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The nature of the last universal common ancestor (LUCA), its age and itsimpact
onthe Earth system have been the subject of vigorous debate across diverse
disciplines, often based on disparate data and methods. Age estimates for LUCA
areusually based on the fossil record, varying with every reinterpretation.
The nature of LUCA’s metabolism has proven equally contentious, with some
attributing all core metabolisms to LUCA, whereas others reconstruct a
simpler life form dependent on geochemistry. Here we infer that LUCA lived

~4.2 Ga (4.09-4.33 Ga) through divergence time analysis of pre-LUCA gene
duplicates, calibrated using microbial fossils and isotope records under a
new cross-bracing implementation. Phylogenetic reconciliation suggests
that LUCA had agenome of atleast 2.5 Mb (2.49-2.99 Mb), encoding around
2,600 proteins, comparable to modern prokaryotes. Our results suggest
LUCA was a prokaryote-grade anaerobic acetogen that possessed an
earlyimmune system. Although LUCA is sometimes perceived as living in
isolation, we infer LUCA to have been part of an established ecological system.
The metabolism of LUCA would have provided a niche for other microbial
community members and hydrogen recycling by atmospheric photo-
chemistry could have supported amodestly productive early ecosystem.

The common ancestry of all extant cellular life is evidenced by the uni-
versal genetic code, machinery for protein synthesis, shared chirality
of the almost-universal set of 20 amino acids and use of ATP asacom-
mon energy currency’. The last universal common ancestor (LUCA) is
the node on the tree of life from which the fundamental prokaryotic
domains (Archaea and Bacteria) diverge. As such, our understanding of
LUCA impacts our understanding of the early evolution of life on Earth.
Was LUCA asimple or complex organism? Whatkind of environment did

itinhabit and when? Previous estimates of LUCA are in conflict either
dueto conceptual disagreement about what LUCA is” or as aresult of dif-
ferent methodological approaches and data®*°. Published analyses dif-
ferintheirinferences of LUCA’'s genome, from conservative estimates of
80 orthologous proteins'® up to 1,529 different potential gene families®.
Interpretations range from little beyond an information-processing
and metabolic core® through to a prokaryote-grade organism with
muchofthe gene repertoire of modern Archaea and Bacteria®, recently
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reviewed inref. 7. Here we use molecular clock methodology, horizontal
gene-transfer-aware phylogenetic reconciliation and existing biogeo-
chemical models to address questions about LUCA’s age, gene content,
metabolism and impact on the early Earth system.

Estimating the age of LUCA

Life’s evolutionary timescale is typically calibrated to the oldest
fossil occurrences. However, the veracity of fossil discoveries from
the early Archaean period has been contested"?. Relaxed Bayesian
node-calibrated molecular clock approaches provide ameans of inte-
grating the sparse fossil and geochemical record of early life with the
information provided by molecular data; however, constraining LUCA’s
age is challenging due to limited prokaryote fossil calibrations and
the uncertainty in their placement on the phylogeny. Molecular clock
estimates of LUCA" ™ have relied on conserved universal single-copy
marker genes within phylogenies for which LUCA represented the root.
Datingtherootofatreeis difficult because errors propagate fromthe
tipstotheroot of the dated phylogeny and informationis not available
to estimate the rate of evolution for the branch incident on the root
node. Therefore, we analysed genes that duplicated before LUCA with
two (or more) copies in LUCA’'s genome'®. The root in these gene trees
represents this duplication preceding LUCA, whereas LUCA is repre-
sented by two descendant nodes. Use of these universal paralogues
also hasthe advantage that the same calibrations can be applied at least
twice. After duplication, the same species divergences are represented
onbothsides of the gene tree'”'® and thus can be assumed to have the
same age. This considerably reduces the uncertainty when genetic
distance (branchlength)is resolvedinto absolute time and rate. When
ashared node is assigned a fossil calibration, such cross-bracing also
serves to double the number of calibrations on the phylogeny, improv-
ing divergence time estimates. We calibrated our molecular clock analy-
ses using 13 calibrations (see ‘Fossil calibrations’ in Supplementary
Information). The calibration onthe root of the tree of life is of particu-
larimportance. Some previous studies have placed ayounger maximum
constrainton the age of LUCA based on the assumption that life could
not have survived Late Heavy Bombardment (LHB) (-3.7-3.9 billion
years ago (Ga))". However, the LHB hypothesis is extrapolated and
scaled from the Moon’s impact record, the interpretation of which
has been questioned in terms of the intensity, duration and even the
veracity of an LHB episode” . Thus, the LHB hypothesis should notbe
considered a credible maximum constraint on the age of LUCA. We used
soft-uniform bounds, with the maximum-age bound based onthe time
of the Moon-forming impact (4,510 million years ago (Ma) £ 10 Myr),
which would have effectively sterilized Earth’s precursors, Tellus and
Theia”. Our minimumbound on the age of LUCA is based on low §°*Mo
isotope values indicative of Mn oxidation compatible with oxygenic
photosynthesis and, therefore, total-group Oxyphotobacteria in the
Mozaan Group, PongolaSupergroup, South Africa’*, dated minimally
t02,954 Ma + 9 Myr (ref. 26).

Our estimates for the age of LUCA areinferred with a concatenated
anda partitioned dataset, both consisting of five pre-LUCA paralogues:
catalytic and non-catalytic subunits from ATP synthases, elongation
factor Tuand G, signal recognition protein and signal recognition par-
ticlereceptor, tyrosyl-tRNA and tryptophanyl-tRNA synthetases, and
leucyl- and valyl-tRNA synthetases”. Marginal densities (commonly
referred to as effective priors) fall within calibration densities (that
is, user-specified priors) when topologically adjacent calibrations do
not overlap temporally, but may differ when they overlap, to ensure
the relative age relationships between ancestor-descendant nodes.
We consider the marginal densities areasonable interpretation of the
calibration evidence given the phylogeny; we are not attempting to test
the hypothesis that the fossil record is an accurate temporal archive
of evolutionary history because it is not*®. The duplicated LUCA node
age estimates we obtained under the autocorrelated rates (geomet-
ric Brownian motion (GBM))**° and independent-rates log-normal

(ILN)***? relaxed-clock models with our partitioned dataset (GBM,
4.18-4.33 Ga; ILN, 4.09-4.32 Ga; Fig. 1) fall within our composite age
estimate for LUCA ranging from 3.94 Gato 4.52 Ga, comparable to pre-
viousstudies™'®**, Dating analyses based on single genes, or concatena-
tions thatexcluded eachgeneinturn, returned compatible timescales
(Extended Data Figs.1and 2 and ‘Additional methods’ in Methods).

