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Abstract

Genome-wide association studies (GWASs) are widely used to detect single nu-

cleotide polymorphisms (SNPs) associated with diseases. Commonly, we use hy-

pothesis testing to identify associations. When analysing multiple SNPs, people

usually use multivariate analysis methods which are usually based on individual

genotype data or meta analysis methods which integrate summary statistics from

single SNP analysis. However, individual genotype data are difficult to obtain due

to privacy and most meta analysis methods do not consider and utilize correlations

between SNPs. All these multiple SNPs analysis methods can only test whether

multiple SNPs are associated with one disease and cannot identify specific SNPs as-

sociated with disease within multiple SNPs. In this thesis, we study how to leverage

linkage disequilibrium (LD) information, which summarises the degree of associa-

tion between different SNPs, and use summary statistics to discover SNPs associated

with disease. We propose to use a hidden Markov random field model (HMRF)

to model the correlation structure between SNPs and FDR control procedure to

identify the association. Simulation experiments show that our method is better

than other methods in terms of controlling false discovery rate and the power of

discovering true associated SNPs. Then the proposed method is extended into gene

association analysis. Simulation studies demonstrate that our approach outperforms

other methodologies concerning the control of false discovery rate and the efficacy

in detecting associated genes.



Impact Statement

A genome-wide association study is a powerful and widely method used in genet-

ics and genomics research to identify single nucleotide polymorphisms associated

with particular traits or diseases in human populations. Generally, multiple testing

methods are utilized to identify associations between specific genetic variants and

the trait of interest. However, when identifying associated genetic variants, few

researchers consider the linkage disequilibrium, which exists commonly when two

or more genetic variants are located close to each other on the same chromosome.

In this thesis, we propose to use a hidden Markov random field model to leverage

the linkage disequilibrium between genetic markers, which is rarely used in multi-

ple testing problems. In addition, summary statistics are applied in our proposed

method, which may be better than using individual genotype data since genotype

data are usually unavailable due to the privacy. We illustrate how our proposed

method can be applied to real datasets to identify genetic variants associated with

the trait Bipolar disorder. We also extend the proposed method to gene association

analysis, which can identify multiple associated genes with one disease. This can

find more associated genetic variants or genes, which is helpful to explain a higher

percentages of trait variance. By identifying genetic variants associated disease from

GWAS, people can aggregate the effects of multiple genetic variants to estimate

an individual’s polygenic risk scores to a particular trait or disease, which can be

used to predict individual disease risk, help doctors to provide clinical guidance for

disease prevention and facilitate the improvement of personalized medicine.
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Chapter 1

Introduction

1.1 Background

In genetics, people usually use ”genome” to represent the complete set of genetic ma-

terial present in an organism, which consists of deoxyribonucleic acid (DNA). DNA

is made up four nucleotides: adenine (A), thymine (T), cytosine (C), and guanine

(G), the sequence of which determines the characteristics and traits of an individual.

The completion of the human genome sequence and the initiation of the International

HapMap Project [1] has resulted in the development of genome-wide association

studies (GWAS), which are used to identity the associated genetic markers or genes

with different traits. For mapping the genes which are associated with common

disease and quantitative traits, there are two categories of approaches: candidate-

gene studies and genome-wide studies, which contain, respectively, linkage mapping

and genome-wide association studies [2]. Genes that are close to each other on a

chromosome are inclined to be passed down together during the process of genetic

recombination. Based on this, linkage mapping is usually used to study the relation-

ship between the transmission of a genetic marker and the disease or trait within

families, while GWAS mainly focuses on identifying the association between genetic

markers and traits within a large population. In GWAS, people detect genetic variants

associated with diseases, by genotyping single nucleotide polymorphisms (SNPs) in

diseased and normal individuals. Compared with traditional candidate-gene studies,

GWAS does not need prior information about a gene’s biological functional impact
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on the disease. In addition, for identifying genetic variants associated with disease

with modest effect sizes, GWASs are more powerful than linkage mapping [3].

For complex diseases, such as prostate and breast cancers [4] and type 2 diabetes

[5], GWASs have been shown to be an effective method to detect associated genetic

variants. In 2007, the Wellcome Trust Case Control Consortium (WTCCC) [6]

carried out a GWAS of 7 diseases using 14000 cases and 3000 controls, which

started the era of large-scale GWAS [7]. Because of new genotyping technologies,

the cost of large GWAS has become lower and more and more large-scale GWASs

have been carried out.

Although recently GWAS has discovered many genetic variants associated with

complex diseases, these findings can only explain a small fraction of phenotype

variance. For example, it is known that height is a phenotype with high heritabil-

ity, which could explain about 80% of phenotype variance. However, 40 variants

identified by GWAS by 2010 can only explain approximately 5% of height variance

[8]. In general, there exists a wide gap between the estimates of heritability and

the percentage of phenotype variance explained by GWAS, which is usually called

“missing heritability”. There are many possible reasons for missing heritability. For

example, there are many genetic variants with small effects, which are hard to detect.

It is common for current GWAS to involve sample sizes of 2000 to 5000, which

can detect common variants (minor allele frequency (MAF)>5%) with odds ratios

larger than 1.5 with 80% power [9], where MAF is the frequency of the second

most common allele in a given population. See Section 2.1 for more information.

However, for variants with odds ratios of 1.1, a sample size of 60000 is needed to

detect them with sufficient power, which will lead to large cost. What is more, for

variants with low MAF (1%<MAF<5%) or rare variants (MAF<1%), current GWA

genotyping technologies struggle to capture them. However, sometimes these vari-

ants may have large effects on complex disease, which is the common disease/rare

variant hypothesis [10]. For instance, 20 variants with an allele frequency of 1% and

an odds ratio of three may explain most familial aggregation of type 2 diabetes. To

solve the problem of missing heritability, it is necessary to develop new statistical
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methods to detect more associated genetic variants with moderate sample sizes.

1.2 Contributions
The first contribution in this thesis is developing a new method to deal with the

dependence among multiple testing, which is usually ignored in classical multiple

hypothesis testing problem. Our study is motivated by a genome-wide association

study, which aims to identify the SNPs which are associated with disease. A hidden

Markov random field model, which is usually used on image segmentation problems,

is proposed to leverage the dependence between different SNPs. The proposed

method outperforms the other methods when identifying the SNPs which are associ-

ated with disease in GWAS in several aspects, such as controlling false discovery

rate at a predefined level and improving the power of multiple testing by leveraging

correlation between SNPs.

The second contribution is in the area of GWAS application. Our proposed

method can be used in identifying specific SNPs or genes which are associated with

disease. Only summary statistics are required in our model, which are easy to be

obtained. Furthermore, by detecting more SNPs or genes associated with disease,

we can better estimate individual risk scores associated with a particular trait or

disease, which is helpful for the development of disease prevention and personalized

medicine.

1.3 Outline of this thesis
The focus of this thesis is to investigate new statistical methods to improve power in

genome-wide association studies. The rest of this thesis is organised as follows:

• Chapter 2 introduces some concepts and terminology used in GWAS and

conducts a literature review in GWAS.

• Chapter 3 introduces a hidden Markov random field model and describes

how to utilize a hidden Markov random field model to leverage dependence

information between SNPs.
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• Chapter 4 presents a simulation study to compare the performance of the

proposed method with other methods and discusses the effect of different

choices of threshold values and how the proposed method perform when

hypothesis is violated.

• Chapter 5 shows the application of proposed method on real dataset.

• Chapter 6 introduces an extension of the proposed method to gene association

and studies its performance using a simulation study and real datasets.

• Chapter 7 discusses limitations of the proposed method and future work.



Chapter 2

Genome-wide association study

This chapter is organised as follows. In Section 2.1, we introduce some concepts,

and terminology used in GWAS and describe what the data look like. In Section 2.2,

related methods of association analysis in GWAS are provided.

2.1 Preliminaries

2.1.1 Single nucleotide polymorphism (SNP)

Normally, human cells have 23 pairs of chromosomes, which contains 22 pairs

of autosomal chromosomes. Each chromosome is a deoxyribonucleic acid (DNA)

molecule, which is a long string of paired nucleotides that have four different types:

A, T, C, and G. Most of the genetic information stored in DNA is the same for

all human beings. The remaining small percentage of genetic variants make each

individual unique.

A single nucleotide polymorphism (SNP) represents a single nucleotide differ-

ence among individuals. For example, if a specific base position is nucleotide C for

many genomes in the population, but for some genomes, this position is occupied by

an T, then this position is a SNP with alleles C and T. SNPs are the most prevalent

form of genetic variation (there are at least 11 million common SNPs [11]), which

makes them good genetic markers for genetic mapping. The main aim of GWAS is

to determine whether a SNP is associated with a disease or trait.

Figure 2.1 illustrates SNPs from the human genome. For example, alleles G and

C appear at SNP1. The allele with higher frequency among the population is called
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“the major allele”, while the other one is called “the minor allele”. For instance, the

major allele and the minor allele for SNP1 are G and C, respectively. In genetics,

a set of SNP alleles at different locations of a gene or DNA sequence which are

inherited together is termed as a haplotype. For example, under the assumption that

the five SNPs in Figure 2.1 are inherited together, we have two haplotypes for the

1st individual: GCGTT and GAAGC.

Figure 2.1: An illustration of SNPs and their alleles.

For current GWAS, we can only observe the genotype data of each SNP instead

of haplotypes of each individual. Let us take the 1st individual in Figure 2.1 as an

example. The SNP data set in Figure 2.1 contains genotype information of five SNPs

as follows:

Sample ID SNP1 SNP2 SNP3 SNP4 SNP5

1 GG CA GA T G TC
(2.1)

In a real application, the above SNP genotypes are usually encoded as 0, 1 or 2,

dependent on the number of copies of variant alleles. For instance, suppose a SNP
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has alleles G (reference) and C (variant), then

• genotype GG is coded as 0 (homozygous reference);

• genotype GC is coded as 1 (heterozygous);

• genotype CC is coded as 2 (homozygous variant).

Usually, the reference allele is the major one while the variant is the minor one.

The frequency of this minor allele in a population is called the minor allele frequency

(MAF).

2.1.2 Hardy-Weinberg equilibrium

The Hardy-Weinberg equilibrium (HWE) describes a probabilistic relationship be-

tween allele frequencies and genotype frequencies, which states that the genetic

variation in a population will remain constant from one generation to the next when

a set of assumptions are satisfied. These assumptions include random mating, large

population size, no immigration or emigration, no mutations and no natural selection,

which means all genotypes have an equal chance of surviving and reproducing.

Under these assumptions, a population is not evolving and in Hardy-Weinberg

equilibrium, which means that the frequencies of alleles and genotypes in the popu-

lation remain constant. Let p be the frequency of allele A and q be the frequency of

the allele a, and AA, Aa, and aa be the frequencies of three possible genotypes in the

population. Under HWE, the following relationship holds:

p+q = 1,

p2 +2pq+q2 = 1.
(2.2)

In practice, Pearson’s chi-squared test is usually applied to check if HWE is satisfied

for each allele, which compares the observed genotype frequencies obtained from

the data and the expected genotype frequencies obtained using the equation (2.2).

Since many genetic association studies are based on the assumption of HWE, it is

necessary to conduct HWE test for every SNP before analysing data.
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2.1.3 Linkage disequilibrium

In genetics, linkage disequilibrium (LD) is used to describe the dependency rela-

tionship between different SNPs. For a combination of alleles of two SNPs, LD is

defined as the difference between observed frequency and expected frequency.

Now we illustrate how to measure LD. Consider two SNPs and their alleles

(A,a) and (B,b), respectively. Denote the allele frequency of A as pA and the allele

frequency of B as pB. Then the level of linkage disequilibrium between two SNPs

can be quantified by D. Its definition is as follows:

D = P(AB)− pA pB. (2.3)

When D = 0, it means that these two SNPs are independent of each other.

Otherwise, there is correlation between them. Since the value of D depends on the

frequencies of the alleles, it is difficult to use D to compare the level of linkage

disequilibrium between different pairs of alleles. So LD is usually measured by

normalizing D as follows:

r =
D√

pA(1− pA)pB(1− pB)
. (2.4)

When the major and minor alleles are encoded using 0 and 1 as we state in

Section 2.1.1, r is equivalent to the Pearson correlation coefficient between two SNPs

[12].

2.1.4 LD matrix calculation

In general, the LD matrix is calculated from a reference panel with individual

genotype data such as the 1000 Genomes Project [13]. In this study, we use the

European population genotype data from 1000 Genomes Project phase3 as the

reference panel, which contains 503 individuals. Usually, the PLINK1.9 software

[14] is used to select the genotype data of corresponding SNPs in our study and

VCFtools [15] is used to recode the genotype data as 0,1, or 2, which is dependent

on the number of copies of variant alleles. Then the LD matrix can be calculated

based on the genotype data of 503 individuals.
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2.1.5 Data Description

A genome-wide association study is an example of a large-scale hypothesis testing

problem, which considers hundreds or thousands of test statistics at once. Before

describing multiple testing problems, we describe the data format firstly in this part

and use a plot to show the effect of correlation on the null distribution of Z values.

In this section, a GWAS dataset that will be analysed in Chapter 5 is introduced

. We give an overview of the structure of the data in this section and discuss issues

concerned with multiple testing in Section 2.1.6. The data come from the Wellcome

Trust Case Control Consortium (WTCCC) [16]. They conducted the genome-wide

association studies of 2000 cases and 3000 shared controls for several complex

human diseases: bipolar disorder (BD), coronary artery disease (CAD), hypertension

(HT), rheumatoid arthritis (RA), type 1 diabetes (T1D), and type 2 diabetes (T2D)

[16]. The format of summary statistics are illustrated in Figure 2.2.

Figure 2.2: This is a small subset of the sample data from whole data of disease bipolar
disorder. The CHR means Chromosome number, SNP is the SNP ID. A1
represents the minor allele. F A is the frequency of this allele in cases, while
F U is the frequency of this allele in controls. OR represents the estimated odds
ratio for A1 when the other allele is the reference allele. SE is the standard
error for log(OR). L95 and U95 are the lower bound and upper bound of a 95%
confidence interval for this odds ratio, respectively. The Z values we used in our
study can be calculated using log(OR)/SE (see Section 2.2.1 for details).

The aim of a genome-wide association study is to identify those SNPs which

are associated with disease. In the context of a null distribution of Z values based

on the assumption of no association, SNPs with odds ratios that are unusual, that

is, significantly different from 1, will be regarded as significant discoveries. The Z
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values we used in our study can be calculated using log(OR)/SE (see Section 2.2.1

for details).
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Figure 2.3: The histogram of Z values from diseases CAD. The red curve represents the
theoretical null distribution, which is N(0,1). The blue circles on heavy tail
have large or small Z values, which may be non null cases and associated with
disease. These are what we want to find.

Figure 2.3 shows the histogram of Z values. The blue circles, which have

unusual Z values, are the SNPs we are interested in. In Figure 2.3, when blue circles

are identified as significant discoveries, the standard normal distribution N(0,1) is

assumed as the null distribution of Z values. In genome-wide association studies, the

different SNPs are not independent and there exists linkage disequilibrium, which

makes the Z values not independent. The correlation between Z values will have

twofold effect for multiple testing [17, 18]:

1. Correlation will have effect on the null distribution of Z values. In general,

the Z values are assumed to follow standard normal distribution under the

null hypothesis, which is called the theoretical null distribution. However,

correlation may make the null distribution widen or narrow.

2. Correlation may affect the number of SNPs that are reported as non-null when

conducting simultaneous testing.
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To illustrate how different SNPs are correlated with each other, the correlation

r (see equation (2.4)) between a small sample of 1000 SNPs from disease bipolar

disorder is plotted in Figure 2.4.

Figure 2.4: The correlation between 1000 SNPs. The blue points represent that the cor-
relation between SNPs is close to −1, while the red points represent that the
correlation is close to 1. The black square indicates 50 SNPs with numbers
521 to 570, which will be analysed in Figure 2.5. The green square indicates
correlation structure at (150:170,540:560), which will be analysed in Figure 2.6.

Figure 2.4 shows the correlation between 1000 SNPs, which is from rs2554622

to rs2920090 on chromosome 8. It can be seen that for most of the pairs of SNPs,

the correlation is close to 0, because most of the plot has colors close to the white,

which represents a value of 0. When a correlation is not close to 0, more correlation

of the pairs of SNPs are positive since more colors are close to red rather than blue.

Also, when points close to diagonal line from the lower left to upper right, they have
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red or blue colors, which means SNPs tend to have stronger correlation when they

are close to each other. Figure 2.4 suggests that there is some local structure in the

correlations for groups of neighbouring SNPs. To make the correlation structure

clearer, one black square area is selected and zoomed in. The black square indicates

50 SNPs with numbers 521 to 570, and the correlation between these 50 SNPs is

displayed in Figure 2.5.
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Figure 2.5: The correlation between 50 SNPs.

It can be seen from Figure 2.5 that the diagonal line is white, since the diagonal

values are set as 0. For some SNPs such as SNPs between 545 and 555, they have

both positive and negative correlation with other nearby SNPs. Especially, SNPs 550

and 551 are strongly positively correlated while these SNPs are negatively correlated

with the SNPs that are near them. The group of SNPs from 546 to 549 and another

group of SNPs between 552 and 555 are positively correlated with each other, to

varying degrees. If we cluster these different groups of correlated SNPs as haplotypes,

it can be seen that 2 haplotypes are correlated. Here we focus on observing the

correlations between SNPs since our analysis in this thesis is based on SNPs. For

SNPs between 523 and 528, they are positively correlated with nearby SNPs, while

there are groups of SNPs such as those SNPs 528 to 532 with correlations close to 0.
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Figure 2.6: The correlation structure between SNPs at (150:170,540:560), which is the
off-diagonal green square in Figure 2.4.

Figure 2.6 shows that except SNPs close to each other in Figure 2.5, there are

some strong correlations between sets of SNPs that are not located closely together.

For example, SNPs with numbers 158 to 166 have positive correlations with SNPs

from 546 to 549 and groups of SNPs from 552 to 556, while they are negatively

correlated with SNPs 550 and 551. Figures 2.4 to 2.6 show that there are some

strong positive and negative associations between SNPs and that while many of these

strong associations are between SNPs that are located close to each other on the

chromosome, there are also some strong associations between distant pairs of SNPs.

To explore the distribution of Z values for these data, plots of Z values for

several diseases are presented in Figures 2.7 and 2.8. The plots on the left are

histograms of Z values with the N(0,1) density function superimposed in red and

a kernel density estimate of the empirical density function superimposed in blue.

The horizontal axis of these plots is constrained to (−4,4) to focus on a comparison

of the N(0,1) probability density. The plots on the right are normal QQ plots of

the Z values, with horizontal and vertical red lines superimposed at −4 and 4 to

make comparison with the plots on the left, but the QQ plots also show instances

where Z have magnitudes that are very much larger than expected under a N(0,1)

null distribution.
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(a) Histogram and QQ plot of Z values from bipolar disorder (BD), 349274 SNPs. The
theoretical null distribution is narrow.

(b) Histogram and QQ plot of Z values from coronary (CAD), 350523 SNPs. The
theoretical null distribution is narrow.

(c) Histogram and QQ plot of Z values from hypertension (HT), 350271 SNPs. The
theoretical null distribution is narrow.

Figure 2.7: The histogram and QQ plots of Z values from diseases BD, CAD, HT. The red
line in histogram represents the theoretical distribution, while the blue line in
histogram is the empirical distribution.The red lines in QQ plot represent the
lines −4 and 4, which are consistent with the (−4,4) scale in histogram,
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(a) Histogram and QQ plot of Z values from rheumatoid arthritis (RA), 350356 SNPs.
The theoretical null distribution is narrow.

(b) Histogram and QQ plot of Z values from type I diabetes (T1D), 350520 SNPs. The
theoretical null distribution is narrow, but the difference is quite small.

(c) Histogram and QQ plot of Z values from type 2 diabetes (T2D), 349767 SNPs. The
theoretical null distribution is narrow.

