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Abstract
1.	 Accurate and precise assessment of population density plays a critical role in 

effective wildlife management, but reliable estimates are often difficult to ob-
tain. Camera traps have emerged as valuable noninvasive tools for studying elu-
sive species, offering cost-effective solutions for both marked and unmarked 
populations.

2.	 We evaluated the consistency of badger (Meles meles) density estimates obtained 
from the random encounter model (REM) and camera trap distance sampling 
(CT-DS) with independent estimates from spatial mark-resight (SMR) models and 
quantified the bias in CT-DS arising from animals reacting to camera traps. Six 
camera trap surveys were conducted in Cornwall, UK, in 2019 and 2021, and 
data were used to estimate badger density using the REM and CT-DS. Four sites 
were included in a badger vaccination research project, providing an opportunity 
to mark badgers with uniquely identifiable fur clips to facilitate resighting within 
a SMR framework.

3.	 We found consistency in the density estimates across all methods, but results had 
wide confidence intervals. Density estimates derived from CT-DS tended to be 
higher than those from the REM and were sensitive to the exclusion of reactive 
sequences, resulting in a twofold decrease in the estimated density in one case. 
The REM tended to be the most precise method; however, where badger density 
was low, precision was low using all methods.

4.	 Practical implication: our findings suggest animal density can be assessed from 
camera traps in the absence of individual identification; however, it is important 
to account for reactive behaviours, especially where such behaviour is prevalent. 
In these circumstances, we recommend utilising the REM which offers a clear 
methodology for addressing bias arising from reactive sequences. In addition, we 
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1  |  INTRODUC TION

Reliable population estimates are essential for ecological assess-
ment, conservation biology, and wildlife management. Quantifying 
badger (Meles meles) populations, for example, is relevant in the con-
text of disease control, because badgers can transmit Mycobacterium 
bovis, the causative agent of bovine tuberculosis (bTB), to cattle. In 
the British Isles, bTB is a chronic infectious disease that greatly im-
pacts the farming industry, leading to substantial economic losses 
and affecting livestock health. Badger management aimed at bTB 
control currently involves large-scale badger culling in England. 
Badger density estimates have contributed to the understanding 
of the species' role in M. bovis transmission (Delahay et  al.,  2013; 
Rogers et al., 1998; Woodroffe et al., 2006), informed disease man-
agement plans (Scott et al., 2018; Smith et al., 2012), helped estab-
lish culling targets (DEFRA, 2022), and facilitated policy evaluation 
(Donnelly & Woodroffe, 2015). In England, the government is cur-
rently scaling back badger culling, and encouraging badger vaccina-
tion (DEFRA, 2020); however, lack of accurate badger density data 
means, at present, there is no framework in place for establishing 
vaccination targets, evaluating the effectiveness of post-cull vacci-
nation or tracking the recovery of post-cull badger populations.

Badgers are nocturnal and fossorial, making direct population 
counts challenging, particularly on large scales. Counts of badger 
dens (‘setts’) are used as indices of density (Judge et al., 2014; Wilson 
et al., 1997), assuming a typical group size and pattern of sett use. 
However, such metrics can change with habitat (Judge et al., 2017), 
geology (Neal,  1986), resource availability (Kruuk & Parish,  1982), 
and human intervention (Rogers et  al.,  1997). Other measures of 
relative abundance, such as faecal counts (Buesching et  al.,  2015) 
and road casualties (Woodroffe et al., 2008), are similarly prone to 
bias (Hutchings et  al.,  2002). Conventional minimum number alive 
analysis is not recommended where accuracy is important because 
it underestimates density to an unpredictable degree (Byrne & Do 
Linh San, 2016).

Mark-recapture is generally regarded as a reliable method of es-
timating population density (Borchers & Efford, 2008; Efford, 2004; 
Royle et al., 2013) but trapping and marking badgers is logistically 
challenging and both are licensed activities (Natural England, 2015). 
DNA-based capture–recapture, using noninvasive samples such 
as hair or faeces, has alleviated some of these challenges (Judge 
et al., 2017; Wilson et al., 2003), although laboratory procedures can 
be costly (Davis et al., 2020) and some data are inevitably lost due 

to incomplete DNA amplification (Woodruff et  al.,  2015). Camera 
traps offer a relatively inexpensive alternative (Davis et  al.,  2020; 
Twining et al., 2022). Deployed as a tool for resighting, camera traps 
allow density estimation using spatial mark-resight or -recapture 
(SMR) frameworks (Efford, 2023a). Individual identification is cen-
tral to SMR, and the method is popular for species with unique pel-
age markings (Alonso et al., 2015; Karanth & Nichols, 1998; Teton 
et al., 2020). SMR can also be used for species with uniform pelage, 
by artificially marking some individuals (Carter et al., 2019; Jimenez 
et al., 2019; Jordan et al., 2011).

Marking individual animals may be challenging and risks harm-
ing study subjects. Consequently, spatial count models have been 
developed to enable noninvasive density estimation for animals 
without distinctive markings, by using spatial correlation in counts 
across sensors as information about the density of animal activity 
centres (Chandler & Royle, 2013). Alternatives use modelled detec-
tion rates to minimise bias in density estimates. Among these, the 
most popular approaches are the random encounter model (REM; 
Rowcliffe et  al.,  2008), camera trap distance sampling (CT-DS; 
Howe et al., 2017), the time-to-event and related models (Moeller 
et  al.,  2018), and the random encounter and staying time model 
(Nakashima et al., 2018). These methods are promising, but testing 
them against independent estimates to validate their accuracy and 
reliability is recommended (Rowcliffe et al., 2008).

