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Abstract
ISPs may notice that traffic from certain sources is entering their
network at an unexpected location, but it is hard to know if this
represents a problem or is just normal spoofed background noise. If
such traffic is not spoofed, it would be useful to generate alerts, but
alerting on background noise is not useful.

We describe Penny, a test ISPs can run to tell unspoofed traffic
aggregates arriving on the wrong port from spoofed ones. The idea is
simple: when receiving new traffic at unexpected routers, drop a few
TCP packets. Non-spoofed TCP packets (“bad packets”) will be re-
transmitted while spoofed ones (“worse packets”) will not. However,
building a robust test on top of this simple idea is subtle. We show
how to deal with conflicting goals: minimizing performance degra-
dation for legitimate flows, dealing with external conditions such
as path changes and remote packet loss, and ensuring robustness
against spoofers trying to evade our test.
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1 Introduction
An Internet Service Provider (ISP) has many reasons to want to
understand the traffic entering its network: for example, where traffic
enters the ISP network dictates who pays whom. It is simple to
measure specific subsets of traffic at border routers, but the obtained
data is typically not actionable because traffic may be spoofed. Can
we provide reliable actionable alerts when ingress traffic does not
conform to the ISP’s expectations? Doing so would help detect rout-
ing misconfigurations, suggest changes to policies and commercial
agreements, and protect against security attacks.

Consider the example in Figure 1. AS1 has two customers, AS2
and AS4, and one provider AS3. Traffic from AS2 entering AS1
over the direct link generates revenue, while any traffic received via
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AS3 costs money. If AS1 sees traffic originated from AS2 entering
at an unexpected ingress point, as in Figure 1b, then there are many
scenarios where it would attempt to change the path. AS2 may have
deliberately chosen to forward some of its traffic via another provider,
for economic or traffic engineering reasons. But knowing whether
this is the case may be important for AS1, for example, if it violates
the commercial agreement between AS1 and AS2. Alternatively,
the traffic path may be caused by a misconfiguration: AS2 may be
unintentionally filtering or deprioritizing AS1’s route. If so, AS1
can contact AS2, and fix the traffic path. Even in the absence of
misconfigurations, AS1 may still be able to influence AS2’s route
choice, either technically such as by fine-tuning AS path prepending
on its BGP announcements, or negotiating cheaper peering rates.
Unfortunately, AS1 often cannot tell if the received traffic actually
originates from AS2, or if it is source-spoofed, as in Figure 1c.

Reconstructing inter-domain traffic paths is generally not possible
from control plane information. AS1 may check if the source IP
of the received traffic is owned by an AS in the customer cone
of AS3, but this provides no usable information if the traffic is
spoofed. Public route monitors [14, 34, 35] provide an incomplete
coverage, and are not be helpful to detect all routing problems. For
example, in Figure 1b, looking glasses and monitors do not report
anything unusual because they do not cover the forwarding router
at AS2. Even worse, traffic taking unexpected paths is simply not
detectable at all via the control plane in many cases: for example,
routes do not reflect the actual forwarding paths in the presence of
BGP deflections [19], static routes or policy-based routing [11]. In
the end, the ground truth lies in the actual data-plane traffic.

Yet, ISPs cannot distinguish spoofed and non-spoofed traffic using
passive measurements, such as those extracted from packet counters
or traffic mirroring. Even if the ISP looks at the transport headers,
spoofed traffic can entail sequences of TCP packets with consistently
increasing sequence numbers that look like any normal TCP flow. If
the ISP sees packets both from a host A to a host B and from B to
A, AS1 may be able to identify non-spoofed flows, but this is very
rarely the case because of path asymmetry [4, 10, 44, 45]. How, then,
can an ISP check ingress points for non-spoofed traffic?

In this paper, we present Penny, a traffic checker that interacts
with transiting packets to assess if they are part of closed-loop and
hence non-spoofed TCP flows. By closed-loop, we refer to a TCP
flow where the two endpoints actually exchange packets with each
other, reacting to received ACKs. The basic idea is simple: when
new unexpected traffic is seen, Penny drops the occasional TCP
packet and waits for its retransmission 1. Most likely, the dropped
packet will be retransmitted if it belongs to a closed-loop TCP flow,
but it won’t be resent if the traffic is source-spoofed, as a spoofing
sender cannot know the drop occurred.

1Why “Penny”? The phrase “the penny dropped” means to finally understand something,
but also “a bad penny always comes back”.
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(c) Option 2: spoofed traffic, not worth to be
further investigated.

Figure 1: Case where ISP AS1 needs to assess if the observed traffic is closed-loop or not. Control plane information is not sufficient
even when remote ASes host BGP monitors and looking glasses: BGP routes visible to AS1 are the same in Figures (b) and (c). We
assume that AS1 does not see any traffic from AS4 to AS2 because inter-domain paths are often asymmetric [4, 10, 44, 45]: path
asymmetry is not what makes the path unprofitable to AS1.

It is far from obvious, however, that such a simple idea can be
turned into a practical and reliable traffic test in real ISPs. Indeed,
ISPs have very little visibility on the many factors affecting their ob-
servations of packets and retransmissions, including external packet
loss, remote routing changes, and the specific TCP implementation
used by end hosts. Also spoofers may mimic closed-loop flows.

Penny relies on statistically evaluating the likelihood that closed-
loop flows generated the observed retransmissions, missing retrans-
missions and duplicated packets. Its statistical core is reinforced
with mechanisms to deal with several practical aspects, including
timers and quirks of TCP, external network conditions, the impact
of the test on the performance of probed flows, and the presence of
spoofers aware of our test and actively trying to bypass it.

We evaluate Penny with ns-3 simulations of a wide range of traffic
and network conditions. Penny always identifies closed-loop flow
aggregates while causing minimal performance degradation. This
remains true for different TCP implementations and any evaluated
network condition that allows progress of the tested closed-loop
flows. It correctly identifies spoofed traffic that actively tries to be
identified as closed-loop. Finally, when legitimate flows are mixed
with spoofed traffic from the same prefix, Penny’s goal is to detect
that unspoofed traffic is present – see, e.g., Figure 1. We show that
Penny correctly finds the unspoofed flows in traffic aggregates even
when the vast majority (e.g., 90%) of the packets is spoofed, though
doing so requires extra analysis time compared to when all traffic is
unspoofed or all is spoofed. Our implementation of Penny and code
to reproduce its evaluation is publicly available [18].

We finally stress that the example in Figure 1 is far from being
the only case where detecting unspoofed ingress traffic is valuable
for ISPs. Appendix A describes additional scenarios, ranging from
other examples of unprofitable paths to BGP hijack detection and
support for new services.

2 Overview
It is easy to raise alerts, but what makes an alert actionable?

• An alert identifies a genuine anomaly; to do so requires an
idea of what normal is.

• The false positive rate must be very low, even in the pres-
ence of malicious traffic generated with the explicit goal of
triggering alerts.

• False negatives (missed anomalies) are allowable, but if the
system is to be useful they should be rare for large anomalies.

For Penny, traffic is anomalous if it is genuine traffic entering
a network at an unexpected entry point. This in turn raises two
questions: what is genuine and what is unexpected?

Genuine traffic follows the path dictated by routing from its stated
IP source to its IP destination, even if routing has made a mistake.
In contrast, spoofed traffic may be following the routed path to the
destination, but as it did not come from the location indicated by
its source address, it cannot be used to check whether routing is
performing properly. The fact that traffic is genuine says nothing
about whether it is good. Genuine traffic may be actively malicious,
but if it follows the routing and arrives at an unexpected entry point,
we want it to raise an alert. Penny aims to detect genuine traffic and
distinguish this from the spoofed background noise.

What makes an entry point unexpected? Penny is just a traffic
checker, so does not really care about why an entry point is unex-
pected, but such a checker is only of use in a context where we
can define what is expected. Traffic can be unexpected simply be-
cause an operator sees something odd and asks Penny “is that traffic
genuine?”. But Penny can also operate in the context of broader
automated monitoring. Penny can be run in the background at a low
rate to build up a map of normality as seen from genuine traffic, and
then later identify changes from that normal baseline. Alternatively,
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Penny can by triggered by a passive monitor (eg. using sflow[38])
that identifies traffic that does not match configured routing poli-
cies. Due to spoofing, such passive monitors raise too many false
alarms to be actionable, but Penny can automatically check each and
alert only on those caused by genuine traffic. Results can then be
cached to avoid continuous retriggering. So how does Penny identify
genuine traffic? Broadly, Penny looks for closed-loop TCP flows as
an indicator that a traffic aggregate contains genuine flows. Due to
routing asymmetry, Penny will usually only see one direction of a
flow, but if it can probe TCP flows and prove they are closed-loop,
then it can raise an alert.