Figure 2.8: The histogram of Z values from diseases RA, T1D and T2D. The red line in
histogram represents the theoretical distribution, while the blue line in histogram
is the empirical distribution.The red lines in QQ plot represent the lines −4 and
4, which are consistent with the (−4,4) scale in histogram,
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It can be seen from the histograms in Figure 2.7 and Figure 2.8 that the empirical

distributions have slightly heavier tails than the theoretical null distribution. This may

be caused by the correlation between Z values or just reflect the influence of the Z

values with unusually large magnitudes seen in the QQ plots. However, the difference

is small, especially for disease type I diabetes in Figure 2.8 (b). When the empirical

distribution appears to be very different from the theoretical null distribution, it may

be not appropriate to use the theoretical null distribution in the testing procedure.

For the QQ plots, it can be seen from Figures 2.7 and 2.8 that most of the points lie

on the straight lines, especially for middle bulk of the Z values, which suggests that

many Z values are sampled from a N(0,1) distribution, while some Z values have

unusually large magnitudes. These unusual large Z values are what we are interested

in.

For the second effect of correlation, Efron [18] used simulation experiments

to show that correlation effect may cause misleading estimates of false discovery

rate (FDR), which is usually used to decide the non-null cases in multiple testing

procedure (see details in Section 2.1.6.2). In their experiments, correlation may

make the estimates of FDR decline as the actual false discovery proportion increases,

which will cause false discoveries. So considering correlation in a multiple testing

procedure can be important.

2.1.6 Multiple testing

In this part, some concepts in multiple testing problems and several correction

methods are introduced, which will be useful in comparing performance during

experiments.

2.1.6.1 Error Criteria

Let us consider testing m hypotheses simultaneously, which include m0 true hypothe-

ses and m1 = m−m0 false hypotheses. The possible outcomes are summarised in

Table 2.1.
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H0 is true H0 is false Total

H0 is rejected V S R

H0 is not rejected m0 −V m1 −S m−R

Total m0 m1 m

Table 2.1: The number of hypotheses in each category when testing m hypotheses.

We call V the number of false positives (Type I error), and S the number of true

positives. m1 −S is the number of false negatives (Type II error) and m0 −V is the

number of true negatives.

The following describes a multiple testing problem. The more hypotheses we

consider, the higher the probability of getting at least one false positive result (Type I

errors) [19]. For example, if assuming that the m = 100 hypotheses are independent,

and the probability of a false positive for each test is 0.05, then the probability of

getting at least 1 false positive for 100 hypotheses is 1− (1−0.05)100 ≈ 0.994. For

a single-marker test, the hypothesis test is conducted for each SNP. Usually, there

are a large number of SNPs in a GWAS. So to avoid a multiple testing problem,

it is necessary to correct the significance level by considering the multiplicity of

simultaneously testing all SNPs.

The classic method for multiple testing correction is to use the family-wise

error rate (FWER) [20] to control the type I error of multiple hypotheses. FWER

is the probability of making at least one false discovery: FWER = P(V ≥ 1). The

most conservative correction to control FWER is the Bonferroni correction [21],

which assumes that all tests are independent and simply uses α∗ = α/m as the

significance level for a single test. Here α is the desired overall significance level

for m hypotheses, and m is the number of hypotheses. Another more powerful

method is called Holm-Bonferroni method [22], which is a modification of the

Bonferroni correction. The procedure is as follows: (1) Order the p-values p(1) ≤

p(2) ≤ ·· · ≤ p(m), and the corresponding hypotheses are H(1), . . . ,H(m); (2) For a

given significance level α , let k be the minimal index such that p(k) ≥ α

m+1−k ; (3)

Reject the null hypotheses H(1), . . . ,H(k−1).
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FWER control is a stringent statistical method used to minimize the risk of

making any false positives in a family of tests. However, in large-scale multiple

testing problem such as GWAS, it is quite common to have false rejections due to

the large number of statistical tests performed and FWER is too conservative to find

interesting results. Under these situations, a more proper approach is to control the

false discovery rate (FDR) [23]. The FDR is defined as the expected proportion of

false positives among the set of rejected hypotheses: FDR = E(V/(R∨1)), where

R∨ 1 means max(R,1), and FDR = 0 when R = 0. Compared with controlling

the FWER, controlling the FDR provides a less stringent significance level, thus

achieving a higher power. The most common method to control the FDR is the

Benjamini and Hochberg (BH) procedure [23]. This procedure is as follows: (1)

Order the p-values: p(1) ≤ p(2) ≤ ·· · ≤ p(m); (2) Given the desired FDR level q, the

index k is computed as follows:

k = max
{

i : p(i) ≤
iq
m

}
. (2.5)

If there is no such k, none of the hypotheses is rejected. Otherwise Hi (i = 1, . . . ,k)

are rejected.

2.1.6.2 Local False Discovery Rate Methods

Efron and others [24] first proposed the local false discovery rate methods. Consider

that m hypothesis tests are conducted simultaneously and the corresponding test

statistics are Z1, . . . ,Zm. Denote the probability of the null hypothesis as p0 = P(H0),

while the probability of the alternative hypothesis is set as p1 = P(H1). Given a test

statistic Z = z, the local false discovery rate (lfdr) is defined as the probability that a

hypothesis is null:

l f dr(z) = P(H0 | z) =
p0 f0(z)

p0 f0(z)+ p1 f1(z)
, (2.6)

where f0 denotes the probability density function (PDF) of test statistics when

the null hypothesis is true, while f1 is the PDF of test statistics when alternative

hypothesis is true. If F0 and F1 are used to represent the corresponding cumulative
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distribution functions (CDFs), then FDR can be defined as the posterior probability

of a null hypothesis given that the test statistic Z is less or equal to some value z:

FDR(z) = P(H0 | Z ≤ z) =
p0F0(z)

p0F0(z)+ p1F1(z)
. (2.7)

Efron et al. [25] showed the connections between FDR and lfdr. It can be

seen from equations (2.6) and (2.7) that the local false discovery rate depends on

densities, while false discovery rate is based on CDFs. FDR(z) can be seen as the

average of l f dr(Z) for all Z ≤ z [25]. lfdr can be also used to make decisions like

P values, since lfdr provides the probability of false discovery for each hypothesis.

The smaller lfdr one hypothesis has, the smaller probability of making a type I error

when rejecting this hypothesis.

2.1.6.3 Local Significance Index Methods

Local false discovery methods only consider individual test statistic when making

decisions, which may lose information especially when test statistics are not inde-

pendent. The local significance index method is a generalization of the local false

discovery rate method that considers all test statistics to make decisions, which can

incorporate dependence information when test statistics are correlated. The local

index of significance (LIS) [26] is defined as:

LISi = PΘ(Hi is null | all the observations at m hypotheses), (2.8)

where Θ are the parameters which are used to specify the dependence structure of the

m hypotheses. Sun and Cai [26] assumed the dependence between test statistics are

from a chain structure across the gene and used hidden Markov models to leverage the

dependence information. Then they made inference for parameters using a forward-

backward procedure and proposed the decision rule as δ = I(LISi < λ ), i = 1, . . . ,m,

where λ is a threshold. If Rλ , Vλ and Q(λ ) are used to denote the number of

rejections, the number of false rejections and the marginal false discovery rate,
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respectively, these values can be calculated as follows:

Rλ =
m

∑
i=1

I(LISi < λ )

Vλ =
m

∑
i=1

I(LISi < λ ,Hi is null)

Q(λ ) =
E(Vλ )

E(Rλ )
.

(2.9)

Sun and Cai [26] showed that LIS could be applied to approximate the marginal

false discovery rate:

Q̂(k) =
1
k

k

∑
i=1

I(LIS(i)), (2.10)

where k is the number of rejected hypotheses.

2.1.7 Multiple testing for grouped hypotheses

For grouped hypotheses, it is more difficult to control the rate of false discoveries

for multiple testing. There are several people who have developed current multiple

testing methods for grouped hypotheses. For reference, Sun and Cai [27] proposed

two strategies. One is called pooled FDR analysis [28], which ignores the group

labels and calculates the pooled lfdr statistic for all hypotheses. If there are m

hypotheses, which can be divided in to K groups, then the pooled lfdr statistic

(PLfdr) is defined by

PLfdr(Zi) = P(H0|Z) =
p0 f0(Zi)

p0 f0(Zi)+ p1 f1(Zi)
, i = 1, . . . ,m, (2.11)

where Zi denotes the test statistic and p0 = P(H0). f0 denotes the PDF of test

statistics when the null hypothesis is true, while f1 is the PDF of test statistics when

alternative hypothesis is true. Then let PLfdr(1), . . . ,PLfdr(m) be the ranked PLfdr

values and H(1), . . . ,H(m) be the corresponding hypotheses. The pooled FDR analysis

procedure is to reject all H(i) for i = 1, . . . , l where

l = max

{
i : (1/i)

i

∑
j=1

PLfdr( j) ≤ α

}
, i = 1, . . . , l. (2.12)
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The pooled FDR analysis is similar as the FDR analysis for single group

hypotheses, since it ignores the group labels and the equation (2.12) is the same as

equation (2.5).

Another method is separate FDR analysis, which analyses each group separately

at the same FDR level and then combines the decision results together. Sun and Cai

[27] defined the conditional lfdr for group k as

CLfdrk(Zki) = P(Hk0|Z) =
pk0 fk0(Zki)

pk0 fk0(Zki)+ pk1 fk1(Zki)
, i = 1, . . . ,mk; k = 1, . . . ,K,

(2.13)

where mk represents the number of hypotheses in group k. Then for the separated

FDR analysis, let CLfdrk
(1), . . . ,CLfdrk

(m) be the ranked CLfdr values in group k and

Hk
(1), . . . ,H

k
(mk)

be the corresponding hypotheses. The separate FDR procedure for

group k is to reject all Hk
(i) for i = 1, . . . , lk where

lk = max

{
i : (1/i)

i

∑
j=1

CLfdrk
( j) ≤ α

}
. (2.14)

Then the final set of rejection hypotheses for separate FDR analysis is equal to⋃K
k=1{Hk

(i) : i = 1, . . . , lk}, which combined the K rejection sets together.

In 2009, Cai and Sun [28] combined the above two methods and proposed

to calculate the lfdr values for separate groups based on equation (2.13). Then

they combined these lfdr values from all groups together to make decisions as in

equation (2.12). Benjamini and Cohen [29] developed a hierarchical weighted false

discovery rate (FDR) method to control FDR with equal weights. Basu et al. [30]

also developed a weighted FDR method, but they used some predefined weights.

For multiple groups, they estimated the local false discovery rate (lfdr) for separate

group and used the weighted FDR method for multiple groups. Zhao and Zhang [31]

used weighted p-value procedures to control FDR, where the weights were estimated

by maximizing a power-related objective function. Hu et al. [32] proposed a group

BH procedure, which weighted p-values for each group and pooled all weighted
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p-values together. Then a BH procedure was used to make a decision. The weights

for each group were estimated from the proportion of true null hypotheses in each

group.

Liu et al. [33] proposed a framework to control within-group false discoveries

while controlling false discoveries from all hypotheses from a Bayesian viewpoint,

which is under the assumption of one-way classified hypotheses. They expressed the

hypotheses as follows: θki = θk ×θi|k, where k = 1, . . . ,K represent the group and

i = 1, . . . ,mk represent the index within the group. So it can be seen that if θk = 0,

then all θki = 0. If θk = 1, then θki = 0 or 1. Then they defined

fdrk(Z) = P(θk = 0|Z), (2.15)

and

fdri|k(Z) = P(θi|k = 0|θk = 1,Z), (2.16)

where Z represents the observed data. Their proposed procedures are as follows:

1. For each group k, let fdr(1)|k, . . . , fdr(mk)|k be the ranked fdri|k values and

Hk(1), . . . ,Hk(mk) be the corresponding hypotheses. Then they rejected all

Hk(i), i = 1, . . . ,Rk, where

Rk = max

{
lk :

1
lk

lk

∑
i=1

fdr(i)|k ≤ η

}
, (2.17)

where 0 < η ≤ α , and α is the significance level. They chose η = α .

2. Calculate ηk =
1

Rk

Rk
∑

i=1
fdr(i)|k, and define fdr∗k = 1−(1−ηk)(1− fdrk), for each

group k. Then let fdr∗(1), . . . , fdr∗(K) be the ranked fdr∗k values and H(1), . . . ,H(K)

be the corresponding hypotheses. Then the testing procedure was to reject all

H(k), k = 1, . . . , l, where

l = max

 j :

j
∑

k=1
R(k)fdr∗(k)

j
∑

k=1
R(k)

≤ α

 , (2.18)
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where R(k) is the value of R in equation (2.17) for the group that corresponds

to fdr∗(k).

In 2021, Sarker and Nandi [34] extended Liu’s framework to two-way classi-

fied hypotheses. Beside controlling FDR, Zhao [35] proposed weighted p-value

procedures to control the family-wise error rate. Wang [36] used a weighted testing

procedure to control the generalized family-wise error rate, which assumed p-values

within each group had weak dependence.

2.2 Related work

2.2.1 Single-marker methods

In GWAS, hypothesis testing is a broadly used approach to decide if one SNP is

associated with a disease. The most common method is single-marker method,

which means that one SNP is considered at a time. For case-control studies, the

frequently used testing methods are derived from logistic regression, which contains

allele-based tests and genotype-based tests according to their independent variables.

For each SNP, a contingency table can be created for case-control studies as in Table

2.2 (allele-based), Table 2.3 (genotype-based), Table 2.4(haplotype-based) or as in

Table 2.5(groups of genotype distribution). Here we use A and a to denote the two

alleles. There are connections between Table 2.2 and Table 2.3. Let g00, g01, g02 be

the frequencies of genotypes AA, Aa, and aa in control group, respectively. Since

genotype AA contains allele A twice, and genotype Aa includes one allele A, we

can get n00 = 2g00 + g01, where n00 is the frequency of allele A in control group.

Similarly, we can have n01 = g01 + 2g02, while n01 is the frequency of allele a in

control group.
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A a Total

Control n00 n01 2n0

Case n10 n11 2n1

Total n00 +n10 n01 +n11 2n

Table 2.2: Allele distribution for case-control studies. Here n0i, i = 0,1 are the frequencies
of alleles in control group, while n1i, i = 0,1 are the frequencies of alleles in case
group. 2n0 = n00 +n01, 2n1 = n10 +n11.

AA Aa aa Total

Control g00 g01 g02 n0

Case g10 g11 g12 n1

Total g00 +g10 g01 +g11 g02 +g12 n

Table 2.3: Genotype distribution for case-control studies. Here g0i, i = 0,1,2 are the fre-
quencies of genotypes in control group, while g1i, i = 0,1,2 are the frequencies
of genotypes in case group. n0 = g00 +g01 +g02, n1 = g10 +g11 +g12.

AB Ab aB ab Total

Control h00 h01 h02 h03 n0

Case h10 h11 h12 h13 n1

Total h00 +h10 h01 +h11 h02 +h12 h03 +h13 n

Table 2.4: Haplotype distribution for case-control studies. There are two loci, each with
alleles: A, a at locus 1 and B, b at locus 2, which gives us four possible haplotypes:
AB, Ab, aB, ab. Here h0i, i = 0,1,2,3 are the frequencies of haplotypes in control
group, while h1i, i = 0,1,2,3 are the frequencies of haplotypes in case group.
n0 = h00 +h01 +h02 +h03, n1 = h10 +h11 +h12 +h13.
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Control Case Total
AABB g000 g100 g000 +g100
AABb g001 g101 g001 +g101
AAbb g002 g102 g002 +g102
AaBB g010 g110 g010 +g110
AaBb g011 g111 g011 +g111
Aabb g012 g112 g012 +g112
aaBB g020 g120 g020 +g120
aaBb g021 g121 g021 +g121
aabb g022 g122 g022 +g122
Total n0 n1 n

Table 2.5: Groups of genotype distribution for case-control studies for two genotypes. Here
g0i j, i = 0,1,2, j = 0,1,2 are the frequencies of genotypes in control group,
while g1i j, i = 0,1,2, 0,1,2 are the frequencies of genotypes in case group,
where i represents the number of variants in the first genotype with alleles A, a,
and j represents the number of variants in the second genotype with alleles B, b.

The log-odds ratio (OR) test is a typical allele-based test in which allele fre-

quencies are compared between control group and case group. The log-OR µ can be

estimated as follows:

µ̂ = log
n00n11

n01n10
. (2.19)

Using Woolf’s method [37], the approximate asymptotic standard error of µ̂can

be calculated:

σ ≈
√

1
n00

+
1

n01
+

1
n10

+
1

n11
. (2.20)

The test statistic is z = µ̂/σ , which follows a standard normal distribution

under the null hypothesis. The log-OR test can be equivalent to the Wald test of the

following logistic regression model:

log
(

P(Y = 1)
1−P(Y = 1)

)
= α +βx, (2.21)

where Y = 1 denotes the case group and Y = 0 denotes the control group, and x = 0

is encoded for allele A while x = 1 represents allele a.

For genotype-based tests, people compare whether the observed genotype

frequencies in cases differs from that in controls. The Pearson’s χ2 test is the most

common one. Based on counts in Table 2.3, the test statistics is:
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χ
2 =

2

∑
t=0

[
(g0t −n0(g0t +g1t)/n)2

n0(g0t +g1t)/n
+

(g1t −n1(g0t +g1t)/n)2

n1(g0t +g1t)/n

]
. (2.22)

Under the null hypothesis, χ2 follows a χ2 distribution with 2 degrees of freedom

asymptotically. Pearson’s χ2 test can be equivalent to the score test of the following

logistic regression:

log
(

P(Y = 1)
1−P(Y = 1)

)
= α +β11x=1 +β21x=2, (2.23)

where 1 is the indicator function, and we denote x = 0,1,2 are denoted for genotypes

AA, Aa, aa, respectively.

Another popular genotype-based method is the Cochran-Armitage trend test

(CATT) [38]. Its test statistic is:

ZCAT T =
n0(2g12 +g11)−n1(2g02 +g01)√

n0n1
n (n(g01 +g11 +4g02 +4g12)− (g01 +g11 +2g02 +2g12)2)

. (2.24)

ZCAT T follows a standard normal distribution asymptotically under null hypothesis.

It is equivalent to the score test of the following logistic regression model:

log
(

P(Y = 1)
1−P(Y = 1)

)
= α +βx. (2.25)

For the test statistics above, it is easy to calculate a p-value according to their

asymptotic distributions under the null hypothesis. Also exact p-values can be

calculated using Fisher’s exact test or permutation test, but the computation cost is

high.

For studies with quantitative phenotypes, people usually use a test derived from

linear regression. For example, consider the following additive linear regression

model:

Y = β0 +β1X + ε, (2.26)
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where X is the number of copies of allele a and ε ∼ N(0,σ2), for which σ is a

constant. The test statistic is:

T =
β̂1√

var(β̂1)
, (2.27)

where β̂1 is the maximum likelihood estimate. Under the null hypothesis, T follows

a t distribution with degrees of freedom equal to N −2, and N is the sample size.

In addition to these frequentist approaches, Bayesian methods have also been

developed in GWAS. WTCCC has used Bayes factors [6] to discover the associated

SNPs, which can provide similar ranking with p-values for common variants [39]. A

Bayes factor (BF) describes the ratio of the likelihood of one particular hypothesis to

the likelihood of another:

BF =
P(y|H1)

P(y|H0)
, (2.28)

where y is the observed phenotype vector. BF > 1 favors the alternative hypothesis,

while BF < 1 favors the null hypothesis. Since people need to specify a prior distri-

bution for all unknown parameters to calculate Bayes factor, the cost of computation

is high. To make it simpler, Wakefield [39] described an alternative asymptotic

Bayes factor. If β̂ and
√

V are used to denote the maximum likelihood estimate

and standard error from the above logistic regression model (2.25), and the prior

distribution of β is assumed as N(0,W ), the Wakefield approximate Bayes factor

(WABF) is:

WABF =

√
V

V +W
exp
(

Z2W
2(V +W )

)
, (2.29)

where Z = β̂/
√

V is the usual Wald statistic. This is easy to calculate because β̂ and

V are usually available from the results of a standard frequentist analysis.