LUCA’s physiology
Toestimate the physiology of LUCA, wefirstinferred an updated micro-
bial phylogeny from 57 phylogenetic marker genes (see ‘Universal
marker genes’in Methods) on 700 genomes, comprising 350 Archaea
and 350 Bacteria®. This tree was in good agreement with recent phylo-
genies of the archaeal and bacterial domains of life***. For example,
the TACK?® and Asgard clades of Archaea® >’ and Gracilicutes within
Bacteria'®* were recovered as monophyletic. However, the analysis
was equivocal as to the phylogenetic placement of the Patescibacteria
(CPR)**and DPANN*, which are two small-genome lineages that have
been difficult to place in trees. Approximately unbiased** tests could
not distinguish the placement of these clades, neither at the root of
their respective domains nor in derived positions, with CPR sister to
Chloroflexota (asreported recently inrefs. 35,41,45) and DPANN sister
to Euryarchaeota. To account for this phylogenetic uncertainty, we
performed LUCA reconstructions on two trees: our maximum likeli-
hood (ML) tree (topology 1; Extended Data Fig. 3) and a tree in which
CPRwere placed as the sister of Chloroflexota, with DPANN sister to all
other Archaea (topology 2; Extended DataFig.4). Inboth cases, the gene
families mapped to LUCA were very similar (correlation of LUCA pres-
ence probabilities (PP), r = 0.6720275, P< 2.2 x10716). We discuss the
results onthe tree with topology 2 and discuss the residual differences
in Supplementary Information, ‘Topology 1’ (Supplementary Data1).
We used the probabilistic gene- and species-tree reconciliation
algorithm ALE*® to infer the evolution of gene family trees for each
sampled entry in the KEGG Orthology (KO) database*’ on our species
tree. ALE infers the history of gene duplications, transfers and losses
based on a comparison between a distribution of bootstrapped gene
trees and the reference species tree, allowing us to estimate the prob-
ability that the gene family was present at anode in the tree®*%*’, This
reconciliationapproach has several advantages for drawing inferences
about LUCA. Most gene families have experienced gene transfer since
the time of LUCA®* and so explicitly modelling transfers enables us
toinclude many more gene families in the analysis than has been pos-
sible using previous approaches. As the analysis is probabilistic, we can
also account for uncertainty in gene family origins and evolutionary
history by averaging over different scenarios using the reconcilia-
tion model. Using this approach, we estimated the probability that
each KEGG gene family (KO) was present in LUCA and then used the
resulting probabilities to construct a hypothetical model of LUCA’s
gene content, metabolic potential (Fig.2) and environmental context
(Fig.3). Using the KEGG annotation is beneficial because it allows us to
connectourinferencesto curated functional annotations; however, it
hasthe drawback that some widespread gene families that were likely
presentin LUCA are divided into multiple KO families thatindividually
appear to be restricted to particular taxonomic groups and inferred
to have arisen later. To account for this limitation, we also performed
an analysis of COG (Clusters of Orthologous Genes)** gene families,
which correspond to more coarse-grained functional annotations
(Supplementary Data 2).

Genome ssize and cellular features

By using modern prokaryotic genomes as training data, we used apre-
dictive model to estimate the genome size and the number of protein
families encoded by LUCA based on the relationship between the num-
ber of KEGG gene families and the total number of proteins encoded
by modern prokaryote genomes (Extended Data Figs. 5and 6). On the
basis of the PPs for KEGG KO gene families, we identified a conservative
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Fig.1| Timetree inferred under a Bayesian node-dating approach with cross-
bracing using a partitioned dataset of five pre-LUCA paralogues. Our results
suggest that LUCA lived around 4.2 Ga, with a 95% confidence interval spanning
4.09-4.33 Gaunder the ILN relaxed-clock model (orange) and 4.18-4.33 Gaunder
the GBM relaxed-clock model (teal). Under a cross-bracing approach, nodes
corresponding to the same species divergences (that is, mirrored nodes) have

the same posterior time densities. This figure shows the corresponding posterior
time densities of the mirrored nodes for the last universal, archaeal, bacterial

and eukaryotic common ancestors (LUCA, LACA, LBCA and LECA, respectively);
the last common ancestor of the mitochondrial lineage (Mito-LECA); and the last
plastid-bearing common ancestor (LPCA). Purple stars indicate nodes calibrated
with fossils. Arc, Archaea; Bac, Bacteria; Euk, Eukarya.
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Fig. 2| Probabilistic estimates of metabolic networks from modern life that
were present in LUCA. In black: enzymes and metabolic pathways inferred to
be presentin LUCA with atleast PP = 0.75, with sampling in both prokaryotic
domains. Ingrey: those inferred in our least-stringent threshold of PP = 0.50.

F

The analysis supports the presence of acomplete WLP and an almost complete
TCA cycle across multiple confidence thresholds. Metabolic maps derived
from KEGG* database through iPath'”’. GPI, glycosylphosphatidylinositol;
DDT, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane..

subset 0f 399 KOs that were likely to be presentin LUCA, with PPs >0.75,
andfoundinboth Archaeaand Bacteria (Supplementary Data1); these
families form the basis of our metabolic reconstruction. However, by
integrating over the inferred PPs of all KO gene families, including
those with low probabilities, we also estimate LUCA’s genome size. Our
predictive model estimates a genome size of 2.75 Mb (2.49-2.99 Mb)
encoding 2,657 (2,451-2,855) proteins (Methods). Although we can
estimate the number of genesin LUCA’s genome, it is more difficult to
identify the specific gene families that might have already been present
in LUCA based on the genomes of modern Archaea and Bacteria. It is
likely that the modern version of the pathways would be considered
incomplete based on LUCA’s gene content through subsequent evolu-
tionary changes. We should therefore expect reconstructions of meta-
bolic pathways to be incomplete due to this phylogenetic noise and
other limitations of the analysis pipeline. For example, when looking
atgenes and pathways that can uncontroversially be mappedto LUCA,
such astheribosome and aminoacyl-tRNA synthetases forimplement-
ing the genetic code, we find that we map many (but not all) of the
key componentsto LUCA (see ‘Notes’in Supplementary Information).
We interpret this to mean that our reconstruction is probably incom-
plete but our interpretation of LUCA’s metabolism relies on our infer-
ence of pathways, not individual genes.

The inferred gene content of LUCA suggests it was an anaerobe
as we do not find support for the presence of terminal oxidases (Sup-
plementary Data 1). Instead we identified almost all genes encoding
proteins of the archaeal (and most of the bacterial) versions of the
Wood-Ljungdahl pathway (WLP) (PP > 0.7), indicating that LUCA had
the potential for acetogenic growth and/or carbon fixation** > (Sup-
plementary Data 3). LUCA encoded some NiFe hydrogenase subunits
(K06281,PP=0.90;K14126, PP = 0.92), which may have enabled growth

on hydrogen (see ‘Notes’ in Supplementary Information). Complexes
involved in methanogenesis such as methyl-coenzyme M reductase
and tetrahydromethanopterin S-methyltransferase were inferred to
be absent, suggesting that LUCA was unlikely to function asamodern
methanogen. We found strong support for some components of the
TCA cycle (including subunits of oxoglutarate/2-oxoacid ferredoxin
oxidoreductase (K0O0175 and KO0176), succinate dehydrogenase
(K00239) and homocitrate synthase (K02594)), although some steps
are missing. LUCA was probably capable of gluconeogenesis/glyco-
lysis in that we find support for most subunits of enzymes involved
in these pathways (Supplementary Data 1 and 3). Considering the
presence of the WLP, this may indicate that LUCA had the ability to
grow organoheterotrophically and potentially also autotrophically.
Gluconeogenesis would have been important in linking carbon fixa-
tion to nucleotide biosynthesis via the pentose phosphate pathway,
most enzymes of which seem to be present in LUCA (see ‘Notes’ in
Supplementary Information). We found no evidence that LUCA was
photosynthetic, with low PPs for almost all components of oxygenic
and anoxygenic photosystems (Supplementary Data 3).