To summarize: the goal of Penny is to raise an actionable alert if
the traffic under test contains closed-loop flows that are symptomatic
of an unexpected interdomain path.

2.1 Getting access to traffic
To check unexpected traffic, operators first need to have access to it.
In principle, any tests could be performed within the ingress border
router, but traditional routers offer only limited traffic monitoring
capabilities – e.g., a few, predefined counters [9] and constrained
access to their software (e.g., Cisco and JunOS SDKs). However, by
its very nature, any router can redirect packets. In Penny, we thus
opt for redirecting traffic for analysis by an external box.

Different ISPs have different PoP architectures, but we envision a
deployment of the general form shown in Figure 2. The checker is
the key component that actually tests ingress traffic. It can be asked
to analyze traffic sourced from specific IP prefixes (e.g., those owned
by AS2), entering at an unexpected port of a border router (e.g., R3
in Figure 2). To do so, it configures the border router to redirect
the traffic to be tested so that it follows the solid red lines. Source-
based forwarding can be achieved using route-maps in traditional
routers [12] or with custom logic in programmable ones, such as
Broadcom’s Trident-series switches or Intel’s Tofino. The prefixes to
be checked simultaneously are chosen so that the redirected traffic
does not overwhelm the network bandwidth and resources of the
checker. Different implementations of Penny’s checker are possible,
ranging from dedicated hardware devices to general-purpose servers
processing packets in software. Future implementations may also
run directly on border routers.

2.2 How to test traffic?
For testing to be effective for the use case above and those in Appen-
dix A, it must detect closed-loop traffic with high probability. How
can the checker tell if the received traffic is closed-loop? There are a
few options.

Passive traffic monitoring. Inferring the nature of a flow is relatively
simple if we see packets both from client to server and server to
client. We can match packets in the two directions, checking that
sequence numbers and ACK numbers correspond. Unfortunately,
Internet paths are usually asymmetric. An ISP only seeing packets
in one direction cannot infer that closed-loop flows are not present.

Passively observing traffic flowing in a single direction cannot be
relied on in general. Checking that sequence numbers consistently
increase will spot simplistic spoofers, but cannot detect slightly
less naive ones that increase sequence numbers of the sent packets
without waiting for ACKs.

AS3 R2

AS2 R1

R3

R4

R5

AS1

PoP

aggregate including 
traffic to be tested 

towards 
other PoPs

S1

S2

tested traffic

Checker

other ingress traffic

Figure 2: When asked to test unexpected ingress traffic, Penny’s
checker in the ingress PoP configures the receiving router (e.g.,
R3) to redirect just the traffic to be tested.

Interposing in traffic flows. To enable effective passive observation
of flows, we can force the checker to receive all packets of the
analyzed flows in both directions by performing network address
translation (NAT). Suppose that we receive a SYN packet sent from
host A to host B and we wish to monitor the flow. The checker can
rewrite A’s source IP address in the SYN packet to an address of the
checker. B will send its response to the checker, which then swaps
the destination address with that of A before forwarding back to A.
Port translation may be needed too.

While this approach provides a reliable test, it has unintended
consequences. NATing traffic in the middle of the network prevents
geo-location and geo-blocking mechanisms and disrupts protocols
such as SIP that embed IP addresses discovered using STUN [15] to
enable local NAT traversal. NATing is also comparatively expensive
- the checker must continue rewriting for the entire duration of the
flow, even after it comes to a conclusion, or the flow will die. Perhaps
worse, if routing between the source and destination changes, exist-
ing flows may now bypass the NAT, reach the destination without
being rewritten, and will be reset.

Actively probing senders. A checker could take an active role and
probe the traffic sender, for example by sending a SYN to it. If
it receives a reply on the same ingress port as the tested traffic, it
can conclude that non-spoofed traffic from that source network can
indeed be received at that ingress port. While this approach has the
advantage of not interfering with user traffic, it is also unreliable.
Typically only TCP servers using public IP addresses would reply to
the probes sent to them. Even for servers, ECMP routing may route
one connection from a server via one path and a different connection
from the same server via a different path.

Dropping packets. We would like a general and reliable approach to
distinguish closed-loop from spoofed traffic while causing minimal
impact on legitimate applications. None of the techniques above
fulfills these requirements.

Dropping the occasional TCP packet and checking for its retrans-
mission has potential. It is general because all TCP implementations
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must retransmit lost data to ensure reliability. It should have limited
impact on applications because all TCP implementations must ef-
fectively deal with low levels of packet loss to ensure reasonable
performance in the Internet. We refer to this approach as the packet
drop test. Hereafter, we describe the design and implementation of
Penny’s drop test. Section 8 discusses a possible integration with the
other techniques presented above.

3 Packet Drop Test: Basics
Consider a traffic checker that sees TCP packets sent from host 𝐴
to host 𝐵, but no packet from 𝐵 to 𝐴. How can we build a reliable,
robust and practical packet drop test?

First of all, we should only drop packets containing data: pure
ACKs don’t advance the sequence space, and they are cumulative,
so we don’t expect them to be resent.

Also, the signal provided by a single data packet is weak and noisy.
When dropping a packet from a closed-loop flow, we may receive
no retransmission – e.g., if the sender fails, or the retransmission
follows a path that bypasses the monitor. When dropping a source-
spoofed packet, we may also receive a “retransmission”, if some
packets are duplicated by the source or in the network.

A better approach is to drop a few packets until we gain enough
confidence on the nature of the traffic. For a closed-loop flow, we
expect to see retransmissions for most packets we drop; likely, we
will also see a few unsolicited duplicates that are retransmissions of
packets lost between the checker and the destination. For spoofed
traffic, we rarely expect to see a retransmission, unless the traffic
includes many duplicates.

Penny drops. Each received packet is dropped with some low
probability 𝑝𝑑𝑟𝑜𝑝 . TCP struggles to make progress with more than
10% packet loss [36]. To limit the performance degradation of legiti-
mate flows, 𝑝𝑑𝑟𝑜𝑝 should thus be significantly less than 10% – say,
in the range between 0.1% and 5%. Section 5.4 discusses why this
range is practical, and how operators can tune the value of 𝑝𝑑𝑟𝑜𝑝
depending on their goals and operational constraints. Section 6 eval-
uates the impact of our test on legitimate flows.

For each received packet, we classify it as a new one, a duplicate
of a previous one, or a retransmission of a packet we dropped. To
assess if the tested traffic is closed-loop, we then rely on a statistical
model that combines observations of the overall number of packets
received so far, retransmissions, and unsolicited packet duplicates.

Penny statistical model. The model, summarized in Figure 3, is
based on comparing the relative probability of the two competing
hypotheses that the observed flow is closed-loop (H1) and that it is
not (H2). When we observe a retransmission of a packet we dropped,
we gain confidence on the validity of H1 and lose confidence on the
validity of H2 – and vice versa if we don’t observe a retransmission.
Penny computes the individual probabilities of H1 and H2 being
valid, and checks if one dominates the other.

𝑃 (𝐻1) is the probability that the observed traffic is generated by
a TCP sender always retransmitting non-ACKed packets, given a
low but non-zero chance 𝑝𝑛𝑜𝑅𝑇𝑋 , such as 5%, that a retransmission
is sent but Penny misses it. Internet devices do not typically load-
balance packets of the same flow on different paths, and inter-domain
routing is normally stable at the timescale of our tests. If during a

Hypotheses
H1: hypothesis that the flow under test is closed-loop
H2: hypothesis that the flow under test is not closed-loop

Parameters
𝑝drop: probability of dropping a TCP data packet
𝑝noRTX: assumed probability that we do not observe a retransmit-
ted packet within a closed-loop flow

Measurement counters
𝑛RTX: number of observed retransmissions for packets we
dropped
𝑛noRTX: number of packets we dropped for which we didn’t ob-
serve a retransmission
𝑓dup: fraction of observed packets with one or more duplicates

Probabilities
𝑃 (H1) = (𝑝noRTX )𝑛noRTX

𝑃 (H2) = (𝑓dup )𝑛RTX

𝑃 (genuine) = 𝑃 (𝐻1)/(𝑃 (𝐻1) + 𝑃 (𝐻2) )
Procedure: For every received packet of the flow under test, update
counters and possibly drop the packet, with probability 𝑝drop. Whenever
𝑃 (genuine) > 0.99, conclude that the flow is closed-loop. Whenever
𝑃 (genuine) < 0.01 or 𝑓dup > 0.15, conclude that the flow is not closed-
loop. Stop dropping packets as soon as dropped packets are enough to
reach a conclusion.