After obtaining a Bayes factor, the posterior odds (PO) can be calculated on H1

according to the Bayes theorem:

PO = BF× 1−π0

π0
, (2.30)
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where π0 = P(H0). Then the posterior probability of association (PPA) can be

calculated as:

PPA =
PO

1+PO
. (2.31)

For GWAS, the probability of association 1−π0 is quite small, so BF has to be

large enough (for instance, > 104 −106) to provide strong evidence that the SNP is

associated with the disease, which will provide PPA close to 1 [40].

2.2.2 Multiple-SNP based methods using genotypes

The single-marker methods neglect the association effects jointly expressed by

multiple SNPs. Based on this, people develop multi-marker methods, which test

multiple SNPs (e.g., all the SNPs in a gene or a pathway) simultaneously. The

underlying null hypothesis tested is that none of the SNPs in the set are associated

with the disease, while the alternative hypothesis is that at least one SNP in the set is

associated with the disease.

One class of multiple-marker methods is based on multivariate analysis, such as

methods based on multivariate regression [41, 42, 43]. Multivariate Hotelling’s T 2

test [44] compares the means of genotype scores between different groups. Suppose

there are m SNPs to be considered. Let Xi j denote the genotype score of the jth

SNP for the ith individual from cases, which are encoded as 0, 1, 2 according to

different genotypes. Similarly, let Yi j denote the genotype score from controls. The

Hotelling’s T 2 statistic can be written as:

T 2 =
n0n1

n
(X̄ − Ȳ )T S−1(X̄ − Ȳ ), (2.32)

where X̄ = (X̄1, · · · , X̄m)
T and Ȳ = (Ȳ1, · · · ,Ȳm)

T represent the mean vectors of

genotype scores of each SNP for case group and control group, respectively, and

S = 1
n−1

[ n1
∑

i=1
(Xi − X̄)(Xi − X̄)T +

n1
∑

i=1
(Yi − Ȳ )(Yi − Ȳ )T

]
. Under the null hypothesis,

(n−m−1)T 2/m(n−2) follows a central F distribution with m and n−m−1 degrees

of freedom asymptotically.

Multivariate regression provides a flexible framework to accommodate addi-

tional covariates and interaction forms. For GWAS, the number of independent
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variables (SNPs) is usually larger than the sample size, which will cause over-fitting

problem in standard linear regression models. Based on this, people add regular-

ization and shrinkage parameters in regression models to overcome this difficulty,

such as ridge regression [45], Lasso penalized logistic regression [46], and Bayesian

shrinkage methods [47]. For example, Let X be an n×m matrix representing geno-

type scores, and Y be an n-dimensional vector containing phenotype values for

each individual. Consider the standard linear regression model: Y = Xβ + ε , with

regression coefficients estimated by:

β̂ = argmin(Y −Xβ )′(Y −Xβ ) = (X ′X)−1X ′Y. (2.33)

For ridge regression, the estimates of regression coefficients become:

β̂
Ridge = (X ′X + kI)−1X ′Y, (2.34)

where k is the ridge parameter to control the degree of shrinkage. Then a Wald-

test can be used to test the significance of the coefficient of each SNP. Based on a

multivariate regression framework, people can choose the subset of significant SNPs

at one time.

Another class of multi-marker method is based on an individual marker test,

which can be divided into three classes: linear test statistics, quadratic statistics, and

combined statistics. Using the above notation, denote S j =
n
∑

i=1
(Yi − Ȳ )Xi j, and the

linear test statistics have the following form:

WL =
m

∑
j=1

w jS j. (2.35)

When w j = 1, this is the cohort allele sums test (CAST) [48] and if w j is a function

of the estimated MAF, WL is the weighted sum method [49]. The form of quadratic

statistics is as follows:

WQ = S′AS, (2.36)

where A is a positive definite symmetric matrix. When A = diag{a1, . . . ,am}, this is
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the SKAT statistic [50], where a j depends on the MAF.

There are some tests to combine two types of tests such as SKAT-O [51],

Fisher’s method, and minimum-p method [52]. Their test statistics are follows

TSKAT−O = max
ρ∈[0,1]

(ρWL +(1−ρ)WSKAT ). (2.37)

TFisher =−2log(pL)−2log(pQ). (2.38)

Tmin = min(pL, pQ), (2.39)

where pL represents the p-value for linear test statistic WL, while pQ denotes the

p-value for WQ. Yoo et.al [53] developed a linear combination test which combines

clustering method. If m SNPs were partitioned into l clusters, they used a m× l

matrix J to represent SNP assignments, where Ji j = 1 if ith SNP was assigned into

the jth cluster, otherwise Ji j = 0. The test statistic is:

T = (W T
β̂ )(W T

ΣW )−1(β̂ TW ), (2.40)

where W = (Σ−1J)(JT Σ−1J)−1. Yoo et.al [53] separated SNPs into clusters based on

the LD information between SNPs. A threshold is needed to decide the neighbours

in a cluster. However, different choices of threshold values will affect the power.

For the above test statistics, no test statistic can be powerful for all situations.

When the directions of individual effects are different, or when the directions are

the same, but the proportion of SNPs associated with phenotype is small, quadratic

test statistics are more powerful than linear test statistics. When the proportion of

associated SNPs is high and the directions are the same, linear test statistics are

more powerful [54]. For combined test statistics, Fisher’s method is better than

minimum-p value when the direction of effect is the same [52].

Beside these statistics, there is another popular test statistic: C-alpha test [55].

C-alpha detects unusual numbers of counts of alleles. If the target region has no

alleles associated with the phenotype, the distribution of counts should follow a

binomial distribution. The binomial (n, p) distribution evaluates the probability of
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observing a particular variant y times in the cases out of n total, assuming the rare

variants are distributed at random across the subjects. For the ith variant, if the

total observation is ni, yi is assumed to follow binomial (ni, pi). Under the null

hypothesis, pi = p0, where p0 = 1/2 if cases and controls are equal in number and

rare variants fall in either sample at random. The alternative hypothesis is that pi

follows a mixture distribution across the m variants.

The C-alpha test statistic is as follows:

T =
m

∑
i=1

[(yi −ni p0)
2 −ni p0(1− p0)], (2.41)

where T contrasts the variance of each observed count with the expected variance,

assuming the binomial distribution. The resulting test statistic is defined as Z =

T/
√

c, where c is the variance of T . Then the null hypothesis is rejected when Z is

larger than expected using a one-tailed standard normal distribution.

Besides above model, to leverage LD information to improve the power, Li [56]

proposed to use hidden Markov random field model. They set a random indicator

variable for a given SNP s as:

Xs =

 1 if SNP s is associated with the disease

0 if SNP s is not associated with the disease .
(2.42)

Then they used a Markov random field (MRF) model to model the dependency

as follows:

p(X ;Φ) ∝ exp

(
γ

p

∑
s=1

Xs +β ∑
s∼s′

wss′I(Xs = X ′
s)

)
, (2.43)

where γ and β are model parameters, and wss′ = I(r2
ss′ > τ)r2

ss′ , where r2
ss′ is the LD

between SNP s and s′, and τ is a predetermined cutoff value.

By assuming the genotype frequencies had a Dirichlet prior, they estimated

f (Ys | Xs), where Ys represents the observed genotype data, and used the ICM algo-

rithm to estimate parameters. Simulation experiments showed that their methods

could find more true positives than the Empirical Bayes method and Cochran-

Armitage trend test. However, their method involves the genotype frequency infor-



2.2. Related work 49

mation of individuals, which is usually difficult to obtain due to the privacy. Also

when using their methods on a real data set, they grouped SNPs into groups of 1000

SNPs, which may lose some information. In our study, a hidden Markov random

field model based on summary statistics is developed.

2.2.3 Multiple-SNP based methods using haplotypes

Besides the multiple-SNP methods based on genotypes discussed above, another

popular strategy to capture the correlation structure between SNPs is to use hap-

lotypes, which consider a set of alleles at different locations of a DNA sequence

which are inherited together. The analysis based on haplotypes can have fewer

degrees of freedom, since they consider a block of SNPs together. However, in

practice, haplotypes of SNPs are not observed from the data directly. To solve

this, people often use the phase procedure to infer haplotypes from the genotype

data. To implement this procedure, many methods have been proposed, such as

parsimony approaches [57, 58], maximum-likelihood methods [59, 60] or Bayesian

methods [61, 62]. However, most of those methods cannot deal with large data sets.

Therefore, as in the development of large GWAS, more computationally efficient

methods are developed [62, 63, 64, 65]. For example, Stephens and Donnelly [66]

introduced a new algorithm named as PHASE version 2.0 and showed that the new

method outperformed 3 existing Bayesian methods using simulation and real datasets.

Halperin and Eskin [67] proposed to partition the SNPs into blocks, and predicted

the common haplotypes and each individual’s haplotype for each block. This method

is called HAP, which is more efficient than PHASE and can deal with large datasets.

Marchini et al. [68] compared the performance of several leading algorithms, and

showed that PHASE is the most accurate algorithm, but it is the slowest.

For association tests based on haplotype, the simplest method is to test the

independence in a contingency table [69]. However, this method does not account for

the uncertainty in inferring the haplotypes when testing the association of haplotypes.

Then people develop methods to integrate the procedure of phasing and testing

[70, 71, 72, 73, 74]. For example, Zhu et al. [75] developed a two-stage procedure,

which can identify and classify rare risk haplotypes using a relatively small sample.
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Ali and Zhang [76, 77] improved Zhu’s method by grouping genotypes before the

association testing. They select risk genotypes in stage 1 and infer risk haplotypes

in stage 2 based on results from stage 1. They used a simulation study to show that

their methods are better.



Chapter 3

Hidden Markov random field model

In this chapter, the hidden Markov random field model and parameter estimation

methods will be introduced.

3.1 Model Description
A hidden Markov random field (HMRF) model is a generalization of a hidden Markov

model (HMM). For a HMM, the hidden variable is an underlying one-dimensional

Markov chain, which can only have two neighbours for one variable and can not be

directly used in two-dimensional or three-dimensional problems. Therefore, HMRF

is developed, which has an underlying Markov random field for hidden variables and

defines neighbours within a network. So a HMRF model is usually used in 2D or 3D

problems such as image segmentation or modelling spatial dependence [78, 79, 80].

Consider a random variable Y = {Yi, i = 1, . . . ,n}. A HMRF assumes that Y is

determined by the unobservable Markov random field X = {Xi, i = 1, . . . ,n}. The

values of X have the following distribution:

P(X |θθθ) = 1
ψ(θθθ)

exp{−Uθθθ (X)}, (3.1)

where θθθ represent the parameters, ψ(θθθ) denotes the normalizing constant which has

the form ψ(θθθ) = ∑
X

exp{−Uθθθ (X)}. Uθθθ (X) denotes the energy function of the form:

Uθθθ (X) = ∑
c∈C

Vθθθ ,c(X), (3.2)
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which is a sum of potential functions Vθθθ ,c(X) over all possible cliques C. A clique

in a graphical model is defined as a subset of nodes in which every pair of distinct

nodes are neighbours, except for single-site cliques, which means the set of nodes

in a clique are fully connected. The clique potential functions represent the local

relationships between variables within cliques of the graphical model.

The most common form of energy function for binary spatial process is the

Ising model:

Uθθθ (X) =−α

n

∑
i=1

Xi −β ∑
i∼ j

XiX j, (3.3)

where {Xi, i = 1 . . . ,n} take values in {−1,1}. The notation i ∼ j represents that X j

is a neighbour of Xi and each neighbouring pair is calculated once in the summation.

The parameter α controls the relative abundance of −1’s and +1’s. The parameter β

represents the interaction strength between Xi and X j. When β > 0, neighbouring

nodes tend to encourage the same sign, while adjacent notes are more likely to have

opposite signs if β < 0[81, 82].

For each particular configuration X , every Yi follows a known conditional

probability distribution p(Yi | Xi) of the same functional form such as a normal

distribution. For any X , the random variables Yi are conditionally independent:

P(Y |X) =
n

∏
i=1

P(Yi | Xi). (3.4)

This is called the conditional independence assumption.

3.2 Inference
To make it simple to show the parameter estimation procedure, consider the simplest

Ising model as follows:

Pβ (X) =
1

ψ(β )
exp

(
β

n

∑
i=1

Xi ∑
j∈N(i)

X j

)
, (3.5)

where N(i) denotes the neighbours of Xi. Given X , each component in Y has a

distribution Pφ (Y | X), where φ represents parameters in the conditional distribution
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P(Y | X). So the joint distribution of hidden state X and observed Y is as follows:

Pθ (X1. . . . ,Xn,Y1, . . . ,Yn) = Pβ (X1, . . . ,Xn)
n

∏
i=1

Pφ (Yi | Xi), (3.6)

where θ = (β ,φ). Since the model involves a latent variable X , it is common to use

the EM algorithm to obtain the parameter estimates based on the likelihood function

[83, 84]. Except EM algorithm, MCMC algorithm [85] or iterative conditional mode

(ICM) algorithm [56] are applied in estimating parameters in some papers. The EM

algorithm is an effective method for performing maximum likelihood estimation

when there are latent variables. It evaluates the expectation of the complete data

log likelihood using current parameter in E step. Then it estimates new parameters

by maximizing the expectation of complete data log likelihood in M step. These

two steps are repeated until convergence [86]. The conditional expectation of the

complete data log-likelihood Q(θ |θ (old)) is as follows:

Q(θ |θ (old)) = E
θ (old)

[
β

n

∑
i=1

Xi ∑
j∈N(i)

X j − logψ(β ) | Y
]

+E
θ (old)

[ n

∑
i=1

1(Xi = 1) logPφ (Y1 | Xi = 1)

+
n

∑
i=1

1(Xi =−1) logPφ (Y1 | Xi =−1) | Y
]

= l(β )+ l(φ).

(3.7)

The estimation of θ = (β ,φ) can be separable. We consider in turn the estima-

tion of φ and β .

(1) Estimation of φ .

For the first indicator function in l(φ) of equation (3.7), the conditional expec-

tation can be calculated:

E
θ (old)[1(Xi = 1) | Y ] = P

θ (old)(Xi = 1 | Y ). (3.8)
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Then l(φ) can be written as:

n

∑
i=1

{
Pφ (Xi = 1 |Y ) logPφ (Yi | Xi = 1)+Pφ (Xi =−1 |Y ) logPφ (Yi | Xi =−1)

}
.

(3.9)

Since Pφ (Xi = 1 | Y ) and Pφ (Xi =−1 | Y ) do not involve the parameter φ , the

estimation of φ is the solution to:

n

∑
i=1

{
Pφ (Xi = 1 | Y )

∂ logPφ (Yi | Xi = 1)
∂φ

+Pφ (Xi =−1 | Y )
∂ logPφ (Yi | Xi =−1)

∂φ

}
= 0.

(3.10)

Since the distribution form P(Yi | Xi) is known, we can get the closed form

solution of φ for equation (3.10).

(2) Estimation of β .

The estimate of parameter β is the solution of following equation:

∂

∂β
l(β ) =

∂

∂β

{
βE

θ (old)

[
n

∑
i=1

Xi ∑
j∈N(i)

X j | Y

]
− logψ(β )

}
= 0, (3.11)

where ψ(β ) = ∑
X

exp{β
n
∑

i=1
Xi ∑

j∈N(i)
X j}. The above equation can be rewritten

as follows:

E
θ (old)

[
n

∑
i=1

Xi ∑
j∈N(i)

X j | Y

]
=

∂

∂β
ψ(β )

ψ(β )
= Eβ

[
n

∑
i=1

Xi ∑
j∈N(i)

X j

]
. (3.12)

Since the above equation does not have a closed form solution, a recursive al-

gorithm like Newton-Raphson method is usually used. The parameter updating

rule is:

β
(t) = β

(t−1)− l′(β (t−1))

l′′(β (t−1))
, (3.13)

where

l′′(β ) =
∂ 2

∂ 2β
(− logψ(β )) =−

[
ψ ′′(β )

ψ(β )
−
(

ψ ′(β )

ψ(β )

)2
]
, (3.14)
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ψ ′′(β )

ψ(β )
= Eβ

( n

∑
i=1

Xi ∑
j∈N(i)

X j

)2
 . (3.15)

Then the double derivative of likelihood function with respect to β is equal to

l′′(β ) =−varβ

[
n

∑
i=1

Xi ∑
j∈N(i)

X j

]
. (3.16)
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Then the updating equation of β is:

β
(t) = β

(t−1)+

E
θ (old)

[ n
∑

i=1
Xi ∑

j∈N(i)
X j | Y

]
−E

β (t−1)

[ n
∑

i=1
Xi ∑

j∈N(i)
X j
]

var
β (t−1)

[ n
∑

i=1
Xi ∑

j∈N(i)
X j

] , (3.17)

where E
θ (old)

[
n
∑

i=1
Xi ∑

j∈N(i)
X j | Y

]
can be approximated by Monte-Carlo sam-

pling of the posterior distribution P
θ (old)(X | Y ). E

β (t−1)

[ n
∑

i=1
Xi ∑

j∈N(i)
X j
]

and

var
β (t−1)

[ n
∑

i=1
Xi ∑

j∈N(i)
X j

]
can also be approximated by Monte-Carto sampling

of P(X | β (t−1)).

To calculate the conditional expectation of the log-likelihood function in the E

step for the EM algorithm, the mostly likely state of X needs to be estimated [85].

3.3 A hidden Markov random field model for GWAS

using summary statistics

3.3.1 Introduction

Genome-wide association studies have been increasingly used to detect genetic

variants associated with diseases, by genotyping single nucleotide polymorphisms

(SNPs) in diseased and normal individuals. For complex diseases including prostate

and breast cancers [4] and type 2 diabetes [5], GWAS have been shown to be an

effective method to detect associated genetic variants.

In traditional GWAS, it is common to use hypothesis testing to identify SNPs

associated with a disease. The most frequently used method is single-marker method

(see Chapter 2). However, the large number of hypotheses in GWAS will cause a

multiple testing problem. To solve this problem, several statistical techniques such as

Bonferroni correction or FDR control have been used to make correction for multiple

testing.

However, the single-SNP analysis neglects the association effects jointly ex-

pressed by multiple SNPs. Based on this, multi-marker methods have been developed
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such as multivariate analysis based on multivariate regression such as ridge regres-

sion [45], Lasso penalized logistic regression [46], and Bayesian shrinkage method

[47], which usually need the individual genotype information. To avoid this problem,

some meta analysis methods have been developed such as cohort allele sums test

(CAST) [48], SKAT [50] , SKAT-O [51], Fisher’s method, and minimum-p method

[52] (see Chapter 2 for details).

However, since nearby SNPs are usually in linkage disequilibrium (LD), these

methods do not utilize LD information between SNPs when jointly analysing multiple

SNPs. If there are multiple SNPs which are in strong LD, utilizing LD information

between SNPs effectively may increase the power of identifying SNPs associated

with disease, especially for those SNPs having weak effect on disease. Furthermore,

previous multi-marker methods can only identify whether a set of SNPs are associated

with disease or not, but they can not discover which SNPs are associated with

disease. Li [56] proposed to use a hidden Markov random field model to leverage

LD information from multiple SNPs. However, individual level genotype data were

needed in their study. Using only summary statistics, Sun and Cai [26] proposed

to consider LD information in a Hidden Markov Model and proposed a local index

of significance, which could be used to select associated SNPs when SNPs are

correlated.

In this study, we propose to leverage LD information using a hidden Markov

random field model (HMRF) and use summary statistics to detect association between

SNPs and disease. We regard the true associated statuses as hidden variables, and

build a weighted LD graph based on LD information between them. The dependence

of hidden variables are assumed to follow a Markov random field model. Then we

choose the two-component mixture prior for all SNPs and estimate model parameters

using the EM algorithm. Finally, we propose to use the Gibbs sampling method to

estimate posterior probability of true association status and select associated SNPs

using a false discovery rate (FDR) procedure.
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3.3.2 Method

3.3.2.1 Weighted graph and hidden Markov random field model

Suppose there are m SNPs. Let S = {1, . . . ,m} denote the SNP index. For any SNP

i, the hypotheses in which we are interested are:

Hi0 SNP i is not associated with the disease

and

Hi1 SNP i is associated with the disease.