The REM and CT-DS share similar methods for data collection, 
enabling simultaneous estimation of density. Both models require 
information on the position of animals relative to the camera; for 
the REM, distance data allow the estimation of the focal species' 
speed and the dimensions of the camera detection zone, which af-
fect the encounter rate (the number of photographs per unit of time) 
from which density is estimated. In CT-DS, a detection function is 
fitted to distance observations and density is estimated by model-
ling the probability of detecting an animal within the detection zone 
at a given time. However, the methods differ in how they address 
‘reactive’ sequences, where animals' attraction to (or avoidance of) 
cameras may bias density estimates (Howe et  al.,  2017; Palencia 
et al., 2021). Using the REM, this bias can be controlled by remov-
ing reactive sequences from speed estimation but including them 
in total encounter rate (Palencia et al., 2021; Rowcliffe et al., 2008). 
Approaches within CT-DS studies vary, with some discarding data 
collected immediately after camera deployment to allow animals 
to become accustomed to camera traps (Howe et al., 2017), others 
removing potential investigative behaviour by left-truncating the 

emphasise the need for improved precision to ensure the effectiveness of these 
methods in the context of wildlife management. We offer practical considera-
tions to facilitate the broader application of these methods, drawing upon the 
example of disease control through badger vaccination.

K E Y W O R D S
badger, camera trap, density, distance sampling, random encounter model, spatial mark-resight
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detection distance data (Cappelle et al., 2019), and some identifying 
and removing all reactive sequences (Bessone et al., 2020). Defining 
a smaller sample of data for density estimation may be appropriate 
if reactive behaviour varies predictably in time (Mason et al., 2022). 
However, the impact of these differing methods on the accuracy 
and precision of density estimates is not well understood (Palencia 
et al., 2019).

In this study, we aimed to evaluate the performance of the REM 
and CT-DS at estimating badger density in a badger vaccination con-
text. We compared the REM and CT-DS density estimates with in-
dependent estimates derived from SMR using marked badgers. We 
also compared different methods of processing reactive sequences 
and examined the practical implications of using camera-based den-
sity estimation methods.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

Data were collected from six camera trap surveys at five sites in 
Cornwall, UK, in 2019 and 2021 (Table 1; Figure 1). Each site com-
prised at least two farms (Table 1). Sites included several habitats 
and farming practices, including arable fields, livestock pasture, 
woodland, and moorland. All data were collected with landowner 
consent.

2.2  |  Data collection

2.2.1  |  Camera surveys

All surveys were planned to coincide with the open season for 
badger vaccination, which runs annually from the 1 May–30 
November (Natural England, 2023). We determined the number and 
duration of camera deployments at each site (Table 1) using recom-
mendations from Rowcliffe et al. (2008). Specifically, we estimated 
that a minimum of 1000 camera nights were required at each site, 
based on a badger day range of 1.2 km (estimated using data from 
Global Positioning System-collared badgers recorded by Woodroffe 
et al. (2017)) and a local minimum number alive density estimate of 
4.2 badgers per km2 (Woodroffe et al., 2017). We planned to deploy 
enough cameras to ensure we would have data from ≥40 cameras 
per site (recommended by Rowcliffe et al., 2008), allowing for antici-
pated camera failures or theft.

To meet the assumptions of the REM and CT-DS, we used a sys-
tematic grid with a random origin to plan the location of cameras 
at each site, with a spacing of 155–250 m between predetermined 
locations (Table  1). In the field, we attached cameras (Browning 
StrikeForce HD Pro X) to suitable objects as near as possible to pre-
determined locations. If deployment was not possible at the exact 
coordinates, we aimed to keep within ≤20% of the distance between 
predetermined locations, ensuring the habitat remained unchanged 

and orientating the camera towards the planned location. This 
method was chosen over trying for a fixed aspect (e.g. north) due 
to the anticipated difficulty of finding suitable attachment sites for 
cameras in the farming landscape. We positioned cameras 30–40 cm 
high, parallel to the ground and did not use bait. Cameras took pho-
tographs 24 h/day with no time lapse and a 1-s passive infra-red trig-
ger interval.

At each camera location, we took calibration images of a 1 m pole 
marked at 20 cm intervals, at a range of distances and angles from 
the camera (Figure 2). Similar calibration images were taken ex situ 
at a range of angles and known distances, to enable accurate calibra-
tion and estimation of distances and angles in images.

2.2.2  |  Badger vaccination and marking

Sites B to E (Table 1; Figure 1) were included in an existing research 
project. Badgers were trapped and handled under licence from the 
UK Home Office (project licence PB32E4DFC) and Natural England 
(research licence 2021-53121-SCI-SCI). Cage traps were placed near 
badger setts, latrines and runs, and pre-baited with peanuts for 
7–10 days prior to trapping. On capture, badgers were anaesthe-
tised with an intramuscular injection of medetomidine and ketamine 
(de Leeuw et al., 2004), and individually identified using microchips 
(FriendChip, Avid PLC, Lewes, UK). We recorded age class (cub or 
adult), sex, tooth wear, and reproductive status.

Cage trapping provided the opportunity for SMR analysis, which 
requires an initial marking phase followed by re-sightings in which 
previously captured animals must be individually recognisable. Each 
badger was assigned a unique mark which was clipped onto both 
sides of the animal, by carefully trimming the dark tips of the guard 
hairs, revealing the pale undercoat (Stewart & Macdonald,  1997; 
Figure 3). We recorded a photograph of each mark and the badger's 
identity (Figure 3).

2.3  |  Data analysis

2.3.1  |  Image processing

Badger images from surveys 1, 2, and 4 were isolated manually. 
During data analysis, the image processing tool Sherlock (Penn 
et al., 2024) became available and was used to isolate badger images 
from the remaining sites. Images were tagged using XnView MP (ver-
sion 0.99.6; Gougelet (2020)).

Some cameras were displaced by livestock. Where this substan-
tially changed or obscured the field of view (FOV), we truncated that 
camera's deployment period at the point the camera was moved, 
discarding any subsequent badger encounters and removing the af-
fected hours from effort calculations.