Figure 3: Overview of Penny statistical model.

test the path of a tested flow changes and permanently avoids the
checker, the test will be inconclusive – this is fine. However, we also
wish the test to cope with the sort of transient glitch that can happen
during BGP reconvergence. For this reason, 𝑃 (𝐻1) is 𝑝𝑛𝑜𝑅𝑇𝑋 raised
to the number of times we don’t see a retransmission for a packet we
drop. If we see retransmissions for all the dropped packets, 𝑃 (𝐻1)
remains equal to 1. If we don’t see one retransmission, 𝑃 (𝐻1) is
equal to 𝑝𝑛𝑜𝑅𝑇𝑋 , which is not low enough to allow a conclusion
without more data. For further non-retransmitted packets, 𝑃 (𝐻1)
decreases geometrically with 𝑝𝑛𝑜𝑅𝑇𝑋 .

𝑃 (𝐻2) is the probability that a spoofing sender could match the
observed retransmission behaviour by blindly duplicating some frac-
tion of packets. 𝑃 (𝐻2) depends on the fraction of unsolicited dupli-
cates 𝑓𝑑𝑢𝑝 we measure, and the number 𝑛𝑅𝑇𝑋 of retransmissions
we see of dropped packets: likely, traffic is not closed-loop if we
observe too many duplicates, or only see a few retransmissions. For
example, 𝑃 (𝐻2) = 1 if no dropped packet is retransmitted.

We reach a conclusion when one hypothesis is 100 times more
likely than the other, or if we receive an excessive number of unso-
licited duplicates, incompatible with a packet loss rate that would
allow any TCP flow to progress.

From theory to practice. The test described so far rely on an over-
simplified abstraction of TCP. The devil, as always, is in the detail.
Sections 4 and 5 describe a practical implementation of the packet
drop test. Figure 4 provides an overview.

4 Packet Drop Test at Runtime
We now detail how to run the approach described in Section 3 on
live traffic, using the example in Figures 5-6 as support.
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Figure 4: Overview of Penny drop test design.

4.1 Retransmissions
Our test relies on collecting evidence of retransmissions. How can
we detect retransmissions, though?

In its simplest incarnation, a retransmission is a TCP packet iden-
tical to one that we have already seen. However, TCP does not
guarantee that retransmitted packets are identical to non-ACKed
packets. Indeed, the bytes to retransmit can be resent in smaller pack-
ets, for example if the path MTU changes; or, conversely, they can
be merged with fresher application data to form bigger packets [32],
such as packet P8 in Figure 5.

Definition. From the above examples, it is evident that we should
track the TCP sequence numbers of the received packets, and in
particular the gaps in such sequence numbers. For brevity, we refer
to such gaps as sequence gaps.

Dropping a packet creates a specific sequence gap: the start of
the sequence gap is the first byte of the dropped packet, and the
gap length is the number of bytes in the payload of the dropped
packet. For example, dropping P5 in Figure 5 creates a gap spanning
sequence numbers between 40 and 50.

We then define retransmissions by casting closed sequence gaps
to packets. For any packet we drop, we can indeed say that the packet
is retransmitted when all its bytes are resent.

Our gap-to-packet casting mechanism works as follows. Every
time we receive a packet, we check if the bytes in the packet fill
a sequence gap opened by one of our drops. If so, we classify the
packet as a retransmission, and discard the gap. Otherwise, the
packet is either a duplicate if it includes bytes lower than the current
highest sequence number for the flow, or a new packet otherwise.

To complete the above definition, we need to address two corner
cases of packets not perfectly fitting inside or outside any gap, such
as packets P7 and P8 in Figure 5. First, we may receive a packet
that covers only part of a gap. In this case, Penny resizes the gap,
and does not classify the packet neither as retransmission nor as a
duplicate. Second, we may receive a packet that includes bytes both

in a gap and outside it, such as P7 in Figure 5. In this case, we break
down the packet into two: one sub-packet including only the bytes
within the gap, and another only including the bytes outside the
gap. If a packet spans multiple gaps, we break it down into multiple
sub-packets. Finally, we apply our gap-to-packet casting to each sub-
packet. A retransmission is recorded only when an entire sequence
gap is closed – e.g., after P8 in Figure 5.

Computation. We now know how to classify every received packet
as retransmitted, duplicate or new. When do we decide that a dropped
packet is not retransmitted, though?

Clearly, we need a timeout after which we mark a dropped packet
as not retransmitted. However, we cannot make assumptions on
the exact retransmission time: the choice of when a sender retrans-
mits any packet depends on both the sender’s congestion control
algorithm and its implementation. For example, the Linux imple-
mentation of TCP Reno has a min retransmission timeout (RTO) of
200ms, but the Windows implementation uses a default min RTO
of 300ms. Other implementations and congestion algorithms such
as [2, 8, 20] may also influence the retransmission time.

In Penny, our top-level concern is to classify retransmitted and
non-retransmitted packets correctly. We thus mark a dropped packet
as not retransmitted only after a conservative timeout 𝑇𝑚𝑎𝑥𝑅𝑇𝑋 . By
default, 𝑇𝑚𝑎𝑥𝑅𝑇𝑋=3 seconds, to cover cases of high-RTT flows for
which the first couple of retransmissions are dropped between the
sender and Penny. Operators can change the value of 𝑇𝑚𝑎𝑥𝑅𝑇𝑋 to
achieve different tradeoffs between test speed and accuracy.

4.2 Droppable packets
Our statistical model is based on probabilistically dropping data
packets. To limit its performance impact, we should refrain from
dropping retransmissions, as doing so would slowdown subsequent
retransmissions, and may eventually stall data transmission.

To avoid dropping retransmissions of packets dropped by Penny
or downstream of it, we can just remember the sequence numbers
already seen. However, when a packet is dropped between the sender
and Penny, its retransmission would look like a new packet, except
that its sequence number is out-of-order.

Definition. We denote any packet that Penny can drop as drop-
pable packet. To avoid dropping retransmissions, we classify a
packet A as droppable if upon its reception, A has the highest se-
quence in its flow: this guarantees that A is not out-of-order. For
example, packet P3 in Figure 5 is not droppable. Duplicates, such as
packets P4 and P7 in Figure 5, are also not droppable. We then apply
our statistical model (shown in Figure 3) to droppable packets only.

The above definition implies that any out-of-order packet is not
droppable, including those not triggered by a loss. This has a risk: if
we receive most packets out of order (e.g., because the source sends
them this way, erroneously or deliberately), very few packets will be
droppable, and we might not be able to run our test. We explicitly
flag these abnormal cases by tracking the number of out-of-order
and in-order packets. If their ratio exceeds an out-of-order threshold
𝑇𝑛𝑜𝑂𝑅𝐷 , set to 80% by default, we mark the test as inconclusive.

Computation. How can we compute droppable packets on live
traffic? If we monitor a flow from its start, we can track the sequence
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Figure 5: Illustration of some of the cases that the packet drop test must handle in practice for data packets in a flow.

numbers from the TCP handshake, and directly apply the defini-
tion of droppable packets. Unfortunately, we may also need to test
already-started flows such as closed-loop flows already exchanging
data, or spoofed traffic that does not simulate the TCP handshake.

Computing droppable packets for already-started flows requires
some care. The size, content and evolution of the TCP congestion
window heavily depend on the specific implementation used by the
sender amongst the many deployed nowadays [8, 20, 21]. So, it is
hard if not impossible for a device in the Internet core to quickly
infer the congestion window and packets in-flight of crossing flows,
and compute the highest sequence number for already-started flows.

We again adopt a conservative approach. We collect sequence
numbers of observed packets for a flow sync time𝑇𝑠𝑦𝑛𝑐 much longer
than the expected RTT of any Internet connection – i.e., 3 seconds by
default. After 𝑇𝑠𝑦𝑛𝑐 , we should have seen a few windows of packets,
and it is thus safe to consider the highest sequence number observed
at that time as the highest sequence number in the TCP flow.

4.3 Evaluating the hypotheses
The packet drop test is based on evaluating probabilities of com-
peting hypotheses. Figure 3 provides a static view of how those
probabilities are computed, but it does not account for the time
needed to collect the counters used in the formulas.

