV is dependent not only on the sensitivity and specificity 

of the test but also on the disease prevalence among the test population. For 

rarer cancers such as pancreatic and ovarian cancer, for which prevalence in 

tested populations is <0.05%, an adequate screening test is characterised by a 

very high sensitivity (>90%) and even higher specificity (>99%) to yield a PPV 

of >10%555. Investigators can report sensitivities at 90%, 95% of 98% these 

high thresholds may still not be enough or screening of less common cancer 

such as pancreatic and ovarian. An example is if the cancer prevalence in the 

screened population is 1:400 a test with 100% sensitivity and 95% specificity 
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yields a PPV of 5% which means that there is a 5% chance of a patient truly 

having cancer if the test is positive555. Hence screening tests must have 

extremely high specificity to ensure high PPV and avoidance of false positives. 

This principal would also apply to pNETs, which are rarer with an overall 

incidence of 5 per 10,000,000 and have a prevalence of 1 in 1001,78. Thus, any 

test developed for screening for pNETs would need to have an extremely high 

specificity to ensure high PPV. 

Finally, tumour heterogeneity is also important to consider and can explain 

some of the reasons as to why promising markers fail at validation. Cancer is 

not a single disease, and cancer genomics has revealed that there are many 

more forms of cancer than is apparent by traditional classifications based on 

morphology584. With Genomic methods such as whole exome, whole genome 

and single cell sequencing, a much-improved understanding of the vast 

landscape of tumour heterogeneity has become established over recent 

years555. With increasing evidence for high variability in tumour composition 

among patients with similar histological cancer types585, a newer approach to 

biomarker research is perhaps needed. Instead of the orthodox approach of 

discovering biomarkers that are common for a cancer type, we might instead 

analyse serum samples from individual patients to identify the most informative 

set of markers for their unique tumour, effectively making the approach more 

personalised563. 

Hundreds to thousands of biomarkers have been reported in the literature to 

show high specificity but low sensitivity and therefore have not developed 

further. Thus, the approach of compiling a collection of rare tumour markers 

which are informative for only 5-15% of patients has been suggested to offer a 

more robust tool with which to screen patients and to provide information on 

their unique tumour563. Indeed, the authors postulated that physicians would 

soon be able to submit serum samples from newly diagnosed cancer patients to 

centralised laboratories which would screen 100-1000 candidate markers with 

the aim of identifying 1-5 rare tumour biomarkers that would be most informative 

for these patients563. A similar approach could be adopted for pNET patients to 

address the heterogeneity of tumours. Moreover, this personalised approach 

could also find applicability in selecting therapies, response to therapies and to 

monitor for recurrence. A personalised approach towards pNET biomarker 

discovery and validation is something that future work within this field should 
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aim to address. This may also allow for the barrier for the low number of pNET 

patients to be overcome. 

 

7.6 Strengths and limitations of my approach 
Amongst the strengths of the work described in this thesis, the first is the 

development of ML algorithms using the UOL cohort assay data combined with 

different validation approaches. These include train and test internal validation 

using samples separated into training and testing portions; kFCV in which the 

data used for training is re-used for validation; and external validation using a 

different cohort. The variety of validation approaches allowed for the suitability 

of the markers and algorithms to be evaluated more thoroughly than using a 

single approach. In addition, the use of the independent RFH-UKCTOCS cohort 

provided a more robust assessment of the general use of the marker and 

algorithms than using a single cohort.  

Another strength of this work includes the assessment of four different types of 

algorithm, namely the simpler and easier to interpret LR and C5.0 decision tree 

models and the more complex SVM and RF models. Understanding how the 

markers were being utilised in the simpler models will allow future comparison 

between different models and consequent fine tuning. The more complex types 

of models are black box nature and pose questions as to how such algorithms 

could be protected commercially for adoption into clinical practice. 

 

Limitations from this work were that only three (CgA, ANG2 and VGF) of the 

seven starting markers were taken forward for external validation using the RFH 

and ADEPTs cohorts. The initial selection of CgA, VGF and ANG2 was based 

on the rationale that CgA, ANG2 and VGF were the top performing markers for 

the UOL cohort, and this was supported by the internal validation results 

discussed in Chapter 4. However, as the external validation results obtained for 

these three markers showed widely different results, particularly for VGF, a re-

evaluation of the other four markers using the external validation cohorts may 

be informative and algorithms utilising one or more of these markers might be 

better suited to these cohorts. Moreover, the other four markers not assessed at 

external validation may have potential as discriminatory markers, when 

comparing pNETs with AP, CP and PDAC and thus this should be explored in 

the future. The Luminex platform is a multiplex platform which requires a very 
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small amount of serum. Utility of high-throughput assays which require minimal 

sera offer a useful way forward for this work in the future compared to an ELISA 

approach if the required target assays are available. Table 7.1 illustrates the 

different learning points and future areas of work from this thesis. 

 
Learning points  Future areas of work 

• The importance of using different 
validation approaches to evaluate 
biomarkers including train and test 
internal validation using samples 
separated into training and testing 
portions; kFCV in which the data 
used for training is re-used for 
validation; and external validation 
using a different cohort. 

• Conditioned media from different, 
early stage, primary pNET models 
could help to identify commonly 
secreted proteins in both the cell 
lines and the organoids which would 
aid the selection of markers to take 
forward for the development of a 
pNET detection test. 

• Ultimately markers can fall through 
at different points and ideally all 
markers should be assessed using 
external validation. 

• Assess whether markers assessed 
in this thesis were identified in 
analyses of early-stage cell lines. 

• Utility of different ML approaches 
allows for performance to be 
evaluated and suitable algorithms to 
be identified.  

• Use of 3D culture systems for 
biomarker discovery. 

• Complete staging, grading, and 
functional characteristics for 
understanding the impacts of these 
characteristics on marker levels.  

• Development of early-stage cell 
lines for biomarker discovery is 
needed. 

 
• Understanding confounding factors 

for certain biomarkers which can 
impact their utility clinically. 

• Assessment of early-stage markers 
identified in early-stage models and 
assessed in sera using a multiplex 
platform such as the Luminex 
platform and development of ML 
algorithms and early-stage markers. 

• The importance of having cohorts 
that are reflective of early-stage 
disease for assessing markers for 
early-stage utility. 

• Validation of early-stage markers in 
large early-stage clinical cohorts to 
assess suitability of markers using 
independent cohorts. 

Table 7.1: Learning points and future areas of work from this thesis. 

 

7.7 Future directions for clinical pNET detection using molecular markers 
Circulating biomarkers have been studied by various groups for diagnosing and 

following up NET patients. These include protein, monoamine, CTC586, 

microRNA85 and metabolomic89 approaches. 