Except for the first night of cage trapping at site B in 2019, 
badgers were trapped and marked during the camera deployment 
periods. We therefore limited resighting data for SMR to images 
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obtained after marking was completed. For the REM and CT-DS, we 
excluded data from cage trapping nights (18:00 until 08:00) to avoid 
bias in encounter rate due to part of the population being caught in 
cage traps.

2.3.2  |  Outlier analysis

Our survey design, which entailed random camera placement 
across a total area larger than the typical home range of badgers,  

was carefully considered to minimise sampling bias. This strat-
egy, coupled with the sparse distribution of badger setts across 
the landscape, ensured a broad representation of badger activity,  
minimising the potential for biased sampling. However, if areas 
of high badger activity (e.g. setts) were by chance included in the 
sample, they might inflate encounter rates and bias density esti-
mates. To identify potential outliers, we fitted a negative binomial 
distribution to the per-deployment photographic encounter rate 
data (Anscombe,  1949) using maximum likelihood. We simulated 
1000 datasets from this distribution and considered the maximum 

F I G U R E  1 (a) Location of the five sites in Cornwall, UK and (b–g) layout of the camera grids deployed for each survey.
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observed photographic encounter rate to be an outlier if it fell 
above the 95th percentile of the simulated distribution. If an out-
lier was identified, the process was repeated with the outlier re-
moved. We excluded outliers from density estimation using the 
REM and CT-DS but not SMR, which is not sensitive to encounter 
rate outliers.

2.3.3  |  REM density estimation

Although badgers are a social species, outside of the sett they do not 
form cohesive groups (Kruuk, 1989), so we considered individuals as 
the unit of observation for all models (Rowcliffe et al., 2008; Thomas 
et al., 2010).

Density estimates were obtained from encounter rates using 
Equation 1 from Rowcliffe et al. (2008)

where y is the number of independent badger encounters (defined as 
a badger entering and exiting the FOV), t is the temporal survey effort 
(the total number of camera nights during the survey period, exclud-
ing nights affected by cage trapping, camera movement, and camera 
failure), v is the long-term average distance travelled by a badger per 
night (the product of average speed while active and the proportion 
of time spent active; hereafter referred to as activity level; Rowcliffe 
et al., 2014), and r and θ are the dimensions of the camera detection 
zone (radius and angle, respectively).

All model parameters were estimated from the camera images. 
Calibration images and badger sequences were digitised using 
AnimalTracker (Vargas Zarco,  2019) and processed to produce 

(1)D =
y

t

�

vr(2 + θ)

F I G U R E  2 Example of a deployment calibration image taken at 
each camera location. The camera was triggered to capture images 
of a calibration pole at a range of angles and distances from the 
camera. Similar images were taken ex situ at a range of angles and 
known distances, enabling accurate camera calibration.

F I G U R E  3 Representative images of three individually marked badgers during the marking (a–c) and resighting (d–f) stages of spatial 
mark-resight (SMR) analysis.
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    |  7 of 15MILES et al.

badger position data (defined in polar coordinates as radial dis-
tance from the camera and angular distance from the camera view 
centre) using the ‘CTtracking’ package (Rowcliffe,  2021b). Speed 
was measured for each badger sequence by dividing the distance 
travelled summed across all positions in the sequence by the dura-
tion of the sequence, using the time stamp on the images. Overall 
average speed while active was estimated as the harmonic mean 
of these speed observations after removing reactive sequences 
(Rowcliffe et al., 2016), defined as a badger observing the camera 
followed by a change in directional movement with respect to the 
camera. Activity level was estimated by fitting a circular kernel 
model to radian time of day distributions of camera trap records 
of badgers using the ‘activity’ package (Rowcliffe et al., 2014). The 
effective detection radius and angle were estimated by fitting 
distance sampling detection functions to the radial and angular 
distance observations at the beginning of each badger sequence 
(Rowcliffe et al., 2011). The ‘camtools’ package (Rowcliffe, 2021a) 
was used to estimate density, including bootstrapping of trap 
rate errors and incorporating variance using the delta method 
(Rowcliffe et al., 2008).

2.3.4  |  CT-DS density estimation

We used point transect distance sampling methods (Howe 
et al., 2017) adapted for use with still images. A key distinction be-
tween CT-DS and traditional point transect surveys is the calcula-
tion of effort, because camera traps (active 24 h/day in our study), 
replace human observers surveying at intervals. We therefore dis-
cretized the number of times animals could potentially be photo-
graphed (‘snapshot moments’), given a certain interval time between 
camera images (Howe et al., 2017). We calculated the mean interval 
between sequential badger images within captures to define the 
length of the time between snapshot moments, T. Temporal effort 
for each camera was calculated as the number of snapshot mo-
ments within the time that the camera was operational, H, given in 
Equation 2:

where t is as defined for the REM.
The effort of the camera is given by the proportion of a circle 

covered by its estimated FOV. The angle of the detection zone, θ, 
was estimated using digitised badger images, as described above for 
the REM. The overall sampling effort, e, is a product of temporal ef-
fort and spatial effort, given in Equation 3:

Density was estimated using Equation 4 (Howe et al., 2017)

where y is the number of badger observations, w is the truncation 
distance (beyond which badger detections were disregarded to avoid 
heavy-tailed detection functions), p is the probability that a badger 
within a camera's FOV is detected, and a is the activity level, estimated 
as described for the REM.

We performed exploratory analysis for each camera survey to 
determine left- and right-truncation distances, below and beyond 
which badger detections were excluded, respectively. The purpose 
of left-truncation is to control bias arising from animals passing under 
the camera undetected which could violate a key assumption of dis-
tance sampling models, that animals are detected with certainty 
at the point where the observer is situated (Buckland et al., 2001). 
We chose to left-truncate the data at distances below which there 
were fewer than the expected number of badger detections. Right-
truncation distances were decided by fitting an exploratory model 
and choosing to truncate the data at distances beyond which the 
detection probability was lower than 0.15. We estimated density 
under two scenarios, in which reactive sequences were included or 
excluded from analyses.