A correct implementation of the packet drop test must ensure the
consistency of the counters whenever the hypotheses H1 and H2 are
evaluated. This is not completely trivial because different counters
are updated at different rates, due to factors outside our control. For
example, in Figure 5, we can assess that P5 is retransmitted only
after receiving P8; in the meanwhile, P6 and P7 would change 𝑓𝑑𝑢𝑝 .

Counting retransmissions is generally slower than observing new
packets, and counting non-retransmitted packets is much slower still
(see Section 4.1). So, if we just run our statistical analysis every time
we receive a packet, we incorrectly consider fewer retransmitted
packets than we should, and even fewer non-retransmitted ones.

Definition. At any time 𝑡 during a packet drop test, we define
pending retransmissions as the dropped packets for which at 𝑡 , we
are still assessing if they are retransmitted or not. In other words, a
pending retransmission is a packet for which we have not received a
retransmission yet, and the retransmission timeout𝑇𝑚𝑎𝑥𝑅𝑇𝑋 defined
in Section 4.1 is not expired. For example, packet P5 is a pending
retransmission when P6 is received in Figure 5.

We use pending retransmissions to identify the values of counters
used in the evaluation of H1 and H2. Namely, we evaluate the two
hypotheses on sequence numbers delimited by the same pending

retransmission. This ensures that the hypotheses are assessed on
packets which are all classified as new, duplicate, retransmitted or
non-retransmitted. In our running example, for instance, we evaluate
H1 and H2 with counters for packets with sequence number up to
40, because P5 is a pending retransmission.

Computation. To track counter values delimited by pending re-
transmissions, we use counter snapshots defined as follows. When-
ever we drop a packet, we take a snapshot of observed, duplicate and
retransmitted packets at the time of the drop. When created, each
snapshot includes at least one pending retransmission. Whenever
we receive a retransmission or a retransmission timeout expires,
we update all the snapshots including the corresponding pending
retransmissions – e.g., updating the number of duplicates and de-
creasing the number of pending retransmissions. We also compute
the set 𝑆 of counter snapshots including no pending retransmission
anymore, and we evaluate H1 and H2 on the counters in the most
recent snapshot in 𝑆 . If the test reaches a conclusion, we stop and
output the result. Otherwise, we discard all the snapshots in 𝑆 , and
keep running the test.

Figure 6 provides an illustration. After dropping P5 we instantiate
a counter snapshot. Later on, the reception of P8 closes the sequence
gap created by the drop of P5, and triggers the update of the snapshot:
the counter of pending retransmissions is set to 0, the number of re-
transmissions is set to 1, and the counters of droppable and duplicate
packets are increased by 1, to account for P6 and P7, respectively.
Since the snapshot includes no pending retransmissions anymore,
we then compute P(genuine) with the counters in the snapshot.

5 Ensuring Practicality
Section 4 describes a runtime implementation of our test. In this
section, we further evolve Penny’s design to deal with a range of
real-world factors and network conditions.

5.1 Dealing with worst-case traffic patterns
In Penny, the goal is to correctly detect any closed-loop TCP flow
included in the aggregate under test. Traffic that evades, deliberately
or by chance, our statistical analysis (e.g., because they include more
than 15% packet duplicates or many non-droppable packets) would
only improve Penny’s performance, as it causes the drop test to focus
on closed-loop flows. Misclassifying closed-loop traffic as spoofed
is also not disastrous: when this happens, Penny fails silent, not
raising any alert, which neither improves nor worsens the status quo.

The worst-case scenario for Penny is instead represented by
spoofed traffic with a number of duplicates just below 𝑓𝑑𝑢𝑝 , as
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Figure 6: Illustration of counter snapshots in our reference example.

this has the maximum probability of being reported as closed-loop.
Doing so would trigger false alarms, and possibly induce operators
to ignore future alerts – see again Figure 1.

Figure 3 defines no constraint on the counter values, and hence on
the number of statistical samples, to evaluate P(genuine). However,
statistics computed on very few samples are more likely to be biased.
For example, we experimentally confirm that spoofed flows can be
confused with closed-loop ones if the sender duplicates 2 packets in
the first 12, and we drop exactly these 2 packets.

To prevent such cases, we add a parameter𝑛𝑚𝑖𝑛𝐷𝑅𝑂𝑃 , correspond-
ing to the minimum number of dropped packets that we must classify
as retransmitted or not retransmitted before concluding the test. That
is, we never conclude a test before dropping at least 𝑛𝑚𝑖𝑛𝐷𝑅𝑂𝑃
packets and assessing if they are retransmitted or not. The value of
𝑛𝑚𝑖𝑛𝐷𝑅𝑂𝑃 directly controls the tradeoff between test accuracy vs
its speed and intrusiveness: higher values of 𝑛𝑚𝑖𝑛𝐷𝑅𝑂𝑃 increase our
confidence in the outcome of the test, but they also make the test
slower and potentially more impactful to end users.

To decide the value of 𝑛𝑚𝑖𝑛𝐷𝑅𝑂𝑃 , we propose a methodology
based on (i) analytically computing the probability to misclassify
spoofed flows as closed-loop, and (ii) deriving the value of𝑛𝑚𝑖𝑛𝐷𝑅𝑂𝑃
from operators’ preferences for such probability. We now exemplify
our methodology, and use it to define the default 𝑛𝑚𝑖𝑛𝐷𝑅𝑂𝑃 value.

Figure 7 shows the analytically computed worst-case probability
of misclassifying spoofed traffic as closed-loop (y axis) against the
number of droppable packets (x axis), when 𝑝𝑑𝑟𝑜𝑝 is 5%. We take
𝑝𝑑𝑟𝑜𝑝=5% as an example, but all the following observations also
apply to other values of 𝑝𝑑𝑟𝑜𝑝 . Fundamentally, indeed, Figure 3
shows that droppable and dropped packets do not contribute to any
of the probabilities evaluated by Penny, except for 𝑓𝑑𝑟𝑜𝑝 which is
however a fraction. We empirically confirm that the relationship
between misclassification probability and dropped packets remains
the same for lower values of 𝑝𝑑𝑟𝑜𝑝 , as detailed in Appendix B.

Each curve in Figure 7 corresponds to the highest misclassifi-
cation probability when the sender randomly duplicates a certain
number of packets, up to 45. We don’t consider more than 45 dupli-
cates because with more duplicates, we would always exceed 𝑓𝑑𝑢𝑝
(i.e., 15%). All curves have a similar shape, peaking at a relatively
low x value, and quickly decreasing afterwards.

From Figure 7, we can set 𝑛𝑚𝑖𝑛𝐷𝑅𝑂𝑃 according to operators’
preferences. By default, we aim to never report spoofed flows as
closed-loop in order to avoid false alarms (see, e.g., Figure 1). So

we set the default 𝑛𝑚𝑖𝑛𝐷𝑅𝑂𝑃 to the conservative value of 12, which
maps to an error probability lower than 10−4, as for example shown
in Figure 7 at x=240 droppable packets. Operators can set a lower
(resp., higher) value of 𝑛𝑚𝑖𝑛𝐷𝑅𝑂𝑃 if they want to reduce (resp.,
increase) the test duration in exchange for weaker (resp., stronger)
correctness guarantees.

5.2 Dealing with short flows
Section 5.1 raises the question of how to handle short flows: if we run
a test on a flow that terminates before we drop 𝑛𝑚𝑖𝑛𝐷𝑅𝑂𝑃 packets
from it, our test will be inconclusive.

While ignoring short flows may be fine in some cases, it does
not work well in general. First, we may simply have no long flows –
e.g., if all the flows we receive contain a single HTTP GET. Second,
only testing long flows (if any) may misrepresent the nature of the
received traffic. For example, if there are many closed-loop short
flows and one spoofed long flow, testing only the long flow would
lead us to wrongly conclude that all the traffic is spoofed.

Fortunately, we can extend our approach to test arbitrary traffic
aggregates, including both short and long flows that share the same
source prefix IP addresses. The key observation here is that each
packet is a separate sample in our statistical model, independent from
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any other sample or previous drop. We can thus aggregate counters
across multiple flows, and use our statistical model, unmodified.

When aggregating counters, we must however preserve the prop-
erty that H1 and H2 are evaluated on consistent sets of packets. To
do so, we apply the same intuition described in Section 4.3 across
all tested flows. More precisely, every time we drop a packet from
any flow, we compute a counter snapshot with observed, duplicate
and retransmitted packets from the entire flow aggregate. Whenever
we receive a retransmission or a retransmission timeout expires, we
update all the snapshots, and re-evaluate P(genuine) on the most
recent snapshot with no pending retransmission after the update.