With functional NENs it is possible to analyse secreted hormonal markers in 

blood or urine samples, but for non-functional tumours only more general 

markers can be used. As most pNETs are non-functional, the use of hormone 

levels alone for pNET diagnosis is not reliable. 
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The currently used secretory protein and monoamine biomarkers, CgA, NSE, 

pancreastatin and serotonin, are mono-analyte measures that lack sensitivity, 

specificity, and predictive capacity. Consequently, none of these meet NIH 

metrics for clinical usage587. The best-established non-specific marker for NET 

diagnosis and prognosis is CgA and the pressing need for additional pNET 

markers is exemplified by the results of the EXPLAIN study which found that 

only 57% of pNET patients had CgA levels >ULN and CgA did not classify as 

one of the top 10 biomarkers for pNET detection588. Additionally, it was only the 

7th most important biomarker for discriminating between pNETs and si-NETs in 

the best models. Serum NSE has been studied previously as a GEP-NET 

marker, however work from this thesis. illustrates that NSE has limited role in 

diagnosing pNETs. Pancreastatin which is a derived peptide of CgA was 

assessed in a cohort of 92 NET patients and 11 non-NET patients589. The 

radioimmunoassay analysis of pancreastatin found that mean pancreastatin 

levels were significantly higher in the 92 NET patients compared to the 11 non-

NET patients (p<0.05). Pancreastatin had a sensitivity of 64% and specificity of 

100%589. The study found that pancreastatin showed significant diagnostic 

value as a biomarker to identify patients the a known NET where CgA was 

found to be normal589. Pancreastatin was also been shown to predict survival in 

NETs, with higher pancreastatin levels associated with worse PFD and OS in 

pNETs590. The study also found thar small bowel NETs had lower pancreastatin 

than pNETs590. Excessive serotonin secretion is associated with carcinoid 

syndrome and the ENETs Consensus Guidelines suggest measuring urinary 

serotonin and serum CgA in all patients with NETs both as part of follow up and 

diagnosis591. Despite good sensitivity and specificity (70% and 90% 

respectively) urinary serotonin levels might be normal in non-metastatic 

patients583. Serotonin levels are also influenced by malabsorption, celiac 

disease and tryptophan rich foods, hence the issue of false positives592,593. 

Serotonin is also impaired in other conditions such as renal failure and 

haemodialysis which could result in falsely negative concentrations583. 

Moreover serotonin secreting NETs of the pancreas are rare, and thus the need 

for better biomarkers for diagnosing pNETs594. 

The traditional approach of using monoanalytes for NET diagnosis have 

variable sensitivity and specificity in diagnosing different NETs which is mainly 

due to the high heterogeneity of these tumours595. Moreover circulating 
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indicators of tumour secretory functionality (amines or peptides) represent the 

minority of NETs494. There is also the limitation of CgA not being a suitable 

marker for certain types of pNET (insulinoma)90. Thus, a multianalyte approach 

would likely have a broader reach compared to a single marker approach, thus 

multianalyte approaches have been developed more broadly for multiple types 

of cancer and NETs specifically. These include the NETest, CTCs, 

CancerSEEK and Galleri test.  

 

CTCs have been assessed in studies of NETs586,596 A study by Khan et al.,  

found that for midgut and unknown primary NETs, 47% had CTCs detectable 

and 68% of whom had greater than 5CTCs/7.5ml596. These levels were found to 

be comparable with other tumour types, however these were not as high as 

seen in metastatic breast and prostate cancers, likely reflecting the indolent 

nature of most NETs597. When looking at pNETs in this study, despite pNETs 

being EpCAM positive, only a small proportion had CTCs detected compared 

with midgut NETs596. Explanations for this finding include loss of EpCAM 

expression, slow shedding of CTCs from pNETs or unidentified factors 

particular to the pancreatic sample596. Hence, CTCs have more diagnostic utility 

for certain NET subtypes compared to others, and for pNETs they may not be 

as useful based on this study. Another issue with CTCs includes a technological 

aspect of the measurement587. At present there are many different detection 

techniques, not one single technique can detect all different types of CTCs598. 

In order to improve the accuracy of CTC tests, a standard set of performance 

assessment criteria is needed to be developed, including enrichment, cell 

viability and release efficient capture efficiency and purity, this will therefore 

improve the sensitivity and specificity of CTC detection. Moreover, despite 

CTCs having potential for real-time monitoring, prognosis and diagnosis of 

tumours, CTCs alone cannot be used as an effective indicator to guide the 

formulation of clinical treatment plans for tumours and would need to be used 

with other biomarkers for this598. However, CTC and ctDNA detection has 

shown to demonstrate greater sensitivity and accuracy in monitoring of breast 

cancer progression compared to serum biomarkers CA15-3 with the study 

conducted by Dawson et al demonstrating a superior sensitivity of ctDNA 

quantification (96%) in identification of patients with metastasises compared to 

CA 15-3 measurement (78%)599,600. Protein biomarkers are known to remain in 
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circulation for weeks and be impacted by many factors leading to misleading 

results, however ctDNA is estimated to have a short half-life of approximately 

2h601.  

The NETest is a 51 different circulating ribonucleic acids (RNAs) for NET 

detection83. The NETest multianalyte biomarker approach was developed by 

Wren Laboratories in the USA595. The NETest output is a score that is scaled 

from 0-100 which represents the risk of NET disease. The normal score is <20, 

stable disease 21-40, progressive disease 41-100602. The NETest was 

developed based on the identification of individual genes from tumour cells and 

whole blood samples from patients with the finalised NETest now a 

standardised and reproducible biomarker platform595. The NETest as opposed 

to CgA or other monoanalyte peptides and hormones works using a multi-

analyte molecular signature which represents biological information related to 

the clinical neuroendocrine disease course494. A study of the NETest in 13 si-

NETs patients who underwent surgical resection of the primary tumour and or 

mesenteric mass found that the blood NETest scores accurately identified si-

NETs and that the NETest levels were significantly decreased by curative 

surgery603. Hence, this study suggested that monitoring NETest post-operatively 

may facilitate management of these patients by identifying the presence of 

residual/progressive disease. The NETest also has utility in diagnosing gastric 

NETs, with the NETest being increased in gastric NETs (23±11) vs controls 

(7±4 p<0.0001)604. In histology positive NETs, the NETest accuracy was 100%. 

Additionally, in histology and image negative disease, elevated NETest could 

reflect increased neuroendocrine gene expression of hypergastrinemia-induced 

neoplastic transformation of enterochromaffin-like cells to tumour status. 

However, the study had found a positive NETest being evident in 3% of 

controls604. The NETest has also been found to be effective for the diagnosis of 

pNETs and si-NETs. The study found that the NETest was significantly 

increased in 111 NETs compared to controls494. Patients were either image 

positive (n=75) or image negative (n=11) with  the image positives consisting of 

42 pNETs and image negatives consisting of 8 pNETs. The NETest was found 

to be significantly higher in image positive disease (36±22) compared to image 

negative disease (8±7 P<0.0001). Moreover, the NETest achieved high 

accuracy, sensitivity and specificity which were 97%, 99% and 95% 

respectively494. Hence this study demonstrated that a blood-based multigene 
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biomarker provides accurate information that is concordant with imaging. Utility 

of the NETest information obtained by venipuncture from patients could provide 

a point of care basis for monitoring disease, hence reducing patient exposure to 

radiation494. 