We find strong support for the presence of ATP synthase, speci-
fically, the A (K02117, PP = 0.98) and B (K02118, PP = 0.94) subunit
components of the hydrophilic V/Al subunit, and the I (subunit a,
K02123, PP = 0.99) and K (subunit c, KO2124, PP = 0.82) subunits of
the transmembrane V/AO subunit. In addition, if we relax the sampling
threshold, we alsoinfer the presence of the F1-type B-subunit (K02112,
PP =0.94). This is consistent with many previous studies that have
mapped ATP synthase subunits to LUCA®71856%7,

We obtain moderate support for the presence of pathways for
assimilatory nitrate (ferredoxin-nitrate reductase, K00367, PP = 0.69;
ferredoxin-nitrite reductase, K0O0367, PP = 0.53) and sulfate reduction
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Fig.3|Areconstruction of LUCA, within its evolutionary and ecological
context. a, A representation of LUCA based on our ancestral gene content
reconstruction. Gene names in black have beeninferred to be presentin LUCA
under the most-stringent threshold (PP = 0.75, sampled in both domains);
those ingrey are present at the least-stringent threshold (PP = 0.50, without a
requirement for presence inboth domains). b, LUCA in the context of the tree
oflife. Branches on the tree of life that have left ssmpled descendants today
are coloured black, those that have left no sampled descendants arein grey.
As the common ancestor of extant cellular life, LUCA is the oldest node that can
be reconstructed using phylogenetic methods. It would have shared the early
Earth with other lineages (highlighted in teal) that have left no descendants
among sampled cellular life today. However, these lineages may have left a
trace in modern organisms by transferring genes into the sampled tree of life
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(red lines) before their extinction. ¢, LUCA’'s chemoautotrophic metabolism
probably relied on gas exchange with theimmediate environment to achieve
organic carbon (C,,) fixation via acetogenesis and it may also have run the
metabolisminreverse. d, LUCA within the context of an early ecosystem. The CO,
and H, that fuelled LUCA’s plausibly acetogenic metabolism could have come
from both geochemical and biotic inputs. The organic matter and acetate that
LUCA produced could have created a niche for other metabolisms, including
ones thatrecycled CO,and H, (as in modern sediments). e, LUCA in an Earth
system context. Acetogenic LUCA could have been a key part of both surface and
deep (chemo)autotrophic ecosystems, powered by H,. If methanogens were also
present, hydrogen would be released as CH, to the atmosphere, converted to H,
by photochemistry and thus recycled back to the surface ecosystem, boosting its
productivity. Ferm., fermentation.
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(sulfate adenylyltransferase, KO0957, PP = 0.80,and KO0958, PP = 0.73;
sulfite reductase, K00392, PP = 0.82; phosphoadenosine phospho-
sulfate reductase, KO0390, PP = 0.56), probably to fuel amino acid
biosynthesis, for which we inferred the presence of 37 partially com-
plete pathways.

We found support for the presence of 19 class 1 CRISPR-Cas
effector protein families in the genome of LUCA, including types |
and |l (cas3,K07012, PP = 0.80,and KO7475, PP = 0.74; cas10,K07016,
PP=0.96,and K19076, PP = 0.67; and cas7,K07061, PP = 0.90,K09002,
PP =0.84,K19075, PP = 0.97,K19115, PP = 0.98,and K19140, PP = 0.80).
The absence of Casland Cas2 may suggest LUCA encoded anearly Cas
system with the means to deliver an RNA-based immune response by
cutting (Cas6/Cas3) and binding (CSM/Cas10) RNA, but lacking the full
immune-system-site CRISPR. This supports the idea that the effector
stage of CRISPR-Cas immunity evolved from RNA sensing for signal
transduction, based on the similarities in RNA binding modules of the
proteins®®. Thisis consistent with theidea that cellular life was already
involvedinanarms race with viruses at the time of LUCA***°. Our results
indicate that an early Cas system was an ancestral immune system of
extant cellular life.

Altogether, our metabolic reconstructions suggest that LUCA
was a relatively complex organism, similar to extant Archaea and
Bacteria®’. On the basis of ancient duplications of the Sec and ATP
synthase genes before LUCA, along with high PPs for key components
of those systems, membrane-bound ATP synthase subunits, genes
involved in peptidoglycan synthesis (mraY, KO1000; murC, K01924)
and the cytoskeletal actin-like protein, MreB (K03569) (Supplemen-
tary Data 3), it is highly likely that LUCA possessed the core cellular
apparatus of modern prokaryotic life. This might include the basic
constituents of a phospholipid membrane, although our analysis did
not conclusively establish its composition. In particular, we recov-
ered the following enzymes involved in the synthesis of ether and
ester lipids, (alkyldihydroxyacetonephosphate synthase, glycerol
3-phosphate and glycerol 1-phosphate) and components of the meva-
lonate pathway (mevalonate 5-phosphate dehydratase (PP = 0.84),
hydroxymethylglutaryl-CoAreductase (PP = 0.52), mevalonate kinase
(PP =0.51) and hydroxymethylglutaryl-CoA synthase (PP = 0.51)).

Compared with previous estimates of LUCA’s gene content, we
find 81 overlapping COG gene families with the consensus dataset of
ref. 7 and 69 overlapping KOs with the dataset of ref. 6. Key points of
agreement between previous studiesinclude the presence of signal rec-
ognition particle protein, ffh (COG0541, K03106)” used in the targeting
and delivery of proteins for the plasma membrane, a high number of
aminoacyl-tRNA synthetases for amino acid synthesis and glycolysis/
gluconeogenesis enzymes.

Ref. 6 inferred LUCA to be a thermophilic anaerobic autotroph
using the WLP for carbon fixation based on the presence of a single
enzyme (CODH), and similarly suggested that LUCA was capable of
nitrogen fixation using a nitrogenase. Our reconstruction agrees with
ref. 6 that LUCA was an anaerobic autotroph using the WLP for carbon
fixation, but weinfer the presence of amuch more complete WLP than
that previously obtained. We did not find strong evidence for nitroge-
nase or nitrogen fixation, and the reconstruction was not definitive with
respect to the optimal growth environment of LUCA.

We used a probabilisticapproachto reconstruct LUCA—thatis, we
estimated the probability with which each gene family was present in
LUCAbased onamodel of how gene families evolve along an overarch-
ing species tree. This approach differs from analyses of phylogenetic
presence-absence profiles**’ or those that used filtering criteria (such
asbroadly distributed or highly vertically evolving families) to define a
high-confidence subset of moderngenesthat might have beenpresentin
LUCA. Our reconstruction maps many more genes to LUCA—albeiteach
with lower probability—than previous analyses® and yields an estimate of
LUCA’s genomessize thatis withinthe range of modern prokaryotes. The
resultisanincomplete picture of a cellular organismthat was prokaryote

graderather than progenotic”and that, similarly to prokaryotes today,
probably existed as part of an ecosystem. As the common ancestor of
sampled, extant prokaryoticlife, LUCAisthe oldest node onthe species
tree that we canreconstructvia phylogenomicsbut, asFig. 3illustrates, it
was already the product of ahighly innovative period in evolutionary his-
tory during which most of the core components of cells were established.
By definition, we cannot reconstruct LUCA’s contemporaries using
phylogenomics but we can propose hypotheses about their physiologies
based onthereconstructed LUCA whose featuresimmediately suggest
the potential for interactions with other prokaryotic metabolisms.