Applying the packet drop test to flow aggregates is not exactly the
same as applying it to individual flows. Checking aggregates speeds
up the test and makes it less intrusive, as collecting samples from
multiple flows is faster and reduces the drops per flow. However, the
semantics of the test also change: when applied to flow aggregates,
the test does not relate to any specific flow, but evaluates if the overall
traffic mostly behaves as belonging to closed-loop flows.

For cases where some flows are closed-loop and others are not,
we deliberately bias our test towards detecting closed-loop flows, as
those flows are the most important to detect in our use cases (e.g.,
see Figure 1). Namely, when our test concludes that an aggregate is
closed-loop, we directly report the traffic as closed-loop. If instead
the aggregate appears not to be closed-loop, we perform packet drop
tests on individual flows: we check flows until we reach a number
𝑛𝑠𝑖𝑛𝑔𝑙𝑒𝐶𝐻𝐸𝐶𝐾 of test results, or we exceed a timeout 𝑇𝑠𝑖𝑛𝑔𝑙𝑒𝐶𝐻𝐸𝐶𝐾 .
We finally report the traffic as closed-loop if we find a minimum
number 𝑛𝑚𝑖𝑛𝐺𝐸𝑁𝑈 𝐼𝑁𝐸 of closed-loop flows. By default, we set
𝑛𝑠𝑖𝑛𝑔𝑙𝑒𝐶𝐻𝐸𝐶𝐾 = 100 and 𝑇𝑠𝑖𝑛𝑔𝑙𝑒𝐶𝐻𝐸𝐶𝐾 = 10 seconds, to collect
results on a reasonable number of flows, and set 𝑛𝑚𝑖𝑛𝐺𝐸𝑁𝑈 𝐼𝑁𝐸 = 2,
to avoid being misled by a single flow.

This approach tends to find closed-loop flows even if the majority
of the traffic is spoofed, as we show in Section 6. We may still
misclassify traffic if the only closed-loop flows are short and most of
the traffic is spoofed. We further discuss this limitation in Section 8.

5.3 Dealing with abruptly interrupted flows
Penny can easily classify flows as terminated if it observes FIN
packets for them. Unfortunately, any packet stream received by an
ISP may also stop abruptly – e.g., if BGP paths change, an endpoint
crashes, or an attacker stops spoofing.

For such abruptly interrupted flows, Penny suddenly stops seeing
any packet. This raises two problems. First, we don’t know how
long to wait for new packets before deeming the flow as terminated.
Second, if we are waiting for retransmissions, we don’t know if the
source would have sent them should the flow have continued.

A special case of abruptly interrupted flows entails TCP RST
packets. RST packets were originally designed to signal loss of
state at one of the flow endpoints, but modern TCP implementa-
tions also employ these packets to expedite the termination of a
connection [1]2. So, receiving a RST packet introduces uncertainty
on pending retransmissions.

Counter snapshots (see Section 4.3) ease dealing with abruptly
interrupted flows, including those with RST packets. We indeed

2we experimentally confirmed that Chrome and MacOS Safari commonly use RST
packets to terminate TCP connections for video streaming.

classify a flow as terminated when we see a RST packet, or when a
conservative timeout 𝑇𝑚𝑎𝑥𝐼𝐷𝐿𝐸 (i.e., 30 seconds by default) expires.
When this happen, we update all the counter snapshots by discarding
any pending retransmission and observed packet for that flow.

We also include a threshold 𝑛𝑚𝑎𝑥𝐴𝐵𝑅𝑈𝑃𝑇 for the maximum ratio
of abruptly interrupted flows per aggregate, set to 80% by default;
and a threshold 𝑛𝑚𝑎𝑥𝑅𝑆𝑇 for the max number of RST packets per
flow, set to 2 packets by default. The thresholds are meant to flag
suspicious cases, expected to be rare for closed-loop traffic. We deem
a test as inconclusive when either of the two thresholds is exceeded.

5.4 Configuring the packet drop rate
Armed with the full design of Penny, we are now ready to properly
discuss the tradeoffs involved in setting 𝑝𝑑𝑟𝑜𝑝 , the probability that
Penny drops any droppable packet.

Penny stops dropping packets as soon as it collects enough evi-
dence that the tested traffic is highly likely to be either closed-loop
or spoofed (Figure 3). In practice, each drop test is expected to drop
very few packets. We find that Penny generally reaches a conclusion
on a traffic aggregate after dropping exactly 12 packets in total per
test. A lower bound comes from setting 𝑛𝑚𝑖𝑛𝐷𝑅𝑂𝑃 =12, but across
all our experiments with closed-loop, spoofed and mixed traffic we
saw no case where Penny required more drops. This is also consistent
with the experiments in Section 6.1.

Penny is designed for infrequently testing unusual traffic, not for
continuously monitoring the same traffic aggregate. Given the low
number of packets dropped from any anomalous traffic aggregate,
there are few critical constraints on the value of 𝑝𝑑𝑟𝑜𝑝 other than
allowing the flows under test to progress. Thus, we envision that any
value between 0.1% and 5% may be practical for 𝑝𝑑𝑟𝑜𝑝 .

What should operators consider when setting the per-packet drop
probability? In practice, 𝑝𝑑𝑟𝑜𝑝 affects: (i) the test speed, (ii) the
likelihood that the test can be applied to short individual flows,
and (iii) the worst-case per-flow performance degradation. Higher
values of 𝑝𝑑𝑟𝑜𝑝 generally reduce the test duration and increase its
applicability to individual short TCP flows, but also slightly increase
the performance degradation caused to such individually tested TCP
flows. We quantify this effect further in Section 6.2.

When applied to a flow aggregate with at least a few tens of flows,
a Penny test likely drops only one packet per flow for any value of
𝑝𝑑𝑟𝑜𝑝 ≤ 5%, so any performance degradation is very limited. We
verify this in Section 6.2. In such cases, around twelve flows lose a
single packet, whether 𝑝𝑑𝑟𝑜𝑝 is 0.1% or 5%, so higher values may be
preferred because they give quicker results. In practice, for high rate
aggregates, the test speed may be limited by Penny’s need to wait
for retransmissions or abruptly interrupted flows. With timeouts on
the order of 30 seconds, there can be little benefit from using 𝑝𝑑𝑟𝑜𝑝
greater than 0.1% for any aggregate faster than about 5Mbps.

When applied to individual flows or to aggregates with only a
few flows, performance degradation may be more of a concern. Our
evaluation shows that Penny has a relatively small impact on the
completion times of individual TCP flows even when 𝑝𝑑𝑟𝑜𝑝 = 5%,
as it carefully selects which packets to drop and stops dropping
after a few packets. An operator can easily configure Penny to apply
different 𝑝𝑑𝑟𝑜𝑝 values to aggregates and to individual flows so as to
balance performance concerns against test duration.
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Figure 8: Accuracy of Penny’s statistical model. Outcomes below y=12 (green horizontal line) are ignored by Penny because of the
𝑛𝑚𝑖𝑛𝐷𝑅𝑂𝑃 parameter. Penny correctly classifies closed-loop and spoofed traffic aggregates. For mixed traffic, Penny either classifies the
aggregate as closed-loop, or triggers a test to individual flows.

6 Evaluation
We evaluate Penny in ns-3 [40]. We implement the packet drop
test in C++, create an ns-3 switch running our test implementation,
and simulate TCP flows and spoofed traffic crossing this switch.
In our experiments, we try to choose settings that are deliberately
unfavorable to Penny. Notably, the traffic tested by Penny has a
high RTT (i.e., 100 ms), competes with established background TCP
flows, and we optionally add extra loss so that not all retransmissions
are caused by Penny. Our results thus measure accuracy for flows
relatively slow to retransmit, and performance impact on flows likely
to be in slow start when the first packet is dropped.

6.1 Accuracy
We want to see that Penny never mischaracterizes aggregates contain-
ing only closed-loop flows, or those only with spoofed traffic. Also,
closed-loop flows should be detected even when they are mixed with
large amounts of spoofed traffic from the same source prefix.

