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The nature of the last universal common ancestor (LUCA), its age and its impact 
on the Earth system have been the subject of vigorous debate across diverse 
disciplines, often based on disparate data and methods. Age estimates for LUCA 
are usually based on the fossil record, varying with every reinterpretation. 
The nature of LUCA’s metabolism has proven equally contentious, with some 
attributing all core metabolisms to LUCA, whereas others reconstruct a 
simpler life form dependent on geochemistry. Here we infer that LUCA lived 
~4.2 Ga (4.09–4.33 Ga) through divergence time analysis of pre-LUCA gene 
duplicates, calibrated using microbial fossils and isotope records under a 
new cross-bracing implementation. Phylogenetic reconciliation suggests 
that LUCA had a genome of at least 2.5 Mb (2.49–2.99 Mb), encoding around 
2,600 proteins, comparable to modern prokaryotes. Our results suggest 
LUCA was a prokaryote-grade anaerobic acetogen that possessed an 
early immune system. Although LUCA is sometimes perceived as living in 
isolation, we infer LUCA to have been part of an established ecological system. 
The metabolism of LUCA would have provided a niche for other microbial 
community members and hydrogen recycling by atmospheric photo
chemistry could have supported a modestly productive early ecosystem.

The common ancestry of all extant cellular life is evidenced by the uni-
versal genetic code, machinery for protein synthesis, shared chirality 
of the almost-universal set of 20 amino acids and use of ATP as a com-
mon energy currency1. The last universal common ancestor (LUCA) is 
the node on the tree of life from which the fundamental prokaryotic 
domains (Archaea and Bacteria) diverge. As such, our understanding of 
LUCA impacts our understanding of the early evolution of life on Earth. 
Was LUCA a simple or complex organism? What kind of environment did 

it inhabit and when? Previous estimates of LUCA are in conflict either 
due to conceptual disagreement about what LUCA is2 or as a result of dif-
ferent methodological approaches and data3–9. Published analyses dif-
fer in their inferences of LUCA’s genome, from conservative estimates of 
80 orthologous proteins10 up to 1,529 different potential gene families4. 
Interpretations range from little beyond an information-processing 
and metabolic core6 through to a prokaryote-grade organism with 
much of the gene repertoire of modern Archaea and Bacteria8, recently 
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(ILN)31,32 relaxed-clock models with our partitioned dataset (GBM, 
4.18–4.33 Ga; ILN, 4.09–4.32 Ga; Fig. 1) fall within our composite age 
estimate for LUCA ranging from 3.94 Ga to 4.52 Ga, comparable to pre-
vious studies13,18,33. Dating analyses based on single genes, or concatena-
tions that excluded each gene in turn, returned compatible timescales 
(Extended Data Figs. 1 and 2 and ‘Additional methods’ in Methods).

LUCA’s physiology
To estimate the physiology of LUCA, we first inferred an updated micro-
bial phylogeny from 57 phylogenetic marker genes (see ‘Universal 
marker genes’ in Methods) on 700 genomes, comprising 350 Archaea 
and 350 Bacteria15. This tree was in good agreement with recent phylo
genies of the archaeal and bacterial domains of life34,35. For example, 
the TACK36 and Asgard clades of Archaea37–39 and Gracilicutes within 
Bacteria40,41 were recovered as monophyletic. However, the analysis 
was equivocal as to the phylogenetic placement of the Patescibacteria 
(CPR)42 and DPANN43, which are two small-genome lineages that have 
been difficult to place in trees. Approximately unbiased44 tests could 
not distinguish the placement of these clades, neither at the root of 
their respective domains nor in derived positions, with CPR sister to 
Chloroflexota (as reported recently in refs. 35,41,45) and DPANN sister 
to Euryarchaeota. To account for this phylogenetic uncertainty, we 
performed LUCA reconstructions on two trees: our maximum likeli-
hood (ML) tree (topology 1; Extended Data Fig. 3) and a tree in which 
CPR were placed as the sister of Chloroflexota, with DPANN sister to all 
other Archaea (topology 2; Extended Data Fig. 4). In both cases, the gene 
families mapped to LUCA were very similar (correlation of LUCA pres-
ence probabilities (PP), r = 0.6720275, P < 2.2 × 10−16). We discuss the 
results on the tree with topology 2 and discuss the residual differences 
in Supplementary Information, ‘Topology 1’ (Supplementary Data 1).

We used the probabilistic gene- and species-tree reconciliation 
algorithm ALE46 to infer the evolution of gene family trees for each 
sampled entry in the KEGG Orthology (KO) database47 on our species 
tree. ALE infers the history of gene duplications, transfers and losses 
based on a comparison between a distribution of bootstrapped gene 
trees and the reference species tree, allowing us to estimate the prob-
ability that the gene family was present at a node in the tree35,48,49. This 
reconciliation approach has several advantages for drawing inferences 
about LUCA. Most gene families have experienced gene transfer since 
the time of LUCA50,51 and so explicitly modelling transfers enables us 
to include many more gene families in the analysis than has been pos-
sible using previous approaches. As the analysis is probabilistic, we can 
also account for uncertainty in gene family origins and evolutionary 
history by averaging over different scenarios using the reconcilia-
tion model. Using this approach, we estimated the probability that 
each KEGG gene family (KO) was present in LUCA and then used the 
resulting probabilities to construct a hypothetical model of LUCA’s 
gene content, metabolic potential (Fig. 2) and environmental context 
(Fig. 3). Using the KEGG annotation is beneficial because it allows us to 
connect our inferences to curated functional annotations; however, it 
has the drawback that some widespread gene families that were likely 
present in LUCA are divided into multiple KO families that individually 
appear to be restricted to particular taxonomic groups and inferred 
to have arisen later. To account for this limitation, we also performed 
an analysis of COG (Clusters of Orthologous Genes)52 gene families, 
which correspond to more coarse-grained functional annotations 
(Supplementary Data 2).

Genome size and cellular features
By using modern prokaryotic genomes as training data, we used a pre-
dictive model to estimate the genome size and the number of protein 
families encoded by LUCA based on the relationship between the num-
ber of KEGG gene families and the total number of proteins encoded 
by modern prokaryote genomes (Extended Data Figs. 5 and 6). On the 
basis of the PPs for KEGG KO gene families, we identified a conservative 

reviewed in ref. 7. Here we use molecular clock methodology, horizontal 
gene-transfer-aware phylogenetic reconciliation and existing biogeo-
chemical models to address questions about LUCA’s age, gene content, 
metabolism and impact on the early Earth system.