We fitted detection function models, and estimated den-
sity and the variance in density estimates, using the ‘Distance’ 
package in R (Miller et  al.,  2019). We considered models of the 
detection function with the uniform key function with 1, 2, or 3 
cosine adjustments, the half-normal key function with 0, 1, or 2 
cosine adjustments, and the hazard rate key function with 0 or 1 
simple polynomial adjustments. We discarded models where the 
detection function did not decline monotonically in relation to 
the detection distance. Models were adjusted for overdispersion 
and final model selection was based on ĉ scores, following Howe 
et al. (2019).

2.3.5  |  SMR density estimation

Individual badgers were identified by comparing marks in camera im-
ages with those taken during handling (Figure 3). Identifiable badg-
ers were distinguished from unmarked, marked-unidentifiable, and 
indeterminable badgers (Efford, 2023a). Retrospective capture his-
tories of identifiable badgers were constructed using the cage trap 
and camera locations. SMR models were fitted to the data using the 
‘secr’ package in R (Efford, 2023b).

Spatial mark-resight analysis requires estimating the effective 
sampled area, a buffer around the camera traps where detection 
probability declines towards the outer limit (Efford, 2022a). The size 
of the buffer is not critical but must be large enough to account for 
all detected individuals, while individuals with home range centres 
at the outer limit should have zero probability of being detected 
(Efford, 2022a).

We used a buffer width of 4σ (Efford,  2022a), where σ is a 
function of the distance between capture and resighting loca-
tions, assuming that detection probability declines as the distance 
between the two locations increases. Where sites bordered the 

(2)H = t ∕T

(3)e =
�H

2�T

(4)D =
y

�w2epa
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8 of 15  |     MILES et al.

sea, we fitted a shape file habitat mask to restrict the buffer to 
terrestrial habitat. A retrospective buffer sensitivity analysis was 
also performed to confirm that wider buffers did not influence es-
timated density.

Since the marking and resighting processes are fundamen-
tally different, we used a variable detection probability between 
marking and sighting occasions. Exploratory analysis considered 
models with exponential, hazard rate, and half-normal detection 
functions. Models were compared using QAIC values (Borchers & 
Efford, 2008) and their performance in the retrospective buffer sen-
sitivity analysis (Efford,  2022b). Models and standard errors were 
adjusted for overdispersion by simulating an overdispersion factor 
(Efford, 2023a).

In SMR models, incomplete identification of marked individu-
als can introduce bias, particularly if there is individual heteroge-
neity in resighting probability (McClintock et al., 2014). To account 
for this, our models included data from both identified and un-
identifiable marked individuals, estimating a corrective factor, pID, 
which quantifies the proportion of marked animals identified upon 
resighting. We also conducted retrospective simulations across a 
range of pID values under similar detection conditions to assess 
the impact of incomplete identification on the precision and accu-
racy of density estimates. Capture histories were simulated using 
the ‘secr’ package, with a spatial grid comprising 49 detectors and 
specifying detection probabilities for two marking occasions and 
36 resighting occasions. The spatial scale parameter σ and detec-
tion probabilities were based on mean values derived from ob-
served data. We fixed the population density at 10 individuals per 
km2 and systematically varied the pID value. For each scenario, 
we simulated capture data and subsequently fitted mark-resight 
models using the same detection function applied to the observed 
data, assessing the impact of varying pID on the accuracy and pre-
cision of density estimates.

All calculations were performed in R (R Core Team, 2021).

3  |  RESULTS

3.1  |  Camera survey

We obtained 5,049,759 images from 388 camera placements over 
8467 camera nights. Badgers were identified in 9784 (0.2%) images, 
totalling 1739 independent encounters. The majority of badger de-
tections involved solitary badgers, with only 19 (1.1%) encounters 
featuring groups of two or three animals. The mean group size was 
1.024 (95% confidence interval [CI] 1.018–1.029), supporting the 
use of individuals as the unit of observation.

Interference from livestock meant that 31 (8%) camera de-
ployments were truncated early, amounting to a loss of 396 (5%) 
camera nights and 218 independent badger encounters. Lack of 
suitable attachment sites meant that cameras were often situ-
ated at field boundaries. On average, cameras deviated by 35.8 m 

(median 28.0 m) from the planned deployment location or 17.4% 
of the distance between predetermined locations. Accurate de-
ployment locations were not recorded for 21 cameras and were 
not included in the analysis of camera deviation. Cameras miss-
ing accurate location data were from surveys 1 and 2, where SMR 
analysis was not performed, thus not compromising the method. 
Following outlier analysis and removal of data due to livestock in-
terference and trapping (detailed below) 7023 badger images and 
1252 independent badger encounters were considered for the 
REM and CT-DS analyses.

3.2  |  Outlier analysis

We identified one observed photographic encounter rate as an out-
lier (Figure 4, survey 3) and excluded this camera deployment from 
the REM and CT-DS analyses. After removing this outlier there were 
1543 independent badger encounters captured over 8071 camera 
nights, giving 0.2 encounters per camera-night.

3.3  |  Marking badgers

Of the 63 badgers trapped in 2021, 58 were given unique marks 
(Table 2) to facilitate SMR analysis, while five could not be marked 
due to insufficient anaesthesia.

3.4  |  Reactive sequences

We identified 138 independent encounters in which badgers dis-
played reactive behaviour, which represented 10% of the encoun-
ters considered for the REM and CT-DS analyses. Of these, 100 
(72%) involved investigative behaviour, 18 (13%) avoidance behav-
iour, and 20 (14%) involved a mixture of these behaviours.