LUCA’s environment, ecosystem and Earth system
context

Theinference that LUCA used the WLP helps constrain the environment
and ecology in which it could have lived. Modern acetogens can grow
autotrophically on H, (and CO,) or heterotrophically on a wide range
of alternative electron donorsincluding alcohols, sugars and carbox-
ylicacids®. This metabolic flexibility is key to their modern ecological
success. Acetogenesis, whether autotrophic or heterotrophic, has a
low energy yield and growth efficiency (although use of the reduc-
tive acetyl-CoA pathway for both energy production and biosynthesis
reduces the energy cost of biosynthesis). This would be consistent with
an energy-limited early biosphere®'.

If LUCA functioned as an organoheterotrophic acetogen, it was
necessarily part of an ecosystem containing autotrophs providing
a source of organic compounds (because the abiotic source flux of
organic molecules was minimal on the early Earth). Alternatively, if
LUCA functioned as a chemoautotrophic acetogen it could (in prin-
ciple) have lived independently off an abiotic source of H, (and CO,).
However, it is implausible that LUCA would have existed in isolation
as the by-products of its chemoautotrophic metabolism would have
created a niche for a consortium of other metabolisms (as in modern
sediments) (Fig. 3d). This would include the potential for LUCA itself
to grow as an organoheterotroph.

A chemoautotrophic acetogenic LUCA could have occupied two
major potential habitats (Fig. 3e): the first is the deep ocean where
hydrothermal vents and serpentinization of sea-floor provided asource
of H, (ref. 62). Consistent with this, we find support for the presence
ofreverse gyrase (PP = 0.97), ahallmark enzyme of hyperthermophilic
prokaryotes®®*, whichwould not be expected if early life existed at the
ocean surface (although the evolution of reverse gyrase is complex®’;
see ‘Reverse gyrase’in Supplementary Information). The second habi-
tatis the ocean surface where the atmosphere would have provided a
source of H, derived from volcanoes and metamorphism. Indeed, we
detected the presence of spore photoproduct lyase (COG1533, K03716,
PP =0.88) thatin extant organisms repairs methylene-bridged thymine
dimersoccurringinspore DNA as aresult of damage induced through
ultraviolet (UV) radiation®**”. However, this gene family also occursin
moderntaxa that neither formendospores nor dwell in environments
where they are likely to accrue UV damage to their DNA and soisnotan
exclusive hallmark of environments exposed to UV. Previous studies
often favoured a deep-ocean environment for LUCA as early life would
havebeen better protected there from an episode of LHB. However, if
the LHB was less intense than initially proposed***, or just asampling
artefact?, these arguments weaken. Another possibility may be that
LUCA inhabited a shallow hydrothermal vent or a hot spring.

Hydrogen fluxesinthese ecosystems could have beenseveral times
higher on the early Earth (with its greater internal heat source) than
today. Volcanism today produces -1 x 10 mol H, yr*and serpentiniza-
tion produces ~0.4 x 10”mol H, yr’. With the present H, flux and the
known scaling of the H, escape rate to space, an abiotic atmospheric
concentration of H, of ~150 ppmv is predicted®®. Chemoautotrophic
acetogens would have locally drawn down the concentration of H,
(ineither surface or deep niche) but their low growth efficiency would
ensure H, (and CO,) remained available. This and the organic matter and
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acetate produced would have created niches for other metabolisms,
including methanogenesis (Fig. 3d).

On the basis of thermodynamic considerations, CH, and CO, are
expected to be the eventual metabolic end products of the resulting
ecosystem, with a small fraction of the initial hydrogen consumption
buried as organic matter. The resulting flux of CH, to the atmosphere
would fuel photochemical H, regeneration and associated productivity
in the surface ocean (Fig. 3e). Existing models suggest the resulting
global H, recycling systemis highly effective, such that the supply flux
of H, to the surface could have exceeded the volcanicinput of H, to the
atmosphere by at least an order of magnitude, in turnimplying that the
productivity of such abiosphere was boosted by acomparable factor®.
Photochemical recycling to CO would also have supported a surface
niche for organisms consuming CO (ref. 69).

Indeep-ocean habitats, there could be some localized recycling of
electrons (Fig. 3d) but a quantitative loss of highly insoluble H,and CH,
tothe atmosphere and minimal return after photochemical conversion
of CH, to H, means global recycling to depth would be minimal (Fig. 3e).
Hence the surface environment for LUCA could have become domi-
nant (albeit recycling of the resulting organic matter could be spread
through ocean depth; ‘Deep heterotrophic ecosystem’ in Fig. 3e).
The global net primary productivity of an early chemoautotrophic
biosphere including acetogenic LUCA and methanogens could have
been of order -1 x 10 to 7 x 10 mol C yr™* (-3 orders of magnitude
less than today)®.

The nutrient supply (for example, N) required to support such a
biosphere would need to balance that lost in the burial flux of organic
matter. Earth surface redox balance dictates that hydrogen loss to
space and burial of electrons/hydrogen must together balance input
ofelectrons/hydrogen. Considering contemporary H, inputs, and the
above estimate of net primary productivity, this suggests amaximum
burial flux in the order of ~10" mol C yr!, which, with contemporary
stoichiometry (C:Nratio of -7) could demand >10" mol N yr™. Lightning
would have provided a source of nitrite and nitrate’, consistent with
LUCA’s inferred pathways of nitrite and (possibly) nitrate reduction.
However, it would only have been of the order 3 x 10° mol N yr (ref. 71).
Instead, inaglobal hydrogen-recycling system, HCN from photochem-
istry higherinthe atmosphere, deposited and hydrolysed to ammonia
in water, would have increased available nitrogen supply by orders of
magnitude toward -3 x 102 mol N yr1 (refs. 71,72). This HCN pathway
is consistent with the anomalously light nitrogenisotopic composition
ofthe earliest plausible biogenic matter of 3.8-3.7 Ga (ref. 73), although
that considerably postdates our inferred age of LUCA. These consi-
derations suggest that the proposed LUCA biosphere (Fig. 3e) would
have been energy or hydrogen limited not nitrogen limited.

Conclusions

By treating gene presence probabilistically, our reconstruction maps
many more genes (2,657) to LUCA than previous analyses and results
inan estimate of LUCA’s genome size (2.75 Mb) thatis within the range
of modern prokaryotes. The result is a picture of a cellular organism
that was prokaryote grade rather than progenotic”and that probably
existed asacomponent of an ecosystem, using the WLP for acetogenic
growth and carbon fixation. We cannot use phylogenetics to recon-
struct other members of this early ecosystem but we can infer their
physiologies based onthe metabolic inputs and outputs of LUCA. How
evolution proceeded from the origin of life to early communities at the
time of LUCA remains an open question, but the inferred age of LUCA
(4.2 Ga) compared with the origin of the Earth and Moon suggests
that the process required asurprisingly short interval of geologic time.