Estimating the age of LUCA
Life’s evolutionary timescale is typically calibrated to the oldest 
fossil occurrences. However, the veracity of fossil discoveries from 
the early Archaean period has been contested11,12. Relaxed Bayesian 
node-calibrated molecular clock approaches provide a means of inte-
grating the sparse fossil and geochemical record of early life with the 
information provided by molecular data; however, constraining LUCA’s 
age is challenging due to limited prokaryote fossil calibrations and 
the uncertainty in their placement on the phylogeny. Molecular clock 
estimates of LUCA13–15 have relied on conserved universal single-copy 
marker genes within phylogenies for which LUCA represented the root. 
Dating the root of a tree is difficult because errors propagate from the 
tips to the root of the dated phylogeny and information is not available 
to estimate the rate of evolution for the branch incident on the root 
node. Therefore, we analysed genes that duplicated before LUCA with 
two (or more) copies in LUCA’s genome16. The root in these gene trees 
represents this duplication preceding LUCA, whereas LUCA is repre-
sented by two descendant nodes. Use of these universal paralogues 
also has the advantage that the same calibrations can be applied at least 
twice. After duplication, the same species divergences are represented 
on both sides of the gene tree17,18 and thus can be assumed to have the 
same age. This considerably reduces the uncertainty when genetic 
distance (branch length) is resolved into absolute time and rate. When 
a shared node is assigned a fossil calibration, such cross-bracing also 
serves to double the number of calibrations on the phylogeny, improv-
ing divergence time estimates. We calibrated our molecular clock analy-
ses using 13 calibrations (see ‘Fossil calibrations’ in Supplementary 
Information). The calibration on the root of the tree of life is of particu-
lar importance. Some previous studies have placed a younger maximum 
constraint on the age of LUCA based on the assumption that life could 
not have survived Late Heavy Bombardment (LHB) (~3.7–3.9 billion 
years ago (Ga))19. However, the LHB hypothesis is extrapolated and 
scaled from the Moon’s impact record, the interpretation of which 
has been questioned in terms of the intensity, duration and even the 
veracity of an LHB episode20–23. Thus, the LHB hypothesis should not be 
considered a credible maximum constraint on the age of LUCA. We used 
soft-uniform bounds, with the maximum-age bound based on the time 
of the Moon-forming impact (4,510 million years ago (Ma) ± 10 Myr), 
which would have effectively sterilized Earth’s precursors, Tellus and 
Theia13. Our minimum bound on the age of LUCA is based on low δ98Mo 
isotope values indicative of Mn oxidation compatible with oxygenic 
photosynthesis and, therefore, total-group Oxyphotobacteria in the 
Mozaan Group, Pongola Supergroup, South Africa24,25, dated minimally 
to 2,954 Ma ± 9 Myr (ref. 26).

Our estimates for the age of LUCA are inferred with a concatenated 
and a partitioned dataset, both consisting of five pre-LUCA paralogues: 
catalytic and non-catalytic subunits from ATP synthases, elongation 
factor Tu and G, signal recognition protein and signal recognition par-
ticle receptor, tyrosyl-tRNA and tryptophanyl-tRNA synthetases, and 
leucyl- and valyl-tRNA synthetases27. Marginal densities (commonly 
referred to as effective priors) fall within calibration densities (that 
is, user-specified priors) when topologically adjacent calibrations do 
not overlap temporally, but may differ when they overlap, to ensure 
the relative age relationships between ancestor-descendant nodes. 
We consider the marginal densities a reasonable interpretation of the 
calibration evidence given the phylogeny; we are not attempting to test 
the hypothesis that the fossil record is an accurate temporal archive 
of evolutionary history because it is not28. The duplicated LUCA node 
age estimates we obtained under the autocorrelated rates (geomet-
ric Brownian motion (GBM))29,30 and independent-rates log-normal 
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Fig. 1 | Timetree inferred under a Bayesian node-dating approach with cross-
bracing using a partitioned dataset of five pre-LUCA paralogues. Our results 
suggest that LUCA lived around 4.2 Ga, with a 95% confidence interval spanning 
4.09–4.33 Ga under the ILN relaxed-clock model (orange) and 4.18–4.33 Ga under 
the GBM relaxed-clock model (teal). Under a cross-bracing approach, nodes 
corresponding to the same species divergences (that is, mirrored nodes) have 

the same posterior time densities. This figure shows the corresponding posterior 
time densities of the mirrored nodes for the last universal, archaeal, bacterial 
and eukaryotic common ancestors (LUCA, LACA, LBCA and LECA, respectively); 
the last common ancestor of the mitochondrial lineage (Mito-LECA); and the last 
plastid-bearing common ancestor (LPCA). Purple stars indicate nodes calibrated 
with fossils. Arc, Archaea; Bac, Bacteria; Euk, Eukarya.
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subset of 399 KOs that were likely to be present in LUCA, with PPs ≥0.75, 
and found in both Archaea and Bacteria (Supplementary Data 1); these 
families form the basis of our metabolic reconstruction. However, by 
integrating over the inferred PPs of all KO gene families, including 
those with low probabilities, we also estimate LUCA’s genome size. Our 
predictive model estimates a genome size of 2.75 Mb (2.49–2.99 Mb) 
encoding 2,657 (2,451–2,855) proteins (Methods). Although we can 
estimate the number of genes in LUCA’s genome, it is more difficult to 
identify the specific gene families that might have already been present 
in LUCA based on the genomes of modern Archaea and Bacteria. It is 
likely that the modern version of the pathways would be considered 
incomplete based on LUCA’s gene content through subsequent evolu-
tionary changes. We should therefore expect reconstructions of meta-
bolic pathways to be incomplete due to this phylogenetic noise and 
other limitations of the analysis pipeline. For example, when looking 
at genes and pathways that can uncontroversially be mapped to LUCA, 
such as the ribosome and aminoacyl-tRNA synthetases for implement-
ing the genetic code, we find that we map many (but not all) of the  
key components to LUCA (see ‘Notes’ in Supplementary Information). 
We interpret this to mean that our reconstruction is probably incom-
plete but our interpretation of LUCA’s metabolism relies on our infer-
ence of pathways, not individual genes.

The inferred gene content of LUCA suggests it was an anaerobe 
as we do not find support for the presence of terminal oxidases (Sup-
plementary Data 1). Instead we identified almost all genes encoding 
proteins of the archaeal (and most of the bacterial) versions of the 
Wood–Ljungdahl pathway (WLP) (PP > 0.7), indicating that LUCA had 
the potential for acetogenic growth and/or carbon fixation53–55 (Sup-
plementary Data 3). LUCA encoded some NiFe hydrogenase subunits 
(K06281, PP = 0.90; K14126, PP = 0.92), which may have enabled growth 

on hydrogen (see ‘Notes’ in Supplementary Information). Complexes 
involved in methanogenesis such as methyl-coenzyme M reductase 
and tetrahydromethanopterin S-methyltransferase were inferred to 
be absent, suggesting that LUCA was unlikely to function as a modern 
methanogen. We found strong support for some components of the 
TCA cycle (including subunits of oxoglutarate/2-oxoacid ferredoxin 
oxidoreductase (K00175 and K00176), succinate dehydrogenase 
(K00239) and homocitrate synthase (K02594)), although some steps 
are missing. LUCA was probably capable of gluconeogenesis/glyco-
lysis in that we find support for most subunits of enzymes involved 
in these pathways (Supplementary Data 1 and 3). Considering the 
presence of the WLP, this may indicate that LUCA had the ability to 
grow organoheterotrophically and potentially also autotrophically. 
Gluconeogenesis would have been important in linking carbon fixa-
tion to nucleotide biosynthesis via the pentose phosphate pathway, 
most enzymes of which seem to be present in LUCA (see ‘Notes’ in 
Supplementary Information). We found no evidence that LUCA was 
photosynthetic, with low PPs for almost all components of oxygenic 
and anoxygenic photosystems (Supplementary Data 3).

We find strong support for the presence of ATP synthase, speci
fically, the A (K02117, PP = 0.98) and B (K02118, PP = 0.94) subunit 
components of the hydrophilic V/A1 subunit, and the I (subunit a, 
K02123, PP = 0.99) and K (subunit c, K02124, PP = 0.82) subunits of 
the transmembrane V/A0 subunit. In addition, if we relax the sampling 
threshold, we also infer the presence of the F1-type β-subunit (K02112, 
PP = 0.94). This is consistent with many previous studies that have 
mapped ATP synthase subunits to LUCA6,17,18,56,57.