3.5  |  Density estimation

Spatial mark-resight analyses, which were limited to data collected 
following individual marking, included 579 independent badger en-
counters. The presence or absence of a mark was confirmed in 374 
(65%) encounters, with badger identity confirmed in 33 (6%) encoun-
ters (Table 2). During survey 6, we obtained only two re-sightings of 
one marked badger, so we excluded this survey from further SMR 
analysis.

Estimated badger densities ranged from 1.4 (95% CI 0.6–3.0) 
badgers per km2 (REM at site E, survey 6) to 20.2 (95% CI 11.8–34.4) 
badgers per km2 (REM at site B, survey 2; Table  3 and Figure  5). 
Density estimates using CT-DS tended to be higher than those using 
the REM (Table  3; Figure  5). When reactive sequences were ex-
cluded from CT-DS analysis, density estimates were on average 22% 

 26888319, 2024, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12378 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [10/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  9 of 15MILES et al.

(range 3%–51%) lower than when those sequences were included 
(Table 3; Figure 5).

The REM estimates tended to be the most precise (Table 3). The 
average coefficient of variation (CV) for the REM was 0.36, for CT-
DS (reactive sequences included) it was 0.41, for CT-DS (reactive 
sequences excluded) it was 0.42 and for SMR it was 0.35.

3.6  |  SMR simulations

On average, 56% (range 25%–100%) of marked badger sightings 
were identifiable (Table  2), prompting simulations with pID val-
ues of 1, 0.75, 0.50 and 0.25. Models fitted to the simulated data 
demonstrated a direct correlation between pID values and the ac-
curacy and precision of the estimated densities. When pID was 
100%, the model yielded density estimates closest to the actual 
population density used in simulations (10 individuals per km2), 
with an estimated density of 9.8 individuals per km2 and a CV of 
0.22. This scenario illustrated minimal bias and lower variability, 
suggesting optimal model performance under full identification 
conditions. As pID decreased, estimated density was less accurate 
and variability increased (Table 4).

4  |  DISCUSSION

Our study suggests that the REM and CT-DS are reliable methods of 
estimating the density of unmarked animal populations. The density 
estimates obtained using the REM and CT-DS were similar to each 
other and to the estimates obtained independently using SMR. The 
95% confidence intervals of all methods overlapped substantially. 
In contrast with previous studies (Henrich et  al.,  2022; Palencia 

F I G U R E  4 Boxplot showing the median (thick horizontal lines), interquartile range (boxes) and 2.5th and 97.5th centiles (vertical lines) 
of maximum encounter rates from seven data sets using 1000 samples from a negative binomial distribution fitted to the data, with sample 
sizes equal to the number of deployments in the data set. Black crosses show the maximum encounter rate from the observed data at each 
site, with an outlier identified in camera survey 3 (site B). The analysis for survey 3 was repeated with the outlier removed.
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TA B L E  2 Badger encounters considered for SMR analysis.

Site

B C D E

Survey 3 4 5 6

Number of badgers 
individually marked

23 19 12 4

Resighting Number of independent 
encounters

Identifiable (number of 
individuals resighted)

11 (5) 15 (7) 5 (4) 2 (1)

Marked, unidentifiable 31 45 2 0

Unmarked 37 82 72 72

Indeterminable 60 56 64 22

Total independent encounters 139 198 143 99

Note: Site E was excluded from analysis due to the small number of 
marked and resighted individuals.
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10 of 15  |     MILES et al.

et  al.,  2021; Twining et  al.,  2022), density estimates derived from 
CT-DS tended to be higher than those using the REM, although not 
consistently so. As the REM and CT-DS are mathematically similar, 
their consistency with SMR is encouraging and supports their use 
for estimating the density of terrestrial mammals without needing 
to mark individuals.

Challenges with determining the identity of marked individu-
als, arising from incomplete visual captures or indistinct markings, 
are well documented in mark-resight studies (Jimenez et al., 2019; 
McClintock et al., 2014). On average, we were able to identify 56% 
of the encounters with marked individuals (Table 2) consistent with 
rates reported in other studies employing camera traps for resight-
ing (Greenspan et al., 2020; Jimenez et al., 2019). Our simulations 
with varying pID values suggested that with comprehensive capture 
histories for all marked badgers, we may have seen more accurate 
and precise results. When 100% of the marked individuals were 
identifiable, the model had minimal bias. However, reducing pID to 
50% resulted in a density estimate that was 13% lower than the fixed 
simulated density, with an increase in CV from 0.22 to 0.28 (Table 4). 
At a pID of 25%, density was underestimated by 15% and the CV 
increased to 0.29. Our SMR results may therefore represent an un-
derestimate of badger density, although comparisons with our REM 
and CT-DS estimates do not consistently reflect this. Alternative 
methods to address imprecision arising from marked unidentifiable 

individuals have been proposed. For example, spatial partial identity 
models (SPIMs) specifically address the challenge of imperfect iden-
tification by adding partially known information about identity, such 
as sex, to probabilistically determine identities obtained from cam-
era traps, thereby improving density estimate precision (Augustine 
et al., 2019). Such models may outperform other spatial models (Sun 
et al., 2022), particularly where the resighting rate is low (Greenspan 
et al., 2020), so it is possible that we could have obtained more accu-
rate and precise estimates with the use of SPIMs.

The REM and CT-DS methods negate the need for individual 
identification, thereby maximising data usage and circumventing 
challenges such as incomplete identification. However, our survey 
design, which used a randomised grid to meet the assumptions of 
the REM and CT-DS, was not optimised to maximise encounter rates 
for SMR. The precision of SMR estimates is sensitive to the resight-
ing rate of identifiable individuals (Carter et  al.,  2019) and, while 
SMR models necessitate coverage across the target species' den-
sity distribution, they do not require random camera placement and 
can support strategic camera placements in areas likely to detect 
the target species, as well as the use of bait to increase re-sightings 
(Jimenez et al., 2019). In this study, we utilised the existing camera 
grid and the opportunity to individually mark badgers as part of on-
going research to provide independent density estimates, but insuf-
ficient recaptures meant SMR analysis could not be conducted for 

TA B L E  3 Badger density per km2 and associated 95% confidence intervals and coefficient of variation (CV) estimated from six camera 
surveys at five sites, using three camera trap-based methods. SMR analysis was only possible for three of the surveys.