Methods

Universal marker genes

Alist of 298 markers were identified by creating a non-redundant list
of markers used in previous studies on archaeal and bacterial

phylogenies'®*?**”*7% These markers were mapped to the correspond-
ing COG, arCOG and TIGRFAM profile to identify which profile is best
suited to extract proteins from taxa of interest. To evaluate whether
the markers cover all archaeal and bacterial diversity, proteins froma
setof 574 archaeal and 3,020 bacterial genomes were searched against
the COG, arCOG and TIGRFAM databases using hmmsearch (v.3.1b2;
settings, hmmsearch-tblout output-domtblout-notextw)***-%2, Only
hits with an e-value less than or equal to 1 x 107 were investigated
further and for each protein the best hit was determined based on the
e-value (expectvalue) and bit-score. Results fromall database searches
were merged based on the proteinidentifiers and the table was subset-
ted toonlyinclude hits against the 298 markers of interest. On the basis
of this table we calculated whether the markers occurred in Archaea,
Bacteria or both Archaea and Bacteria. Markers were only included if
they were presentin atleast 50% of taxaand contained less than10% of
duplications, leaving aset of 265 markers. Sequences for each marker
were aligned using MAFFT L-INS-i v.7.407 (ref. 83) for markers with
less than 1,000 sequences or MAFFT®* for those with more than1,000
sequences (setting, —-reorder)®* and sequences were trimmed using
BMGE®, set for amino acids, a BLOcks SUbstitution Matrix 30 similarity
matrix, with aentropy score of 0.5 (v.1.12; settings, -t AA-m BLOSUM30
-h0.5).Single gene trees were generated with IQ-TREE 2 (ref. 86), using
the LG substitution matrix, with ten-profile mixture models, four CPUs,
with 1,000 ultrafastbootstraps optimized by nearest neighbour inter-
change written to a file retaining branch lengths (v.2.1.2; settings, -m
LG +C10 + F + R -nt 4 -wbtl -bb 1,000 -bnni). These single gene trees
wereinvestigated for archaeal and bacterial monophyly and the pres-
ence of paralogues. Markers that failed these tests were not included
infurther analyses, leaving aset of 59 markers (3arCOGs, 46 COGsand
10 TIGRFAMs) suited for phylogenies containing both Archaea and
Bacteria (Supplementary Data 4).

Marker gene sequence selection

To limit selecting distant paralogues and false positives, we used a
bidirectional or reciprocal approach toidentify the sequences corres-
pondingtothe 59 single-copy markers. Inthefirstinspection (query1),
the 350 archaeal and 350 bacterial reference genomes were queried
against all arCOG HMM (hidden Markov model) profiles (All_Arcogs_
2018.hmm), all COG HMM profiles (NCBI_COGs_Oct2020.hmm) and
all TIGRFAM HMM profiles (TIGRFAMs_15.0 HMM.LIB) using a custom
script built on hmmsearch: hmmsearchTable <genomes.faa> <data-
base.hmm>-E1x10°>HMMscan_Output_e5 (HMMERv.3.3.2). HMM
profiles corresponding to the 59 single-copy marker genes (Supple-
mentary Data 4) were extracted from each query and the best-hit
sequences were identified based on the e-value and bit-score. We used
the same custom hmmsearchTable script and conditions (see above) in
the secondinspection (query 2) to query the best-hit sequencesidenti-
fied above against the full COG HMM database (NCBI_COGs_Oct2020.
hmm). Results were parsed and the COG family assigned in query 2 was
compared with the COG family assigned to sequences based on the
marker gene identity (Supplementary Data4). Sequence hits were vali-
dated usingthe matching COGidentifier, resulting in 353 mismatches
(thatis, COG family in query 1 does not match COG family in query 2)
that were removed from the working set of marker gene sequences.
These sequences were aligned using MAFFT L-INS-i** and then trimmed
using BMGE® with a BLOSUM30 matrix. Individual gene trees were
inferred under ML using IQ-TREE 2 (ref. 86) with model fitting, including
both the default homologous substitution models and the following
complex heterogeneous substitution models (LG substitution matri-
ces with 10-60-profile mixture models, with empirical base frequen-
cies and a discrete gamma model with four categories accounting
forrate heterogeneity acrosssites): LG+ C60 +F + G,LG+ C50 +F + G,
LG+C40+F+G,LG+C30+F+G,LG+C20+F+GandLG+Cl10 +F +G,
with10,000 ultrafast bootstraps and 10 independent runs to avoid local
optima. These 59 gene trees were manually inspected and curated over
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multiplerounds. Any horizontal gene transfer events, paralogous genes
or sequences that violated domain monophyly were removed and two
genes (arCOGO01561, tuf; COG0442, ProS) were dropped at this stage
due to the high number of transfer events, resulting in 57 single-copy
orthologues for further tree inference.

Species-treeinference

These 57 orthologous sequences were concatenated and ML trees were
inferred after three independent runs with IQ-TREE 2 (ref. 86) using
the same model fitting and bootstrap settings as described above.
The tree with the highest log-likelihood of the three runs was chosen
as the ML species tree (topology 1). To test the effect of removing the
CPR bacteria, we removed all CPR bacteria from the alignment before
inferringaspecies tree (same parameters as above). We also performed
approximately unbiased** tree topology tests (with IQ-TREE 2 (ref. 86),
using LG + C20 + F + G) when testing the significance of constraining the
species-tree topology (ML tree; Supplementary Fig.1) tohave aDPANN
cladeassistertoall other Archaea (same parameters asabove but witha
minimally constrained topology with monophyletic Archaeaand DPANN
sister to other Archaea presentin a polytomy (Supplementary Fig. 2))
and testing a constraint of CPR to be sister to Chloroflexi (Supplemen-
tary Fig. 3),and acombination of both the DPANN and CPR constraints
(topology 2); these were tested against the ML topology, both using the
normal 20 amino acid alignments and also with Susko-Roger recoding®.

Gene families

For the 700 representative species”, gene family clustering was
performed using EGGNOGMAPPER v.2 (ref. 89), with the following
parameters: using the DIAMOND?’ search, a query cover of 50% and
ane-value threshold of 0.0000001. Gene families were collated using
their KEGG* identifier, resulting in 9,365 gene families. These gene
families were then aligned using MAFFT®* v.7.5 with default settings
and trimmed using BMGE® (with the same settings as above). Five
independent sets of ML trees were then inferred using IQ-TREE 2
(ref. 86), using LG + F + G, with 1,000 ultrafast bootstrap replicates.
We also performed a COG-based clustering analysis in which COGs
were assigned based on the modal COG identifier annotated for each
KEGG gene family based on the results from EGGNOGMAPPER v.2
(ref. 89). These gene families were aligned, trimmed and one set of gene
trees (with 1,000 ultrafast bootstrap replicates) was inferred using
the same parameters as described above for the KEGG gene families.

Reconciliations

The five sets of bootstrap distributions were converted into ALE files,
using ALEobserve, and reconciled against topology 1 and topology
2 using ALEmI_undated® with the fraction missing for each genome
included (where available). Gene family root origination rates were
optimized for each COG functional category as previously described™®
and families were categorized into four different groups based on
the probability of being present in the LUCA node in the tree. The
most-stringent category was that with sampling above 1% in both
domains and a PP > 0.75, another category was with PP > 0.75 with no
sampling requirement, another with PP > 0.5 with the sampling require-
ment; the least stringent was PP > 0.5 withno sampling requirement. We
used the median probability at the root fromacross the five runs to avoid
potential biases from failed runsinthe mean and toaccount for variation
across bootstrap distributions (see Supplementary Fig. 4 for distribu-
tions of theinferred ratio of duplications, transfers and losses for all gene
familiesacrossalltipsinthe speciestree; see Supplementary Data 5 for
theinferred duplications, transfers and losses ratios for LUCA, the last
bacterial common ancestor and the last archaeal common ancestor).

Metabolic pathway analysis
Metabolic pathways for gene families mapped to the LUCA
node were inferred using the KEGG*” website GUI and metabolic

completeness for individual modules was estimated with Anvi'o™
(anvi-estimate-metabolism), with pathwise completeness.