We obtain moderate support for the presence of pathways for 
assimilatory nitrate (ferredoxin-nitrate reductase, K00367, PP = 0.69; 
ferredoxin-nitrite reductase, K00367, PP = 0.53) and sulfate reduction 
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Fig. 2 | Probabilistic estimates of metabolic networks from modern life that 
were present in LUCA. In black: enzymes and metabolic pathways inferred to 
be present in LUCA with at least PP = 0.75, with sampling in both prokaryotic 
domains. In grey: those inferred in our least-stringent threshold of PP = 0.50.  

The analysis supports the presence of a complete WLP and an almost complete 
TCA cycle across multiple confidence thresholds. Metabolic maps derived  
from KEGG47 database through iPath109. GPI, glycosylphosphatidylinositol;  
DDT, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane .
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Fig. 3 | A reconstruction of LUCA, within its evolutionary and ecological 
context. a, A representation of LUCA based on our ancestral gene content 
reconstruction. Gene names in black have been inferred to be present in LUCA 
under the most-stringent threshold (PP = 0.75, sampled in both domains); 
those in grey are present at the least-stringent threshold (PP = 0.50, without a 
requirement for presence in both domains). b, LUCA in the context of the tree  
of life. Branches on the tree of life that have left sampled descendants today  
are coloured black, those that have left no sampled descendants are in grey.  
As the common ancestor of extant cellular life, LUCA is the oldest node that can 
be reconstructed using phylogenetic methods. It would have shared the early 
Earth with other lineages (highlighted in teal) that have left no descendants 
among sampled cellular life today. However, these lineages may have left a  
trace in modern organisms by transferring genes into the sampled tree of life  

(red lines) before their extinction. c, LUCA’s chemoautotrophic metabolism 
probably relied on gas exchange with the immediate environment to achieve 
organic carbon (Corg) fixation via acetogenesis and it may also have run the 
metabolism in reverse. d, LUCA within the context of an early ecosystem. The CO2 
and H2 that fuelled LUCA’s plausibly acetogenic metabolism could have come 
from both geochemical and biotic inputs. The organic matter and acetate that 
LUCA produced could have created a niche for other metabolisms, including 
ones that recycled CO2 and H2 (as in modern sediments). e, LUCA in an Earth 
system context. Acetogenic LUCA could have been a key part of both surface and 
deep (chemo)autotrophic ecosystems, powered by H2. If methanogens were also 
present, hydrogen would be released as CH4 to the atmosphere, converted to H2 
by photochemistry and thus recycled back to the surface ecosystem, boosting its 
productivity. Ferm., fermentation.
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(sulfate adenylyltransferase, K00957, PP = 0.80, and K00958, PP = 0.73; 
sulfite reductase, K00392, PP = 0.82; phosphoadenosine phospho-
sulfate reductase, K00390, PP = 0.56), probably to fuel amino acid 
biosynthesis, for which we inferred the presence of 37 partially com-
plete pathways.

We found support for the presence of 19 class 1 CRISPR–Cas 
effector protein families in the genome of LUCA, including types I 
and III (cas3, K07012, PP = 0.80, and K07475, PP = 0.74; cas10, K07016, 
PP = 0.96, and K19076, PP = 0.67; and cas7, K07061, PP = 0.90, K09002, 
PP = 0.84, K19075, PP = 0.97, K19115, PP = 0.98, and K19140, PP = 0.80). 
The absence of Cas1 and Cas2 may suggest LUCA encoded an early Cas 
system with the means to deliver an RNA-based immune response by 
cutting (Cas6/Cas3) and binding (CSM/Cas10) RNA, but lacking the full 
immune-system-site CRISPR. This supports the idea that the effector 
stage of CRISPR–Cas immunity evolved from RNA sensing for signal 
transduction, based on the similarities in RNA binding modules of the 
proteins58. This is consistent with the idea that cellular life was already 
involved in an arms race with viruses at the time of LUCA59,60. Our results 
indicate that an early Cas system was an ancestral immune system of 
extant cellular life.

Altogether, our metabolic reconstructions suggest that LUCA 
was a relatively complex organism, similar to extant Archaea and 
Bacteria6,7. On the basis of ancient duplications of the Sec and ATP 
synthase genes before LUCA, along with high PPs for key components 
of those systems, membrane-bound ATP synthase subunits, genes 
involved in peptidoglycan synthesis (mraY, K01000; murC, K01924) 
and the cytoskeletal actin-like protein, MreB (K03569) (Supplemen-
tary Data 3), it is highly likely that LUCA possessed the core cellular 
apparatus of modern prokaryotic life. This might include the basic 
constituents of a phospholipid membrane, although our analysis did 
not conclusively establish its composition. In particular, we recov-
ered the following enzymes involved in the synthesis of ether and 
ester lipids, (alkyldihydroxyacetonephosphate synthase, glycerol 
3-phosphate and glycerol 1-phosphate) and components of the meva-
lonate pathway (mevalonate 5-phosphate dehydratase (PP = 0.84), 
hydroxymethylglutaryl-CoA reductase (PP = 0.52), mevalonate kinase 
(PP = 0.51) and hydroxymethylglutaryl-CoA synthase (PP = 0.51)).

Compared with previous estimates of LUCA’s gene content, we 
find 81 overlapping COG gene families with the consensus dataset of 
ref. 7 and 69 overlapping KOs with the dataset of ref. 6. Key points of 
agreement between previous studies include the presence of signal rec-
ognition particle protein, ffh (COG0541, K03106)7 used in the targeting 
and delivery of proteins for the plasma membrane, a high number of 
aminoacyl-tRNA synthetases for amino acid synthesis and glycolysis/
gluconeogenesis enzymes.

Ref. 6 inferred LUCA to be a thermophilic anaerobic autotroph 
using the WLP for carbon fixation based on the presence of a single 
enzyme (CODH), and similarly suggested that LUCA was capable of 
nitrogen fixation using a nitrogenase. Our reconstruction agrees with 
ref. 6 that LUCA was an anaerobic autotroph using the WLP for carbon 
fixation, but we infer the presence of a much more complete WLP than 
that previously obtained. We did not find strong evidence for nitroge-
nase or nitrogen fixation, and the reconstruction was not definitive with 
respect to the optimal growth environment of LUCA.

We used a probabilistic approach to reconstruct LUCA—that is, we 
estimated the probability with which each gene family was present in 
LUCA based on a model of how gene families evolve along an overarch-
ing species tree. This approach differs from analyses of phylogenetic 
presence–absence profiles3,4,9 or those that used filtering criteria (such 
as broadly distributed or highly vertically evolving families) to define a 
high-confidence subset of modern genes that might have been present in 
LUCA. Our reconstruction maps many more genes to LUCA—albeit each 
with lower probability—than previous analyses8 and yields an estimate of 
LUCA’s genome size that is within the range of modern prokaryotes. The 
result is an incomplete picture of a cellular organism that was prokaryote 

grade rather than progenotic2 and that, similarly to prokaryotes today, 
probably existed as part of an ecosystem. As the common ancestor of 
sampled, extant prokaryotic life, LUCA is the oldest node on the species 
tree that we can reconstruct via phylogenomics but, as Fig. 3 illustrates, it 
was already the product of a highly innovative period in evolutionary his-
tory during which most of the core components of cells were established. 
By definition, we cannot reconstruct LUCA’s contemporaries using 
phylogenomics but we can propose hypotheses about their physiologies 
based on the reconstructed LUCA whose features immediately suggest 
the potential for interactions with other prokaryotic metabolisms.