Site Survey Density estimation method Density (badgers per km2) SE 95% CI CV

A 1 REM 4.9 3.3 1.5–16.1 0.67

CT-DS (reactive included) 6.2 5.4 1.4–27.3 0.86

CT-DS (reactive excluded) 6.0 5.2 1.4–26.4 0.86

B 2 REM 20.2 5.6 11.8–34.4 0.28

CT-DS (reactive included) 19.8 5.5 11.4–34.1 0.28

CT-DS (reactive excluded) 13.8 4.2 7.6–25.1 0.31

B 3 REM 11.7 3.9 6.3–22.0 0.33

CT-DS (reactive included) 14.5 3.2 9.4–22.4 0.22

CT-DS (reactive excluded) 13.1 2.8 8.7–19.8 0.21

SMR 16.8 4.2 10.4–27.1 0.25

C 4 REM 12.1 2.8 7.7–18.9 0.23

CT-DS (reactive included) 14.0 3.2 8.9–22.0 0.23

CT-DS (reactive excluded) 12.5 3.0 7.8–20.0 0.24

SMR 11.8 3.5 6.6–21.0 0.30

D 5 REM 14.5 3.5 9.1–23.1 0.24

CT-DS (reactive included) 18.1 6.4 9.1–36.2 0.36

CT-DS (reactive excluded) 8.9 3.0 4.6–17.2 0.34

SMR 17.6 9.0 6.8–45.3 0.51

E 6 REM 1.4 0.6 0.6–3.0 0.42

CT-DS (reactive included) 2.3 1.1 0.9–5.7 0.49

CT-DS (reactive excluded) 1.6 0.9 0.6–4.5 0.54
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    |  11 of 15MILES et al.

survey 6 and all SMR density estimates were imprecise. More pre-
cise reference estimates could have been obtained with additional 
cameras for SMR targeting areas with higher badger activity.

Our density estimates generally exceeded those from the most 
recent badger census in England and Wales (e.g. 5.65 [95% CI 3.15–
8.15] in Land Class 1 and 5.98 [95% CI 4.57–7.39] in Land Class 4; 
Judge et  al.,  2017). However, the census assumed one main bad-
ger sett per km2, whereas sett densities were higher than this in 
our survey areas. Conversely, at sites affected by culling (site A) or 
characterised by moorland with low badger activity and few setts 
(site E), our estimates were lower than the census average (Judge 
et  al.,  2017). Notably, the REM estimate at site B, survey 2 (20.2 
badgers per km2, 95% CI 11.8–34.4) indicates high badger density, 
comparable to that of Woodchester Park, Gloucestershire, where 

at its peak, density was estimated at 47 badgers per km2 (Delahay 
et al., 2013). A subsequent survey at site B two years later (survey 
3) yielded a markedly lower REM estimate (Table 3; Figure 5), which 
is consistent with badger culling that took place on nearby land. 
However, the confidence intervals of the results overlap, and the 
consistency of CT-DS estimates across the two surveys does not re-
flect this pattern. Successive annual surveys would be necessary to 
ascertain if the observed variations indicate a persistent trend de-
tectable by the REM.

The precision of our estimates was similar to results reported 
elsewhere (Bengsen et  al.,  2022; Cappelle et  al.,  2021; Palencia 
et  al.,  2021) but falls short of the recommended variance of CV 
<0.20 suggested for wildlife management (Cappelle et al., 2021; 
Pollock et al., 1990). Although previous studies have highlighted 
the suitability of the REM and CT-DS for studying populations at 
low densities given sufficient survey effort (Palencia et al., 2021; 
Rowcliffe et  al.,  2008), our results had high variance at sites E 
and A, which were characterised by low density, with CV values 
ranging from 0.42 to 0.86. This imprecision, which was unex-
pected for the REM as we surpassed the suggested survey effort 
(Rowcliffe et al., 2008), suggests the need to re-evaluate current 
guidelines. In our study, variability in trap rate was the biggest 
component of overall variance for the REM, but uncertainty in the 
speed parameter also had a substantial influence on overall pre-
cision. Aggregating data from surveys with analogous conditions 
could potentially mitigate this, if conditions influencing parame-
ters can be assumed invariant between sites, but the influence 
of external factors, such as badger culling, on animal behaviour 

F I G U R E  5 Badger densities per km2 and associated 95% confidence intervals estimated from six camera surveys at five sites, using three 
camera trap-based methods (SMR analysis was only possible for three of the surveys).
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TA B L E  4 Estimated animal density per km2, with associated 95% 
confidence intervals and coefficient of variation (CV), derived from 
simulated mark-resight models.

pID
Estimated density 
(individuals per km2) SE 95% CI CV

1 9.8 2.2 6.3–15.1 0.22

0.75 9.3 2.3 5.8–15.1 0.25

0.50 8.7 2.4 5.1–14.9 0.28

0.25 8.5 2.5 4.9–14.9 0.29

Note: Data were simulated with fixed model parameters reflecting 
observed data from badgers: A density of 10 individuals per km2, 
detection probabilities for marking and sighting occasions of 0.09 and 
0.04, respectively, and a spatial scale parameter (σ) of 219.3.
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(Ham et  al.,  2019) made this approach unsuitable for our study. 
Enhancing precision of the REM and CT-DS through denser cam-
era grids, either by adding cameras or redeploying them, is most 
effective (Rowcliffe et  al.,  2008), though as few as 50 cameras 
could suffice for precise CT-DS estimates if deployment times ex-
ceed 100 days (Cappelle et al., 2021). Considering our findings, we 
recommend further investigation into the impact of camera num-
ber and deployment duration on the precision of estimates in low-
density populations under real survey conditions.