Despite the NETest strong performance there are still limitations to its utility. 

Firstly, that the data available is still limited with larger multi centre cohorts 

evaluating NETest performance needed. Additionally, future prospective studies 

are needed to evaluate NETest performance on specific NET types as well as 

different grades and stages. However, an important issue with the NETest is 

cost. However, cost effectiveness for the NETest has been assessed in a study 

looking at NET tumour recurrence602. Moreover, using the NETest to stratify 

postoperative imaging resulted in a cost saving of 42% and for pNETs 

specifically (n=42) there was a cost saving of 46.2% but further studies are 

required to evaluate the cost effectiveness of the NETest in the detection of 

postoperative recurrent disease602. Additionally, the MEN1 patient group have 

not had the NETest extensively studied605. Currently existing serum biomarkers 

do not have the necessary NPV to replace imaging as a way of detecting MEN1 

patients at risk for progression or metastatic disease. Fahrmann et al., have 

assessed a group of three polyamines N-acetylputrescine, acetylspermidine 

and diacetylspermidine to distinguish MEN1 patients with metastatic duodenal- 

pNETs from controls who were defined as MEN1 indolent duodenal-pNETs or 

MEN1 with no duodenal-pNETs and found that the signature for distinguishing 

metastatic duodenal-pancreatic NETs from the controls with 66.7% sensitivity 

and 95% specificity respectively and an AUC of 0.84606. 

The Delphi technique aims to develop a consensus about an issue from a panel 

of experts or stakeholders. This approach has been applied to determine which 

types of biomarker provided the most utility for NET diagnosis587. The assessed 

biomarkers in the Delphi-consensus included mono-analytes (CgA, 

pancreastatin and serotonin), CTCs, miRNAs, metabolomics and mRNAs. 

However, a limitation is that cfDNA was not considered, and specific multi-

analyte protein marker approaches were not considered. However, the need for 

multianalyte biomarkers was mentioned. These are also areas of research 

interest for biomarker development. A consensus level of 75% was used to 

indicate clear evidence of a majority opinion, with voting anonymised and 

discussion when there was no consensus. The consensus was negative for 
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CTCs (70%), and current mono-analyte blood markers including CgA, serotonin 

and pancreastatin, were considered inadequate (80%). However, it was positive 

for miRNA (67%), metabolomics (75%) and circulating mRNA (80%)587. 

Metabolomics investigations were considered of interest because functional and 

non-functional tumour are readily separated (R2=0.98)89. For miRNA, the group 

agreed that the state of current technology meant that it could not support 

clinical usage. It was concluded from the meeting that a critical requirement was 

the development of a multi-analyte molecular tool that could identify disease 

status and define treatment responses. The use of circulating RNA as a 

biomarker, as in the NETest, was confirmed to be better than the effectiveness 

of standard mono-analyte biomarkers with potential for clinical applicability. 

Additionally, the overall consensus was that adjunct biomarker tools should be 

developed with the ability to provide synergistic information with imaging and 

facilitate the assessment of therapy. There was agreement that a better 

understanding of tumour biology would expedite the development of appropriate 

therapeutic biomarkers. At the Delphi meeting a consensus was reached in 

89% of questions that genomics technology had significant potential to identify 

novel tissue biomarkers, and that insufficient specific mutations and treatment-

targetable mutations had been identified. Thus, circulating DNA was not 

considered a viable option for the development of a biomarker. However since 

the Delphi consensus of 2016587, cfDNA detection has been explored in the 

context of pNETs and si-NETs607. 

Other multiplex cancer tests have been developed including the Galleri blood 

test, which was developed by GRAIL and is based on analysis of panel of 

>100,000 cfDNA methylation regions79. Although a pre-specified set of 23 

cancer types were examined in this study, it was unclear how many NETs were 

identified using the Galleri test. It would also be useful to know if the Galleri test 

can identify NETs at an early stage. A UK pilot randomised control trial began in 

2021 and patients identified through this trial are being sent for further 

referral80.The CancerSEEK test developed at Johns Hopkins University is 

smaller and aims to detect eight types of cancer by assessing the levels of nine 

circulating proteins and mutations in defined regions of 16 genes present in 

cfDNA82. However, despite good performance, limitations include the cost of the 

test (estimated to be $500) and that the cohort consisted only of patients with a 

cancer diagnosis based on the symptoms of disease. Hence, the cohort lacked 



 321 

early-stage cancers in the truest sense. Advantages to the OLINK approach is 

that the protein assay technique has high sensitivity and specificity based on 

two specific antibodies and the PCR assay requires only a drop of dried blood 

on paper. Thus, this procedure allows easy collection and transport of samples. 

Cell free DNA (cfDNA) has also been assessed in patients with si-NETs and 

pNETs607. The study had a cohort of si-NETs (n=50) an pNETs (n=20). Plasma 

cfDNA were higher in both si-NETs and pNETs compared to previously 

established healthy controls (p<0.0001). There was no effect of PRRT 

treatment on cfDNA levels and no difference in cfDNA in patients with and 

without progressive disease after PRRT. However, they found that cfDNA levels 

were significantly higher in never smokers and previous smokers compared to 

in current smokers (p=0.026). Their findings suggests that cfDNA levels are not 

associated with the disease course in low grade NETs in contrast to other 

malignancies607. There is no gold standard method to assess cfDNA, with the 

lack of standardised protocols being one of the hurdles in hampering application 

of cfDNA analysis in routine clinical laboratories608. 

A recently published study aimed to develop a multiplex biomarker test for 

pNET detection utilising ML algorithms588. The EXPLAIN study published in May 

2022 by the Nordic NET biomarker group analysed multiple plasma-protein 

biomarker levels using supervised ML to improve the diagnosis of pNETs and to 

differentiate pNETs from si-NETs588. The study had 29 pNET patients, 135 si-

NET patients and 144 controls. Case inclusion criteria were patients who were 

>18 years old and had metastatic non-resectable NETs (WHO Grade 1 or 2, up 

to 20% Ki-67). The exclusion criteria for the study included patients with other 

malignant diseases, chronic inflammatory diseases, reduced kidney or liver 

function, and previous treatment with anti-proliferative treatments for NET 

disease (including somatostatin analogues, peptide receptor radionuclide 

therapy). Patients who had undergone primary tumour surgery but retained 

residual metastatic disease were included. Patients on PPIs were not excluded, 

nor was PPI treatment stopped before blood sampling. 