LUCA’s environment, ecosystem and Earth system 
context
The inference that LUCA used the WLP helps constrain the environment 
and ecology in which it could have lived. Modern acetogens can grow 
autotrophically on H2 (and CO2) or heterotrophically on a wide range 
of alternative electron donors including alcohols, sugars and carbox-
ylic acids55. This metabolic flexibility is key to their modern ecological 
success. Acetogenesis, whether autotrophic or heterotrophic, has a 
low energy yield and growth efficiency (although use of the reduc-
tive acetyl-CoA pathway for both energy production and biosynthesis 
reduces the energy cost of biosynthesis). This would be consistent with 
an energy-limited early biosphere61.

If LUCA functioned as an organoheterotrophic acetogen, it was 
necessarily part of an ecosystem containing autotrophs providing 
a source of organic compounds (because the abiotic source flux of 
organic molecules was minimal on the early Earth). Alternatively, if 
LUCA functioned as a chemoautotrophic acetogen it could (in prin-
ciple) have lived independently off an abiotic source of H2 (and CO2). 
However, it is implausible that LUCA would have existed in isolation 
as the by-products of its chemoautotrophic metabolism would have 
created a niche for a consortium of other metabolisms (as in modern 
sediments) (Fig. 3d). This would include the potential for LUCA itself 
to grow as an organoheterotroph.

A chemoautotrophic acetogenic LUCA could have occupied two 
major potential habitats (Fig. 3e): the first is the deep ocean where 
hydrothermal vents and serpentinization of sea-floor provided a source 
of H2 (ref. 62). Consistent with this, we find support for the presence 
of reverse gyrase (PP = 0.97), a hallmark enzyme of hyperthermophilic 
prokaryotes6,63–65, which would not be expected if early life existed at the 
ocean surface (although the evolution of reverse gyrase is complex63; 
see ‘Reverse gyrase’ in Supplementary Information). The second habi-
tat is the ocean surface where the atmosphere would have provided a 
source of H2 derived from volcanoes and metamorphism. Indeed, we 
detected the presence of spore photoproduct lyase (COG1533, K03716, 
PP = 0.88) that in extant organisms repairs methylene-bridged thymine 
dimers occurring in spore DNA as a result of damage induced through 
ultraviolet (UV) radiation66,67. However, this gene family also occurs in 
modern taxa that neither form endospores nor dwell in environments 
where they are likely to accrue UV damage to their DNA and so is not an 
exclusive hallmark of environments exposed to UV. Previous studies 
often favoured a deep-ocean environment for LUCA as early life would 
have been better protected there from an episode of LHB. However, if 
the LHB was less intense than initially proposed20,22, or just a sampling 
artefact21, these arguments weaken. Another possibility may be that 
LUCA inhabited a shallow hydrothermal vent or a hot spring.

Hydrogen fluxes in these ecosystems could have been several times 
higher on the early Earth (with its greater internal heat source) than 
today. Volcanism today produces ~1 × 1012 mol H2 yr−1 and serpentiniza-
tion produces ~0.4 × 1012 mol H2 yr−1. With the present H2 flux and the 
known scaling of the H2 escape rate to space, an abiotic atmospheric 
concentration of H2 of ~150 ppmv is predicted68. Chemoautotrophic 
acetogens would have locally drawn down the concentration of H2  
(in either surface or deep niche) but their low growth efficiency would 
ensure H2 (and CO2) remained available. This and the organic matter and 
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acetate produced would have created niches for other metabolisms, 
including methanogenesis (Fig. 3d).

On the basis of thermodynamic considerations, CH4 and CO2 are 
expected to be the eventual metabolic end products of the resulting 
ecosystem, with a small fraction of the initial hydrogen consumption 
buried as organic matter. The resulting flux of CH4 to the atmosphere 
would fuel photochemical H2 regeneration and associated productivity 
in the surface ocean (Fig. 3e). Existing models suggest the resulting 
global H2 recycling system is highly effective, such that the supply flux 
of H2 to the surface could have exceeded the volcanic input of H2 to the 
atmosphere by at least an order of magnitude, in turn implying that the 
productivity of such a biosphere was boosted by a comparable factor69. 
Photochemical recycling to CO would also have supported a surface 
niche for organisms consuming CO (ref. 69).

In deep-ocean habitats, there could be some localized recycling of 
electrons (Fig. 3d) but a quantitative loss of highly insoluble H2 and CH4 
to the atmosphere and minimal return after photochemical conversion 
of CH4 to H2 means global recycling to depth would be minimal (Fig. 3e). 
Hence the surface environment for LUCA could have become domi-
nant (albeit recycling of the resulting organic matter could be spread 
through ocean depth; ‘Deep heterotrophic ecosystem’ in Fig. 3e). 
The global net primary productivity of an early chemoautotrophic 
biosphere including acetogenic LUCA and methanogens could have 
been of order ~1 × 1012 to 7 × 1012 mol C yr−1 (~3 orders of magnitude 
less than today)69.

The nutrient supply (for example, N) required to support such a 
biosphere would need to balance that lost in the burial flux of organic 
matter. Earth surface redox balance dictates that hydrogen loss to 
space and burial of electrons/hydrogen must together balance input 
of electrons/hydrogen. Considering contemporary H2 inputs, and the 
above estimate of net primary productivity, this suggests a maximum 
burial flux in the order of ~1012 mol C yr−1, which, with contemporary 
stoichiometry (C:N ratio of ~7) could demand >1011 mol N yr−1. Lightning 
would have provided a source of nitrite and nitrate70, consistent with 
LUCA’s inferred pathways of nitrite and (possibly) nitrate reduction. 
However, it would only have been of the order 3 × 109 mol N yr−1 (ref. 71). 
Instead, in a global hydrogen-recycling system, HCN from photochem-
istry higher in the atmosphere, deposited and hydrolysed to ammonia 
in water, would have increased available nitrogen supply by orders of 
magnitude toward ~3 × 1012 mol N yr−1 (refs. 71,72). This HCN pathway 
is consistent with the anomalously light nitrogen isotopic composition  
of the earliest plausible biogenic matter of 3.8–3.7 Ga (ref. 73), although 
that considerably postdates our inferred age of LUCA. These consi
derations suggest that the proposed LUCA biosphere (Fig. 3e) would 
have been energy or hydrogen limited not nitrogen limited.

Conclusions
By treating gene presence probabilistically, our reconstruction maps 
many more genes (2,657) to LUCA than previous analyses and results 
in an estimate of LUCA’s genome size (2.75 Mb) that is within the range 
of modern prokaryotes. The result is a picture of a cellular organism 
that was prokaryote grade rather than progenotic2 and that probably 
existed as a component of an ecosystem, using the WLP for acetogenic 
growth and carbon fixation. We cannot use phylogenetics to recon-
struct other members of this early ecosystem but we can infer their 
physiologies based on the metabolic inputs and outputs of LUCA. How 
evolution proceeded from the origin of life to early communities at the 
time of LUCA remains an open question, but the inferred age of LUCA 
(~4.2 Ga) compared with the origin of the Earth and Moon suggests 
that the process required a surprisingly short interval of geologic time.