Additional testing

We tested for the effects of model complexity on reconciliation by
using posterior mean site frequency LG + C20 + F + G across three
independent runs in comparison with 3 LG + F + G independent runs.
We also performed a 10% subsampling of the species trees and gene
family alignments across twoindependent runs for two different sub-
samples, one with and one without the presence of Asgard archaea. We
also tested the likelihood of the gene families under a bacterial root
(between Terrabacteria and Gracilicutes) using reconciliations of the
gene families under aspecies-tree topology rooted as such.

Fossil calibrations

Onthe basis of well-established geological events and the fossil record,
we modelled 13 uniform densities to constrain the maximum and
minimum ages of various nodes in our phylogeny. We constrained the
bounds of the uniform densities to be either hard (no tail probability
is allowed after the age constraint) or soft (a 2.5% tail probability is
allowed after the age constraint) depending on the interpretation of
thefossil record (Supplementary Information). Nodes that referto the
same duplication event are identified by MCMCtree as cross-braced
(thatis, oneischosenasthe ‘driver’'node, therest are ‘mirrored’ nodes).
In other words, the sampling during the Markov chain Monte Carlo
(MCMC) for cross-braced nodesis notindependent: the same posterior
time density is inferred for matching mirror-driver nodes (see ‘Addi-
tional methods’ for details on our cross-bracing approach).

Timetree inference analyses

Timetree inference with the program MCMCtree (PAML v.4.10.7
(ref. 93)) proceeded under both the GBM and ILN relaxed-clock models.
We specified a vague rate prior with the shape parameter equal to 2
and the scale parameter equal to 2.5: ['(2, 2.5). This gamma distribu-
tion is meant to account for the uncertainty on our estimate for the
mean evolutionary rate, ~0.81 substitutions per site per time unit,
which we calculated by dividing the tree height of our best-scoring
ML tree (Supplementary Information) into the estimated mean root
age of our phylogeny (that is, 4.520 Ga, time unit =10° years; see
‘Fossil calibrations’ in Supplementary Information for justifications
on used calibrations). Given that we are estimating very deep diver-
gences, the molecular clock may be seriously violated. Therefore, we
applied avery diffuse gamma prior on the rate variation parameter (¢?),
I(1,10), so thatitis centred around ¢*>= 0.1. To incorporate our uncer-
tainty regarding the tree shape, we specified a uniform kernel density
for the birth-death sampling process by setting the birth and death
processes to 1, A (per-lineage birth rate) = u (per-lineage death rate)
=1, and the sampling frequency to p (sampling fraction) = 0.1. Our
main analysis consisted of inferring the timetree for the partitioned
dataset under both the GBM and the ILN relaxed-clock modelsin which
nodesthat correspond to the same divergences are cross-braced (that
is, hereby referred to as cross-bracing A). In addition, we ran 10 addi-
tional inference analyses to benchmark the effect that partitioning,
cross-bracing and relaxed-clock models can have on species divergence
time estimation: (1) GBM + concatenated alignment + cross-bracing A,
(2) GBM + concatenated alignment + cross-bracing B (only nodes that
correspond to the same divergences for which there are fossil con-
straintsare cross-braced), (3) GBM + concatenated alignment + without
cross-bracing, (4) GBM + partitioned alignment + cross-bracing B,
(5) GBM + partitioned alignment + without cross-bracing, (6) ILN + con-
catenated alignment + cross-bracing A, (7) ILN + concatenated align-
ment + cross-bracing B, (8) ILN + concatenated alignment + without
cross-bracing, (9) ILN + partitioned alignment + cross-bracing B,
and (10) ILN + partitioned alignment + without cross-bracing. Lastly,
we used (1) individual gene alignments, (2) a leave-one-out strategy
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(rate prior changed for alignments without ATP and Leu, I'(2, 2.2),
and without Tyr, T'(2,2.3), but wasT'(2, 2.5) for the rest; see ‘Additional
methods’), and (3) a more complex substitution model® to assess
their impact on timetree inference. Refer to ‘Additional methods’ for
details on how we parsed the dataset we used for timetree inference
analyses, ran PAML programs CODEML and MCMCtree to approximate
thelikelihood calculation®, and carried out the MCMC diagnostics for
theresults obtained under each of the previously mentioned scenarios.

Genomessize and cellular features

We simulated 100 samples of ‘/KEGG genomes’ based on the probabili-
tiesof each of the (7,467) gene families being present in LUCA using the
random.rand function in numpy®®. The mean number of KEGG gene
families was 1,298.25, the 95% HPD (highest posterior density) mini-
mum was 1,255 and the maximum was 1,340. To infer the relationship
between the number of KEGG KO gene families encoded by agenome,
the number of proteins and the genome size, we used LOESS (locally
estimated scatter-plot smoothing) regression to estimate the relation-
ship between the number of KOs and (1) the number of protein-coding
genesand (2) the genomesize for the 700 prokaryotic genomes usedin
the LUCA reconstruction. To ensure that our inference of genomesize is
robust touncertainty inthe number of paralogues that canbe expected
to havebeen presentin LUCA, we used the presence of probability for
each of these KEGG KO gene families rather than the estimated copy
number. We used the predict function to estimate the protein-coding
genes and genome size of LUCA using these models and the simulated
gene contents encoded with 95% confidence intervals.

Additional methods

Cross-bracing approach implemented in MCMCtree. The PAML
program MCMCtree was implemented to allow for the analysis of
duplicated genes or proteins so that some nodes in the tree corre-
sponding to the same speciation events in different paralogues share
the same age. We used the tree topology depicted in Supplementary
Fig. 5 to explain how users can label driver or mirror nodes (more on
these termsbelow) so that the programidentifies them as sharing the
same speciation events. The tree topology shown in Supplementary
Fig.5 canbe writtenin Newick format as:

(((A1,A2),A3), ((B1,B2),B3));

In this example, A and B are paralogues and the corresponding
tips labelled as A1-A3 and B1-B3 represent different species. Node r
represents a duplication event, whereas other nodes are speciation
events. If we want to constrain the same speciation events to have
the same age (that is, Supplementary Fig. 5, see labels a and b (that is,
A1-A2 ancestor and B1-B2 ancestor, respectively) and labels v and b
(thatis, A1-A2-A3 ancestor and B1-B2-B3 ancestor, respectively), we
use node labels in the format #1, #2, and so on to identify such nodes:

(((n1,
B3) #2)

A2) #1, A3) #2,
'B(0.9,1.1)';

((B1, B2) [#1 B{0.2, 0.4}1,

Node a and node b are assigned the same label (#1) and so they
share the same age (¢): ¢, = ¢,. Similarly, node u and node v have the
same age: t, =t,. The former nodes are further constrained by a
soft-bound calibration based on the fossil record or geological evi-
dence: 0.2 <¢t,=t,<0.4. The latter, however, does not have fossil
constraints and thus the only restriction imposed is that both ¢, and
t, are equal. Finally, there is another soft-bound calibration on the
rootage:0.9<¢,<1.1.