Figure 8 shows the results of experiments on different types of
aggregates, network settings (e.g., 10-300 Mbps links) and Penny
drop probabilities (between 1% and 5%). In Figure 8a all traffic
is closed-loop, in 8c it is all spoofed, whereas in 8b it is a mix of
the two. Each point shows the preliminary decision from Penny’s
statistical model—closed-loop, spoofed, or duplicates exceeded—
after a specific number of droppable packets have been observed
(x-axis) and after Penny has dropped a specific number of packets
(y-axis). Penny will only make a decision above the green line.

The packet drop test is always correct in the absence of spoofed
traffic. We run 10,000 experiments, each testing an aggregate con-
sisting of 100 closed-loop TCP flows with randomized start times
and no random packet loss on any link. The precise number of flows
does not greatly matter here, because Penny makes a decision based
on drops and retransmissions striped across all the flows in the aggre-
gate. In all these experiments, Penny drops exactly 𝑛𝑚𝑖𝑛𝐷𝑅𝑂𝑃 =12
packets, and correctly classifies the aggregate as closed-loop. This

observation is also consistent with Figure 8a, where only orange
points are positioned above the green line.

To verify that external packet loss does not affect Penny’s accu-
racy, we repeat the experiments with random link losses in addition
to Penny’s drops. Since TCP struggles to make progress when the
loss rate exceeds 10%, we experiment with random link losses of
1%, 3%, 6%, 9%, and 12%, upstream of Penny (it will see gaps, then
out-of-order packets), downstream of Penny (it will see duplicates),
or both. Penny always correctly classifies the traffic as closed-loop.

We also re-run a sample of the above tests with different TCP
congestion control algorithms including LinuxReno, NewReno and
Cubic, as well as different retransmission strategies, such as enabling
and disabling SACK. We also test both RED and tail-drop queuing.
The results remain the same.

The packet drop test is always correct in the absence of closed-
loop traffic. We run 10,000 experiments with aggregates comprising
only spoofed traffic. We mimic 1,000 flows using different source-
destination addresses and with increasing sequence numbers. To try
and defeat the test, spoofing sources duplicate every packet with
a probability of 14.9%, just below Penny’s 𝑓𝑑𝑢𝑝 threshold of 15%.
This is a worst-case scenario, since it maximizes the chances that
blind duplicates look to Penny like retransmissions.

When testing the traffic aggregate, Penny always reaches a con-
clusion after dropping exactly 𝑛𝑚𝑖𝑛𝐷𝑅𝑂𝑃 = 12 packets. It always
reports the tested traffic as spoofed, or it hits the threshold for an
excessive number of duplicates3. Figure 8c shows that there are
incorrect decisions below the 12-drops line, where the spoofer’s
duplicate strategy would have defeated the test, but none above.

What can we conclude from this result? First, it is important that
Penny never finds a closed-loop aggregate when there are no closed-
loop flows. But can we conclude that the aggregate is spoofed?
Unfortunately, as we will see below when we discuss mixtures of
spoofed and closed-loop flows, for our purposes we cannot trust the

3we may exceed 𝑓𝑑𝑢𝑝 in some experiments because sources randomly decide if to
duplicate a packet or not.

319



ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia P. Gigis et al.

2 4 6 8 10 12 14 16
Flow completion time (in secs)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

Penny disabled
Penny enabled

(a) Penny’s impact when run on aggregates of 100 x 1MB flows.
This is the only impact for aggregates classified as closed-loop.
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(b) Penny’s impact when run on individual flows – e.g., within
aggregates with high volume of spoofed traffic.

Figure 9: Penny has limited impact on genuine, closed-loop traffic.

aggregate test when it concludes the aggregate is spoofed. In such
cases Penny switches to test individual flows (see Section 5).

Where there are really no closed-loop flows, as in Figure 8c,
in 99.9992% of the cases, Penny’s individual flow test correctly
finds no closed-loop flow. In the remaining 0.0008% cases, it incor-
rectly classifies one flow from the entire aggregate as closed-loop.
This broadly agrees with the probabilities analytically computed in
Figure 7, given that millions of flows are analyzed across our experi-
ments. Even in these cases, Penny correctly classifies the aggregate
as spoofed, since 𝑛𝑚𝑖𝑛𝐺𝐸𝑁𝑈 𝐼𝑁𝐸 = 2.

In addition to synthetic traffic, we experiment with all the CAIDA
traces [7] collected between 2014 and 2017. As these are recorded
traces, there is no live sender to retransmit, so we replay them in
an open-loop fashion. The goal is to check Penny’s behavior in the
presence of weird traffic patterns seen in the Internet. Penny always
correctly concludes that the replayed traffic is not closed-loop.

The packet drop test does find long closed-loop flows even when
spoofed traffic is prevalent. We finally run simulations with aggre-
gates with both closed-loop flows and spoofed traffic. Once again, we
experiment with Penny’s worst-case scenario. In this case, spoofed
traffic never includes any duplicate packet: this maximizes the num-
ber of dropped packets not being retransmitted, and hence attempts to
bias Penny towards concluding that the entire aggregate is spoofed.

The outcome with mixed traffic aggregates depends on the frac-
tion of packets in closed-loop flows, while per-flow tests depend on
the fraction of closed-loop flows. We therefore evaluate scenarios
where only 10%-20% of the flows per aggregate are closed-loop,
and packets from closed-loop flows represent 50%, 20% and 10%
of the total traffic in the tested aggregate. For each of these packet
ratios, we run 10,000 experiments. Each closed-loop flow contains
enough packets for the test to reach a conclusion on that flow.

Figure 8b shows that with 50% of the traffic spoofed, Penny
concludes that the aggregate includes closed-loop traffic in many
cases, but far from always. This effect is more pronounced when 80%
or 90% of the traffic is spoofed (see Appendix B). Penny switches to

testing individual flows when the aggregate is not classified as closed-
loop. In each of our experiments, Penny finds at least 𝑛𝑚𝑖𝑛𝐺𝐸𝑁𝑈 𝐼𝑁𝐸
= 2 closed-loop flows, and hence correctly concludes that the mixed
aggregates include closed-loop traffic.

6.2 Practicality
We now evaluate the practicality of Penny, in terms of both impact
on user performance and implementability.

Flow performance degradation. We don’t expect packet drop
tests need to be run very often, but when they are run, we want the
impact on end users to be minimal. We run experiments using the
same topology, flow sizes, bottleneck and RTT, with and without
Penny running a drop test, and compare the flow completion times.
We first start background traffic that fills the bottleneck, then start
a hundred flows from the aggregate to be tested with start times
randomized over one second.

If most traffic in an aggregate is closed-loop, Penny’s aggregate
test directly reaches a correct conclusion with negligible impact on
flow completion times, as shown in Figure 9a. The impact is so small
because Penny drops only 𝑛𝑚𝑖𝑛𝐷𝑅𝑂𝑃 = 12 packets in total, which
typically affects only 12 flows, causing one packet drop per flow.

When Penny concludes that the aggregate traffic is spoofed, it
switches to collecting 𝑛𝑠𝑖𝑛𝑔𝑙𝑒𝐶𝐻𝐸𝐶𝐾 (100 by default) test results
from individual flows. Given that the aggregate was originally clas-
sified as spoofed, only some of the individually tested flows are
likely to be closed-loop. What is the impact of Penny on the few
closed-loop flows Penny does test?

Figure 9b shows the impact of Penny testing 1MB-long Cubic
flows. Results for NewReno are similar. 1MB flows tested with
Penny take about 2-3x longer to complete. The impact on longer
transfers (not shown) is less.

We see that irrespective of whether Penny drops 1% or 5% of the
packets, the impact on flows is similar to a random loss rate of 1%
and much less than a random loss rate of 5%. Why is this so? First,

320



Bad Packets Come Back, Worse Ones Don’t ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Penny almost always reaches a conclusion after dropping 12 packets.
When Penny drops 5% of packets, it comes to a conclusion quickly
and drops no more packets allowing the flow to recover, whereas
when it drops 1% of packets it drops the same number of packets but
they are spread out through more time. In contrast, 5% random loss
keeps dropping packets throughout the flow. Second, Penny specifi-
cally selects droppable packets to minimize performance degradation
– e.g., it does not drop retransmissions.

Overall, Penny’s impact on closed-loop flows looks more than
acceptable, especially considering that Penny individually tests only
a relatively small number of unspoofed flows received at unexpected
routers, and only if they are mixed with a significant amount of
spoofed traffic. Penny is also likely to have even less impact on hosts
using modern congestion control algorithms, such as BBR [8] and
COPA [2], which are less sensitive to packet loss.