Methods
Universal marker genes
A list of 298 markers were identified by creating a non-redundant list  
of markers used in previous studies on archaeal and bacterial  

phylogenies10,35,38,74–79. These markers were mapped to the correspond-
ing COG, arCOG and TIGRFAM profile to identify which profile is best 
suited to extract proteins from taxa of interest. To evaluate whether 
the markers cover all archaeal and bacterial diversity, proteins from a 
set of 574 archaeal and 3,020 bacterial genomes were searched against  
the COG, arCOG and TIGRFAM databases using hmmsearch (v.3.1b2; 
settings, hmmsearch–tblout output–domtblout–notextw)52,80–82. Only 
hits with an e-value less than or equal to 1 × 10−5 were investigated 
further and for each protein the best hit was determined based on the 
e-value (expect value) and bit-score. Results from all database searches 
were merged based on the protein identifiers and the table was subset-
ted to only include hits against the 298 markers of interest. On the basis 
of this table we calculated whether the markers occurred in Archaea, 
Bacteria or both Archaea and Bacteria. Markers were only included if 
they were present in at least 50% of taxa and contained less than 10% of 
duplications, leaving a set of 265 markers. Sequences for each marker 
were aligned using MAFFT L-INS-i v.7.407 (ref. 83) for markers with 
less than 1,000 sequences or MAFFT84 for those with more than 1,000 
sequences (setting, –reorder)84 and sequences were trimmed using 
BMGE85, set for amino acids, a BLOcks SUbstitution Matrix 30 similarity 
matrix, with a entropy score of 0.5 (v.1.12; settings, -t AA -m BLOSUM30 
-h 0.5). Single gene trees were generated with IQ-TREE 2 (ref. 86), using 
the LG substitution matrix, with ten-profile mixture models, four CPUs, 
with 1,000 ultrafast bootstraps optimized by nearest neighbour inter-
change written to a file retaining branch lengths (v.2.1.2; settings, -m 
LG + C10 + F + R -nt 4 -wbtl -bb 1,000 -bnni). These single gene trees 
were investigated for archaeal and bacterial monophyly and the pres-
ence of paralogues. Markers that failed these tests were not included 
in further analyses, leaving a set of 59 markers (3 arCOGs, 46 COGs and 
10 TIGRFAMs) suited for phylogenies containing both Archaea and 
Bacteria (Supplementary Data 4).

Marker gene sequence selection
To limit selecting distant paralogues and false positives, we used a  
bidirectional or reciprocal approach to identify the sequences corres
ponding to the 59 single-copy markers. In the first inspection (query 1),  
the 350 archaeal and 350 bacterial reference genomes were queried  
against all arCOG HMM (hidden Markov model) profiles (All_Arcogs_ 
2018.hmm), all COG HMM profiles (NCBI_COGs_Oct2020.hmm) and 
all TIGRFAM HMM profiles (TIGRFAMs_15.0_HMM.LIB) using a custom 
script built on hmmsearch: hmmsearchTable <genomes.faa> <data-
base.hmm> -E 1 × 10−5 >HMMscan_Output_e5 (HMMER v.3.3.2)87. HMM 
profiles corresponding to the 59 single-copy marker genes (Supple-
mentary Data 4) were extracted from each query and the best-hit 
sequences were identified based on the e-value and bit-score. We used 
the same custom hmmsearchTable script and conditions (see above) in 
the second inspection (query 2) to query the best-hit sequences identi-
fied above against the full COG HMM database (NCBI_COGs_Oct2020.
hmm). Results were parsed and the COG family assigned in query 2 was 
compared with the COG family assigned to sequences based on the 
marker gene identity (Supplementary Data 4). Sequence hits were vali-
dated using the matching COG identifier, resulting in 353 mismatches 
(that is, COG family in query 1 does not match COG family in query 2) 
that were removed from the working set of marker gene sequences. 
These sequences were aligned using MAFFT L-INS-i83 and then trimmed 
using BMGE85 with a BLOSUM30 matrix. Individual gene trees were 
inferred under ML using IQ-TREE 2 (ref. 86) with model fitting, including 
both the default homologous substitution models and the following 
complex heterogeneous substitution models (LG substitution matri-
ces with 10–60-profile mixture models, with empirical base frequen-
cies and a discrete gamma model with four categories accounting  
for rate heterogeneity across sites): LG + C60 + F + G, LG + C50 + F + G, 
LG + C40 + F + G, LG + C30 + F + G, LG + C20 + F + G and LG + C10 + F + G, 
with 10,000 ultrafast bootstraps and 10 independent runs to avoid local 
optima. These 59 gene trees were manually inspected and curated over 
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multiple rounds. Any horizontal gene transfer events, paralogous genes 
or sequences that violated domain monophyly were removed and two 
genes (arCOG01561, tuf; COG0442, ProS) were dropped at this stage 
due to the high number of transfer events, resulting in 57 single-copy 
orthologues for further tree inference.

Species-tree inference
These 57 orthologous sequences were concatenated and ML trees were 
inferred after three independent runs with IQ-TREE 2 (ref. 86) using 
the same model fitting and bootstrap settings as described above. 
The tree with the highest log-likelihood of the three runs was chosen 
as the ML species tree (topology 1). To test the effect of removing the 
CPR bacteria, we removed all CPR bacteria from the alignment before 
inferring a species tree (same parameters as above). We also performed 
approximately unbiased44 tree topology tests (with IQ-TREE 2 (ref. 86), 
using LG + C20 + F + G) when testing the significance of constraining the 
species-tree topology (ML tree; Supplementary Fig. 1) to have a DPANN 
clade as sister to all other Archaea (same parameters as above but with a 
minimally constrained topology with monophyletic Archaea and DPANN 
sister to other Archaea present in a polytomy (Supplementary Fig. 2)) 
and testing a constraint of CPR to be sister to Chloroflexi (Supplemen-
tary Fig. 3), and a combination of both the DPANN and CPR constraints 
(topology 2); these were tested against the ML topology, both using the 
normal 20 amino acid alignments and also with Susko–Roger recoding88.

Gene families
For the 700 representative species15, gene family clustering was  
performed using EGGNOGMAPPER v.2 (ref. 89), with the following 
parameters: using the DIAMOND90 search, a query cover of 50% and 
an e-value threshold of 0.0000001. Gene families were collated using 
their KEGG47 identifier, resulting in 9,365 gene families. These gene 
families were then aligned using MAFFT84 v.7.5 with default settings 
and trimmed using BMGE85 (with the same settings as above). Five 
independent sets of ML trees were then inferred using IQ-TREE 2  
(ref. 86), using LG + F + G, with 1,000 ultrafast bootstrap replicates.  
We also performed a COG-based clustering analysis in which COGs  
were assigned based on the modal COG identifier annotated for each 
KEGG gene family based on the results from EGGNOGMAPPER v.2  
(ref. 89). These gene families were aligned, trimmed and one set of gene 
trees (with 1,000 ultrafast bootstrap replicates) was inferred using 
the same parameters as described above for the KEGG gene families.

Reconciliations
The five sets of bootstrap distributions were converted into ALE files, 
using ALEobserve, and reconciled against topology 1 and topology 
2 using ALEml_undated91 with the fraction missing for each genome 
included (where available). Gene family root origination rates were 
optimized for each COG functional category as previously described35 
and families were categorized into four different groups based on 
the probability of being present in the LUCA node in the tree. The 
most-stringent category was that with sampling above 1% in both 
domains and a PP ≥ 0.75, another category was with PP ≥ 0.75 with no 
sampling requirement, another with PP ≥ 0.5 with the sampling require-
ment; the least stringent was PP ≥ 0.5 with no sampling requirement. We 
used the median probability at the root from across the five runs to avoid 
potential biases from failed runs in the mean and to account for variation 
across bootstrap distributions (see Supplementary Fig. 4 for distribu-
tions of the inferred ratio of duplications, transfers and losses for all gene 
families across all tips in the species tree; see Supplementary Data 5 for 
the inferred duplications, transfers and losses ratios for LUCA, the last 
bacterial common ancestor and the last archaeal common ancestor).

Metabolic pathway analysis
Metabolic pathways for gene families mapped to the LUCA 
node were inferred using the KEGG47 website GUI and metabolic 

completeness for individual modules was estimated with Anvi’o92 
(anvi-estimate-metabolism), with pathwise completeness.