Among the nodes on the tree with the same label (for example,
those nodes labelled with #1 and those with #2 in our example), one
is chosen as the driver node, whereas the others are mirror nodes.
If calibration information is provided on one of the shared nodes

(for example, nodes a and b in Supplementary Fig. 5), the same infor-
mationtherefore applies to all shared nodes. If calibration information
is provided on multiple shared nodes, that information has to be the
same (for example, you could not constrain node a with a different
calibration used to constrain node b in Supplementary Fig. 5). The
time prior (or the prior on all node ages on the tree) is constructed by
using adensity at theroot of the tree, whichis specified by the user (for
example, 'B(0.9,1.1) ' inourexample, which hasaminimum of 0.9
and a maximum of 1.1). The ages of all non-calibrated nodes are given
by the uniform density. This time prior is similar to that used by ref. 29.
The parametersin the birth-death sampling process (4, i, p; specified
using the option BDparasinthe controlfile that executes MCMCtree)
areignored. It is noteworthy that more than two nodes can have the
same label but one node cannot have two or more labels. In addition,
the prior onrates does not distinguish between speciation and dupli-
cation events. The implemented cross-bracing approach can only be
enabledifoptionduplication = 1isincludedinthe controlfile. By
default, this option is set to 0 and users are not required to include it
inthe controlfile (thatis, the default optionisduplication = 0).

Timetree inference. Data parsing. Eight paralogues were initially
selected based on previous work showing a likely duplication event
before LUCA: the amino- and carboxy-terminal regions from carbamoyl
phosphate synthetase, aspartate and ornithine transcarbamoylases,
histidine biosynthesis genes A and F, catalytic and non-catalytic subu-
nits from ATP synthase (ATP), elongation factor Tu and G (EF), signal
recognition protein and signal recognition particle receptor (SRP),
tyrosyl-tRNA and tryptophanyl-tRNA synthetases (7yr), and leucyl-and
valyl-tRNA synthetases (Leu)”. Gene families were identified using
BLASTp?”. Sequences were downloaded from NCBI*, aligned with
MUSCLE®® and trimmed with TrimAI'%° (-strict). Individual gene trees
were inferred under the LG + C20 + F + G substitution model imple-
mented in IQ-TREE 2 (ref. 86). These trees were manually inspected
and curated to remove non-homologous sequences, horizontal gene
transfers, exceptionally short or long sequences and extremely long
branches. Recent paralogues or taxa of inconsistent and/or uncertain
placement inferred with RogueNaRok'* were also removed. Independ-
ent verification of an archaeal or bacterial deep split was achieved
using minimal ancestor deviation'®. This filtering process resulted in
the five pairs of paralogous gene families” (ATP, EF, SRP, Tyrand Leu)
that we used to estimate the origination time of LUCA. The alignment
used for timetree inference consisted of 246 species, with the majority
of taxa having at least two copies (for some eukaryotes, they may be
represented by plastid, mitochondrial and nuclear sequences).

To assess theimpact that partitioning can have on divergence time
estimates, we ranour inference analyses with both a concatenated and
a partitioned alignment (that is, gene partitioning scheme). We used
PAML v.4.10.7 (programs CODEML and MCMCtree) for all divergence
time estimation analyses. Given that a fixed tree topology is required
for timetree inference with MCMCtree, we inferred the best-scoring
ML tree with IQ-TREE 2 under the LG + C20 + F + G4 (ref. 103) model
following our previous phylogenetic analyses. We then modified
the resulting inferred tree topology following consensus views of
species-level relationships®**>'**, which we calibrated with the available
fossil calibrations (see below). Inaddition, we ran three sensitivity tests:
timetree inference (1) with each gene alignment separately, (2) under
aleave-one-outstrategy in which each gene alignment was iteratively
removed from the concatenated dataset (for example, remove gene
ATP but keep genes EF, Leu, SRP and Tyr concatenated in a unique
alignment block; apply the same procedure for each gene family),
and (3) using the vector of branch lengths, the gradient vector and the
Hessian matrix estimated under acomplex substitution model (bsinBV
method described in ref. 94) with the concatenated dataset used for
our core analyses. Four of the gene alignments generated for the
leave-one-out strategy had gap-only sequences, these were removed
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whenre-inferring the branchlengths under the LG + C20 + F + G4 model
(thatis, without ATP, 241 species; without EF, 236 species; without Leu,
243 species; without Tyr, 244 species). We used these trees to set the
rate prior used for timetree inference for those alignments not includ-
ing ATP, EF, Leu or Tyr, respectively. The S value (scale parameter) for
the rate prior used when analysing alignments without ATP, Leu and
Tyrchanged minimally but we updated the corresponding rate priors
accordingly (see above). When not including SRP, the alignment did
not have any sequences removed (that s, 246 species). All alignments
were analysed with the same rate prior, I'(2, 2.5), except for the three
previously mentioned alignments.

Approximating the likelihood calculation during timetree inference
using PAML programs. Before timetree inference, we ran the CODEML
program to infer the branch lengths of the fixed tree topology, the
gradient (first derivative of the likelihood function) and the Hessian
matrix (second derivative of the likelihood function); the vectors
and matrix are required to approximate the likelihood functionin the
dating program MCMCtree®, an approach that substantially reduces
computational time'®. Given that CODEML does not implement the
CAT (Bayesian mixture model for across-site heterogeneity) model,
we ran our analyses under the closest available substitution model:
LG +F + G4 (model = 3). We calculated the aforementioned vectors
and matrix for each of the five gene alignments (that is, required for
the partitioned alignment), for the concatenated alignment and for
the concatenated alignments used for the leave-one-out strategy;
the resulting values are written out in an output file called rst2. We
appendedtherst2files generated for each of the five individual align-
mentsinthe same order the alignmentblocks appearin the partitioned
alignment file (for example, the first alignment block corresponds to
the ATP gene alignment, and thus the first rst2 block will be the one
generated when analysing the ATPgene alignment with CODEML). We
named this file in_5parts.BV. There is only one rst2 output file for the
concatenated alignments, whichwe renamed in.BV (main concatenated
alignmentand concatenated alignments under leave-one-out strategy).
When analysing each gene alignment separately, we renamed the rst2
files generated for each gene alignment as in.BV.

MCMCdiagnostics. All the chains that we ran with MCMCtree for each
type of analysis underwent a protocol of MCMC diagnostics consisting
ofthe following steps: (1) flagging and removal of problematic chains;
(2) generating convergence plots before and after chain filtering;
(3) using the samples collected by those chains that passed the filters
(that is, assumed to have converged to the same target distribution)
to summarize the results; (4) assessing chain efficiency and conver-
gence by calculating statistics such as R-hat, tail-ESS and bulk-ESS
(in-house wrapper function calling Rstan functions, Rstan v.2.21.7;
https://mc-stan.org/rstan/); and (5) generating the timetrees for each
type of analysis with confidence intervals and high-posterior densi-
ties to show the uncertainty surrounding the estimated divergence
times. Tail-ESSis a diagnostic tool that we used to assess the sampling
efficiency in the tails of the posterior distributions of all estimated
divergence times, which corresponds to the minimum of the effec-
tive sample sizes for quantiles 2.5% and 97.5%. To assess the sampling
efficiency in the bulk of the posterior distributions of all estimated
divergence, we used bulk-ESS, which uses rank-normalized draws. Note
that if tail-ESS and bulk-ESS values are larger than 100, the chains are
assumed to have been efficient and reliable parameter estimates (that
is, divergence times in our case). R-hat is a convergence diagnostic
measure that we used to compare between- and within-chain diver-
gence time estimates to assess chain mixing. If R-hat values are larger
than 1.05, between- and within-chain estimates do not agree and thus
mixing has been poor. Lastly, we assessed the impact that truncation
may have on the estimated divergence times by running MCMCtree
whensampling fromthe prior (thatis, the same settings specified above

butwithout using sequence data, which set the prior distribution tobe
thetarget distribution during the MCMC). To summarize the samples
collected during this analysis, we carried out the same MCMC diagnos-
tics procedure previously mentioned. Supplementary Fig. 6 shows our
calibration densities (commonly referred to as user-specified priors,
see justifications for used calibrations above) versus the marginal
densities (also known as effective priors) that MCMCtree infers when
building the joint prior (that is, a prior built without sequence data
that considers age constraints specified by the user, the birth-death
with sampling process to infer the time densities for the uncalibrated
nodes, the rate priors, and so on). We provide all our results for these
quality-control checksin our GitHub repository (https://github.com/
sabifo4/LUCA-divtimes) and in Extended Data Fig. 1, Supplementary
Figs. 7-10 and Supplementary Data 6. Data, figures and tables used
and/or generated following a step-by-step tutorial are detailed in the
GitHub repository for each inference analysis.