The EXPLAIN study included a control group (n=144), age and sex matched 

with the patient population, and free of malignant disease, chronic inflammatory 

disease, several renal or hepatic dysfunction. To validate the algorithms a 

stratified 3FCV was performed for all the models. For this, the complete dataset 

was partitioned into equally (or near equally) sized folds or segments. This gave 
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an approximate split between training and validation sets of 80% and 20% 

respectively. A 3FCV approach was chosen to avoid having smaller groups of 

patients within the validation sets and carried out for all the models and 

classifiers. The study itself used supervised ML techniques including boosted 

decision trees, LDA and SVM for developing models to discriminate between 

pNETs and controls, and between pNETs and si-NETs. The SVM approach 

used a Linear SVM model with a C parameter of 1.  

 

The EXPLAIN study used ELISA to assay CgA levels, which were alone able to 

identify pNETs with a sensitivity of 41%, a specificity of 94%, a PPV of 0.64, 

and a NPV of 0.84. In addition, a panel of 92 plasma proteins were assayed 

using the Proseek Oncology-II (OLink) panel, and the results used either with or 

without CgA to develop different ML models. They assessed each marker’s 

contribution to fitting a model based on a likelihood ratio chi square proportion 

above zero in each of the three rounds of cross validation. In this way they 

identified the top biomarkers out of the 92 cancer-related proteins to 

discriminate pNETs from controls as well as pNETs from si-NETs. 

Boosted decision tree and SVM models classified pNETs and controls with 

similar accuracy values, with accuracy in ML meaning the number of correct 

predictions made by the model in relation to the total number of predictions that 

are made, and this was 0.91 and 0.94, respectively. These results were the 

same for the SVM approach whether or not CgA was included alongside the 92 

plasma biomarkers. The accuracy of the CgA inclusive model alongside the 92 

plasma biomarkers was better for the SVM model compared to the decision 

tree, thus CgA inclusion seemed to have a negative effect on the decision tree 

model and illustrates the variability that a particular marker can have between 

algorithm types. Corresponding LDA models constructed with the 92 plasma 

biomarkers had a worse predictive performance with accuracy values of 0.82 

either with or without CgA. The top boosted decision tree with the ten identified 

top performing markers and CgA being excluded comprised a sensitivity of 

84%, specificity of 98%, PPV of 0.92, NPV of 0.95, accuracy of 0.94 and a ROC 

curve AUC of 0.99. The top boosted decision tree with the top seven 

biomarkers identified from the 92 plasma biomarkers along with CgA comprised 

of a sensitivity of 74%, specificity of 98%, PPV of 0.91, NPV of 0.93, accuracy 

of 0.92 and AUC of 0.99. Thus, the top marker boosted decision tree performed 
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the best for the CgA excluded developed model. Importantly, the top markers 

boosted decision tree with CgA and without CgA utilised certain common 

markers between them but also had different markers. For example, both used 

cyclin-dependent kinase inhibitor 1 but the top marker boosted decision tree 

with CgA used methionine aminopeptidase 2 whereas the top marker boosted 

decision tree without CgA did not. Thus, a different overall combination of top 

markers were used for the CgA not included top biomarker boosted decision 

tree model and the CgA excluded top marker boosted decision tree model. 

 

Moreover, the accuracy result obtained for the top biomarkers boosted decision 

tree created without CgA achieved an accuracy of 0.94 which was the same as 

seen for when all 92 biomarkers were included for SVM with or without CgA and 

better than that seen for the boosted decision tree including all 92 plasma 

biomarkers with or without CgA. Hence, illustrating that not all 92 biomarkers 

nor CgA were needed for the best accuracy, and that a top biomarkers boosted 

tree approach without CgA was suitable pNET vs control diagnosis. 

The best performance for pNET versus si-NET classification was achieved 

using a SVM model, which achieved an accuracy of 0.91 when CgA was 

included, and 0.93 when CgA was excluded. Again, the inclusion of CgA had a 

negative impact for the SVM model, which illustrates that the marker was not 

one of the most important markers for this model, type and that other markers 

from the 92 additional markers assessed were of greater importance. Similar 

accuracies were obtained for boosted decision tree and LDA models whether or 

not CgA was included. Again, highlighting that CgA was not important for 

discriminating pNETs from Si-NETs. The boosted tree model using the top eight 

biomarkers and CgA developed to discriminate between pNETs and si-NETs 

had a sensitivity of 61%, specificity of 96%, PPV of 0.83, NPV of 0.90, accuracy 

of 0.88 and a ROC curve AUC of 0.98. The boosted tree model using the top 

biomarkers but not CgA had a sensitivity of 55%, specificity of 97%, accuracy of 

0.88 and AUC of 0.97.  

The EXPLAIN study echoes other studies about the limitations of CgA as a 

pNET marker, with only 57% of pNET patients in the present study having CgA 

levels >ULN and CgA itself not classified as one of the top ten biomarkers for 

the detection of pNETs. In terms of the role of CgA for discriminating between 

pNETs and si-NETs it was found to be the seventh most important marker in the 
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best models, and the authors found that other proteins such as 

carboxypeptidase E (CPE) and mothers against decapentaplegic homolog 5 

(MAD homolog 5) were stronger contributors for detection of pNETs and 

discriminating pNETs from si-NETs. The top protein markers identified in the 

EXPLAIN study will undoubtedly be of considerable interest to future studies. 

Proteins identified as top biomarkers for pNET versus si-NET discrimination 

included CPE, MAD homolog 5, transmembrane glycoprotein NMB (GPNMB), 

tyrosine-protein kinase Lyn (LYN), interleukin-6 (IL-6), secreted protein acidic 

and cysteine rich (SPARC), glypican-1, S100A4 protein and granzyme B. 

Proteins identified as top biomarkers for pNETs vs control discrimination 

included MAD homolog 5, methionine aminopeptidase 2 (MetAP2), cyclin 

dependent kinase inhibitor 1 (CDKN1A), CPE, kallikrein-8 (KLK8), vimentin, 

LYN, integrin beta-5 (ITGB5), GDSL esterase/lipase, carcinoembryonic antigen-

related cell adhesion molecule 5 (CEACAM5), vimentin, TNF-related apoptosis-

inducing ligand (TRAIL). 

The proteins identified in the EXPLAIN study as top markers for identification of 

pNETs from controls and discrimination of pNETs and si-NETs, have wider 

roles in cancer and certain explored in the context of NETs such as CPE. Low 

expression of CDKN1A was found to be more common in SiNETs (62.8%) 

compared to pNETs (12%)609. TRAIL expression and it’s receptors apart from 

osteoprotegerin was found frequently in PDAC and normal tissue whereas 

expression of osteoprotegerin was only detected in PDAC610. Moreover cancer 

cell death by TRAIL ranged from 37% to 77% in all the PDAC cell lines610. 

SPARC has been shown to promote proliferation and migration of PANC-1 and 

SW1990 cell lines invitro611. IL-6 is known to promote pancreatic cancer cell 

migration through activation of the small GTPase cell division cycle 42 in human 

PDAC cells612 and sera levels of IL-6 are elevated in pancreatic cancer 

patients613. CPE is a metallo-carboxypeptidase involved in the biosynthesis of 

peptide hormones, and CPE is highly expressed and secreted from NETs614. 