Additional testing
We tested for the effects of model complexity on reconciliation by 
using posterior mean site frequency LG + C20 + F + G across three 
independent runs in comparison with 3 LG + F + G independent runs. 
We also performed a 10% subsampling of the species trees and gene 
family alignments across two independent runs for two different sub-
samples, one with and one without the presence of Asgard archaea. We 
also tested the likelihood of the gene families under a bacterial root 
(between Terrabacteria and Gracilicutes) using reconciliations of the 
gene families under a species-tree topology rooted as such.

Fossil calibrations
On the basis of well-established geological events and the fossil record, 
we modelled 13 uniform densities to constrain the maximum and 
minimum ages of various nodes in our phylogeny. We constrained the 
bounds of the uniform densities to be either hard (no tail probability 
is allowed after the age constraint) or soft (a 2.5% tail probability is 
allowed after the age constraint) depending on the interpretation of 
the fossil record (Supplementary Information). Nodes that refer to the 
same duplication event are identified by MCMCtree as cross-braced 
(that is, one is chosen as the ‘driver’ node, the rest are ‘mirrored’ nodes). 
In other words, the sampling during the Markov chain Monte Carlo 
(MCMC) for cross-braced nodes is not independent: the same posterior 
time density is inferred for matching mirror–driver nodes (see ‘Addi-
tional methods’ for details on our cross-bracing approach).

Timetree inference analyses
Timetree inference with the program MCMCtree (PAML v.4.10.7  
(ref. 93)) proceeded under both the GBM and ILN relaxed-clock models. 
We specified a vague rate prior with the shape parameter equal to 2 
and the scale parameter equal to 2.5: Γ(2, 2.5). This gamma distribu-
tion is meant to account for the uncertainty on our estimate for the 
mean evolutionary rate, ~0.81 substitutions per site per time unit, 
which we calculated by dividing the tree height of our best-scoring 
ML tree (Supplementary Information) into the estimated mean root 
age of our phylogeny (that is, 4.520 Ga, time unit = 109 years; see 
‘Fossil calibrations’ in Supplementary Information for justifications 
on used calibrations). Given that we are estimating very deep diver-
gences, the molecular clock may be seriously violated. Therefore, we 
applied a very diffuse gamma prior on the rate variation parameter (σ2),  
Γ(1, 10), so that it is centred around σ2 = 0.1. To incorporate our uncer-
tainty regarding the tree shape, we specified a uniform kernel density 
for the birth–death sampling process by setting the birth and death 
processes to 1, λ (per-lineage birth rate) = μ (per-lineage death rate) 
= 1, and the sampling frequency to ρ (sampling fraction) = 0.1. Our 
main analysis consisted of inferring the timetree for the partitioned 
dataset under both the GBM and the ILN relaxed-clock models in which 
nodes that correspond to the same divergences are cross-braced (that 
is, hereby referred to as cross-bracing A). In addition, we ran 10 addi-
tional inference analyses to benchmark the effect that partitioning, 
cross-bracing and relaxed-clock models can have on species divergence 
time estimation: (1) GBM + concatenated alignment + cross-bracing A, 
(2) GBM + concatenated alignment + cross-bracing B (only nodes that 
correspond to the same divergences for which there are fossil con-
straints are cross-braced), (3) GBM + concatenated alignment + without 
cross-bracing, (4) GBM + partitioned alignment + cross-bracing B,  
(5) GBM + partitioned alignment + without cross-bracing, (6) ILN + con-
catenated alignment + cross-bracing A, (7) ILN + concatenated align-
ment + cross-bracing B, (8) ILN + concatenated alignment + without 
cross-bracing, (9) ILN + partitioned alignment + cross-bracing B, 
and (10) ILN + partitioned alignment + without cross-bracing. Lastly, 
we used (1) individual gene alignments, (2) a leave-one-out strategy  
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(rate prior changed for alignments without ATP and Leu, Γ(2, 2.2), 
and without Tyr, Γ(2, 2.3), but was Γ(2, 2.5) for the rest; see ‘Additional 
methods’), and (3) a more complex substitution model94 to assess 
their impact on timetree inference. Refer to ‘Additional methods’ for 
details on how we parsed the dataset we used for timetree inference 
analyses, ran PAML programs CODEML and MCMCtree to approximate 
the likelihood calculation95, and carried out the MCMC diagnostics for 
the results obtained under each of the previously mentioned scenarios.

Genome size and cellular features
We simulated 100 samples of ‘KEGG genomes’ based on the probabili-
ties of each of the (7,467) gene families being present in LUCA using the 
random.rand function in numpy96. The mean number of KEGG gene 
families was 1,298.25, the 95% HPD (highest posterior density) mini-
mum was 1,255 and the maximum was 1,340. To infer the relationship 
between the number of KEGG KO gene families encoded by a genome, 
the number of proteins and the genome size, we used LOESS (locally 
estimated scatter-plot smoothing) regression to estimate the relation-
ship between the number of KOs and (1) the number of protein-coding 
genes and (2) the genome size for the 700 prokaryotic genomes used in 
the LUCA reconstruction. To ensure that our inference of genome size is 
robust to uncertainty in the number of paralogues that can be expected 
to have been present in LUCA, we used the presence of probability for 
each of these KEGG KO gene families rather than the estimated copy 
number. We used the predict function to estimate the protein-coding 
genes and genome size of LUCA using these models and the simulated 
gene contents encoded with 95% confidence intervals.

Additional methods
Cross-bracing approach implemented in MCMCtree. The PAML 
program MCMCtree was implemented to allow for the analysis of 
duplicated genes or proteins so that some nodes in the tree corre-
sponding to the same speciation events in different paralogues share 
the same age. We used the tree topology depicted in Supplementary 
Fig. 5 to explain how users can label driver or mirror nodes (more on 
these terms below) so that the program identifies them as sharing the 
same speciation events. The tree topology shown in Supplementary 
Fig. 5 can be written in Newick format as:

(((A1,A2),A3),((B1,B2),B3));

In this example, A and B are paralogues and the corresponding 
tips labelled as A1–A3 and B1–B3 represent different species. Node r 
represents a duplication event, whereas other nodes are speciation 
events. If we want to constrain the same speciation events to have 
the same age (that is, Supplementary Fig. 5, see labels a and b (that is, 
A1–A2 ancestor and B1–B2 ancestor, respectively) and labels v and b 
(that is, A1–A2–A3 ancestor and B1–B2–B3 ancestor, respectively), we 
use node labels in the format #1, #2, and so on to identify such nodes:

(((A1, A2) #1, A3) #2, ((B1, B2) [#1 B{0.2, 0.4}], 
B3) #2) 'B(0.9,1.1)';

Node a and node b are assigned the same label (#1) and so they 
share the same age (t): ta = tb. Similarly, node u and node v have the 
same age: tu = tv. The former nodes are further constrained by a 
soft-bound calibration based on the fossil record or geological evi-
dence: 0.2 < ta = tb < 0.4. The latter, however, does not have fossil  
constraints and thus the only restriction imposed is that both tu and 
tv are equal. Finally, there is another soft-bound calibration on the  
root age: 0.9 < tr < 1.1.