Firstly, for a given SNP, we define a random indicator variable as

θi =

 1 if SNP i is associated with the disease

0 if SNP i is not associated with the disease.
(3.18)

Usually, nearby SNPs are highly correlated, which means that the dependence

between SNP i and SNP j is stronger when i and j are close. Therefore, we model

the dependency between SNPs using a discrete Markov random field model with the

following joint probability function for θθθ = (θ1, . . . ,θm):

p(θθθ ;Φ) ∝ exp

(
γ

m

∑
i=1

θi +β ∑
i∼ j

wi jI(θi = θ j)

)
, (3.19)

where Φ = (γ,β )T represent the model parameters. β > 0 will encourage SNPs with

LD to have similar states. wi j represents the LD information between SNP i and

SNP j. We define wi j using the following method:

wi j = I(r2
i j > τ)r2

i j (3.20)

where ri j is the r2 measurement (see equation (2.4) in Section 2.1.2) of LD between

SNP i and j, and τ is a predetermined cutoff value. For a larger τ , it will gener-

ate a more sparse weight matrix since wi j = 0 if r2
i j < τ , so this will reduce the

computation cost. For a smaller τ , it can preserve more dependence information,

but the computation cost will increase. Li [56] used τ = 0.4. Here to utilize more
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dependence information, we use τ = 0.1 in our study. Given that the value of τ may

matter, a useful avenue of future research could be to devise a way to estimate the

value of τ empirically from the data.

The conditional association state for SNP i, given the states of all neighbouring

SNPs, is

p(θi | θNi;Φ) ∝ exp(γθi +β ∑
j∈Ni

wi jI(θi = θ j)), (3.21)

where Ni represents the neighbours of the SNP i on the LD graph.

3.3.2.2 Gaussian mixture model

Suppose we observe summary statistics Z values, Z = (Z1, . . . ,Zm), which represent

the individual test statistics for m SNPs. We assume that Z values are conditionally

independent given the hidden indicators, so that:

P(Z | θ) =
m

∏
i=1

P(Zi | θi). (3.22)

For an arbitrary SNP, we do not know whether it is associated or not. So the

distribution of Z values are assumed as following mixture distribution:

Z | θ ∼ (1−θ)N(0,1)+θN(µ,σ2). (3.23)

The Z values are assumed to follow a Gaussian mixture distribution according to

their hidden states. For SNP i, When hidden state θi = 0, the corresponding Z value

Zi has the standard normal distribution N(0,1), while under alternative hypothesis

θi = 1, the Z value Zi follows a shifted normal distribution with mean µ and variance

σ2.

3.3.3 Parameter estimation and FDR control procedure

In order to estimate parameters γ , β , µ and σ2, EM algorithm is applied.

Firstly, the conditional expectation of complete data log-likelihood

Q
(

φ | φ{old}
)

can be written as follows:
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Q
(

φ | φ
{old}

)
= E

φ{old}

(
γ

m

∑
i=1

θi +β ∑
i∼ j

wi jI(θi = θ j)− logψ(θ) | Z

)

+E
φ{old}

(
m

∑
i=1

logP(Zi | θi)

)
= l1(φφφ 1)+ l2(φφφ 2).

(3.24)

Where ψ(θ) = ∑
θ∈{0,1}m

exp(γθi +β ∑
j∈Ni

wi jI(θi = θ j)), φφφ 1 = (γ,β ), φφφ 2 = (µ,σ2).

Taking the first and second derivatives with respect to φφφ 1, we obtain:

U(φφφ 111) =
∂

∂φφφ 111
l1(φφφ 111) = E

φφφ
(old)[HHH(θθθ) | Z]−Eφφφ 111

[HHH(θθθ)]. (3.25)

I(φφφ 111) =− ∂ 2

∂φφφ 111∂φφφ
T
111

l1(φφφ 111) =Varφφφ 111
[HHH(θθθ)]. (3.26)

where HHH(θθθ) = (H1,H2)
T = (

m
∑

i=1
θi, ∑

i∼ j
wi jI(θi = θ j))

T . Since the distribution

of P(θθθ |Z) and P(θθθ) both involve a normalizing term ψ(θθθ), which needs to be

calculated by considering all configuration of θθθ = (θ1, . . . ,θm). This is quite difficult.

So we use Gibbs sampling to estimate the expectation and variance in equation (3.25)

and (3.26). The steps to estimate parameters using EM algorithm are as follows:

HMRF parameter estimation
Input: Z: observed Z values and weight matrix w;

Output: optimal γ∗, β ∗, µ∗,σ∗

1: Initialize the states of θ̂i. Calculate the corresponding p-values according to Z

values. According to the Bonferroni correction, for a large number of hypothesis

tests, to control the type I error at α , when p-value is smaller than α/m, the

hypothesis tests are rejected, where m is the number of hypothesis tests. Here

we choose a small value 0.0001 as the threshold to generate the initial state of

θ̂i. Since this is just a threshold to generate initial value, we do not follow the

Bonferroni correction criterion strictly and the choice of 0.0001 is the same as

Li’s setting [56]. That means if pi < 0.0001, θ̂i is set as 1 and 0 otherwise.

2: Generate 5000 Gibbs samplers, where 1500 of Gibbs samplers are regarded

as burn-in period. Use Gibbs samplers from P(θi | Z, θ̂S\i) to estimate



3.3. A hidden Markov random field model for GWAS using summary statistics 61

E
φφφ
(old)[HHH(((θθθ))) | Z] and P(θi = 1 | Zi). Use Gibbs sampler from p(θi | θNi)

to estimate Eφφφ 111
[HHH(((θθθ)))] and Varφφφ 111

[HHH(((θθθ)))]; φφφ 111 = (γ,β ). The distributions of

P(θi | Z, θ̂S\i) and p(θi | θNi) are as follows:

P(θi | Z, θ̂S\i) ∝ P(Zi | θi; µ,σ)P(θi | θ̂Ni;γ,β ) (3.27)

p(θi | θNi) ∝ exp(γθi +β ∑
j∈Ni

wi jI(θi = θ j)). (3.28)

3: update µ and σ2 using the following equations:

µ =

m
∑

i=1
P(θi = 1 | Zi)Zi

m
∑

i=1
P(θi = 1 | Zi)

(3.29)

σ
2 =

m
∑

i=1
P(θi = 1 | Zi)(Zi −µ)2

m
∑

i=1
P(θi = 1 | Zi)

. (3.30)

4: update the value of φφφ 111 = (γ,β ):

4.1 Maximizing l(φφφ 111) is equivalent to solving the equation: U(φφφ 111) = 0. To

avoid to search for the solution over all φφφ 111, we find a new φφφ 111 to increase

l1(φφφ 111) [83]. A set of decreasing positive values λm are introduced:

φφφ
(t+1,m)
111 = φφφ

(t)
111 +λhI(φφφ (t)

111 )−1U(φφφ
(t)
111 ), (3.31)

where λh = 2−h, U(φφφ 111) = E
φφφ
(old)[HHH(((θθθ))) | Z]−Eφφφ 111

[HHH(((θθθ)))] and I(φφφ 111) =

Varφφφ 111
[HHH(((θθθ)))]. Then the new φφφ 111 is equal to φφφ

(t+1,m)
111 , which is the first one

satisfying the following Armijo condition:

l1(φφφ
(t+1,m)
111 )− l1(φφφ

(t)
111 )≥ αλhU(φφφ

(t)
111 )T I(φφφ (t)

111 )−1U(φφφ
(t)
111 ). (3.32)
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4.2 For l1(φφφ
(t+1,m)
111 )− l1(φφφ

(t)
111 ),

l1(φφφ
(t+1,m)
111 )− l1(φφφ

(t)
111 )≈ 1

n
(φφφ

(t+1,m)
111 −φφφ

(t)
111 )T

n

∑
i=1

HHH(((θθθ (t,i))))

+ log


n
∑

i=1
exp{−φφφ

(t+1,m)T

111 HHH(((θθθ (i,φ (t+1,m)
1 ))))}

n
∑

i=1
exp{−φφφ

(t)T

111 HHH(((θθθ (i,φ (t)
1 ))))}

 .

(3.33)

where θ (t,i) are Gibbs samplers from P(θi | Z, θ̂S\i). θ (i,φ (t+1,m)
1 ) and θ (i,φ (t)

1 )

are Gibbs sampler from p(θi | θNi). See the Appendix for the derivation of

equation (3.33).

5: Repeat step 2,3,4 until convergence;

After estimating parameters, we can estimate the posterior probability of LISi =

P(θi = 0 | Z) using Gibbs sampling. Then to select SNPs associted with the disease,

we use the FDR control procedure. Let LIS(1), . . . ,LIS(m) be the sorted values of

LISi in descending order and H(1), . . . ,H(m) be the corresponding hypothesis for m

SNPs. Then define k = max{t : 1
t

t
∑

i=1
LIS(i) ≤ α} and reject all H(i), i = 1, . . . ,k.



Chapter 4

Simulation study

4.1 Simulation study 1
We conduct simulation experiments to evaluate the performance of the proposed

model and demonstrate that the proposed model is more powerful than an lfdr-based

procedure which does not consider LD information between SNPs.

To simulate summary statistics Z values, the hidden states θ are simulated

firstly from model (3.21). We randomly set initial values of half of θ as 1, while the

remaining half of θ are set as 0. Then Gibbs sampling is applied to update values of θ

according to the conditional distribution p(θi | θNi;Φ) in equation (3.21) to generate

the states of θ . In model (3.21), we choose different values of γ and β to assess the

performance. A negative and smaller γ means that we encourage to generate more 0s

and fewer 1s, which is reasonable since a small number of SNPs are associated with

disease in reality. When β is positive and large, the nearby SNPs are encouraged to

have the same hidden state. For the LD matrix W = {wi j, i = 1, . . . ,m, j = 1, . . . ,m},

where m is the number of SNPs, the following AR model is used.

W =


1 ρ ρ2 · · · ρm−1

ρ 1 ρ · · · ρm−2

...
...

... . . . ...

ρm−1 ρm−2 ρm−3 · · · 1

 , (4.1)

where ρ = 0.7 in our simulation. After simulating hidden states θ , summary statistics

Z values are generated according to equation (3.23), and different values for µ are
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set to compare the performance.

To compare the performance with different parameters, three scenarios are

considered in Table 4.1.

The number of SNPs ρ γ β µ σ2

Setting 1 1000 0.7 -0.3 0.6 2 1
Setting 2 1000 0.7 -0.3 0.6 3 1
Setting 3 1000 0.7 -0.2 0.6 3 1

Table 4.1: The parameters for different settings

Table 4.1 describes different parameter settings in simulation study 1. For

settings 2 and 3, the value of µ increases, which means disease related SNPs will

have larger effect sizes. This will make these SNPs identified more easily. For setting

3, the value of γ increases, which is expected to generate more disease related SNPs.

For each simulation, 3500 Gibbs samplers are generated from 3500 iterations

after a burn-in period of 1500 iterations. The maximum iteration number for HMRF

parameter estimation is set as 500. If the iteration number is reached or the con-

vergence condition is satisfied, the parameter estimation procedure will end. For

simulation data, firstly we generate true states of θ by Gibbs sampling based on

equation (3.21) and the iteration number is 10000. After having true θ , Z values

are generated according to a different normal distribution for different states of θ .

the proposed model runs on UCL’s high performance research computing platform

using Myriad. The code will take about 48 hours when running 10 tasks in parallel.

So to study the effect of random sampling and consider the time cost the code takes,

we run 10 simulations for each setting, which are based on 10 different simulated

datasets. The initial values of parameters are set as: γ = β = µ = 0 and σ = 0.1. The

description of the simulation data and parameter estimation results are summarised

in Table 4.2.
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The mean of
m
∑

i=1
θi γ β µ σ2

Setting 1 135.8
Mean estimate -0.28 0.59 1.80 1.29

True value -0.3 0.6 2 1

Setting 2 137.8
Mean estimate -0.32 0.59 2.93 1.09

True value -0.3 0.6 3 1

Setting 3 185.8
Mean estimate -0.24 0.57 2.97 1.05

True value -0.2 0.6 3 1

Table 4.2: The parameters for different settings. The
m
∑

i=1
θi is the number of SNPs which

are associated with disease. For setting 1 and 2, we have the same γ and β , but

different mean values of
m
∑

i=1
θi. This is because Gibbs sampling for generating

simulation data is random. The mean values are based on 10 simulation data for
each parameter setting. The mean estimated values are also based on 10 different
simulation data.

Table 4.2 contains the mean estimates of 10 simulation datasets for different

parameter settings. It can be seen that except σ2 in setting 1, other estimated

parameters are quite close to true values. The estimated results for setting 3 are most

accurate compared with other two settings. When few SNPs are associated with

disease, the data are more sparse, which make parameter estimation more difficult.

After estimating parameters and having LISs for each SNP, we select SNPs

associated with disease using the FDR control procedure (see Section 3.3). The

significance level α is set as 0.05. After selecting associated SNPs, we compare them

with the true states of SNPs and compute the false discovery rates (FDR) and the

power. Then we compare them with the Bonferroni Correction method and lfdr. For

the Bonferroni Correction method, the p values which are smaller than α/1000 are

considered as significant. For lfdr, lfdr for each SNP is computed using R package

”locfdr” [87] and then associated SNPs are selected using FDR control procedure,

which does not consider dependence information between SNPs. The results of FDR

and power are shown in Figure 4.1. Although the aim of all methods is to control the

FDR at approximately 5%, for some methods, notably the Bonferroni correction, the

realised FDR is far below 5%. As may be expected, in these cases the power is also

relatively low.

For all settings, it can be seen from the plots on the left of Figure 4.1 that
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the average FDR of our proposed method, which will call HMRF Assoc is around

the predefined level (α = 0.05), which means the type I error is well controlled.

Comparatively, the FDR for Bonferroni Correction methods is too conservative

for all settings, while the FDR for lfdr is a little conservative in setting1. For the

comparison of power on the right of Figure 4.1, the average empirical power of the

proposed method are higher than that of other two methods for all three settings,

which means proposed method perform better for identifying true associated SNPs.

It can be seen that the power increases dramatically when µ increases from 2 to 3.

Since the difference between null distribution and alternative distribution becomes

larger, it is easier to discover disease related SNPs. For different choices of γ , the

performance of proposed method does not change much.



4.1. Simulation study 1 67

0.00

0.01

0.02

0.03

0.04

0.05

HMRF_Assoc lfdr Bonferroni Correction
Method

F
D

R

Method

HMRF_Assoc

lfdr

Bonferroni Correction

0.00

0.25

0.50

0.75

1.00

HMRF_Assoc lfdr Bonferroni Correction
Method

P
ow

er

Method

HMRF_Assoc

lfdr

Bonferroni Correction

(a) γ =−0.3, β = 0.6, µ = 2, σ2 = 1
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(c) γ =−0.2, β = 0.6, µ = 3, σ2 = 1

Figure 4.1: The average empirical power and FDR in simulation experiments. The left
three figures are the FDR for each setting. The red dotted lines represent the
significance level α = 0.05. If the FDR is just below 0.05, it means the type I
error is well controlled. The right three figures are the power for each setting.
The methods with larger power means they can select more true associated
SNPs.
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From above results, it can be seen that when considering dependence informa-

tion, the proposed method can control type I error better and have larger power than

other two methods, which can show that the proposed method is effective and better.

However, when generating simulation data and estimating parameters, it involves a

large number of random sampling, which will generate two sources of variability.

One is from different fits to the same simulated dataset, which is just from parameter

estimation procedure. Another is from fits to different simulated dataset, which are

from generating simulation data. We will discuss this in detail in next section.

4.2 Discussion about the bias and variability
As discussed before, the estimated parameters are the different for 10 simulated

datasets. There are two sources of variability. When generating simulation dataset,

half of SNPs are randomly assigned with 0 and another half with 1. Then Gibbs

sampling are used to update the state of SNPs until it converges to a stationary

distribution. So this will lead to different configurations of SNPs for 10 simulations,

which will cause different estimates of parameters. Besides this, when using EM

algorithm, Gibbs sampling needs to be used to approximate the required quantities.

So even if we use the same simulated dataset and run proposed method for many

times, we will still get different estimates of parameters. So the 10 fits for different

simulated datasets in Section 4.2 combines these two variability. To study the

variability from repeated sampling of the data, 10 simulations for the same dataset

are conducted and the estimated parameters are plotted, which are expected to have

lower variability than 10 fits of different datasets. The results are shown in Figures

4.2 (Setting 2 in Table 4.1) and 4.3 (Setting 3).
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(a) The results of estimated γ and β . γ =−0.3, β = 0.6, µ = 3, σ2 = 1.
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Figure 4.2: The estimated parameters for 10 different simulation datasets and 10 identical
simulation datasets for Setting 2. For figure (a) and (b), the left two figures are
the parameter results for 10 different simulation datasets, while the right two are
results from the same dataset.The red line represent the true value.
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Figure 4.3: The estimated parameters for 10 different simulation datasets and 10 identical
simulation datasets for Setting 3. For figure (a) and (b), the left two figures are
the parameter results for 10 different simulation datasets, while the right two are
results for the same dataset.The red line represent the true value.

The main message from Figures 4.2 and 4.3 is clear. Although there is some

variability in the estimates resulting from different fits to a single dataset, this

variability is negligible compared to the variability in estimates from fits to 10

different datasets. Therefore, we should not be overly concerned about the impact of

randomness resulting from the use of Gibbs sampling within the EM algorithm.

A related source of variability is from the convergence criterion used to stop

the EM algorithm, on which the random nature of the Gibbs sampler may have an

impact. Wu and Ma [88] mentioned one method to reduce this variability, which
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is changing the convergence criterion. In general, the convergence criterion is set

by (Qt −Qt−1)/|Qt−1|< ε , where t is the iteration number. Due to the problem of

random simulated samplers, they adopted a relative long-term convergence criterion

as [(Qt +Qt−1)− (Qt−2 +Qt−3)]/|Qt−2 +Qt−3| < ε . To evaluate if the long-term

convergence criterion can reduce the variability, 10 fits for a single simulation dataset

are used to compare the difference of two convergence criterion. The results are

shown in Figure 4.4.
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Figure 4.4: The estimated parameters for same simulation datasets using two different
convergence criterion for Setting 3. The left four figures are the parameter
results using (Qt −Qt−1)/|Qt−1| < ε , while the right four are results using
[(Qt +Qt−1)− (Qt−2 +Qt−3)]/|Qt−2 +Qt−3| < ε . ε = 0.0001. The red line
represent the true value.
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It seems that using long term convergence criterion does not reduce the vari-

ability very much, and it will increase the computation cost since this convergence

criterion is more difficult to reach. In our experiment, the common convergence

criterion (Qt −Qt−1)/|Qt−1|< ε is applied.



4.3. Simulation study 2 73

4.3 Simulation study 2

In simulation study 1, the structure of the weight matrix is idealised and may be

unlikely observed in real data. To make the simulation data closer to real data, we

use the weight matrix from real data to generate simulation data in this study, and

then compare the performance of the proposed model with other methods.

In this study, the weight matrix represent the correlation between the 1000 SNPs

on Chromsome 8 from the disease Bipolar disorder data set. To describe the structure

of LD matrix, we use a heatmap (Figure 4.5) and histogram (Figure 4.6).

Figure 4.5: The correlation between 1000 SNPs. The blue points represent that the cor-
relation between SNPs is close to -1, while the red points represent that the
correlation is close to 1.
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Figure 4.6: The histogram of values in the LD matrix, which is generated from the upper
triangle values of the weight matrix.

Figure 4.5 is a repeat of Figure 2.4. As we noted in Section 2.1.5, many of

the correlations between pairs of SNPs are neighbouring SNPs, and the correlations

are mostly positive. In Figure 4.6, it can be seen that most LD values are between

[-0.3,0.3]. To make a comparison between the weight matrix in this study and that in

simulation study 1, we generate the summary values in Table 4.3.