Density estimates obtained using CT-DS were sensitive to the 
exclusion of reactive sequences. In the least-affected survey (sur-
vey 1), excluding reactive sequences reduced estimated density by 
3.4% without altering precision, but in the worst-affected survey 
(survey 5), excluding these sequences reduced estimated density by 
51.0%, although variance was slightly improved. This result is con-
sistent with previous studies which have found reactive sequences 
to be the biggest source of bias in CT-DS (Bessone et al., 2020). Our 
results highlight the importance of quantifying and addressing the 
influence of reactive sequences on density estimates to ensure ac-
curacy and precision. Left-truncation is proposed as an approach 
to control bias caused by investigative behaviour towards cameras 
(Cappelle et  al.,  2019), which can result in spikes at zero distance 
(Howe et  al.,  2017). In this study, we observed both investigative 
and avoidance behaviour, sometimes within the same sequence. 
As a result, we rarely detected spikes at zero distance, making 
left-truncation an unsuitable approach for our data. An alternative 
approach is to minimise the occurrence of reactive behaviour, for 
example by deploying cameras for a pre-survey acclimation period, 
allowing animals to become accustomed to their presence (Bessone 
et  al.,  2020). However, this strategy would require increased field 
effort to maintain camera performance over an extended period, 
which may be infeasible for small-scale projects. Furthermore, if 
avoidance of cameras is elicited by human scent or disturbance, an 
acclimation period would be necessary each time the cameras were 
checked. In contrast, by allowing reactive sequences to be removed 
from speed and detection zone parameter estimation but not the 
overall trap rate, the REM offers a clear and effective way of han-
dling bias from reactive sequences without additional effort, making 
it a more suitable choice for this application.

In terms of practical considerations, the biggest challenge we 
encountered was interference from livestock. Where interference 
is likely, we suggest checking and recalibrating cameras regularly, 
and increasing survey effort with more deployments as a buffer for 
potential losses. In the farming landscapes, pre-planned coordinates 
for camera placement often fell in open fields, where there were few 
existing structures on which to mount cameras. As prior work had 
shown that cattle almost invariably disturb posts deployed specifically 
to mount cameras, we placed cameras preferentially at field bound-
aries. Though true random placement is difficult to achieve (Foster & 
Harmsen, 2012), the potential impact on density estimates may only 
be substantial if coupled with species-specific over- or underuse of 
the area (Cusack et al., 2015). For many species, linear landscape fea-
tures, such as hedgerows, can act as corridors for movement or are an 

essential refuge in an intensively farmed landscape (Fitzgibbon, 1997; 
Hof & Bright, 2010), potentially leading to overestimation in this case. 
The fact that the REM and CT-DS estimates were not higher than 
SMR estimates (which are robust to non-random placement relative 
to animal movement) suggests that this may not have been a major 
issue. However, incorporating understanding of spatial habitat utili-
sation by the target species is highly recommended when using cam-
era traps to estimate density, particularly in scenarios where camera 
placement may introduce bias. Failure to account for these spatial 
biases could lead to biased density estimates.

To conclude, our results show that badger density can be es-
timated non-invasively with camera traps, without the need for 
individual recognition. This approach could offer a promising tool 
for badger management in the context of current bTB policies, for 
example, to estimate the coverage achieved by badger vaccination 
efforts. Additionally, since the REM and CT-DS are capable of si-
multaneously estimating multiple species' densities, these methods 
offer a means to analyse the broader impacts of badger management 
strategies on ecosystems. However, given that precision was poor 
using all methods, particularly in areas of low badger density, these 
methods may be unable to detect population trends over time unless 
survey designs are refined to improve the precision of the results.

More generally, our study provides valuable insights into the use 
of camera-based methods for estimating the density of unmarked 
animal populations. We found that both the REM and CT-DS can 
yield reliable density estimates but recommend prioritising the REM 
for species showing reactive behaviour. We also recommend taking 
precautions to limit interference from other species, to ensure accu-
rate estimation of model parameters, minimise data loss and improve 
precision. Combining the REM and CT-DS with alternative methods, 
such as SMR, may help validate density estimates but requires care-
ful survey design. In future studies, the accuracy of density estimates 
could be improved by incorporating spatial movement patterns into 
analyses, to account for the bias that may arise from factors such as 
habitat preferences, resource availability, and human disturbances, 
thus increasing the applicability of these methods. Finally, we have 
illustrated how the REM and CT-DS can be used to inform wildlife 
management policy but recommend practical considerations to im-
prove the accuracy and precision of density estimates.

AUTHOR CONTRIBUTIONS
Verity Miles, Rosie Woodroffe, Marcus Rowcliffe, and Christl A. 
Donnelly conceived the ideas and designed the methods; Verity 
Miles, Marcus Rowcliffe, Joana Aurélio, Rosie Woodroffe, Cally Ham 
and Kelly Astley collected the data; Verity Miles, Marcus Rowcliffe, 
and Joana Aurélio analysed the data; Verity Miles led the writing of 
the manuscript. All authors contributed to the drafts and gave final 
approval for publication.

ACKNOWLEDG EMENTS
This research was funded by the Natural Environment Research 
Council, Natural England and Imperial College London, as part of 
the Science and Solutions for a Changing Planet Doctoral Training 

 26888319, 2024, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12378 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [10/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  13 of 15MILES et al.