Among the nodes on the tree with the same label (for example, 
those nodes labelled with #1 and those with #2 in our example), one 
is chosen as the driver node, whereas the others are mirror nodes.  
If calibration information is provided on one of the shared nodes  

(for example, nodes a and b in Supplementary Fig. 5), the same infor-
mation therefore applies to all shared nodes. If calibration information 
is provided on multiple shared nodes, that information has to be the 
same (for example, you could not constrain node a with a different 
calibration used to constrain node b in Supplementary Fig. 5). The 
time prior (or the prior on all node ages on the tree) is constructed by 
using a density at the root of the tree, which is specified by the user (for 
example, 'B(0.9,1.1)' in our example, which has a minimum of 0.9 
and a maximum of 1.1). The ages of all non-calibrated nodes are given 
by the uniform density. This time prior is similar to that used by ref. 29. 
The parameters in the birth–death sampling process (λ, μ, ρ; specified 
using the option BDparas in the control file that executes MCMCtree) 
are ignored. It is noteworthy that more than two nodes can have the 
same label but one node cannot have two or more labels. In addition, 
the prior on rates does not distinguish between speciation and dupli-
cation events. The implemented cross-bracing approach can only be 
enabled if option duplication = 1 is included in the control file. By 
default, this option is set to 0 and users are not required to include it 
in the control file (that is, the default option is duplication = 0).

Timetree inference. Data parsing. Eight paralogues were initially 
selected based on previous work showing a likely duplication event 
before LUCA: the amino- and carboxy-terminal regions from carbamoyl 
phosphate synthetase, aspartate and ornithine transcarbamoylases, 
histidine biosynthesis genes A and F, catalytic and non-catalytic subu-
nits from ATP synthase (ATP), elongation factor Tu and G (EF), signal 
recognition protein and signal recognition particle receptor (SRP), 
tyrosyl-tRNA and tryptophanyl-tRNA synthetases (Tyr), and leucyl- and 
valyl-tRNA synthetases (Leu)27. Gene families were identified using  
BLASTp97. Sequences were downloaded from NCBI98, aligned with  
MUSCLE99 and trimmed with TrimAl100 (-strict). Individual gene trees 
were inferred under the LG + C20 + F + G substitution model imple-
mented in IQ-TREE 2 (ref. 86). These trees were manually inspected 
and curated to remove non-homologous sequences, horizontal gene 
transfers, exceptionally short or long sequences and extremely long 
branches. Recent paralogues or taxa of inconsistent and/or uncertain 
placement inferred with RogueNaRok101 were also removed. Independ-
ent verification of an archaeal or bacterial deep split was achieved 
using minimal ancestor deviation102. This filtering process resulted in 
the five pairs of paralogous gene families27 (ATP, EF, SRP, Tyr and Leu) 
that we used to estimate the origination time of LUCA. The alignment 
used for timetree inference consisted of 246 species, with the majority 
of taxa having at least two copies (for some eukaryotes, they may be 
represented by plastid, mitochondrial and nuclear sequences).

To assess the impact that partitioning can have on divergence time 
estimates, we ran our inference analyses with both a concatenated and 
a partitioned alignment (that is, gene partitioning scheme). We used 
PAML v.4.10.7 (programs CODEML and MCMCtree) for all divergence 
time estimation analyses. Given that a fixed tree topology is required 
for timetree inference with MCMCtree, we inferred the best-scoring 
ML tree with IQ-TREE 2 under the LG + C20 + F + G4 (ref. 103) model 
following our previous phylogenetic analyses. We then modified 
the resulting inferred tree topology following consensus views of 
species-level relationships34,35,104, which we calibrated with the available 
fossil calibrations (see below). In addition, we ran three sensitivity tests: 
timetree inference (1) with each gene alignment separately, (2) under 
a leave-one-out strategy in which each gene alignment was iteratively 
removed from the concatenated dataset (for example, remove gene 
ATP but keep genes EF, Leu, SRP and Tyr concatenated in a unique 
alignment block; apply the same procedure for each gene family), 
and (3) using the vector of branch lengths, the gradient vector and the 
Hessian matrix estimated under a complex substitution model (bsinBV 
method described in ref. 94) with the concatenated dataset used for 
our core analyses. Four of the gene alignments generated for the 
leave-one-out strategy had gap-only sequences, these were removed 
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when re-inferring the branch lengths under the LG + C20 + F + G4 model 
(that is, without ATP, 241 species; without EF, 236 species; without Leu, 
243 species; without Tyr, 244 species). We used these trees to set the 
rate prior used for timetree inference for those alignments not includ-
ing ATP, EF, Leu or Tyr, respectively. The β value (scale parameter) for 
the rate prior used when analysing alignments without ATP, Leu and 
Tyr changed minimally but we updated the corresponding rate priors 
accordingly (see above). When not including SRP, the alignment did 
not have any sequences removed (that is, 246 species). All alignments 
were analysed with the same rate prior, Γ(2, 2.5), except for the three 
previously mentioned alignments.

Approximating the likelihood calculation during timetree inference 
using PAML programs. Before timetree inference, we ran the CODEML 
program to infer the branch lengths of the fixed tree topology, the 
gradient (first derivative of the likelihood function) and the Hessian 
matrix (second derivative of the likelihood function); the vectors 
and matrix are required to approximate the likelihood function in the 
dating program MCMCtree95, an approach that substantially reduces 
computational time105. Given that CODEML does not implement the 
CAT (Bayesian mixture model for across-site heterogeneity) model, 
we ran our analyses under the closest available substitution model: 
LG + F + G4 (model = 3). We calculated the aforementioned vectors 
and matrix for each of the five gene alignments (that is, required for 
the partitioned alignment), for the concatenated alignment and for 
the concatenated alignments used for the leave-one-out strategy; 
the resulting values are written out in an output file called rst2. We 
appended the rst2 files generated for each of the five individual align-
ments in the same order the alignment blocks appear in the partitioned 
alignment file (for example, the first alignment block corresponds to 
the ATP gene alignment, and thus the first rst2 block will be the one 
generated when analysing the ATP gene alignment with CODEML). We 
named this file in_5parts.BV. There is only one rst2 output file for the 
concatenated alignments, which we renamed in.BV (main concatenated 
alignment and concatenated alignments under leave-one-out strategy). 
When analysing each gene alignment separately, we renamed the rst2 
files generated for each gene alignment as in.BV.

MCMC diagnostics. All the chains that we ran with MCMCtree for each 
type of analysis underwent a protocol of MCMC diagnostics consisting 
of the following steps: (1) flagging and removal of problematic chains; 
(2) generating convergence plots before and after chain filtering;  
(3) using the samples collected by those chains that passed the filters 
(that is, assumed to have converged to the same target distribution) 
to summarize the results; (4) assessing chain efficiency and conver-
gence by calculating statistics such as R-hat, tail-ESS and bulk-ESS 
(in-house wrapper function calling Rstan functions, Rstan v.2.21.7; 
https://mc-stan.org/rstan/); and (5) generating the timetrees for each 
type of analysis with confidence intervals and high-posterior densi-
ties to show the uncertainty surrounding the estimated divergence 
times. Tail-ESS is a diagnostic tool that we used to assess the sampling 
efficiency in the tails of the posterior distributions of all estimated 
divergence times, which corresponds to the minimum of the effec-
tive sample sizes for quantiles 2.5% and 97.5%. To assess the sampling 
efficiency in the bulk of the posterior distributions of all estimated 
divergence, we used bulk-ESS, which uses rank-normalized draws. Note 
that if tail-ESS and bulk-ESS values are larger than 100, the chains are 
assumed to have been efficient and reliable parameter estimates (that 
is, divergence times in our case). R-hat is a convergence diagnostic 
measure that we used to compare between- and within-chain diver-
gence time estimates to assess chain mixing. If R-hat values are larger 
than 1.05, between- and within-chain estimates do not agree and thus 
mixing has been poor. Lastly, we assessed the impact that truncation 
may have on the estimated divergence times by running MCMCtree 
when sampling from the prior (that is, the same settings specified above 

but without using sequence data, which set the prior distribution to be 
the target distribution during the MCMC). To summarize the samples 
collected during this analysis, we carried out the same MCMC diagnos-
tics procedure previously mentioned. Supplementary Fig. 6 shows our 
calibration densities (commonly referred to as user-specified priors, 
see justifications for used calibrations above) versus the marginal 
densities (also known as effective priors) that MCMCtree infers when 
building the joint prior (that is, a prior built without sequence data 
that considers age constraints specified by the user, the birth–death 
with sampling process to infer the time densities for the uncalibrated 
nodes, the rate priors, and so on). We provide all our results for these 
quality-control checks in our GitHub repository (https://github.com/
sabifo4/LUCA-divtimes) and in Extended Data Fig. 1, Supplementary 
Figs. 7–10 and Supplementary Data 6. Data, figures and tables used 
and/or generated following a step-by-step tutorial are detailed in the 
GitHub repository for each inference analysis.