Weight matrix Min 1st quantile Median Mean 3rd quantile Max
simulation study 1 0 0 0 0.004 0 0.7
simulation study 2 -1 -0.03 0 0.002 0.036 1

Table 4.3: The comparison of weight matrix from two studies

The simulation data generating process and parameters for setting 1 to setting

3 are the same as in simulation study 1 (see Table 4.1). Since the mean values of

∑
m
i=1 θi for these 3 settings are quite larger than that in simulation 1, 3 additional

settings are also considered, so that the mean values of ∑
m
i=1 θi are similar to the

values in simulation study 1. The description of simulation data and parameter

estimation results are summarised in Table 4.4.
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Model setting The mean of
m
∑

i=1
θi γ β µ σ2

Setting 1 461.5
Mean estimate 0.03 0.80 1.96 1.00

True value -0.3 0.6 2 1

Setting 2 460.4
Mean estimate 0.08 1.05 3.01 0.996

True value -0.3 0.6 3 1

Setting 3 475.5
Mean estimate 0.07 1.28 3.00 1.03

True value -0.2 0.6 3 1

Setting 4 122.6
Mean estimate 0.49 0.69 1.84 1.11

True value -3 0.6 2 1

Setting 5 118.6
Mean estimate 0.58 0.73 2.83 1.10

True value -3 0.6 3 1

Setting 6 256
Mean estimate 0.23 0.77 2.96 1.09

True value -2.5 0.6 3 1

Table 4.4: The parameters for different settings. The
m
∑

i=1
θi is the number of SNPs which

are associated with disease. For setting 1 and 2, we have the same γ and β , but

different mean values of
m
∑

i=1
θi. This is because Gibbs sampling for generating

simulation data is random. The mean values are based on 10 simulation data for
each parameter setting. The mean estimated values are also based on 10 different
simulation datasets.

It can be seen from the above table, except the estimates of γ and β , the

estimated values of µ and σ2 are very close to the true values. In particular, there is

evidence of large bias in the estimation of γ in several cases. However, this seems not

to have an obviously detrimental effect on the empirical performance of this method,

with the combination of estimates for parameters γ and β producing relatively good

values of FDR and power. Compared with simulation study 1, the values of
m
∑

i=1
θi are

quite larger in this study when parameter settings are the same, which are the results

of different weight matrix. For model settings 4, 5 and 6, the
m
∑

i=1
θi is much smaller

due to the smaller negative γ .

After estimating parameters, LISi = P(θi = 0 | Z) are estimated by Gibbs sam-

pling, and associated SNPs with disease are selected based on FDR control procedure.

The significance level α is still 0.05. The comparisons of the FDR and power with

other two methods are shown in Figure 4.7 and 4.8.
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Figure 4.7: The average empirical power and FDR in simulation experiments for Setting 1-3.
The left three figures are the FDR for each setting. The red dotted lines represent
the significance level α = 0.05. If the FDR is just below 0.05, it means FDR
is well controlled. The right three figures are the power for each setting. The
methods with larger power means they can select more true associated SNPs.
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Figure 4.8: The average empirical power and FDR in simulation experiments for Setting
4-6, which causes smaller number of SNPs associated with disease. The left
three figures are the FDR for each setting. The red dotted lines represent the
significance level α = 0.05. If the FDR is just below 0.05, it means the FDR
is well controlled. The right three figures are the power for each setting. The
methods with larger power means they can select more true associated SNPs.
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It can be seen from the plots on the left of Figures 4.7 and 4.8 that the average

FDR of the proposed method HMRF Assoc is just below the significance level for

all 6 settings, which means FDR are well controlled. The FDR of lfdr methods

are conservative compared with the proposed method for most of settings, while

the FDR of Bonferroni Correction is conservative for all settings. For the power

based on the plots on the right of Figures 4.7 and 4.8, it can be seen that the average

power of proposed method is higher than that of other two methods for all settings.

Especially when µ = 2, the power of proposed method is much higher than other

two methods. From µ = 2 to µ = 3, the power increased a lot, which is consistent

with simulation study 1.

4.4 Discussion of the model fitting

There are various aspects of the proposed method that might have an impact on its

performance. In the following sections we examine these aspects.

4.4.1 The effect of initial estimates

To speed up the computation time, it may be useful to set a good initial values for

parameters. Before initialising the parameters, we need to initialise the states of θ

firstly. Since the states of θ are corresponding to whether the SNPs are associated

with disease or not, the states are relate to their individual test statistics. Therefore,

the initial states of θ are set based on their p-values as follows:

• Initialize θ : Based on observed Z values, calculate the corresponding p values,

then initialize the configuration of θ :

θi =

1 If pi < Pthres

0 Otherwise,
(4.2)

where Pthres represents the threshold values. We will discuss how different values of

Pthres will affect the results later. For initialising γ and β , recall from chapter 3 that
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the proposed model is as follows:

p(θθθ ;Φ) ∝ exp(γ
m

∑
i=1

θi +β ∑
i∼ j

wi jI(θi = θ j)), (4.3)

and the conditional association state for SNP i, given the states of all neighbouring

SNPs, is

p(θi|θNi;Φ) ∝ exp(γθi +β ∑
j∈Ni

wi jI(θi = θ j)), (4.4)

where Ni represents the neighbours of the SNP i on the LD graph.

It can be seen from above model that if we take log on both sides, the relationship

between log p(θθθ ;Φ) and γ , β are linear, which is like the logistic regression. So we

can initialise the γ and β as follows:

• Initialize γ and β : Use the following logistic regression model to estimate

the values of γ0 and β0, which are regarded as the starting values of γ and β .

log
pi

1− pi
= γ +β ∑

j∈Ni

wi j(I(θ j = 1)− I(θ j = 0)),

where pi = p(θi = 1|θNi;Φ), and θ is regarded as dependent variable Y in the logistic

regression model, while ∑
j∈Ni

wi j(I(θ j = 1)− I(θ j = 0)) is set as an independent

variable X . So the initial value of γ is the estimated intercept, while initial value of

β is the estimated coefficient.

Lastly, we need to initialise the µ and σ2. Since they are the parameters from

Gaussian mixture model, we use the sample mean and sample variance as their initial

values, respectively.

• Initialize µ and σ2: The starting values of µ and σ2 are the sample mean and

variance of Z values whose θ = 1, that is:

µ0 =
1
ns

∑
i∈S1

Zi, S1 = { j : θ j = 1, j = 1, . . . ,m},

σ
2
0 =

1
ns −1 ∑

i∈S1

(Zi −µ0)
2, S1 = { j : θ j = 1, j = 1, . . . ,m},
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where ns is the size of S1. Different values of pthres will cause different starting

values. A larger threshold will cause more values of 1 in the initial configuration

of θi, while a smaller threshold will generate less values of 1. The current choice

is threshold = 0.0001. To study the effect of different choices of threshold, we use

different values of threshold to run the same simulation model on the 10 simulation

datasets. For naive choice, the initial values are set as γ = β = µ = 0, σ = 0.1 and

Pthres = 0.0001. Figure 4.9 shows a comparison of power and FDR.
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Figure 4.9: The comparison of FDR and power for different threshold values for different
model settings. The left represents the FDR, while the right is the comparison
of power. For naive choice, the initial values are set as γ = β = µ = 0, σ = 0.1
and Pthres = 0.0001, which represent the results in Figure 4.8 and does not use
the methods in this section to estimate initial values.
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It can be seen that the all FDR can be well controlled at the level of 0.05.The

differences of power are quite small for different threshold values, which may mean

that the threshold does not have large effect on the results. The estimated parameters

and computation time are in Table 4.5.

Model Pthres γ β µ σ2 time(h))

Setting5

naive 0.58 0.73 2.83 1.10 10.49
0.0001 0.51 0.72 2.92 0.97 15.07
0.001 0.54 0.73 2.91 0.98 14.00
0.01 0.61 0.75 2.92 0.97 10.75
0.05 0.60 0.75 2.92 0.97 10.90

true value -3 0.6 3 1

Setting6

naive 0.23 0.77 2.96 1.09 24.78
0.0001 0.07 0.80 2.95 1.09 24.73
0.001 0.18 0.72 3.02 1.07 34.20
0.01 -0.04 0.93 3.02 1.05 34.30
0.05 0.20 0.53 2.96 1.06 33.64

true value -2.5 0.6 3 1

Table 4.5: The comparison for estimate parameters and computation time for different
threshold values. For naive choice, the initial values are set as γ = β = µ = 0,
σ = 0.1 and Pthres = 0.0001, which represent the results in Figure 4.8 and does
not use the methods in this section to estimate initial values.

It can be seen from Table 4.5 that the differences between estimated parameters

are not large. For computation time, when we use the above methods to estimate the

initial values, the computation time does not decrease in comparison to the naive

choice. Also for different choices of Pthres, the computation time does not change

much. In the following experiment, we use the method in this section to estimate the

initial values and set Pthres = 0.0001.

4.4.2 The effect of choice of τ in weight matrix

Different τ will generate a different weight matrix in the model (Equation 3.20). A

large τ will generate a more sparse weight matrix, which will include less dependence

information and may decrease the computation burden, while a weight matrix with

small τ will contain more dependence information. To study if the choice of τ for

weight matrix has the effect on final results, we compare the FDR and power for

different choices of τ in Figure 4.10.
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Figure 4.10: The comparison of FDR and power for different threshold choices of τ . The
plots on the left represent the FDR, while the plots on the right give the
comparison of power. The threshold value for initial estimates of θ is Pthres =
0.0001.

Similarly, it can be seen that the difference of power between different choices

pf τ is quite small. However, for FDR, except when τ = 0.1, the estimated FDR

is larger than 0.05 when τ increases. Then we see the comparison of estimated

parameters and computation time in Table 4.6.
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Model τ γ β µ σ2 time(h)

Setting5

0.1 0.51 0.72 2.92 0.97 15.07
0.3 -1.14 1.04 2.95 0.98 4.99
0.5 -1.16 1.51 2.87 1.04 7.78
0.7 -1.25 1.68 2.84 1.09 9.12
0.9 -1.43 1.62 2.84 1.08 8.93

true value -3 0.6 3 1

Setting6

0.1 0.07 0.80 2.95 1.09 24.73
0.3 -0.39 1.37 2.80 1.37 7.20
0.5 -0.45 1.50 2.87 1.23 7.62
0.7 -0.57 2.39 2.89 1.22 6.95
0.9 -0.70 2.37 2.92 1.17 7.97

true value -2.5 0.6 3 1

Table 4.6: The comparison of estimated parameters and computation time for different
choices of τ .

It can be seen that the estimates of µ and σ2 are quite accurate for all choices

of τ . For estimates of γ and β , the estimates are not so accurate for all choices of τ .

About the computation time, it can be seen that the time decrease when τ > 0.1. This

makes sense since a larger τ will decrease the dependent information and make the

weight matrix more sparse. During the computation, zero values are not considered,

so a more spare matrix will reduce the computation. However, since larger τ keeps

less dependence information, it increased the proportion of false discoveries as in

Figure 4.10. So in the following section, τ is set as 0.1. Given that the value of τ

may matter, a useful avenue of future research could be to devise a way to estimate

the value of τ empirically from the data.

4.4.3 Monitoring convergence and stopping criterion

It can be seen from above results that even though the estimated parameters are not

so accurate, it still has a high estimated power. To speed up the computation, it may

be useful to consider a more relaxed stopping criterion. Before changing the stopping

criterion, we need to study what happens for each iteration during EM algorithm.

Since the aim is to recover the configuration of true θ and find more associated SNPs,

we will study how quantities relate to final power change during the EM algorithm.

Here we consider two quantities: power and 1
m

m
∑

i=1
|P(k+1)

i −P(k)
i | for each iteration,
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where k is the iteration number during the EM algorithm and P(k)
i = P(θi = 0|Z) at

iteration k. For each iteration, the configuration of θ will be updated, which could be

used to calculate the power for each iteration. In our study, the associated SNPs are

identified by estimated posterior probability LISi = P(θi = 0|Z), so if the quantity
1
m

m
∑

i=1
|P(k=1)

i −P(k)
i | is small, it means that for iteration k− 1 and k, it will cause

similar power and FDR. I illustrate 1 dataset in Setting 6 as an example and the

results are in Figure 4.11.
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Figure 4.11: The power and 1
m

m
∑

i=1
|P(k=1)

i −P(k)
i | for each iteration during EM algorithm.

It can be seen the power and 1
m

m
∑

i=1
|P(k=1)

i −P(k)
i | becomes relatively stable after

a few iterations. The aim of the study is to find more true associated SNPs, that is to

find the true configuration of θ . During the EM algorithm, we will update the states

of θ for each iteration. Therefore, we could consider using the difference between

the configuration of θ for iteration k and that for iteration k− 1 as the stopping

criterion. If the configuration of θ does not change, then the algorithm could stop.

Since it involves random sampling, to reduce the random error, if the configuration

of θ does not change for successive l times, the algorithm stops. To check if the new

algorithm works, we calculate the FDR and power using the new stopping criterion

for different choices of l and compare them with the results using the old stopping

criterion in Figure 4.12.
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Figure 4.12: The comparison of FDR and power for two convergence criteria.

It can be seen from Figure 4.12 that the difference between power for different

criterion is not large. The time comparison is illustrated as follows:

Model Old convergence rule(h)
New convergence rule(h)

l = 2 l = 3 l = 4 l = 5
Setting5 15.07 0.27 0.37 0.37 0.48
Setting6 24.73 0.43 1.54 3.36 4.35

Table 4.7: The time comparison for different stopping rule.

It can be seen that as l increase the computation time required increases, but

compared with old convergence rule, the computation time of new convergence rule

decreases a lot.

4.4.4 The form of Gaussian mixture model

In previous sections, the non-null distribution is assume to be Gaussian distribution

with one µ and σ . However, this assumption is hard to be satisfied in real data. To

make the non-null distribution approximate the real distribution of Z values well, we

consider two components of Gaussian mixture model, which means the distribution

of Z values are assumed as following distributions:

Z|θ ∼ (1−θ)N(0,1)+θ(p1N(µ1,σ
2
1 )+ p2N(µ2,σ

2
2 )), (4.5)
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where p1 + p2 = 1. Then the estimates of parameters (p1,µ1,σ
2
1 ,µ2,σ

2
2 ) will satisfy

the following updating rules in EM algorithm:

p(t+1)
k =

m
∑

i=1
P(θi = 1|Z)r(t)i (k)

m
∑

i=1
P(θi = 1|Z)

, (4.6)

µ
(t+1)
k =

m
∑

i=1
P(θi = 1|Z)r(t)i (k)Zi

m
∑

i=1
P(θi = 1|Z)r(t)i (k)

, (4.7)

(σ2
k )

(t+1) =

m
∑

i=1
P(θi = 1|Z)r(t)i (k)(Zi −µ

(t+1)
k )2

m
∑

i=1
P(θi = 1|Z)r(t)i (k)

. (4.8)

where ri(k) =
pkN(µk,σ

2
k )

p1N(µ1,σ
2
1+p2N(µ2,σ

2
2 )

.

The parameter estimation for two components of Gaussian mixture model
Input: Z: observed Z values and weight matrix w;

Output: optimal γ∗, β ∗, p∗1, µ∗
1 , σ∗

1 , µ∗
2 , σ∗

2 .

1: Initialize θ : Based on observed Z values, calculate the corresponding p values,

then initialize the configuration of θ :

θi =

1 If pi < pthres

0 Otherwise.
(4.9)

Where pthres represents the threshold values.

2: Initialize γ and β : Use the following logistic regression model to estimate the

values of γ0 and β0, which are regarded as the starting values of γ and β .

log
pi

1− pi
= γ +β ∑

j∈Ni

wi j(I(θ j = 1)− I(θ j = 0)),

where pi = p(θi = 1|θNi;Φ), and θ is regarded as dependent variable Y in

the logistic regression model, while ∑
j∈Ni

wi j(I(θ j = 1)− I(θ j = 0)) is set as

independent variable X . So the initial value of γ is the estimated intercept, while
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initial value of β is the estimated coefficient.

3: Initialize (p1, µ1, σ1, µ2, σ2): Firstly, we use K-means clustering to group SNPs

with θi = 1 into two clusters C1 and C2, where C1 ∪C2 = {i, θi = 1}. Then we

initialize (p1, µ1, σ1, µ2, σ2) according to the following equations:

p(0)1 =
|C1|

|C1|+ |C2|
, |C1| is the size of C1,

µ
(0)
1 =

1
|C1| ∑

i∈C1

Zi, σ
2(0)
1 =

1
|C1|−1 ∑

i∈C1

(Zi −µ
(0)
1 )2,

µ
(0)
2 =

1
|C2| ∑

i∈C2

Zi, σ
2(0)
2 =

1
|C2|−1 ∑

i∈C2

(Zi −µ
(0)
2 )2.

4: Generate 5000 Gibbs samplers, where 1500 of Gibbs samplers are re-

garded as burn-in period. Use Gibbs samplers from P(θi|Z, θ̂S\i) to estimate

E
φφφ
(old)[HHH(((θθθ)))|Z] and P(θi = 1|Zi). Use Gibbs sampler from p(θi|θNi) to estimate

Eφφφ 111
[HHH(((θθθ)))] and Varφφφ 111

[HHH(((θθθ)))]; (φφφ 111 = (γ,β )). The distributions of P(θi|Z, θ̂S\i)

and p(θi|θNi) are as follows:

P(θi|Z, θ̂S\i) ∝ P(Zi|θi; p1,µ1,σ1,µ2,σ2)P(θi|θ̂Ni;γ,β ) (4.10)

p(θi|θNi) ∝ exp(γθi +β ∑
j∈Ni

wi jI(θi = θ j)). (4.11)

5: update (p1, µ1, σ1, µ2, σ2): The parameters are updated using the following

equations:

p(t+1)
k =

m
∑

i=1
P(θi = 1|Z)r(t)i (k)

m
∑

i=1
P(θi = 1|Z)

, (4.12)

µ
(t+1)
k =

m
∑

i=1
P(θi = 1|Z)r(t)i (k)Zi

m
∑

i=1
P(θi = 1|Z)r(t)i (k)

, (4.13)

(σ2
k )

(t+1) =

m
∑

i=1
P(θi = 1|Z)r(t)i (k)(Zi −µ

(t+1)
k )2

m
∑

i=1
P(θi = 1|Z)r(t)i (k)

. (4.14)
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where ri(k) =
pkN(µk,σ

2
k )

p1N(µ1,σ
2
1+p2N(µ2,σ

2
2 )

.

6: update the value of φφφ 111 = (γ,β ):

4.1 Maximizing l(φφφ 111))) is equivalent to solving the equation: U(φφφ 111))) = 0. To

reduce the effect of Newton-Raphson method, we find a new φ1 to increase

l1(φφφ 111))) as follows [83]. A set of decreasing positive values λm are intro-

duced:

φφφ
(t+1,m)
111 = φφφ

(t)
111 +λhI(φφφ (t)

111 )−1U(φφφ
(t)
111 ), (4.15)

where λh = 2−h, U(φφφ 111) = E
φφφ
(old)[HHH(((θθθ)))|Z]− Eφφφ 111

[HHH(((θθθ)))] and I(φφφ 111) =

Varφφφ 111
[HHH(((θθθ)))]. Then the new φφφ (t+1) is equal to φφφ

(t+1,m)
111 , which is the

first one satisfying the following Armijo condition:

l1(φφφ
(t+1,m)
111 )− l1(φφφ

(t)
111 )≥ αλhU(φφφ

(t)
111 )T I(φφφ (t)

111 )−1U(φφφ
(t)
111 ). (4.16)

4.2 For l1(φφφ
(t+1,m)
111 )− l1(φφφ

(t)
111 ),

l1(φφφ
(t+1,m)
111 )− l1(φφφ

(t)
111 )≈ 1

n
(φφφ

(t+1,m)
111 −φφφ

(t)
111 )T

n

∑
i=1

HHH(((θθθ (t,i))))

+ log


n
∑

i=1
exp{−φφφ

(t+1,m)T

111 HHH(((θθθ (i,φ (t+1,m)
1 ))))}

n
∑

i=1
exp{−φφφ

(t)T

111 HHH(((θθθ (i,φ (t)
1 ))))}

 .

(4.17)

where θ (t,i) are Gibbs samplers from P(θi|Z, θ̂S\i), θ (i,φ (t+1,m)
1 ) and θ (i,φ (t)

1 )

are Gibbs sampler from p(θi|θNi).