Additional sensitivity analyses. We compared the divergence times
we estimated with the concatenated dataset under the calibration
strategy cross-bracing A with those inferred (1) for each gene, (2) for
gene alignments analysed under a leave-one-out strategy, and (3) for
the main concatenated dataset but when using the vector of branch
lengths, the gradient vector and the Hessian matrix estimated under
amore complex substitution model®. The results are summarized in
Extended Data Fig. 2 and Supplementary Data 7 and 8. The same pat-
tern regarding the calibration densities and marginal densities when
the tree topology was pruned (that is, see above for details on the
leave-one-out strategy) was observed, and thus no additional figures
have been generated. As for our main analyses, the results for these
additional sensitivity analyses can be found on our GitHub repository
(https://github.com/sabifo4/LUCA-divtimes).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Alldatarequired tointerpret, verify and extend theresearchin this arti-
clecanbefound at our figshare repository at https://doi.org/10.6084/
mo.figshare.24428659 (ref.106) for the reconciliationand phylogenomic
analyses and GitHub at https://github.com/sabifo4/LUCA-divtimes
(ref.107) for the molecular clock analyses. Additional data are available
atthe University of Bristol datarepository, data.bris, at https://doi.org/
10.5523/bris.405xnm7ei36d2cj65nrirg3ip (ref. 108).

Code availability

All code relating to the dating analysis can be found on GitHub at
https://github.com/sabifo4/LUCA-divtimes (ref.107),and other custom
scripts can be found in our figshare repository at https://doi.org/
10.6084/m09.figshare.24428659 (ref.106).
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Extended Data Fig.1| Comparison of the mean divergence times and
confidence intervals estimated for the two duplicates of LUCA under each
timetree inference analysis. Black dots refer to estimated mean divergence
times for analyses without cross-bracing, stars are used to identify those under
cross-bracing and triangles for estimated upper and lower confidence intervals.
Straight lines are used to link mean divergence time estimates across the

various inference analyses we carried out, while dashed lines are used to link the
estimated confidence intervals. The node label for the driver node is “248”, while
itis “368” for the mirror node, as shown in the title of each graph. Coloured stars
and triangles are used to identify which LUCA time estimates were inferred under
the same cross-braced analysis for the driver-mirror nodes (that is, equal time
and Cl estimates). Black dots and triangles are used to identify those inferred
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when cross-bracing was not enabled (that is, different time and Cl estimates).
-Abbreviations. “GBM”: Geometric Brownian motion relaxed-clock model; “ILN":
Independent-rate log-normal relaxed-clock model; “conc, cb” dots/triangles:
results under cross-bracing A when the concatenated dataset was analysed under
GBM (red) and ILN (blue); “conc, fosscb”: results under cross-bracing Bwhen the
concatenated dataset was analysed under GBM (orange) and ILN (cyan); “part,
cb” dots/triangles: results under cross-bracing A when the partitioned dataset
was analysed under GBM (pink) and ILN (purple); “part, fosscb”: results under
cross-bracing Bwhen the concatenated dataset was analysed under GBM (light
green) and ILN (grey); black dots and triangles: results when cross-bracing was
not enabled for both concatenated and partitioned datasets.
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Extended Data Fig. 2| Comparison of the posterior time estimates and
confidence intervals for the two duplicates of LUCA inferred under the main
calibration strategy cross-bracing A with the concatenated dataset and
with the datasets for the three additional sensitivity analyses. Dots refer

to estimated mean divergence times and triangles to estimated 2.5% and 97.5%
quantiles. Straight lines are used to link the mean divergence times estimated
inthe same analysis under the two different relaxed-clock models (GBM and
ILN). Labels in the x axis are informative about the clock model under which
the analysis ran and the type of analysis we carried (see abbreviations below).
Coloured dots are used to identify which time estimates were inferred when
using the same dataset and strategy under GBM and ILN, while triangles refer to

the corresponding upper and lower quantiles for the 95% confidence interval.
-Abbreviations. “GBM”: Geometric Brownian motion relaxed-clock model;

“ILN”: Independent-rate log-normal relaxed-clock model; “main-conc”: results
obtained with the concatenated dataset analysed in our main analyses under
cross-bracing A; “ATP/EF/Leu/SRP/Tyr”: results obtained when using each gene
alignment separately; “noATP/noEF/noLeu/noSRP/noTyr”: results obtained when
using concatenated alignments without the gene alignment mentioned in the
label as per the “leave-one-out” strategy; “main-bsinbv”: results obtained with the
concatenated dataset analysed in our main analyses when using branch lengths,
Hessian, and gradient calculated under a more complex substitution model to
infer divergence times.
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Extended Data Fig. 3| Maximum Likelihood species tree. The Maximum
Likelihood tree inferred across three independent runs, under the best
fitting model (according to BIC: LG + F + G + C60) from a concatenation of

57 orthologous proteins, support values are from 10,000 ultrafast bootstraps.

Referred to as topology I in the main text. Tips coloured according to taxonomy:
Euryarchaeota (teal), DPANN (purple), Asgardarchaeota (cyan), TACK (blue),
Gracilicutes (orange), Terrabacteria (red), DST (brown), CPR (green).
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Asgardarchaeota (cyan), TACK (blue), Gracilicutes (orange), Terrabacteria

Extended Data Fig. 4 | Maximum Likelihood tree for focal reconciliation
(red), DST (brown), CPR (green). AU topology test, P = 0.517, this is a one-sided

analysis. Maximum Likelihood tree (topology Il in the main text), where DPANN
is constrained to be sister to all other Archaea, and CPRis sister to Chloroflexi. statistical test.
Tips coloured according to taxonomy: Euryarchaeota (teal), DPANN (purple),
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Extended DataFig. 5| The relationship between the number of KO gene inferred relationship for modern prokaryotes to estimate LUCA’s genome size
families encoded on agenome and its size. LOESS regression of the number based on reconstructed KO gene family content, as described in the main text.
of KOs per sampled genome against the genome size in megabases. We used the Shaded arearepresents the 95% confidence interval.
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Extended DataFig. 6 | The relationship between the number of KO gene for modern prokaryotes to estimate the total number of protein-coding genes

families encoded on agenome and the total number of protein-codinggenes.  encoded by LUCA based on reconstructed KO gene family content, as described
LOESS regression of the number of KOs per sampled genome against the number in the main text. Shaded area represents the 95% confidence interval.
of proteins encoded for per sampled genome. We used the inferred relationship
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