Whilst MAD homolog 5 is a transcription regulatory protein involved in the 

signalling pathway by which TGF beta inhibits proliferation and Lyn is a tyrosine 

protein kinase belonging to a group of proteins targeted often for cancer 

treatment. Upregulation of KLK8 predicting poor prognosis in pancreatic cancer, 

with KLK8 overexpression having pro-proliferative and anti-apoptotic functions 

in pancreatic cancer cells through EGF-signalling dependent activation of the 
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PI3K/Akt/mTOR pathway615. Hence activation of the EGF signalling pathway 

through overexpression of KLK8 would be likely to have relevance to pNETs 

and further explored in the future. High vimentin expression with E-cadherin 

expression loss correlated with lymph node metastasis, distant metastasis, 

disease progression and poor prognosis in patients with G1 and G2 pNETs who 

underwent resection616. CEACAM5 expression was enriched in neuroendocrine 

prostate cancer and achaete-scute family BHLH Transcription Factor 1 (ASCL1) 

promotes neuroendocrine transdifferation of prostate cancer increasing 

chromatin accessibility of the core promoter of CEACAM5617. The mechanism of 

CEACAM5 regulation by ASCL1 may also be conserved in other types of NECs, 

however further studies exploring this are needed. MetAP2 has been explored 

in the context of prostate cancer, with MetAP2 being associated with shorter 

time to biological recurrence in prostate cancer that is treated surgically618. 

Integrin beta 5 is a prognostic biomarker in glioblastoma619. Glycoprotein NMB 

promotes tumour formation as well as progression of laryngeal squamous cell 

carcinoma620. S100A4 expression has been shown to be important for the 

invasiveness of pancreatic cancer, with 48 out of 83 pancreatic cancer patients 

positively expressing S100A4621. Thus, certain proteins identified in this study 

may have roles not specific for pNETs but in conditions that symptomatically 

can mimic pNETs such as PDAC, and thus the utility of such proteins to be able 

to distinguish pNETs from PDAC and other pancreatic benign conditions would 

need to be examined. In a study of the si-NET tumour microenvironment,  in 

tumours several areas of T lymphocyte aggregation were observed which were 

not associated with any morphological features observable by H&E staining and 

did not express granzyme B to a larger extent compared to other T 

lymphocytes622. Expression of glypican 1 was found in normal tissues but the 

magnitude increased strongly in well differentiated NETs, however the 

expression of this protein dramatically decreased in high grade NETs with 

undetectable levels, hence the downregulation in high frae rumours suggested 

that glypican 1’s role in cancer development is more complex and context 

dependent manner.623 

When discriminating between pNET and si-NET populations, the results were 

more variable and had lower performance metrics compared to discriminating 

between pNETs and controls. This is likely due to pNET and Si-NET 

populations being harder to distinguish from each other due to similar 
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underlying NET biology in the two conditions compared to a healthy control vs 

NET, and any underlying differences between pNET and Si-NET would be more 

subtle in comparison to a healthy vs pNET comparison. Despite the SVM 

models having slightly better performance levels than boosted decision tree 

models in terms of AUC and accuracy, the latter were chosen to identify 

biomarkers with the highest contribution to the classification model. This was 

because one of the drawbacks of SVM is that it does not provide any 

explanation or justification for why the model changes as it learns, which limits 

the practical application of SVM models.  

 While the results indicate a good level of test accuracy, there are several 

important imitations to the EXPLAIN study. The first is the small size of the 

pNET group, when similarly large group sizes would be preferable to improve 

the power of the study. Second, it is not possible to assess at present how this 

test compares to the NETest, because this comparison has not been made. 

Third, the plasma proteins identified as the top markers used in this study could 

be elevated in other diseases and further studies are needed to explore 

whether this strategy can discriminate pNETs from other diseases including 

malignancies, benign diseases and other diseases of the pancreas. Fourth, the 

pNET cohort lacked early stage pNETs and most patients had a significant 

tumour burden that was easily detected on imaging; consequently, it is unclear 

how well the test would perform for patients with a small primary or with modest 

regional lymph node involvement. Fifth, external validation has not been carried 

out with an independent pNET cohort, which is a strength of the work carried 

out in this thesis. Other unknowns include how the test would perform when 

applied after presumed curative surgery in order to detect recurrence. Thus, 

how this model would work in a clinical routine setting requires further work. 

Due to patients with pNETs presenting with non-specific, vague symptoms, 

patients are facing delays to their diagnosis which impacts the stage at which 

diagnosis and in turn survival. Thus, it is important that pNETs are being 

diagnosed at an early stage. Point of care tests provide an opportunity for 

patients to be identified at an early stage, and the development of rapid non-

invasive tests for accurate diagnosis of pNETs and a test that can discriminate 

pNETs from similar conditions is needed. The development of multi-analyte 

biomarker tests as an approach combined with ML algorithms presents promise 

for pNET diagnosis, however identification and in cooperation of confounding 
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factors is important for these tests in order for them to be accurate, as well as 

identifying early-stage markers which are likely to detect patients at an earlier 

stage. The NHS long term plan624 aims for 75% of people with cancer to be 

diagnosed at an early stage (stage 1 and 2)624. One way this may be achieved 

is through the GRAIL (GALLERI) test which is now being trialled within the 

NHS560, and if this is successful at identifying patients with cancer and 

identifying them at an early stage, could contribute to this NHS long term plan 

target being achieved. It is likely that pNETs will be identified through the NHS 

trial of the GALLERI test and thus, the number of pNETs identified from this trial 

will provide insight into the effectiveness of pNET identification through this 

route. Although due to pNETs being rare, the numbers that are identified may 

not be high. Additionally, the NHS faster diagnosis programme. which aims to 

have a 100% roll out of the non-specific pathway for diagnosis across the UK by 

2024 provides an opportunity for identifying patients for whom a standard 

diagnosis pathway doesn’t exists such as pNET patients. For pNET diagnosis, 

multiple avenues of tests have been explored including the NETest625, but with 

CTCs there is no gold standard protocol, and there needs to be balance 

between expensive and complicated DNA tests with the potential of having a 

simple and affordable test for early referral in primary care. The QCancer tool 

developed by Professor Julia Hippsely Cox as of March 2021 is available for 

GPs in England and Wales626. Hence development of such tools is also needed 

alongside the development of biomarkers for pNET diagnosis. Hence despite 

biomarker development forming an important part in the effort for early pNET 

diagnosis, other areas such as patient awareness of possible pNET symptoms, 

appropriate pathways for referral and clinical decision tools to aid GP diagnosis 

will all need to be considered alongside biomarker development to maximise 

diagnosis of pNET patients at an early stage. 