7: Repeat step 2,3,4 until convergence;

We compare the FDR and power for different parameter settings in Figure 4.13.
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Figure 4.13: The average empirical power and FDR in simulation experiments for different
parameter settings. The left three figures are the FDR for each setting. The red
dotted lines represent the significance level α = 0.05. If the FDR is just below
0.05, it means the FDR is well controlled. The right three figures are the power
for each setting. The methods with larger power means they can select more
true associated SNPs.
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It can be seem from above figure that the FDR can be well controlled at

significance level for all settings, and for all settings, the proposed methods gain a

higher power than other two methods.

4.4.5 The form of null distribution

The differences between the theoretical null distribution and empirical null distribu-

tion are shown in Figure 4.14.

The empirical null distribution of BD
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Figure 4.14: The empirical null distribution estimated from R package “locfdr”. The “MLE”
means maximum likelihood estimation results, while “CME” represents the
central matching estimation results. “delta” and “sigma” represent the mean
and standard deviation of estimated empirical null distribution.p0 denotes the
proportion of null hypothesis.

The main aim of R package “locfdr” [87] is to calculate local false discovery

rates given Z values. It also provides the estimation of empirical null distribution.

The basic empirical null idea is that f0(z) is assumed to be normal but not necessarily

standard normal distribution, which means f0(Z)∼ N(δ0,σ
2
0 ). Then the estimates

δ0, σ0 and the null proportion p0 are estimated using the histogram data around z = 0.

“locfdr” provides two estimation methods: central matching method and maximum

likelihood estimation methods [17]. If the estimated δ0 and σ0 are far away from 0
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and 1, respectively, using the empirical null distribution may be better than using

standard normal distribution, since the null density is important to the calculation

of false discovery rate [17]. It can be seen from Figure 4.14 that the empirical null

distribution is close to N(0,1), then it may be sensible to use N(0,1) in our model.

To conduct the sensitive analysis about the form of null distribution, we use the

null distribution different from N(0,1). When generating simulation data, the null

distributions are set as N(0.1,1.03) and N(−0.1,1.03), respectively. Then during the

EM algorithm, we still use N(0,1) to estimate parameters and discover the results.

To check if misspecified null distribution have the effect on the results, the FDR and

power are shown in Figure 4.15.
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Figure 4.15: The average empirical power and FDR when the null distribution does not
follow N(0,1). The left three figures are the FDR for each setting. The red
dotted lines represent the significance level α = 0.05. If the FDR is just below
0.05, it means the FDR is well controlled. The right three figures are the power
for each setting.

It can be seen that when the null distribution is a little away from the assumption

of standard normal distribution, the proposed method could still control the FDR at

the significance level. The power of proposed method is still the largest.

4.5 Summary
For Section 4.1 and 4.2, we conducts the simulation study using a weight matrix with

AR structure and discusses the sources of bias and variability in the model parameter
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estimates. Experimental results shows that our proposed method performs better

than other methods in identifying more SNPs associated with disease. For Section

4.3, the simulation studies are conducted with a weight matrix based on real data,

which demonstrates the superior performance of our proposed method compared

to others for all parameter settings. Then in Section 4.4, different aspects which

may have an effect on results are discussed. Firstly we discuss the effect of different

initial values during EM algorithm and different choices of τ in weight matrix in

Sections 4.4.1 and 4.4.2, respectively. Simulation results shows that different initial

values have little effect on estimated parameters and computation time, while a larger

τ can reduce the computation time effectively, but it will also cause a large FDR. To

speed up the computation, a new stopping criterion is considered in Section 4.4.3

and results shows that an improvement in computation time can be achieved. In the

meantime, Figure 4.12 shows that the new stopping criterion does not reduce the

performance when improving the computation time. In Section 4.4.4, we extend

our proposed method from one component non-null distribution to two components

of Gaussian mixture model. The parameter estimation procedure is described and

simulation studies shows that our proposed method still behave better than others.

Finally, we conduct a sensitive analysis that considers a misspecified null distribution.

Results demonstrate that our proposed method still shows a superior performance

when the null distribution is a little away from N(0,1).



Chapter 5

Application to real data set

5.1 Application to a Bipolar disorder data set
Bipolar disorder is a common disease related to mood abnormalities, which will recur

and be accompanied by thinking and behavior disorders. Although the pathogenesis

of bipolar disorder is complex, there is conclusive evidence that genetics contribute

a lot [89]. To demonstrate our proposed method, we try to identify SNPs associated

with several common human diseases using data set from the Wellcome Trust Case

Control Consortium (WTCCC). For a large scale experiment, errors may be generated

from various procedures such as sample selection bias, sample labelling error and

genotyping error, which will cause inaccurate results if we do not remove those data

which are likely to be errors. Therefore, before analysing the data set, we use the

following quality control procedure in the experiment [90, 91].

• Missing data control: Individuals or SNPs with a high level of missingness can

potentially lead to bias or technical problems. So the individuals with more

than 10% missing genotypes are removed. The SNPs with more than 10%

missing entries are removed.

• Minor allele frequency control: SNPs with a low MAF are difficult to be detect

owing to a lack of statistical power. So we just consider the common variants

and remove the SNPs with MAF smaller than 0.05.

• Hardy–Weinberg (dis)equilibrium (HWE): The allele and genotype frequencies
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are assumed to satisfy the HWE law. So the SNPs that do not satisfy Hardy-

Weinberg equilibrium are removed. In practice, SNPs for which the p-values

in a HWE test are smaller than 0.001 are removed [92].

After applying this quality control procedure, we analysed 27108 SNPs on

chromosome 1. It is hard to fit the model for whole data set with 27108 SNPs

since the EM algorithm for estimating parameters will take quite a long time, which

will exceed the time limitation on UCL’s high performance computing platform

Myriad. To accelerate the computation, these SNPs are separated into groups of 1000

SNPs according to their locations since nearby SNPs tend to have high correlation.

That means only the orders of the SNPs decides their groups. For example, SNP

rs1000050 to rs10733059 are in the dataset 1 7and SNP rs10733078 to rs10864698

are in the dataset 2. This will lead to 26 datasets of size 1000 SNPs and 1 dataset of

size 1108 SNPs. Then the model is fitted to each of these datasets using proposed

method and we get 27 groups of estimated parameters such as γ1, . . . ,γ27. After

getting estimated parameters for each dataset, to leverage LD information within all

SNPs when selecting associated SNPs, we use the mean of estimated parameters

such as γ̄ = 1
27

27
∑

i=1
γi, β̄ = 1

27

27
∑

i=1
βi, µ̄ = 1

27

27
∑

i=1
µi and σ̄2 = 1

27

27
∑

i=1
σ2

i to estimate the

posterior probability LISi = P(θi = 0|Z) based on equations (5.1) and (5.2). Unlike

the EM algorithm, the calculation for estimating LIS is not time-consuming, so we

could consider all LD information within a whole dataset with 27108 SNPs. To

complete this step, we use γ̄ , β̄ , µ̄ , σ̄2 in equations (5.1) and (5.2) and run 12000

Gibbs sampler with first 2000 as the burn-in period.

P(θi|Z, θ̂S\i; γ̄, β̄ , µ̄, σ̄2) ∝ P(Zi|θi; µ,σ)P(θi|θ̂Ni;γ,β ) (5.1)

p(θi|θNi; γ̄, β̄ ) ∝ exp(γθi +β ∑
j∈Ni

wi jI(θi = θ j)). (5.2)

Having LIS, we select associated SNPs using the FDR control procedure, and

the SNPs with FDR smaller than 0.05 are considered as being associated with

Bipolar disorder (see Section 3.3 for details). To compare the proposed method

with other selection criterion such as a Bonferroni correction, which identifies a
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SNP as associated with the disease if its p-value is smaller than α/m, where m

is the number of SNPs. However, when we use Bonferroni correction criterion,

which is 1.8×10−5 in our study, it does not select any associated SNPs, since the

smallest p−value is 1.83×10−5 in our dataset. So to select some SNPs to make a

comparison with proposed method, we choose 10−4 as the criterion and select 11

SNPs with p-values smaller than 10−4 from all SNPs which are identified using the

FDR control procedure of the proposed method, since small p-values are highly

likely to be associated with Bipolar disorder. Table 5.1 shows these SNPs and their

corresponding posterior probabilities of P(θi = 1|Z), which is 1−LISi. The FDR of

these SNPs are smaller than 0.05, so they are all selected by the proposed method.

SNP Posterior probability P(θi = 1|Z) p-values dataset
rs2989476 1.00 1.83e-05 16
rs396954 1.00 2.12e-05 18
rs1461356 1.00 3.02e-05 9

rs11207909 1.00 4.14e-05 5
rs387176 1.00 4.22e-05 18
rs6691577 1.00 5.96e-05 23
rs1776905 1.00 6.13e-05 12

rs10779279 1.00 7.31e-05 2
rs1187995 1.00 7.68e-05 6
rs2209307 1.00 8.12e-05 14

rs10889189 1.00 8.44e-05 3

Table 5.1: Results of analysis of Bipolar disorder data set with p-values smaller than
10−4. Posterior probability P(θi = 1|Z) = 1− LISi are calculated using pro-
posed method. The SNPs have been ordered in ascending order of p-values.
Column ’dataset’ is the dataset number which the SNP belongs when fitting EM
algorithm.

SNP rs1187995 shows the association with Bipolar disorder with posterior

probability close to 1. No other SNPs have high LD with it, so the posterior

probability is mostly determined by itself. In contrast, SNPs rs2989476, rs1461356

and rs10889189 all show large posterior probability of being associated with Bipolar

disorder, and they are in high LD with the r2 between each other ranging from 0.88

to 0.98. Considering that SNP rs2989476 has been shown to be associated with

Bipolar disorder by previous studies [93, 89], other two SNPs may work together

with SNP rs2989476 to be associated with Bipolar disorder since their high LD and
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posterior probability.

For SNPs rs2989476 and rs1461356, another SNP, rs555070, also has a high

posterior probability of 0.95, which indicates that it may be associated with Bipolar

disorder. However, if we use Bonferroni correction, it is hard to be detected since its

p-value is 1.5×10−4, which is not small enough for Bonferroni correction criterion

since the number of SNPs analysed is large. SNP rs555070 are in high LD with

rs2989476 and rs1461356 with r2 values equal to 0.81 and 0.785, respectively. This

shows that the proposed method is better in detecting SNPs associated with Bipolar

disorder than single SNP method without considering LD information.

5.2 Discussion
When analysing the above dataset, to accelerate the computation, we separate the

whole dataset into 27 smaller datasets and then fit the EM algorithm to each dataset

to estimate parameters. When calculating the LIS and selecting associated SNPs, we

combine these smaller datasets together and use the mean of estimated parameters

so that we can leverage LD information among all SNPs. However, if the estimated

parameters have large variance, using the mean of estimated parameter may lead to

inaccurate results. To study the effect of using the mean of estimated parameters, we

generate a plot of the estimated parameters from the different datasets, which are

shown in Figure 5.1.
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Figure 5.1: The estimated parameters for each dataset. The red line represent the mean
values. The y-axis represent the estimated parameter values.

In Figure 5.1, we can see that the estimated γ for each dataset has both positive

and negative values. Most of γ are around -0.35, which is meaningful since the

proportion of associated SNPs is usually small. About the effect of different γ on

results, consider the equation (5.3), which is derived from equation (3.21) in Section

3.3.2.1.

p(θi = 1|θNi) =

exp(γ +β ∑
j∈Ni

wi jI(θ j = 1))

exp(β ∑
j∈Ni

wi jI(θ j = 0))+ exp(γ +β ∑
j∈Ni

wi jI(θ j = 1))
. (5.3)
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If we consider the simplest setting as β = 0, we can calculate the difference of

p(θi = 1|θNi) between the largest and smallest γ in Figure 5.1 as follows:

p(θi = 1|θNi,γmax)

p(θi = 1|θNi,γmin)
=

exp(0.85)
exp(0)+ exp(0.85)

/
exp(−1.45)

exp(0+ exp(−1.45))
≈ 3.69 (5.4)

So for positive γ , it is expected to have more associated SNPs than negative γ .

For β , most of β are positive and around 1, which means the dependence be-

tween SNPs will affect their states. Suppose that β is positive. When the correlation

wi j between SNPs is positive, the tendency for states i and j to have the same state is

increased. Similarly, when the correlation between SNPs is negative, the tendency

for states i and j to have the same state is decreased. This is what we expect, and

therefore it is appropriate that the estimates of β are mostly positive. The estimated µ

in Figure 5.1 also have both positive and negative values and most values are around

-0.1, which represents the distribution of Z values under alternative hypothesis. For

σ2 in Figure 5.1, all values are larger than 1 and most values are between 1.3 and

1.8. Hence, the distribution of the values of Z under the alternative hypothesis tends

to be more widely spread than that under the null hypothesis. The mean value of

the estimated value of σ2 over the datasets (approximately 1.55) corresponds to

approximately a 24.5% increase in the standard deviation of Z compared to the null

hypothesis, which is 1.

In Figure 5.1, estimated parameters for some datasets are far from the means

values. For these datasets, when we use mean values to replace raw parameter values,

we may get inaccurate FDR and identify wrong associated SNPs. To quantify how

much difference it makes to a given subset of the data if we use the sample mean of

the estimated parameter values across all datasets, compared to using the estimated

parameter values that are specific to that subset, we use the two groups of parameters

to compute the FDR and compare the FDR difference. For example, we set the

estimated parameter values for specific subset as γ̂ = (γ1, . . . ,γ27), β̂ = (β1, . . . ,β27),

µ̂ = (µ1, . . . ,µ27) and σ̂2 = (σ2
1 , . . . ,σ

2
27). Then the corresponding sample mean
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values are ˆ̄γ = 1
27

27
∑

i=1
γi, ˆ̄

β = 1
27

27
∑

i=1
βi, ˆ̄µ = 1

27

27
∑

i=1
µi and ˆ̄σ2 = 1

27

27
∑

i=1
σ2

i . Then we cal-

culate two set of FDR values. Firstly, we use (γi,βi,µi,σ
2
I ), i = 1, . . . ,27 on dataset

i to calculate FDR values. Hence, we will get 27 sets of FDR values and denote

them as FDR1, . . . ,FDR27. Then, the mean values ( ˆ̄γ, ˆ̄
β , ˆ̄µ, ˆ̄σ2) are also applied on

27 datasets to get the FDR values, which are denoted as FDR′
1, . . . ,FDR′

27.Then the

FDR differences are FDRi−FDR′
i, i = 1, . . . ,27. A plot of FDR differences is shown

in Figure 5.2.
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Figure 5.2: The plot of FDR difference between using estimated parameters in individual
group and using the mean parameters in the whole group.

In the Figure 5.2, we see that there are datasets such as datasets 10 and 11, for

which the FDR differences are close to zero on average and do not vary much. For

these datasets, it can be seen from Figure 5.1 that their parameters are quite close to

the mean values. For dataset 14, whose estimated γ , β and σ2 are further from the

mean in Figure 5.1, it can be seen that the average FDR difference is also far from

the zero and there is a greater variability. Therefore, when estimated parameters have

great variability, using the mean values to calculate LIS may make results inaccurate.

If we can find method to accelerate the computation or find a better method to

combine results of different datasets rather than using the mean, this method may be

improved.



Chapter 6

The extension to Gene association

6.1 Introduction

Although numerous common genetic variants associated with complex traits have

been identified by genome-wide association studies, these variants can only explain a

small proportion of estimated trait heritabilities. This motivated researchers to study

the role of rare variants (MAF smaller than 1-5%) and Cohen et al. [94] have found

that rare variants are important for complex traits. Because of the low frequency of

rare variants, testing for the association between rare variants and complex traits is

challenging. Therefore, methods that combine information of multiple rare variants

in a genome region like a gene have been considered. The region-based test collects

the relevant variants in a region and tests their association with traits jointly [95]. The

regions can be a gene or a moving window across the genome. This chapter regards

the gene as a testing unit, so we use a gene-based method instead of a region-based

method in the following context.

The gene-based methods can be divided into three categories: linear test statis-

tics, quadratic statistics and combined statistics. Linear tests combine the individual

SNP effects linearly with certain weights. For example, Morgenthaler and Thilly

[48] proposed the “cohort allelic sums test” (CAST) with all weights equal to 1.

Madsen and Browning [49] used weights that are inversely proportional to the MAF,

which means SNPs with a smaller MAF will have larger weights. Price et al. [96]

proposed a threshold so that the weights are larger than 0 only when the MAF is
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below a specified threshold. Li and Leal [95] proposed a combined multivariate and

collapsing method (CMC), which divided SNPs into subgroups based on predefined

criteria. Within each group, marker data are collapsed and then a Hotelling’s T 2 test

is used to analyse the groups of marker data. Quadratic tests combine the individual

test statistics using a quadratic form with a weight matrix. For example, the C-alpha

method assumes that the distribution of counts follows a binomial distribution under

the null hypothesis, and constructs a test statistic to contrast the variance of each ob-

served count with the expected variance [55]. Wu et al. [50] proposed the sequence

kernel association test (SKAT), which combines rare variants using a kernel function

and then uses a variance component test. SKAT can be regarded as a generalization

of the C-alpha test [50]. Yoo et al. [53] proposed a multi-bin linear combination test

(MLC), which utilizes the correlation among SNPs to divide SNPs into clusters of

highly correlated SNPs using a clique-based algorithm. Then they constructed the

test statistic by combining linear combination statistics quadratically.

The linear test statistics and quadratic test statistics are powerful in some

situations, but no test statistic can be powerful under all situations. For example,

when the directions of effects are different, or when the directions are the same,

but the proportion of SNPs associated with trait is small, quadratic test statistics

are more powerful than linear test statistics. In contrast, when the proportion of

associated SNPs is high and their effect directions are the same, linear test statistics

are more powerful [54]. However, real data are complex and people do not have prior

information for proportions of causal SNPs and their effect direction. Therefore,

some people proposed to combine linear test statistics and quadratic test statistics.

The common methods to combine two types of tests are Fisher’s method, and

the minimum-p value method [52]. Derkach et al. [52] also found that Fisher’s

method is better than the minimum-p value method when the directions the same,

while the minimum-p value method is better when the directions of the effects

are different. Lee et al. [51] proposed a data-adaptive optimal test within a class

of tests called SKAT-O, which combines linear test statistics and SKAT using a

correlation parameter. Pan et al. [97] proposed a class of sum or powered score
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(SPU) tests and a data adaptive SPU (aSPU) test so that it can maintain high power

for different scenarios. Most of above methods are based on Z values. Some people

combined individual tests based on p-values [98, 99, 100, 101, 102, 103, 104, 105,

106, 107, 108, 109]. For example, Liu and Xie [108] used a weighted sum of

Cauchy transformation to combine individual p values, while Vsevolozhskaya [106]

combined top-ranking test statistics using the augmented rank truncation method.

For most of above methods, when they combine the different test statistics into

one final test statistics, they actually use part of information contained in different

test statistics such as minimum-p value methods. In this chapter, we extend the

HMRF methods in Chapter 3 to perform a gene association test. We propose two

possible ways. One is to analyse the SNPs in all genes in one HMRF model, and then

calculate the posterior probability that a gene is associated with the disease. Finally,

we use an FDR control procedure for grouped hypotheses to select associated genes.

The second way is to combine summary test statistics in one gene into one test

statistic, and then apply the HMRF model on the aggregated test statistics, which

uses a gene as one unit in the HMRF model.

6.2 Method

6.2.1 A brief review of some existing methods

We will illustrate some test statistics for the three types of methods. Most of

methods are based on a regression model. Here we use the logistic regression

model as an example to describe different types of methods. Let Yi = 0 or 1 be

an indicator of disease state, where i = 1, . . . ,n and n is the number of subjects.

In a case-control study, Yi = 1 represents a case while Yi = 0 represents a control.

Let GGGiii = (Gi1, . . . ,Gik)
′ represent the genotypes for the k variants within one gene,

where Gi j = 0,1 or 2 denotes the number of copies of the minor allele at SNP j

for subject i and k is the number of SNPs within the gene. Consider the following

logistic regression model:

Logit P(Yi = 1) = β0 +
k

∑
j=1

Gi jβ j, (6.1)
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where β0 is an intercept term and βββ = (β1, . . . ,βk)
′ denotes the vector of regression

coefficients for the k SNPs in the gene. Testing whether the gene is associated

with the disease corresponds to testing the null hypothesis H0 : βββ = 000, that is,

β1 = · · ·= βk = 0.