Additional sensitivity analyses. We compared the divergence times 
we estimated with the concatenated dataset under the calibration 
strategy cross-bracing A with those inferred (1) for each gene, (2) for 
gene alignments analysed under a leave-one-out strategy, and (3) for 
the main concatenated dataset but when using the vector of branch 
lengths, the gradient vector and the Hessian matrix estimated under 
a more complex substitution model94. The results are summarized in 
Extended Data Fig. 2 and Supplementary Data 7 and 8. The same pat-
tern regarding the calibration densities and marginal densities when 
the tree topology was pruned (that is, see above for details on the 
leave-one-out strategy) was observed, and thus no additional figures 
have been generated. As for our main analyses, the results for these 
additional sensitivity analyses can be found on our GitHub repository 
(https://github.com/sabifo4/LUCA-divtimes).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data required to interpret, verify and extend the research in this arti-
cle can be found at our figshare repository at https://doi.org/10.6084/
m9.figshare.24428659 (ref. 106) for the reconciliation and phylogenomic 
analyses and GitHub at https://github.com/sabifo4/LUCA-divtimes  
(ref. 107) for the molecular clock analyses. Additional data are available 
at the University of Bristol data repository, data.bris, at https://doi.org/ 
10.5523/bris.405xnm7ei36d2cj65nrirg3ip (ref. 108).

Code availability
All code relating to the dating analysis can be found on GitHub at  
https://github.com/sabifo4/LUCA-divtimes (ref. 107), and other custom  
scripts can be found in our figshare repository at https://doi.org/ 
10.6084/m9.figshare.24428659 (ref. 106).
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Extended Data Fig. 1 | Comparison of the mean divergence times and 
confidence intervals estimated for the two duplicates of LUCA under each 
timetree inference analysis. Black dots refer to estimated mean divergence 
times for analyses without cross-bracing, stars are used to identify those under 
cross-bracing and triangles for estimated upper and lower confidence intervals. 
Straight lines are used to link mean divergence time estimates across the 
various inference analyses we carried out, while dashed lines are used to link the 
estimated confidence intervals. The node label for the driver node is “248”, while 
it is “368” for the mirror node, as shown in the title of each graph. Coloured stars 
and triangles are used to identify which LUCA time estimates were inferred under 
the same cross-braced analysis for the driver-mirror nodes (that is, equal time 
and CI estimates). Black dots and triangles are used to identify those inferred 

when cross-bracing was not enabled (that is, different time and CI estimates). 
-Abbreviations. “GBM”: Geometric Brownian motion relaxed-clock model; “ILN”: 
Independent-rate log-normal relaxed-clock model; “conc, cb” dots/triangles: 
results under cross-bracing A when the concatenated dataset was analysed under 
GBM (red) and ILN (blue); “conc, fosscb”: results under cross-bracing B when the 
concatenated dataset was analysed under GBM (orange) and ILN (cyan); “part, 
cb” dots/triangles: results under cross-bracing A when the partitioned dataset 
was analysed under GBM (pink) and ILN (purple); “part, fosscb”: results under 
cross-bracing B when the concatenated dataset was analysed under GBM (light 
green) and ILN (grey); black dots and triangles: results when cross-bracing was 
not enabled for both concatenated and partitioned datasets.
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Extended Data Fig. 2 | Comparison of the posterior time estimates and 
confidence intervals for the two duplicates of LUCA inferred under the main 
calibration strategy cross-bracing A with the concatenated dataset and 
with the datasets for the three additional sensitivity analyses. Dots refer 
to estimated mean divergence times and triangles to estimated 2.5% and 97.5% 
quantiles. Straight lines are used to link the mean divergence times estimated 
in the same analysis under the two different relaxed-clock models (GBM and 
ILN). Labels in the x axis are informative about the clock model under which 
the analysis ran and the type of analysis we carried (see abbreviations below). 
Coloured dots are used to identify which time estimates were inferred when 
using the same dataset and strategy under GBM and ILN, while triangles refer to 

the corresponding upper and lower quantiles for the 95% confidence interval. 
-Abbreviations. “GBM”: Geometric Brownian motion relaxed-clock model; 
“ILN”: Independent-rate log-normal relaxed-clock model; “main-conc”: results 
obtained with the concatenated dataset analysed in our main analyses under 
cross-bracing A; “ATP/EF/Leu/SRP/Tyr”: results obtained when using each gene 
alignment separately; “noATP/noEF/noLeu/noSRP/noTyr”: results obtained when 
using concatenated alignments without the gene alignment mentioned in the 
label as per the “leave-one-out” strategy; “main-bsinbv”: results obtained with the 
concatenated dataset analysed in our main analyses when using branch lengths, 
Hessian, and gradient calculated under a more complex substitution model to 
infer divergence times.
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Extended Data Fig. 3 | Maximum Likelihood species tree. The Maximum 
Likelihood tree inferred across three independent runs, under the best  
fitting model (according to BIC: LG + F + G + C60) from a concatenation of  
57 orthologous proteins, support values are from 10,000 ultrafast bootstraps. 

Referred to as topology I in the main text. Tips coloured according to taxonomy: 
Euryarchaeota (teal), DPANN (purple), Asgardarchaeota (cyan), TACK (blue), 
Gracilicutes (orange), Terrabacteria (red), DST (brown), CPR (green).
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Extended Data Fig. 4 | Maximum Likelihood tree for focal reconciliation 
analysis. Maximum Likelihood tree (topology II in the main text), where DPANN 
is constrained to be sister to all other Archaea, and CPR is sister to Chloroflexi. 
Tips coloured according to taxonomy: Euryarchaeota (teal), DPANN (purple), 

Asgardarchaeota (cyan), TACK (blue), Gracilicutes (orange), Terrabacteria 
(red), DST (brown), CPR (green). AU topology test, P = 0.517, this is a one-sided 
statistical test.
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Extended Data Fig. 5 | The relationship between the number of KO gene 
families encoded on a genome and its size. LOESS regression of the number 
of KOs per sampled genome against the genome size in megabases. We used the 

inferred relationship for modern prokaryotes to estimate LUCA’s genome size 
based on reconstructed KO gene family content, as described in the main text. 
Shaded area represents the 95% confidence interval.
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Extended Data Fig. 6 | The relationship between the number of KO gene 
families encoded on a genome and the total number of protein-coding genes. 
LOESS regression of the number of KOs per sampled genome against the number 
of proteins encoded for per sampled genome. We used the inferred relationship 

for modern prokaryotes to estimate the total number of protein-coding genes 
encoded by LUCA based on reconstructed KO gene family content, as described 
in the main text. Shaded area represents the 95% confidence interval.
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