 In conclusion, the work described in this thesis sought to find a pNET 

biomarker panel that would perform better than the current gold standard of 

CgA. Although this was achieved, particularly in the UOL training cohort across 

many marker combinations and ML model types, independent validation of the 

three markers that were taken forward (CgA, ANG2 and VGF) suggested that 

VGF was not a suitable pNET marker. This finding was particularly important 

because it illustrated the importance of the independent validation process as 

markers that show promise at training may not be as promising once externally 
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validated. Moreover, model performance for the addition of ANG2 to CgA didn’t 

improve model performance seen in the external validation, suggesting that 

newer markers, alongside larger training and validation cohorts were needed. 

Additionally, greater information regarding the functionality of pNETs as well as 

a comprehensive understanding of confounding factors is required before a 

biomarker panel can be implemented. Further work is needed to develop a 

panel of markers that could discriminate pNETs, AP, CP and PDAC, with high 

sensitivity and specificity. ANG2 and CgA levels in the ADEPTs pNETs were 

found to be unexpectedly low, thus larger cohorts of pNET patients similar to 

those used in the RFH and UOL cohorts are needed for the development of ML 

models to discriminate pNETs from AP, CP and PDAC. Training model 

development should also focus on creating independent models which would 

then be evaluated on a validation cohort consisting of pNET, AP, CP and PDAC 

samples before the suitability of CgA and ANG2 for discrimination of pNETs and 

other pancreatic diseases can be decided. Further discovery of new pNET 

markers is needed as these additional markers could enhance current ML 

diagnosis models. Finally, biomarkers for identifying early-stage disease based 

on new experimental models that better recapitulate pNET early-stage tumours 

are likely to have a great impact in terms of survival of pNET patients. This 

targets an unmet clinical need which future work should aim to primarily 

address.  
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Appendix A: C5.0 non-boosted accuracy decision tree results 

 
 

Biomarkers 
entered 

Biomarkers 
used  

Predictor 
Importance  

AUC Gini 

C C C=1.00 0.813 0.627 
A A A=1.00 0.767 0.534 
V V V=1.00 0.681 0.361 
M None Not Available 0.500 0.000 
N None Not Available 0.500 0.000 
T None Not Available 0.500 0.000 
P None Not Available 0.500 0.000 

Table A1: C5.0 accuracy non-boosted decision tree results for the 1 marker combination. 
 Results obtained when a single marker was entered to create a C5.0 accuracy 
 non-boosted decision tree models using the whole training dataset (n=107). SPSS Modeler 
 was used for model creation. Three models were created. 
 

 
Biomarkers 
entered 

Biomarkers 
used in the 
model 

Predictor 
Importance 

AUC Gini 

CM CM C=0.90 M=0.10 0.850 0.700 
CA AC A=0.68 C=0.32 0.835 0.670 
CN C C=1.00 0.813 0.627 
CP C C=1.00 0.813 0.627 
CT C C=1.00 0.813 0.627 
AM A A=1.00 0.767 0.534 
AN A A=1.00 0.767 0.534 
AP A A=1.00 0.767 0.534 
AT A A=1.00 0.767 0.534 
AV A A=1.00 0.767 0.534 
CV C C=1.00 0.751 0.534 
NV V V=1.00 0.681 0.361 
TV V V=1.00 0.681 0.361 
MV V V=1.00 0.681 0.361 
VP V V=1.00 0.681 0.361 
MN None Not Available 0.500 0.000 
MP None Not Available 0.500 0.000 
MT None Not Available 0.500 0.000 
PN None Not Available 0.500 0.000 
TN None Not Available 0.500 0.000 
TP None Not Available 0.500 0.000 

Table A2: C5.0 accuracy non-boosted decision tree results for 2 marker combinations of markers. 
Results obtained when 2 marker combinations were entered to create a C5.0 accuracy non-boosted 
decision tree models using the whole training dataset n=107. SPSS Modeler was used for model creation. 
The best performing2 marker combination was the CM combination with an AUC of 0.850. 
 
 
 

Biomarkers 
entered 

Biomarkers 
used in the 
model 

Predictor 
Importance 

AUC Gini 

CMP CM C=0.90 M=0.10 0.850  0.700 
CMT CM C=0.90 M=0.10 0.850 0.700 
MNC CM C=0.90 M=0.10 0.850 0.700 
PVC CV C=0.80 V=0.20 0.815 0.629 
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PAV AVP A=0.66 V=0.20 
P=0.15 

0.844 0.688 

AMP AMP A=0.75 M=0.21 
P=0.04 

0.844 0.689 

CAV AC A=0.68 C=0.32 0.835 0.670 
CAM AC A=0.68 C=0.32 0.835 0.670 
CAP AC A=0.68 C=0.32 0.835 0.670 
CTA AC A=0.68 C=0.32 0.835 0.670 
CAN AC A=0.68 C=0.32 0.835 0.670 
MVC CV C=0.80 V=0.20 0.815 0.629 
CTP C C=1.00 0.813 0.627 
CNT C C=1.00 0.813 0.627 
CNP C C=1.00 0.813 0.627 
VAM A A=1.00 0.767 0.534 
ATP A A=1.00 0.767 0.534 
VAT A A=1.00 0.767 0.534 
TNA A A=1.00 0.767 0.534 
TAM A A=1.00 0.767 0.534 
MNA A A=1.00 0.767 0.534 
PAN A A=1.00 0.767 0.534 
VAN A A=1.00 0.767 0.534 
CVT C C=1.00 0.751 0.502 
CNV C C=1.00 0.751 0.502 
TNV V V=1.00 0.681 0.361 
VTP V V=1.00 0.681 0.361 
MNV V V=1.00 0.681 0.361 
PNV V V=1.00 0.681 0.361 
MVT V V=1.00 0.681 0.361 
VMP V V=1.00 0.681 0.361 
MTP None Not Available 0.500 0.000 
TNP None Not Available 0.500 0.000 
NMP None Not Available 0.500 0.000 
NMT None Not Available 0.500 0.000 

Table A3: C5.0 accuracy non-boosted decision tree results for 3 marker combinations of markers. 
Results obtained when 3 marker combinations were entered to create a C5.0 accuracy non-boosted 
decision tree models using the whole training dataset n=107. The best performing model despite 3 
markers being entered was for the CMP,CMT and MNC combinations where only 2 markers (C and M) 
were used the model with an AUC of 0.850. 
 