Many of the existing tests are based on the score vector S = (S1, . . . ,Sk)
′ for β

in the logistic regression model [97]:

SSS =
n

∑
i=1

(Yi − pi)GGGiii, (6.2)

where pi = P(Yi = 1) represents the probability of Yi equal to 1. It can be found that:

S j =
n

∑
i=1

(Yi − pi)Gi j, j = 1, . . . ,k. (6.3)

Z j = S j/sd(S j) denotes the Z values for test statistics and sd(S j) represents the

standard deviation of S j. The Z values are the summary statistics used in our study.

Then the linear test statistics have the following form:

TL =
k

∑
j=1

w jS j. (6.4)

When w j = 1, this is the cohort allele sums test (CAST) [48] and if w j is a

function of the estimated MAF, then this is the weighted sum method [49]. The form

of quadratic statistics is as follows:

TQ = S′AS, (6.5)

where A is a k× k positive definite symmetric matrix. When A = diag{a1, . . . ,ak},

this is the SKAT statistic [50], where a j depends on MAF.

There are some tests to combine two types of tests such as SKAT-O [51],

Fisher’s method, and minimum-p method [52]. Their test statistics are as follows:

TSKAT−O = max
ρ∈[0,1]

(ρTL +(1−ρ)TSKAT ), (6.6)
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TFisher =−2log(pL)−2log(pQ), (6.7)

Tmin = min(pL, pQ), (6.8)

where pL is the p-value for test statistic WL, while pQ is the p-value for WQ. After

having pL and pQ, combined test statistics can be calculated. For combined test

statistics for whom asymptotic approximations are unreliable, p-values are calculated

using permutation methods.

Pan [97] proposed another data-adaptive test as follows:

TSPU(γ)
=

k

∑
j=1

Sγ

j . (6.9)

With different values of γ ≥ 1, they obtained a class of tests. When γ → ∞, TSPU∞
is

defined as:

TSPU∞
=

k
max
j=1

|S j|. (6.10)

Then the combining procedure is to calculate minimum-p values:

TaSPU = min
γ

PSPU(γ)
, (6.11)

where PSPU(γ)
is the p-value for test statistics TSPU(γ)

with a specified γ . In practice,

they usually choose a series of γ values and calculate different values of TSPU(γ)
.

Finally, the p-value for TaSPU, PaSPU is calculated using permutation methods.

Barnett et. al [110] proposed to use the Generalized Higher Criticism (GHC)

test to test the gene association. They defined S(t) as

S(t) =
k

∑
j=1

1(|Z j| ≥ t), (6.12)

then the generalized higher criticism test statistics is defined as:

GHC = sup
t≥t0

{
S(t)− p∗2Φ(t)√

v̂ar(S(t))

}
. (6.13)

to = 0 is assumed for simplicity. For the independent case without correlation
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between SNPs, the GHC statistic reduces to the original higher criticism statistics

[111].

Sum et al. [112] proposed a generalized Berk-Jones statistic, which is called as

GBJ in the following text. The GBJ statistic is:

GBJ = max
1≤ j≤k/2

log

[
P
{

S(|Z|(k− j+1) = j|E(ZZZ) = µ̂ j,k · JJJk,Cov(ZZZ) = Σ)
}

P
{

S(|Z|(k− j+1) = j|E(ZZZ) = 0 · JJJk,Cov(ZZZ) = Σ)
} ]

×1

{
2Φ
(
|Z|(k− j+1)

)
<

j
k

}
,

(6.14)

where S(t) is defined in equation (6.12). JJJT
k = (1, . . . ,1)1×k, and µ̂ j,k > 0 solves the

equation:

j/k = 1−
{

Φ(|Z|(k− j+1)− µ̂ j,k)−Φ(−|Z|(k− j+1)− µ̂ j,k)
}
. (6.15)

GBJ is the maximum of a set of likelihood ratio type tests, whose p-values can be

calculated analytically.

Liu and Xie [108] proposed a Cauchy combination test (CCT), which is a

weighted sum of Cauchy transformation of individual p-values.

T =
k

∑
i=1

wi tan{(0.5− pi)π} , (6.16)

where the weights wi are nonnegative and ∑
k
i=1 wi = 1. In our simulation study, the

equal weights for wi are used, which is the same as their paper.

Different from considering LD structure when combining individual test statis-

tics, Vsevolozhskaya [113] proposed to decorrelate associated statistics and com-

bined them,that is,

DOT =
k

∑
i=1

X2
i , (6.17)

where XXX = HHHZZZ, and HHH = EEEDDDEEE ′′′. The columns of the matrix EEE are orthogonalized

and normalized eigenvectors of correlation matrix RRR of ZZZ = (Z1, . . . ,Zk)
′. DDD = 1√

λ
III

and λ is the eigenvalues of RRR.

Wilson [105] proposed a harmonic mean p-value method, which is based on
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the likelihood ratio test:

PR =
∑i∈R wi

∑i∈R wi/pi
, (6.18)

where pi is the p-value for likelihood ratio test: pi = P(ri ≥ Ri|θ ∈ ΘMi) and Ri =
sup{P(X |θ):θ∈ΘMi}
sup{P(X |θ):θ∈ΘM0}

measures the evidence for the alternative hypothesis Mi against

the null M0 given the data X . wi denotes the weights and satisfy ∑
k
i=1 wI = 1, which

are set as equal in their paper.

Vsevolozhskaya et al. [106] proposed the augmented rank truncation method

(ARTA), which combines top-ranking association statistics.

Tl =− lnWl−1 +(l −1) lnP(l)+G−1
λ
(1−Bl(P(l))), (6.19)

where Wl = −∑
l
i=1 lnP(i) and l < k. Bl(·) is the CDF of a Beta(l, k− l + 1) ran-

dom variable, G−1
l is inverse CDF of Gamma(l,1) and λ = (l −1)E[− lnP(l)]. For

the choice of l, they calculated the minimum-p value based on various candidate

truncation points.

6.2.2 The proposed method

6.2.2.1 Method 1

In the results presented in Sections 6.3 and 6.4, we refer to method 1 as HMRF. Let

G = {1, . . . ,m} denote the gene index, where m is the number of genes which are

analysed one time. For any gene i, suppose that this gene includes ki SNPs. The

hypotheses can be described as follows:

Hi0 Gene i is not associated with the disease, that is, all ki SNPs in this gene

are not associated with the disease.

and

Hi1 Gene i is associated with the disease, that is, at least one SNP in these ki

SNPs is associated with the disease.
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Then for a given gene, the random variable θθθ =(θ11, . . . ,θ1k1, . . . ,θm1, . . . ,θmkm)
′

is defined as

θi j =

 1 if SNP j within gene i is associated with the disease

0 if SNP j within gene i is not associated with the disease.
(6.20)

Therefore, the hypotheses can be written as:

Hi0: θθθ iii = (θi1, . . . ,θiki)
′ = 0,

and

Hi1:

ki

∏
j=1

(1−θi j) = 0.

To identify genes that are associated with disease, we apply the HMRF model

(equation (6.21))) to all SNPs. This means that we model the dependency between

all SNPs using a discrete Markov random field model with the following joint

probability function for θθθ = (θ11, . . . ,θ1k1, . . . ,θm1, . . . ,θmkm):

p(θθθ ;Φ) ∝ exp(γ
N

∑
i=1

θi +β ∑
i∼ j

wi jI(θi = θ j)), (6.21)

where θi and θ j are two variables in the vector θθθ , N =
m
∑

i=1
ki is the total number of

SNPs across all genes. γ and β are two model parameters. wi j represents the LD

information between SNP i and SNP j. β > 0 will encourage SNPs with positive

LD values to have similar states.

After estimating parameters using the EM algorithm, we calculate the posterior

probability LISi = P(Hi0 is true|Z) = P(θi = 0|Z) and LIS j|i = P(θ j|i = 0|θi = 1,Z)

using Gibbs sampling, where SNPi1, . . . ,SNPiki belong to gene i, i = 1, . . . ,m rep-

resent the gene index, and Z represents the Z values vector for test statistics of

coefficients in the logistic regression model. After having these posterior probabili-

ties, we follow Liu’s FDR control procedure for grouped hypotheses [33] to select

associated genes (See Section 2.1.7). The steps are as follows:
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1. For each gene i, let LIS( j)|i, . . . ,LIS(ki)|i be the ranked LIS j|i values and

Hi(1), . . . ,Hi(ki) be the corresponding hypotheses. Then we rejected all Hi( j),

j = 1, . . . ,Ri, where

Ri = max

{
li :

1
li

li

∑
j=1

LIS( j)|i ≤ η

}
, (6.22)

where 0 < η ≤ α , and α is the significance level. We chose η = α , which is

the same as Liu’s choice.

2. Calculate ηi =
1
Ri

Ri
∑
j=1

LIS( j)|i, and define LIS∗
i = 1− (1−ηi)(1−LISi), for

each gene i. Then let LIS∗
(1), . . . ,LIS∗

(m) be the ranked LIS∗
i values and

H(1), . . . ,H(m) be the corresponding hypotheses. Then the testing procedure

was to reject all H(i), i = 1, . . . , l, where

l = max

h :

h
∑

i=1
R(i)LIS∗

(i)

h
∑

i=1
R(i)

≤ α

 , (6.23)

where R(i) is the value of R in equation (6.22) for the gene that corresponds to

LIS∗
(i).

6.2.2.2 Method 2

In the results presented in Sections 6.3 and 6.4, we refer to method 2 as HMRF gene.

If we partition N SNPs into m clusters, we use an N ×m matrix J to represent SNP

assignments, where Ji j = 1 if ith SNP is assigned into the jth cluster, otherwise Ji j =

0. For Z values of all SNPs across all genes Z = (Z11, . . . ,Z1k1, . . . ,Zm1, . . . ,Zmkm)
′,

where Zi j represent the Z values for coefficients βi j in the logistic regression model

for SNP j within gene i. The aggregated test statistic for one gene is:

T = JT Z, (6.24)

where T = (T1, . . . ,Tm) represents the aggregated test statistics for each gene. Then

we need to calculate the correlation matrix for the new test statistics vector T . For
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example, suppose that we have 2 genes and one gene includes 2 SNPs while another

includes 3 SNPs. Then we have the Z values Z = (Z11,Z12,Z21,Z22,Z23)
′, and we

will have aggregated test statistic for two genes:

T1 = Z11 +Z12, T2 = Z21 +Z22 +Z23, (6.25)

The correlation between T1 and T2 can be estimated:

cor(T1,T2) = cor(Z11 +Z12,Z21 +Z22 +Z23)

=
cov(Z11 +Z12,Z21 +Z22 +Z23)√

(var(Z11 +Z12))
√

var(Z21 +Z22 +Z23))
.

(6.26)

In practice, the LD values are estimated from sample genotype data for each

gene. We sum genotype data within one gene, then calculates the correlation between

genes. The hypothesis can be written as:

Hi0 Gene i is not associated with the disease

and

Hi1 Gene i is associated with the disease.

Then for a given gene, the random indicator variable θ is defined as

θi =

 1 if gene i is associated with the disease

0 if gene i is not associated with the disease.
(6.27)

Since we assume that the Z-scores are conditionally independent given the

hidden indicators, that is:

P(Z|θ) =
m

∏
i=1

P(Zi|θi), (6.28)

we will have P(T |θ) =
n
∏
i=1

P(Ti|θi). For an arbitrary SNP, the distribution of Z values

are assumed to follow mixture distribution:

Z|θ ∼ (1−θ)N(0,1)+θN(µ,σ2). (6.29)
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Then for one gene j, the distribution of T values are assumed as follows:

Tj|θ ∼ (1−θ)N(0,k j)+θN(µ1,σ
2
1 ). (6.30)

Where µ1 and σ2
1 are parameters of the distributions for each gene under alternative

hypothesis. Since we assume that Z-scores are conditional independent given hidden

indicators, when hidden state θi = 0, the corresponding Z values in gene i all have

the standard normal distribution N(0,1), then Ti also follows normal distribution

with its mean being the sum of means (equal to 0), and its variance being the sum

of variances (equal to k j). While under the alternative hypothesis θi = 1, at least

one Z value within gene i follows a normal distribution with mean µ and variance

σ2. Then similarly Ti also follows a normal distribution with unknown mean µ1

and variance σ2
1 , since the number of SNPs associated with disease within gene i is

unknown. The mean µ1 and variance σ2
1 can be estimated from data.

Then we can apply HMRF models for all genes. After estimating parameters, we

can estimate the posterior probability of LISi = P(θi = 0|T ) using Gibbs sampling.

Then to select associated SNPs with the disease, we use the FDR control procedure

to select associated genes.

6.2.3 Data presentation

As mentioned before, when the directions of effects are different, or when the

directions are the same, but the proportion of SNPs associated with trait is small,

quadratic test statistics are more powerful than linear test statistics. In contrast, when

the proportion of associated SNPs is high and their effect directions are the same,

linear test statistics are more powerful [54]. To study the gene structure in real data,

we analysed 17340 genes for low-density-lipoprotein cholesterol (LDL) [114]. In

particular, we compare the strategies of summarising Z values within a gene using

their sum or by their largest absolute value. The results are shown in Table 6.1.
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Gene nsnp ≥ 5.3 ≤ (−5.3) max min sum abs max sum sign
A1BG 10 0 0 1.0 -1.8 -3.0 -1.8 TRUE
A1CF 5 0 0 3.6 -2.2 3.1 3.6 TRUE
A2M 33 0 0 3.4 -1.6 4.1 3.4 TRUE

A2ML1 65 0 0 2.5 -2.3 3.3 2.5 TRUE
A4GALT 6 0 0 1.2 -1.3 1.9 -1.3 FALSE
A4GNT 10 0 0 1.5 -1.4 -1.5 1.5 FALSE
AAAS 21 0 0 2.5 -2.5 -3.7 2.5 FALSE
AACS 15 0 0 2.0 -1.2 0.2 2.0 TRUE

AADAC 13 0 0 1.5 -0.8 1.6 1.5 TRUE
AADACL2 10 0 0 2.8 -0.6 8.2 2.8 TRUE

Table 6.1: The summary of Genes for disease LDL. The “nsnp” represents the number
of SNPs within one gene. The columns “≥ 5.3” and “≤ (−5.3)” indicate the
number of SNPs whose Z values are larger than 5.3 or smaller than −5.3 within
one gene. The colums “max” and “min” show the maximum and minimum Z
values, respectively. The “sum” is the sum of Z values. The column “abs max”
represents the maximum Z values of all SNPs within one gene, but keeping its
sign. The last column “sum sign” indicates whether the sum of Z values have the
same sign with column “abs max”.

In Table 6.1, the “nsnp” represents the number of SNPs within one gene. The

columns “≥ 5.3” and “≤ (−5.3)” indicate the number of SNPs whose Z values

are larger than 5.3 or smaller than −5.3 within one gene. Here the value 5.3 is

chosen because the p-value for quantile −5.3 is 5.8×10−8, which is close to the

general GWAS significance level 5×10−8. The columns “max” and “min” show the

maximum and minimum Z values, respectively. The “sum” is the sum of Z values.

The column “abs max” represents the maximum absolute Z values of all SNPs within

one gene, but keeping its sign. That means, if |max | > |min |, abs max = max,

while abs max = min if |max |< |min |. For example, for gene “A1BG”, its absolute

maximum value is 1.8, which is equal to |min |. Then abs max =−1.8, keeping its

negative sign. The last column “sum sign” indicates whether the sum of Z values

have the same sign with column “abs max”. If the sign is the same, the entry is

“TRUE”.

Although none of the genes in Table 6.1 has Z values that are greater than 5.3

in absolute value, among the 17340 genes, 200 genes have the maximum absolute

values larger than 5.3, such as some of those genes in Table 6.2, which are possibly

associated with LDL. Within these 200 genes, there are 72 genes, whose absolute
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sum of Z values are smaller than absolute Z values. Part of these genes are shown in

Table 6.2.

Gene nsnp >=5.3 <=(-5.3) max min sum abs max sum sign
ACOX1 17 1 0 5.5 -1.5 -0.4 5.5 FALSE

AMIGO1 6 0 1 3.2 -7.2 -2.6 -7.2 TRUE
APOA5 12 1 1 8.4 -9.3 3.0 -9.3 FALSE
APOB 138 7 8 35.6 -18.6 -10.7 35.6 FALSE
APOC1 6 1 1 40.2 -74.2 -33.0 -74.2 TRUE
APOE 7 2 2 44.3 -84.3 -41.4 -84.3 TRUE
APOH 14 1 0 12.8 -2.2 7.4 12.8 TRUE
BBS1 17 0 1 1.4 -5.6 -5.3 -5.6 TRUE

BUD13 23 1 1 6.7 -6.8 -0.7 -6.8 TRUE
CBLC 7 0 1 2.1 -5.5 1.0 -5.5 FALSE

Table 6.2: Part of genes whose absolute sum of Z values are smaller than absolute Z values.

For gene “ACOX1” in Table 6.2, the sum of Z values is −0.4, while the maxi-

mum values is 5.52, which means that the sum of Z values mitigates the effect of

association. In this case, using sum of test statistics as the summary may be also

misleading, since the sum of test statistics make it more difficult to identify the

association.

Within these 200 genes which have the maximum absolute values larger than

5.3, the sum of test statistics do not have the same sign with maximum absolute Z

values for some genes, which is shown in Figure 6.1.
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Figure 6.1: The sum of the Z values is plotted against the signed absolute maximum Z value
and only genes that have maximum absolute values larger than 5.3 are included
in the plot.

There are 18 genes with sum sign equal to FALSE, which means that the effect

direction of sum of Z values is different from raw Z values. In this case, using sum

of test statistics as the summary may be misleading.

Futhurmore, in Table 6.2, gene “APOB” has a large maximum Z values (35.6)

and minimum values (-18.6), which may indicate that the gene “APOB” is associated

with LDL in different directions. A plot of the the Z values for each of the SNPs in

gene “APOB” is shown in Figure 6.2.
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Figure 6.2: The plot of Z values for gene “APOB”.

It can be seen from Figure 6.2 that there are two SNPs whose Z values are

within (10, 20), while Z values of 7 SNPs are within (-20, -10). It shows that

different SNPs affect LDL in different directions. Several studies have shown that

gene “APOB” is associated two genetic disorders about LDL, which are e familial

hypobetalipoproteinemia and d familial ligand-defective apoB-100 [115, 116, 117].

6.3 Simulation study

To show that the proposed methods can control the Type I error well and compare the

power with other methods, we conduct the simulation study and estimate the power.

To generate the simulation data, I selected at random 300 genes with at least one

variant within one gene from the 1000 Genomes project [13]. Then, 2000 individuals

available from the 1000 Genomes project are selected randomly to generate disease

state and the LD values are calculated based on corresponding genotypes of 503

individuals from the 1000 Genomes project European population. After obtaining

the genotype data, we randomly select 10 or 40 variants for each gene and generate
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traits according to the following equation.

Logit P(Yi = 1) = β0 +
k

∑
j=1

Gi jβ j, (6.31)

where Yi denotes the disease states and Yi = 1 means that this person has the disease.

Gi j represent the genotype data for SNP j of individual i. Each row represents one

sample while each column represents one SNP. The entry Gi j = 0, 1 or 2 is based

on the numbers of copies of the minor allele. Define GGGiii = (Gi1, . . . ,Gik), which is

the genotype data for individual i, where k denotes the number of SNPs in one gene.

Then the distribution of Yi given GGGiii is a Bernouli distribution with probability:

P(Yi = 1|GGGiii) =

exp(β0 +
k
∑
j=1

Gi jβ j)

1+ exp(β0 +
k
∑
j=1

Gi jβ j)

. (6.32)

The parameter settings for this simulation study are given in Table 6.3:

Parameter Description Values

n Sample size 2000

k Total number of SNPs within one gene 10 or 40

pc proportion of the causal SNPs (β ̸= 0) from 0.1 to 0.7

pD
Proportion of the deleterious

1 or 0.7
SNPs among the causal ones (β > 0)

OR j
Odds ratio of SNP j for neutral SNPs (β = 0) 1

Odds ratio of SNP j for causal SNPs 2 or 0.05

p0 background disease prevalence 0.05

Table 6.3: The parameter values in simulation study 1. The background disease prevalence
p0 = P(Yi = 1|GGGiii = 0) = 0.05. Then the intercept in equation (6.27) is β0 =
log(0.05/0.95).