Penny deployment. Finally we’d like to understand the hardware
requirements and scalability of a Penny checker. We expect that
network resources can be easily provided for the style of deployment
envisaged in Figure 2. Packet processing is also expected to be not
very challenging. Penny requires packet processing only slightly
more complicated than forwarding in a software router, which can
be performed at around 100Gb/s per core on today’s hardware. Com-
pared to a software router, Penny needs to look up flow state and
update counters, but does not need to compute longest prefix match.

Penny does however hold per-packet state when waiting for re-
transmissions or for sequence gaps to fill. How much memory is
needed for this state? We feed our Penny implementation with an
increasing number of packets, artificially creating an increasing num-
ber of sequence gaps of various sizes, and measure how total memory
usage grows with packet count. Results indicate that the memory
consumption converges on 100-150 bytes per packet, irrespective
of the number and size of sequence gaps. For example, holding
state for 500 packets requires less than 100KB. Thus, so long as
the total packet rate being redirected is managed, a Penny checker
should easily be able to hold state to test thousands of aggregates
simultaneously. The limit is in fact more likely to be the route-map
state on the router performing the redirection.

7 Related Work
Today ISPs have very limited visibility on the traffic crossing their
networks, mainly due to the combination of high traffic volume, large
network size and lack of appropriate tools. For example, standardized
protocols like SNMP [9], Netflow [13] or sflow [37] tend to provide
aggregate information on the most popular destinations only [6].

A few recent contributions try to improve traffic visibility in
large networks. Planck [39], Everflow [46] and Stroboscope [43]
enable to control packets copied by routers to an external analyzer.
Flowyager [41] eases the analysis of pre-collected measurements.
Magnifier [6] combines sampled data and (negative) packet mirror-
ing to track traffic ingress and egress points. TIPSY [30] describes a
system to predict traffic ingress points depending on BGP announce-
ments, within a large content provider and for traffic engineering
purposes. Assuming that they could be deployed in ISP, more general
techniques, such as in-band telemetry (e.g., [31, 33]), may enable
per-flow or per-packet monitoring.

All the above approaches however focus on collecting traffic with-
out discriminating between closed-loop flows and spoofed packets.
Hence, they cannot be used to address use cases like the one depicted
in Figure 1. To support such use cases, Penny assesses the nature of
(unexpected) traffic entering at specific routers.

We note that our packet drop test can also be used to improve the
accuracy and usefulness of existing monitoring systems, as it enables
to discard spoofed traffic from the measurements that they report.
Similarly, Penny can also improve the performance and robustness of
in-router data-plane systems that analyze the forwarded traffic – e.g.,
to infer remote failures [22] or diagnose performance problems [17].

Our work is motivated by the prevalence of source spoofing in
the Internet. Many efforts have been dedicated to prevent spoofing
over the past decades, including the publication of Best Current
Practices, such as BCP38 [16] and BCP84 [3], and proposals like
SAVI [5]. Despite them, spoofing remains an unsolved problem.
Recent studies [25, 26, 29] estimate a low adoption of spoofing
mitigation techniques across the Internet. Reluctance to deploy anti-
spoofing mechanisms is primarily driven by the perceived lack of
economic benefits for ASes, as also highlighted in [28]. Given such
a status quo, it is not surprising that source spoofing is often used
within security attacks such as denial of service ones [24].

8 Discussion
We now discuss Penny’s limitations and possible extensions.

Overcoming the limitations of the packet drop test. There are a
few cases where Penny may not work well. Prominently, the individ-
ual flow drop test tends to be inconclusive when run on very short
flows (less than about 250KB). If an aggregate consists primarily
of short closed-loop flows, this will not be a problem—we drop a
few packets from many different flows—but if a small number of
closed-loop flows are mixed with a large amount of spoofed traf-
fic, Penny will be unlikely to find them. In practice, this may not
matter—the unspoofed traffic may be too little to care about—but if
it does matter, there are several options available.

If the drop test is run periodically (e.g., daily) on traffic classified
as spoofed, Penny will likely detect closed-loop traffic eventually.
The rationale is that spoofed traffic tends to be part of a specific
attack, so will only last for a limited time, whereas legitimate traffic
tends to be more persistent.

A further option is to combine Penny drop tests with other tech-
niques such as those discussed in Section 2, in spite of their draw-
backs. Suppose for example that a aggregate test says “spoofed”, but
the individual flow tests are inconclusive because all the flows are
too short. The main drawbacks of the NAT test are for longer flows -
rerouting events are very unlikely during a very short flow. We can
NAT the next flows from this aggregate and get a reliable conclusion
rapidly. In such cases it would be advisable to avoid testing flows
for protocols known to embed IP addresses, notably SIP and FTP.

Dealing with QUIC. Penny can directly test any flow aggregate
that includes some TCP flows. While QUIC [23] is quickly growing
in popularity, we don’t expect that many traffic aggregates seen
by transit ISPs will, anytime soon, include only QUIC packets.
However, if this happens, we can also adapt Penny.
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Dropping packets in the middle of a QUIC flow is not useful
because packets are fully encrypted and we cannot recognize their
retransmissions. We can however drop packets in the connection
handshake (i.e., QUIC client hellos) as they can be distinguished
from other packets [42]. We note that to open a connection, QUIC
clients often simultaneously send both a 0-RTT hello packet (piggy-
backing on a previous connection) and a regular 1-RTT one. When
this happens, both packets would need to be dropped. If we drop
the first packet or packets of a QUIC flow, one of two things is
likely to happen: either the client will retransmit the initial packet,
or the client may switch to TCP [27]. In both cases, we can apply
Penny’s statistical approach. Dropping handshake packets causes
higher performance degradation because retransmission timers for
them tend to be set conservatively high. This means that our test
might have a higher impact on QUIC applications than on TCP ones.

Preventing abuses of Penny. Since Penny is a traffic-based system,
one of our design goals is robustness to worst-case traffic patterns,
including those generated by current and future malicious users.
Indeed, if Penny were to be employed in production networks to
make traffic-related or business decisions, multiple actors may have
incentives to bias, abuse or circumvent its tests. In Figure 1b, for
example, AS3 may have economic incentives to prevent AS1 from
detecting that the depicted traffic is closed-loop. To do so, AS3 may
want to induce AS1’s operators to ignore alerts from Penny.

As discussed in Section 5, what we really need to avoid is Penny
misclassifying spoofed traffic as closed-loop, since this would trig-
ger false alerts. Our design comes with statistical guarantees on
its robustness against worst-case open-loop traffic, mimicking TCP
flows and including a high number of unsolicited packet duplicates
that can be confused with retransmissions. To our knowledge, such
traffic patterns are not observed in the current Internet because cur-
rent spoofers have no reason to generate them. However, providing
worst-case guarantees can be instrumental both to incentivize Penny
deployment and to make its design resilient against future malicious
users who may target Penny.

On the other hand, we do not prevent attempts of malicious users
to bypass Penny drop tests. For example, spoofers can send UDP
traffic, or trains of out-of-order TCP packets: they are always ignored
by Penny. This is aligned with Penny’s objective, which is to spot
closed-loop traffic, not to detect spoofing.

We can think of only one setting where spoofing can be actually
detrimental to Penny: if a malicious user generates closed-loop traffic
but spoofing the source address4. To do so, the attacker needs to
have access to the machine with the spoofed source address, and to
generate traffic from a different machine, in another location. For
example, in Figure 1c, an attacker in AS5 can generate closed-loop
spoofed traffic if they also have access to hosts in AS2 that report
information about lost packets to the traffic sources in AS5.

We cannot see any motivation to generate closed-loop spoofed
traffic, or any justification for its costs and complexity, other than to
confuse Penny or similar systems. Assuming however that doing so
might be worthwhile in the future Internet, Penny can trade test speed
for further increased attack costs. For example, we can configure

4as long as it is not spoofed, other closed-loop malicious traffic (e.g., involved in
volumetric or reflection attacks) is not problematic for Penny, since it carries information
about inter-domain traffic paths that Penny aims at exposing (see Figure 1).

Penny to send alerts to the operators only when detecting closed-
loop traffic from many sources with different IP addresses, or for
stronger assurance, from multiple sources in different ASes. This
would require the attacker to control multiple real hosts whose traffic
to a specific destination enters the network running Penny at the
same ingress port.

Detecting closed-loop flows as a network primitive. Penny is
designed to reliably detect unexpected traffic paths such as the one
in Figure 1 or in Appendix A, but we envision that its applicability
can be broader in at least two ways.