 

Biomarkers 
entered 

Biomarkers 
used in the 
models 

Predictor 
Importance 

AUC Gini 

TAMP AMTP A=0.79 M=0.14 
T=0.06 P=0.01 

0.867 0.734 

AMVP AVPM A=0.59 P=0.25 
V=0.14 M=0.02 

0.864 0.729 

CMPN CM  C=0.90 M=0.10 0.850 0.700 
CMTP CM C=0.90 M=0.10 0.850 0.700 
CTMN CM C=0.90 M=0.10 0.850 0.700 
AMPN AMP A=0.75 M=0.21 

P=0.04 
0.844 0.689 

AVPN AVP A=0.66 V=0.20 
P=0.15 

0.844 0.688 

TAPV AVP A=0.66 V=0.20 
P=0.15 

0.844 0.688 

CATP AC A=0.68 C=0.32 0.835 0.670 
CAPV AC A=0.68 C=0.32 0.835 0.670 
CTAN AC A=0.68 C=0.32 0.835 0.670 
AMVC AC A=0.68 C=0.32 0.835 0.670 
AMCN AC A=0.68 C=0.32 0.835 0.670 
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ACPN  AC A=0.68 C=0.32 0.835 0.670 
CTAV AC A=0.68 C=0.32 0.835 0.670 
CTAM AC A=0.68 C=0.32 0.835 0.670 
CAMP AC A=0.68 C=0.32 0.835 0.670 
CTAV AC A=0.68 C=0.32 0.835 0.670 
AVCN AC A=0.68 C=0.32 0.835 0.670 
CVTP CV C=0.80 V=0.20 0.815 0.629 
CMNV CV C=0.80 V=0.20 0.815 0.629 
TMVC CV C=0.80 V=0.20 0.815 0.629 
CNVP CV C=0.80 V=0.20 0.815 0.629 
CMVP CV C=0.80 V=0.20 0.815 0.629 
CNTP C C=1.00 0.813 0.627 
TNMA A A=1.00 0.767 0.534 
TAVN A A=1.00 0.767 0.534 
AMVT A A=1.00 0.767 0.534 
AMVN A A=1.00 0.767 0.534 
ATPN  A A=1.00 0.767 0.534 
CTVN C C=1.00 0.751 0.502 
NMVP V V=1.00 0.681 0.361 
TNVP V V=1.00 0.681 0.361 
TMNV V V=1.00 0.681 0.361 
TMPV V V=1.00 0.681 0.361 
TNMP None  Not Available 0.500 0.000 

Table A4: C5.0 accuracy  non-boosted decision tree results for 4 marker combinations of markers.  
Results obtained when 4 marker combinations the biomarkers were entered to create a  
C5.0 accuracy non-boosted decision tree models using the whole training dataset n=107.  
SPSS Modeler was used for model creation. 35 combinations were carried out.  
 
 

Biomarkers 
entered 

Biomarkers 
used  

Predictor 
Importance 

AUC Gini 

AMNTP APMT A=0.69 M=0.13 
P=0.10 T=0.08 

0.871 0.742 

VTAMP APVM A=0.59 P=0.25 
V=0.14 M=0.02 

0.864 0.729 

VNAMP APVM A=0.59 P=0.25 
V=0.14 M=0.02 

0.864 0.729 

TNPMC CM C=0.90 M=0.10 0.850 0.700 
TAPVN AVP A=0.66 V=0.20 

P=0.15 
0.844 0.688 

CTAPN AC A=0.68 C=0.32 0.835 0.670 
VAPMC AC A=0.68 C=0.32 0.835 0.670 
AVPNC AC A=0.68 C=0.32 0.835 0.670 
ANPMC AC A=0.68 C=0.32 0.835 0.670 
AVMNC AC A=0.68 C=0.32 0.835 0.670 
CTAPV AC A=0.68 C=0.32 0.835 0.670 
AVTNC AC A=0.68 C=0.32 0.835 0.670 
CTAMP AC A=0.68 C=0.32 0.835 0.670 
CTAMV AC A=0.68 C=0.32 0.835 0.670 
CTAMN AC A=0.68 C=0.32 0.835 0.670 
CTMPV CV C=0.80 V=0.20 0.815 0.670 
TVMNC CV C=0.80 V=0.20 0.815 0.670 
CTPVN CV C=0.80 V=0.20 0.815 0.670 
VNPMC CV C=0.80 V=0.20 0.815 0.670 
AMNTV A A=1.00 0.767 0.534 
TMPVN V V=1.00 0.681 0.361 
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Table A5: C5.0 accuracy non-boosted decision tree results for 5 marker combinations of 
markers. 
Results obtained when 5 marker combinations of the biomarkers were entered to create a C5.0 accuracy 
non-boosted decision tree models using the whole training dataset n=107.  
SPSS Modeler was used for model creation. 21 combinations were carried out. The best 
model obtained was when the AMNTP markers were entered and APMT were used.  
The AUC associated with this was 0.871. 
 
 

Biomarkers 
entered 

Biomarkers 
used in the 
model 

Predictor 
Importance 

AUC Gini 

TVAMNP AVPM A=0.59 P=0.25 
V=0.14 M=0.02 

0.864 0.729 

CVAMNP AC A=0.68 C=0.32 0.835 0.670 
CATMNP AC A=0.68 C=0.32 0.835 0.670 
CTAMNV AC A=0.68 C=0.32 0.835 0.670 
CVMPTA AC A=0.68 C=0.32 0.835 0.670 
CVNPTA AC A=0.68 C=0.32 0.835 0.670 
CVMNPT CV C=0.80 V=0.20 0.815 0.629 

 
Table A6: C5.0 accuracy non-boosted decision tree results for 6 marker combinations of 
markers.  
Results obtained when 6 marker combinations of the biomarkers were entered to create a C5.0 accuracy 
non-boosted decision tree models using the whole training dataset n=107.  
SPSS Modeler was used for model creation. 7 combinations in total were carried out. The best  
model obtained was when the TVAMNP combination was entered, however only 4 markers AVPM were 
used in the model. The AUC for this model was 0.864. 
 

Biomarkers 
entered 

Biomarkers 
used in the 
model 

Predictor 
Importance 

AUC Gini 

CTAMNVP AC A=0.68 
C=0.32 

0.835 0.670 

Table A7: Table illustrating the result obtained when the 7 marker combination  
was entered to create the C5.0 accuracy non-boosted model.  
SPSS Modeler was used for model creation. This model only used the AC markers and had an AUC of 
0.835. 
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Appendix B: RF results for the 4 to 7-marker combinations 

 
 
 