I compare methods HMRF and HMRF gene with several popular methods,

which are summarized in Table 6.4.
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Year Methods Reference Equation number

2013 SKATO [51] (6.6)

2014 aSPU [97] (6.11)

2017 GHC [110] (6.13)

2019 GBJ [112] (6.14)

2019 ARTA [106] (6.19)

2019 HMP [105] (6.18)

2020 DOT [113] (6.17)

2020 CCT [108] (6.16)

Table 6.4: SKATO: Optimal sequence kernel association test; aSPU: Adaptive sum of pow-
ered score tests; GBJ: Generalized Berk-Jones test; ARTA: Adaptive augmented
rank truncation method; HMP: The harmonic mean P value test; DOT: Decorrela-
tion by orthogonal transformation; CCT: Aggregated Cauchy association test.

The results are summarised in Figure 6.3, which contains the FDR of different

methods in simulation study. In Figures 6.3 and 6.4, pD = 1, which means all causal

SNPs have positive effect. It can be seen that the proposed method HMRF can control

the FDR well regardless of the proportion of causal SNPs. However, methods DOT

and HMRF gene always maintains a higher FDR than significance level of 5% no

matter what the proportions of causal SNPs are, which means DOT and HMRF gene

will identify many genes which are not associated with the disease. Besides, the FDR

of other methods are very close to 0, which means these methods are conservative

for identifying the associated genes. In terms of FDR, the proposed method HMRF

perform better than other methods since the FDR can be well controlled around the

significance level of 5% compared with other methods, regardless of the proportion

of causal SNPs in one gene.
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Figure 6.3: The FDR for simulation study. The X-axis represents different proportion
of causal SNPs. The red dashed line represents the significance level of 5%.
pc = 0.1 means that there is one causal SNP among 10 SNPs. The results are
based on the mean values of 10 repeats.Method HMRF means method 1.

Similarly, the results of power for different methods are summarised in Figure

6.4.
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Figure 6.4: The Power for simulation study. The X-axis represents different proportion of
causal SNPs. pc = 0.1 means that there is one causal SNP among 10 SNPs. The
odds ratio is 2. All causal SNPs have the same effect direction. The results are
based on the mean values of 10 repeats.Method HMRF represents method 1.
HMRF gene represents the gene level HMRF model, which is method 2.

It can be seen from above figures that for all methods, as the proportion of causal

SNPs (pc) increases, the power increases, since it is easier to identify the associated

genes when more causal SNPs are included in the gene. Method HMRF has a higher

power than other methods. Especially when the pc is small, the difference of power

between HMRF and other methods is larger, while this difference became smaller

when pc = 0.7. Though methods HMRF gene and DOT show a higher FDR than

significance level in Figure 6.3, they do not have a higher power. In particular, when

pc = 0.5 and pc = 0.7, the power of DOT is the lowest. Except for these three

methods, the performance of SKATO is the worst since it has a much lower power
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than the other 6 methods. From Figure 6.3 and 6.4, it can be observed, when pc = 0.7,

that the difference in performance between HMRF and methods aSPU, CCT, HMP,

GBJ and ARTA is very small. When pc is small, method HMRF performs much

better than other methods.

Since the proposed method performs much better when the causal SNPs are

sparse, to further demonstrate this point, another simulation study with lower propor-

tions of causal SNPs is conducted. In this study, 100 genes are randomly selected

and 40 variants are randomly chosen for each gene. Also in this study, pD = 1. The

comparison of FDR and power are shown in Figure 6.5 and Figure 6.6, respectively.
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Figure 6.5: The FDR for simulation study. The X-axis represents different proportion of
causal SNPs. The red dotted line represents the significance level. pc = 0.025
means that there is one causal SNP among 40 SNPs. The gene number is 100.
The results are based on the mean values of 10 repeats.Method HMRF means
method 1.
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Figure 6.6: The Power for simulation study. The X-axis represents different proportion of
causal SNPs. pc = 0.025 means that there is one causal SNP among 40 SNPs.
The gene number is 100. The odds ratio of causal SNPs are 2. The results
are based on the mean values of 10 repeats.Method HMRF means method 1.
HMRF gene represents the gene level HMRF model, which is method 2.

It can be seen from above figures that method HMRF gene still shows a much

higher FDR than significance level, which means it can not control the FDR very

well. The FDR of methods HMRF and DOT can be well controlled, since the FDR

are very close to the significance level, while other methods are still too conservative.

It can be seen from the Figure 6.6 that the power of HMRF is significantly higher

than other methods except for methods HMRF gene when pc = 0.025. This further

demonstrates that HMRF performs much better than other methods when the causal

SNPs within one gene is sparse. This means when pc is small, HMRF is better

calibrated, with an FDR close to the target significance level, and has relatively high
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power to identify associated genes. For other methods, DOT has the lowest power

except when pc = 0.025.

For the above simulation study, all associated SNPs affect the disease in the

same direction since all associated SNPs have a positive effect size. However, in

practice, the association could be positive or negative. To compare the performance

of different methods when there exists positive and negative effect size together

within one gene, a simulation study is implemented. In this study, similar to before,

100 genes are selected to calculate the power and FDR. For each gene, 40 SNPs are

randomly selected. The proportions of causal SNPs change from 0.1 to 0.4. The

proportion of deleterious SNPs among causal ones is set as 0.7, which means 70%

of causal SNPs have positive association. The odds ratio is 2 for deleterious SNPs

while 0.05 for other causal SNPs. The results are summarized in Figure 6.7 and 6.8.
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Figure 6.7: The FDR for simulation study. The X-axis represents different proportion of
causal SNPs. The red dotted line represents the significance level. pc = 0.1
means that there are 4 causal SNPs among 40 SNPs. The gene number is 100.
The results are based on the mean values of 10 repeats. Method HMRF means
method 1.
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Figure 6.8: The Power for simulation study. The X-axis represents different proportion of
causal SNPs. pc = 0.1 means that there are 4 causal SNPs among 40 SNPs. The
gene number is 100. The results are based on the mean values of 10 repeats.
Method HMRF means method 1. HMRF gene represents the gene level HMRF
model, which is method 2.

It can be seen that the conclusion is similar as before. In Figure 6.7, the FDR of

HMRF gene is still much higher than significance level, since it sums the Z values

within one gene and the sum will decrease the effect size when there are both positive

effect and negative effect. Methods HMRF and DOT can still control the FDR well,

while the FDR of other methods are quite small as before. For the power in Figure

6.8, it can be seen that the power of HMRF is still the highest no matter what pc

is, but the difference of power between HMRF and other methods becomes small

when pc ≥ 0.3. DOT still has the lowest power among 10 methods. The power of

HMRF gene is lower than HMRF though it has a higher FDR, while the power of



6.4. Real data application 124

other methods except for SKATO are very close to each other.

6.4 Real data application
To see the performance on real data, we perform gene association analysis for four

plasma lipid traits, which includes HDL, LDL, TC and TG. The summary statistics

are downloaded from GLGC [114], which is shown in Figure 6.9.

Figure 6.9: This is a small subset of the sample data from whole data of disease LDL. The
rsid means the SNP ID. A1 represents the minor allele, while A2 denotes the
major allele. Beta represents the estimated effect size. SE is the standard error
for Beta. N represents the sample size. P.value denotes the p-values for Beta.
The last column Freq.A1.ESP.EUR represents the frequency for A1 in European
population. The Z values we used in our study can be calculated using Beta/SE.

We consider 5636 genes which includes 53843 variants and define the set of

SNPs located within either 2kb extension upstream of the transcription start site or

2kb downstream of the transcription end site of a given gene. MAGMA software

is used to map our SNPs to genes [118]. We only analyse the genes which contain

at least five variants and the 1000 Genome European genotype data are used as the

reference panel to calculate LD matrix. The results are shown in Table 6.5, and the

similarity of the results across the different methods are shown in Table 6.6.
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Method HDL LDL TC TG
HMRF 492 343 504 362
aSPU 271 221 313 237
CCT 241 189 281 202
HMP 238 184 276 197
GBJ 252 189 272 198

ARTA 284 208 304 225
GHC 233 180 271 185

Table 6.5: The number of genes identified as being associated with each of four plasma
lipid traits for different methods. The real data application just considers those
methods which can control FDR well. Since the real data just includes summary
statistics, SKATO is not applied since it needs individual genotype data.

Method HDL LDL TC TG
aSPU 259 (95.6%) 202 (91.4%) 294 (93.9%) 216 (91.1%)
CCT 241 (100%) 189 (100%) 281 (100%) 201 (99.5%)
HMP 238 (100%) 184 (100%) 276 (100%) 196 (99.5%)
GBJ 246 (97.6%) 183 (96.8%) 264 (97.1%) 193 (97.5%)

ARTA 264 (93.0%) 191 (91.8%) 287 (94.4%) 201 (89.3%)
GHC 233 (100%) 180 (100%) 270 (99.6%) 184 (99.5%)

Table 6.6: The similarity of the results across the different methods. The entry in the table
represents the number identified by method HMRF meanwhile, among the genes
identified by other methods. The numbers in the bracket means the proportion.
For example, the first number in the second column 259 denotes that for 271
genes identified by method aSPU, there are 259 genes identified by proposed
method HMRF meanwhile. The similarity proportion is 259/271=95.6%

It can be seen from Table 6.5 that the proposed method HMRF has identified

more genes which may be associated with disease than other methods, which is

consistent with the simulations study results. Also, the number identified by other

methods are quite close. Among the other methods, GHC has detected a smaller

number of associated genes than other methods. For trait HDL, HMRF identifies

492 associated genes, while CCT detects 241 genes. All these 241 genes are also

identified by HMRF. It can be seen from Table 6.6 that the similarity of the results

across different methods are high. For example, for traits HDL and LDL, all genes

identified by method CCT, HMP and GHC are all identified by proposed method

HMRF. Except for trait TG used by method ARTA, for other traits, the proportion of

same genes identified by proposed method HMRF and other methods are higher than
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90%. Among all traits, 481 genes are identified to be associated with at lease two

traits by HMRF, while 134 genes are shared in at least three traits. HMRF identifies

60 genes which are associated with four traits, including genes ABCA1 and CETP,

which have been confirmed by precious study [119].

6.5 Conclusion
This chapter develops the proposed method for gene association analysis. Two

possible extensions are developed, but the simulation studies demonstrate that only

HMRF shows a good performance. HMRF gene produces an FDR that is too high,

which may cause more false discoveries. The reason may be because the sum is

applied on the Z values of SNPs within one gene, which may be not a good way

to represent gene association effect, particularly when these Z values contain both

positive and negative effects. In the future, it may be worth investigating how best to

summarise the Z values of multiple SNPs within one gene.



Chapter 7

Conclusion and future research

7.1 Summary of work

In this thesis, we have illustrated how GWAS identifies SNPs that may be associated

with disease, from which we understand that the linkage disequilibrium is common

between different genetic variants. We have introduced a hidden Markov random

field model, which is usually used in graphical analysis, to leverage the dependence

between SNPs. In our proposed model, Z values are assumed to follow a mixture

normal distribution and the EM algorithm is applied to estimate the parameters.

Finally, the FDR control procedure is used to identify associated SNPs. We carried

out simulation studies to compare the performances of the proposed method, the lfdr

method and the Bonferroni Correction method, showing that the proposed method

achieves a higher power than the other two methods in the context of controlling

FDR.

Although some assumptions are illustrated in our model, we also conducted

simulation studies to show the performance of proposed methods when the model

assumptions are violated. When the form of null distribution is not a standard normal

distribution, we have found that the proposed method still behave better. Furthermore,

we also discussed the effect of initial estimates and choice of the parameter τ in

the weight matrix. Simulation studies have showed that initial estimates do not

have much effect on performance, while a large τ will cause a FDR larger than the

significance level. Given that the value of τ may matter, a useful avenue of future
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research could be to devise a way to estimate the value of τ empirically from the

data. The situation when Z values do not follow a mixture normal distribution has

been considered. The distribution of Z values has been extended to two components

of Gaussian mixture model, for which proposed method still outperforms other

methods.

Besides SNP association analysis, we have extended our method into gene

association. Two forms of extensions are introduced. One is putting all gene data

together and regarding Z values for each SNP as input data, but using a different

grouped FDR control procedure to identify associated genes. Another is summing

Z values for each SNP within one gene into one value, then using the proposed

HMRF model in Chapter 3 on these values. We have conducted simulation studies

to compare the performance with other popular gene association methods. The

simulation study results shows that the method HMRF performs better than other

methods, especially when the proportion of causal SNPs within one gene is small.

Then the method HMRF are applied on four traits and it can identify more associated

genes than other methods.

7.2 Future research

7.2.1 Gibbs sampling

In this thesis, as implementation of the EM algorithm involves Gibbs sampling,

the computation time for estimating parameters will increase substantially as the

number of SNP we analyse increases. Because of the time limitation of UCL’s

high computation platform, which is not larger than 48 hours, we limit the size of

SNPs in the simulation study. However, in Chapter 4 we discussed using a different

convergence criterion and have shown that this can decrease the computation time

since it requires less iterations to end the algorithm. When the number of SNPs is

large, it becomes more difficult to converge even if the new convergence criterion is

applied and the Gibbs sampling is still computationally intensive. Therefore, to make

the proposed model applicable to a large dataset, considering how to accelerate the

parameter estimation procedure is an important task. In Chapter 5, we proposed to
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split the large datasets into several small datasets and implemented the EM algorithm

on each small dataset. This makes it possible to analyse the data within the time limit

of computation platform. However, this will lose some LD information between

SNPs in different datasets. For instance, for the last SNP in dataset 1 and first SNP

in dataset 2, they are located close to each other and may be highly correlated. But

when we analyse datasets separately, their correlation is neglected. To overcome this

problem, one possibility is to create small datasets with overlapping data between

different datasets. For example, suppose that 20 SNPs are split into two datasets.

One dataset contains SNP from 1 to 8, second dataset contains SNP 7 to SNP 15 and

last dataset contains SNP 14 to 20, by which way, the correlation between every pair

of SNPs can be included. However, how to decide the number of overlapping data

needs to be investigated further.

7.2.2 Possible improvement

In this thesis, numerical analyses have shown the superiority of the proposed pro-

cedure. However, the asymptotic properties of the proposed LIS-based testing

procedures are unknown. In 2009, Sun and Cai [26] assumed that the hidden states

of multiple testing hypothesis followed a hidden Markov model and proposed an

oracle testing procedure in an ideal setting. They showed that under mild condi-

tions, the LIS-based oracle procedure was optimal in the sense that it minimized

FNR subject to a constraint on FDR. Mimicking the oracle procedure, they pro-

posed a data-driven procedure, which had been shown to be asymptotically optimal.

Therefore, in the future, we may try to follow Sun and Cai’s research and study the

asymptotic properties of proposed HMRF-LIS based procedures.

In this thesis, it is assumed that Z values follow a one-component of normal

mixture distribution. In Chapter 4, this is extended into two components of Gaussian

mixture distributions. However, in practice, the actual number of mixture components

is usually unknown. Therefore, in the future, it is worth to study how to introduce a

Dirichlet process to represent the components of mixture models [120].
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7.2.3 Practical application

In this thesis, a testing procedure is proposed to identify association between multiple

genetic variants and one trait. In practice, it may be beneficial to identify association

based on multiple GWAS data, that is integrating data relating to multiple traits in

order to improve power. Then the proposed method can be extended to identifying

association between one genetic variant and multiple traits, since some traits are

correlated. Then the weight matrix will represent the correlation between different

traits rather than different SNPs. Furthermore, it is possible to integrate Z values

between multiple genetic variants and multiple traits together. In this case, the weight

matrix will not only represent the correlation between different SNPs, but also denote

the dependence between different traits [121].



Chapter 8

Appendix

8.1 Derivation of equation (3.33)

The conditional expectation of complete data log-likelihood Q(φ |φ{old}) can be

written as follows:

Q(φ |φ{old}) = E
φ{old}(γ

m

∑
i=1

θi +β ∑
i∼ j

wi jI(θi = θ j)− logψ(θ)|Z)

+E
φ{old}(

m

∑
i=1

logP(Zi|θi)) = l1(φ1)+ l2(φ2).

(8.1)

where ψ(θ) = ∑
θ∈{0,1}m

exp(γθi +β ∑
j∈Ni

wi jI(θi = θ j)), φφφ 1 = (γ,β )T , φφφ 2 =

(µ,σ2)T .

p(θθθ ;Φ) ∝ exp(γ
m

∑
i=1

θi +β ∑
i∼ j

wi jI(θi = θ j))

∝ exp(φφφ T
1 HHH(θθθ)) =

exp(φφφ T
1 HHH(θθθ))

ψ(θ)

(8.2)

where ψ(θ) = ∑
θ∈{0,1}m

exp(γθi +β ∑
j∈Ni

wi jI(θi = θ j)), γ and β are two model pa-
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rameters. φφφ 1 = (γ,β )T , HHH(θθθ) = (H1,H2)
T = (

m
∑

i=1
θi, ∑

i∼ j
wi jI(θi = θ j))

T .

E[exp(−φφφ
T
1 HHH(θθθ))] = ∑

θ∈{0,1}m

exp(−φφφ
T
1 HHH(θθθ))

exp(φφφ T
1 HHH(θθθ))

ψ(θ)

= ∑
θ∈{0,1}m

1
ψ(θ)

=
C

ψ(θ)
,

(8.3)

where C is the number of all possible configurations of θ , which is a constant.

E[exp(−φφφ
T
1 HHH(θθθ))] can be approximated by Gibbs samplers:

E[exp(−φφφ
T
1 HHH(θθθ))]≈ 1

n

n

∑
i=1

exp(−φφφ
T
1 HHH(θθθ (i,φ1))), (8.4)

where {θ (1,φ1),θ (2,φ1), . . . ,θ (n,φ1)} are Gibbs samplers generated from p(θθθ ;Φ).

The conditional association state for SNP i, given the states of all neighboring

SNPs, is

p(θi|θNi;Φ) ∝ exp(γθi +β ∑
j∈Ni

wi jI(θi = θ j)), (8.5)

where Ni represents the neighbors of the SNP i on the LD graph.

For l1(φφφ
(t+1,m)
111 )− l1(φφφ

(t)
111 ),

l1(φφφ
(t+1,m)
111 )− l1(φφφ

(t)
111 )

= E
φφφ
(t+1,m)
1

[φφφ
(t+1,m)T

1 HHH(θθθ)|Z]−E
φφφ
(t)
1
[φφφ

(t)T

1 HHH(θθθ)|Z]− log
ψ(θ ;φφφ

(t+1,m)
111 )

ψ(θ ;φφφ
(t)
111 )

≈ 1
n

n

∑
i=1

(
φφφ
(t+1,m)T

1 HHH(θθθ (t,i))−φφφ
(t)T

1 HHH(θθθ (t,i))
)
− log


n
∑

i=1
exp(−φφφ

(t)T

1 HHH(θθθ (i,φ (t)
1 )))

n
∑

i=1
exp(−φφφ

(t+1,m)T

1 HHH(θθθ (i,φ (t+1,m)
1 )))



=
1
n
(φφφ

(t+1,m)
1 −φφφ

(t)
1 )T

n

∑
i=1

HHH(θθθ (t,i))+ log


n
∑

i=1
exp{−φφφ

(t+1,m)T

1 HHH(θθθ (i,φ (t+1,m)
1 ))}

n
∑

i=1
exp{−φφφ

(t)T

1 HHH(θθθ (i,φ (t)
1 ))}

 ,

(8.6)

where θ (t,i) are Gibbs samplers from P(θi|Z, θ̂S\i), θ (i,φ (t+1,m)
1 ) and θ (i,φ (t)

1 ) are Gibbs

sampler from p(θi|θNi).
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