On the one hand, identifying aggregates with closed-loop flows
can be used to improve the accuracy and effectiveness of basically
any traffic measurement and monitoring system deployed at an ISP.
Penny drop tests allow measurements taken on misbehaving, likely
spoofed traffic to be disregarded, as discussed in Section 7.

On the other hand, the packet drop test can be re-purposed to focus
on spoofed traffic, with security applications such as de-prioritizing
or discarding spoofed traffic destined to the ISP’s customers. Refo-
cusing on spoofed traffic, however, requires revisiting our design and
implementation choices. For example, for this use we would need
to avoid biasing the test towards finding closed-loop flows hidden
among spoofed flows in an aggregate, as we do in Penny. Focusing
on spoofed traffic would also come with tighter time constraints. We
plan to further explore this perspective in future work.

9 Conclusions
Can an ISP know if traffic arriving at an unexpected ingress point
is something to raise an alert over, or just background noise from
spoofing? Before answering, consider that ISPs know very little
about the traffic they provide transit for. For example, for each
received TCP flow, they typically only see packets sent by one
endpoint, don’t know external network conditions such as the RTT,
bottleneck bandwidth, or packet loss rate, and don’t have any control
over the end hosts.

In this paper, we present Penny, a system that identifies closed-
loop, and hence not spoofed, TCP traffic. Penny has a statistical core
that balances observations on retransmitted and non-retransmitted
packets with unsolicited duplicates, and works under minimal as-
sumptions about traffic senders. Its implementation includes mech-
anisms to deal with practical factors such as TCP quirks, lack of
visibility on external network conditions, and presence of spoofers
deliberately trying to bypass our system.

Our evaluation shows that Penny accurately and reliably identifies
aggregates containing non-spoofed TCP flows, even when those
flows are mixed with high rates of spoofed traffic from the same
source IP prefix. Penny remains accurate under many different net-
work conditions, and has a very limited impact on the performance
of the tested flows.

This work does not raise any ethical issues.
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APPENDIX
Appendices are supporting material that has not been peer-reviewed.

A Additional Use Cases
We now describe use cases for Penny additional to the one shown in
Figure 1. We always take the perspective of AS1.

A.1 Unprofitable paths: another example
In Figure 10, an AS1 router located in the United States (US) receives
traffic from source IPs geo-located in Europe (EU), within AS3, and
destination IP owned by European-only ISP, AS2. The traffic is
forwarded to AS1 by its provider AS5. The received traffic has a
significant cost for AS1, since it has to be carried from US to EU
within AS1 own network, over internal links (including expensive
transatlantic ones).

Such a cost can be avoided if the traffic source is actually located
in EU, as shown in Figure 10b. Indeed, AS5 could forward the
traffic over the EU link instead carrying it internally from EU to US
(which has a cost to AS5) and then forwarding it to AS1 over the
US link. Note that sending traffic directly over the EU link would be
economically attractive for AS5 as well; in fact, the current traffic
path may be just the consequence of an AS5 router misconfiguration.
In this case, AS1 may want to contact AS5 operators, and ask them
information about the traffic displayed in the figure. Obviously,
there is no need to further investigate the received traffic if it is
spoofed, as shown Figure 10c: doing so would even be detrimental if
network operators of multiple ASes get involved in the unnecessary
troubleshooting.

The above discussion highlights a clear need to identify unex-
pected ingress traffic which is not source-spoofed. Penny can do so
accurately, robustly and with minimal impact on the tested traffic.

A.2 Security: BGP hijack detection
In Figure 11, AS1 knows that its peer AS3 has economic incentives
to send traffic for IPs owned by AS1, over the direct link AS3-AS1.
Indeed, the BGP route announced by AS1 over such direct link is
the shortest peer route towards AS1 IP prefixes. This route is also
the best route that AS3 can learn, given that AS3 will only receive
peer and provider routes for these prefixes – assuming that AS3
customers are correctly configured and do not provide transit to it.

Receiving non-spoofed traffic sourced at AS3 from its provider
AS5 may be due to a BGP hijack such as the one shown in Figure 11b.
Note that the displayed attack is invisible in the control plane if AS1
has no access to looking glasses or monitors in AS3, as also shown
in the figure. Yet, alerting on the unexpected traffic may lead to
detect and mitigate the attack if network operators of AS1 and AS3
talk to each other. Obviously, there is no need to further investigate
the received traffic if it is spoofed, as shown Figure 11c: doing so
would even be detrimental if network operators of multiple ASes get
involved in the unnecessary troubleshooting.

The above discussion highlights a clear need to identify unex-
pected ingress traffic which is not source-spoofed. Penny can do so
accurately, robustly and with minimal impact on the tested traffic.

A.3 New services: route-leak alert
Figure 12 shows how Penny enables ISPs to offer new services. In
this example, AS1 offers a (paid) service alerting AS2 for routes that
AS2 unwillingly leaks.

AS2 may in principle monitor traffic sourced at AS3 and destined
for AS5. However, each AS typically has about one million destina-
tions in its routing tables and hundreds of BGP peers, so monitoring
each combination of destination IP, ingress point, and egress point is
not cheap and not trivial. In fact, BGP misconfigurations and route
leaks do continue to happen in the Internet.

Suppose now AS1 already deploys a monitoring infrastructure
able to quickly detect unexpected inter-domain traffic paths. AS2
may be willing to give AS1 a list of networks that AS2 does not
want to provide transit for (e.g., its providers). AS1 can then quickly
flag cases where it receives from AS2 traffic sourced at any of the
networks in the list (e.g., AS3 in the figure). This would also enable
AS2 to simplify its monitoring system, provide defence in depth
against possible misconfigurations, and potentially fix them faster.
Obviously, raising alerts for spoofed traffic would only make the
service less effective and much less valuable for AS2.

The above discussion highlights a clear need to identify unex-
pected ingress traffic which is not source-spoofed. Penny can do so
accurately, robustly and with minimal impact on the tested traffic.

B Additional Experimental Results
We now report results of the sensitivity analyses we performed in
addition to the ones discussed in Section 6.

B.1 Dealing with worst-case traffic patterns
Figure 13 shows the worst-case probability for Penny to misclas-
sify spoofed traffic for 𝑝𝑑𝑟𝑜𝑝 values different from the default 5%,
which is displayed in Figure 7. The figures report the worst-case
probabilities for any number of duplicates less or equal to 15% of
the maximum x value in the plots, as more duplicates would exceed
Penny duplicate threshold 𝑓𝑑𝑢𝑝 .

Note that the relationship between the expected number of dropped
packets and Penny worst-case error probability is basically preserved
across different values of 𝑓𝑑𝑢𝑝 . Notably, such an error probability is
around 10−4 for 12 packet drops, consistently with Figure 7 and our
choice of the default value for 𝑛𝑚𝑖𝑛𝐷𝑅𝑂𝑃 . Indeed, 12 is the expected
number of packet drops for 400 droppable packets with 𝑝𝑑𝑟𝑜𝑝 = 3%,
and for 1200 droppable packets with 𝑝𝑑𝑟𝑜𝑝 = 1%.

B.2 Penny’s accuracy for mixed traffic aggregates
Figure 14 illustrates the results of Penny for traffic aggregates with a
proportion of closed-loop flows different from Figure 8. As expected,
higher rate of spoofed traffic increase the likelihood that Penny clas-
sify the aggregate as spoofed. When this happens, Penny switches
to testing individual flows. In our experiments, Penny always finds
the closed-loop flows in the aggregates even when they account for
only 20% or 10% of the packets in the aggregate.
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Figure 10: By identifying closed-loop, non-spoofed ingress traffic, Penny enables ISPs (e.g., AS1) to detect unprofitable paths, such as
the long, expensive internal path that AS5 forces AS1 to forward the traffic on in this figure.
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Figure 11: By identifying closed-loop, non-spoofed ingress traffic, Penny enables ISPs (e.g., AS1) to detect hijacks not visible in the
control plane.
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Figure 12: By identifying closed-loop, non-spoofed ingress traffic, Penny enables ISPs (e.g., AS1) to offer additional services to their
customers. In this example, AS1 can alert AS2 about route leaks occurring at AS2.
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ber of duplicates between 2 and 60.
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Figure 13: Worst-case probability for Penny to misclassify spoofed traffic as closed-loop with 𝑝𝑑𝑟𝑜𝑝 values different from the default
5%.

Figure 14: Accuracy of Penny’s statistical model when (a) 20% of the traffic originates from closed-loop flows and (b) when 10% of the
traffic comes from closed-loop flows.
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