4 marker Average AUC STEDEV Range 
CVAM 1.000 0.000 0.999-1.000 
CANM 0.999 0.001 0.997-1.000 
CPNM 0.999 0.001 0.997-1.000 
CVAP 0.999 0.001 0.996-1.000 
CVNM 0.999 0.001 0.997-1.000 
CVPN 0.999 0.001 0.997-1.000 
TCAN 0.999 0.001 0.996-1.000 
TCAP 0.999 0.001 0.997-1.000 
TCNM 0.999 0.001 0.996-1.000 
TCVA 0.999 0.001 0.996-1.000 
TCVP 0.999 0.001 0.997-1.000 
VPNM 0.999 0.002 0.995-1.000 
CAPN 0.999 0.001 0.997-1.000 
CVPM 0.999 0.001 0.996-1.000 
TCVM 0.999 0.002 0.995-1.000 
TCAM 0.999 0.002 0.994-1.000 
APNM 0.998 0.002 0.994-1.000 
CAPM 0.998 0.001 0.996-1.000 
CVAN 0.998 0.002 0.992-1.000 
TCPM 0.998 0.002 0.992-1.000 
TNPM 0.998 0.003 0.992-1.000 
TCPN 0.998 0.002 0.996-1.000 
TCVN 0.998 0.001 0.997-1.000 
TVAM 0.998 0.002 0.995-1.000 
TVAN 0.998 0.001 0.996-1.000 
VANM 0.998 0.003 0.989-1.000 
VAPN 0.998 0.002 0.995-1.000 
TANM 0.997 0.003 0.991-1.000 
TVAP 0.997 0.003 0.990-1.000 
TVNM 0.997 0.003 0.990-1.000 
TVPM 0.997 0.004 0.996-1.000 
TVPN 0.997 0.004 0.993-1.000 
VAPM 0.997 0.002 0.993-1.000 
TAPM 0.996 0.004 0.989-1.000 
TAPN 0.996 0.002 0.992-1.000 

Table B1: Results for the 4 marker combinations for the 7 markers ANG2 (A), MAC2BP (M), 
NSE (N), TIMP1 (P), TB4 (T), VGF (V), CGA (C) using RF for the training dataset n=106. SPSS 
modeler was used for the creation of the models. Average AUC across all the 4 marker AUCs 
was above 0.996. A total of 35 4 marker combinations were looked at. 
 
 

5 marker Average STDEV Range 
TVAPM 0.999 0.001 0.996-1.00 
TCVAN 0.999 0.001 0.998-1.00 
CVANM 0.999 0.001 0.998-1.00 
TCVPN 0.999 0.002 0.994-1.00 
TAPNM 0.999 0.002 0.995-1.00 
TCVAM 0.999 0.001 0.996-1.00 
CVPNM 0.999 0.001 0.996-1.00 
CVAPM 0.999 0.001 0.995-1.00 
TCPNM 0.999 0.002 0.994-1.00 
TCAPM 0.999 0.002 0.994-1.00 
CVAPN 0.999 0.001 0.996-1.00 
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CAPNM 0.999 0.001 0.997-1.00 
TCVPA 0.999 0.002 0.993-1.00 
TVAPN 0.998 0.003 0.993-1.00 
TVPNM 0.998 0.001 0.996-1.00 
TCVPM 0.998 0.003 0.992-1.00 
TCVNM 0.998 0.003 0.991-1.00 
VAPNM 0.998 0.002 0.995-1.00 
TCAPN 0.998 0.001 0.997-1.00 
TCANM 0.998 0.002 0.994-1.00 
TVANM 0.997 0.001 0.997-1.00 

Table B2: Results for the 5 marker combinations for the 7 markers ANG2 (A), MAC2BP (M), 
NSE (N), TIMP1 (P), TB4 (T), VGF (V), CGA (C) using RF for the training dataset n=106. SPSS 
modeler was used for the creation of the models. 21 combinations were carried out and for each 
combination with 10 runs were carried out.  The average AUC, standard deviation and range. 
Average AUCs across all 5 marker AUCs were above 0.997. 
 
 
 

Combination Average AUC STDEV Range 
TCVAPN 1.000 0.001 0.996-1.000 
TCAPNM 0.999 0.001 0.997-1.000 
TCVPNM 0.999 0.001 0.997-1.000 
TCVAPM 0.999 0.001 0.998-1.000 
CVAPNM 0.999 0.001 0.998-1.000 
TVAPNM 0.999 0.003 0.993-1.000 
TCVANM 0.998 0.003 0.992-1.000 

Table B3: Results for the 6 marker combinations of ANG2 (A), MAC2BP (M), NSE (N), TIMP1 
(P), TB4 (T), VGF (V), CGA (C) using RF for the training dataset n=106. SPSS modeler was 
used for the creation of the models. 7 combinations with 10 runs per combination were carried 
out. The average AUC, standard deviation and range for each combination is shown. Average 
AUCs across all 6 marker AUCs were all above 0.998. 
 
 

Combination Average AUC STDEV Range 
7 marker 0.999 0.001 0.997-1.00 

Table B4: Results for the 6 marker combinations of ANG2 (A), MAC2BP (M), NSE (N), TIMP1 
(P), TB4 (T), VGF (V), CGA (C) using RF for the training dataset n=106. SPSS modeler was 
used for the creation of the model 10 runs were carried out. The average AUC, standard 
deviation and range. Average AUC for the 7 marker combination was 0.999 
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Appendix C: Confusion Matrices for the CVA algorithms 

 
 

 0.00 1.00 
0.00 38 11 
1.00 13 44 

Table C1: Confusion Matrix obtained for the RBF SVM C=10 gamma=0.95 algorithm using SPSS 
Modeler for the CVA combination.  
38 control were identified correctly as control, 44 cases identified correctly as case, 13 cases incorrectly 
identified as control and 11 controls incorrectly identified as cases. 
 

 0.00 1.00 
0.00 39 10 
1.00 15 42 

Table C2: Confusion Matrix obtained for the Linear SVM C=4 algorithm using SPSS Modeler 
for the CVA combination. 
39 controls were identified correctly as control. 42 cases were identified correctly as cases, 15 cases were 
incorrectly identified as control and 10 controls were incorrectly identified as cases. 
 

 0.00 1.00 
0.00 41 8 
1.00 15 42 

Table C3: Confusion Matrix obtained for the LR algorithm obtained in SPSS Modeler for the CVA 
combination. 
41 controls were identified correctly as control. 42 cases were identified correctly as cases. 15 cases were 
incorrectly identified as control and 8 controls were incorrectly identified as cases. 
 

Correct 106 100% 
Wrong 0 0% 

Table C4: Results for the RF using Run 1 of 10 for the CVA marker combination.  
The algorithm correctly identified all cases as cases and all controls as controls. 
 
 

 1.00 0.00 
1.00 42 15 
0.00 8 41 

Table C5: Confusion Matrix obtained for the Optimised Linear SVM for the CVA combination 
using the MLCA. 42 cases were correctly identified as case.  
41 controls were correctly identified as controls. 8 controls were incorrectly identified as case and 15 cases 
were incorrectly identified as control. 
 
 

 1.00 0.00 
1.00 57 0 
0.00 0 49 

Table C6: Confusion Matrix obtained for the Optimised RBF SVM for the CVA combination 
using the MATLAB Classification Learner App.  
57 cases were correctly identified as case and 49 controls were correctly identified as control. 
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Appendix D: Autoclassifier for C5.0 decision tree 

 

 
Figure D1: C5.0 decision tree identified as most suitable decision tree model for UOL training data 
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Appendix E: C5.0 decision tree for external validation cohort 
used as a training cohort 

 

 
Figure E: General C5.0 decision tree for the AC combination whereby CgA was used for the external 
validation cohort used as a training cohort. Controls (n=51) and pNET cases (n=60). 