Programme, grant number NE/S007415/1. The Cornwall Badger 
Project was funded by Defra, the National Trust, the Garfield 
Weston Foundation, the People's Trust for Endangered Species, 
private donors to Cornwall Wildlife Trust, the Zoological Society 
of London, and some Participating Landholders. The Institute of 
Zoology is supported by Research England. For assistance with field-
work, many thanks to Natalie Durrant, Sarah Ferry, Anisha Tennant, 
Sarah Hayes, Ruth McCabe, and Nicholas Steyn. Finally, we thank 
Matthew Penn for his work developing Sherlock which made image 
tagging more efficient.

CONFLIC T OF INTERE S T S TATEMENT
The authors declare no conflicts of interest.

PEER RE VIE W
The peer review history for this article is available at https://​www.​
webof​scien​ce.​com/​api/​gatew​ay/​wos/​peer-​review/​10.​1002/​2688-​
8319.​12378​.

DATA AVAIL ABILIT Y S TATEMENT
Code used for this research is available at the Zenodo repository: 
https://​doi.​org/​10.​5281/​zenodo.​8431621 (Miles,  2024a) and data 
are available at the Dryad repository: https://​doi.​org/​10.​5061/​
dryad.​gb5mk​kwwk (Miles, 2024b).

ORCID
Verity Miles   https://orcid.org/0009-0003-7064-5488 
Rosie Woodroffe   https://orcid.org/0000-0003-2104-3133 
Christl A. Donnelly   https://orcid.org/0000-0002-0195-2463 
Peter N. M. Brotherton   https://orcid.org/0000-0003-4341-9664 
Cally Ham   https://orcid.org/0000-0002-9281-038X 
Kelly Astley   https://orcid.org/0000-0003-4057-8491 
Joana Aurélio   https://orcid.org/0009-0003-4249-5291 
Marcus Rowcliffe   https://orcid.org/0000-0002-4286-6887 

R E FE R E N C E S
Alonso, R. S., McClintock, B. T., Lyren, L. M., Boydston, E. E., & Crooks, K. 

R. (2015). Mark-recapture and mark-resight methods for estimating 
abundance with remote cameras: A carnivore case study. PLoS One, 
10, 13.

Anscombe, F. J. (1949). The statistical analysis of insect counts based on 
the negative binomial distribution. Biometrics, 5, 165–173.

Augustine, B. C., Royle, J. A., Murphy, S. M., Chandler, R. B., Cox, J. J., 
& Kelly, M. J. (2019). Spatial capture–recapture for categorically 
marked populations with an application to genetic capture–recap-
ture. Ecosphere, 10, e02627.

Bengsen, A. J., Forsyth, D. M., Ramsey, D. S. L., Amos, M., Brennan, M., 
Pople, A. R., Comte, S., & Crittle, T. (2022). Estimating deer density 
and abundance using spatial mark–resight models with camera trap 
data. Journal of Mammalogy, 103, 711–722.

Bessone, M., Kühl, H. S., Hohmann, G., Herbinger, I., N'Goran, K. P., 
Asanzi, P., da Costa, P. B., Dérozier, V., Fotsing, E. D. B., Beka, B. I., 
Iyomi, M. D., Iyatshi, I. B., Kafando, P., Kambere, M. A., Moundzoho, 
D. B., Wanzalire, M. L. K., & Fruth, B. (2020). Drawn out of the shad-
ows: Surveying secretive forest species with camera trap distance 
sampling. Journal of Applied Ecology, 57, 963–974.

Borchers, D. L., & Efford, M. G. (2008). Spatially explicit maximum like-
lihood methods for capture-recapture studies. Biometrics, 64, 
377–385.

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, 
D. L., & Thomas, L. (2001). Introduction to distance sampling es-
timating abundance of biological populations. Oxford University 
Press.

Buesching, C. D., Newman, C., Service, K, Macdonald, D. W., & Riordan, 
P. (2015). Latrine marking patterns of badgers (Meles meles) with 
respect to population density and range size. Ecosphere, 7, e01328.

Byrne, A. W., & Do Linh San, E. (2016). A cautionary note on the use of 
minimum number alive-derived trappability metrics in wildlife pro-
grammes, as exemplified by the case of the European badger (Meles 
meles). Wildlife Biology in Practice, 12, 51–57.

Cappelle, N., Després-Einspenner, M. L., Howe, E. J., Boesch, C., & Kühl, 
H. S. (2019). Validating camera trap distance sampling for chimpan-
zees. American Journal of Primatology, 81, e22962.

Cappelle, N., Howe, E., Boesch, C., & Kühl, H. (2021). Estimating animal 
abundance and effort-precision relationship with camera trap dis-
tance sampling. Ecosphere, 12, e03299.

Carter, A., Potts, J. M., & Roshier, D. A. (2019). Toward reliable population 
density estimates of partially marked populations using spatially 
explicit mark-resight methods. Ecology and Evolution, 9, 2131–2141.

Chandler, R. B., & Royle, J. A. (2013). Spatially explicit models for infer-
ence about density in unmarked or partially marked populations. 
The Annals of Applied Statistics, 7, 936–954.

Cusack, J. J., Swanson, A., Coulson, T., Packer, C., Carbone, C., Dickman, 
A. J., Kosmala, M., Lintott, C., & Rowcliffe, J. M. (2015). Applying 
a random encounter model to estimate lion density from cam-
era traps in Serengeti National Park, Tanzania. Journal of Wildlife 
Management, 79, 1014–1021.

Davis, A. J., Keiter, D. A., Kierepka, E. M., Slootmaker, C., Piaggio, A. J., 
Beasley, J. C., & Pepin, K. M. (2020). A comparison of cost and qual-
ity of three methods for estimating density for wild pig (Sus scrofa). 
Scientific Reports, 10, 2047.

de Leeuw, A. N. S., Forrester, G. J., Spyvee, P. D., Brash, M. G. I., & 
Delahay, R. J. (2004). Experimental comparison of ketamine with a 
combination of ketamine, butorphanol and medetomidine for gen-
eral anaesthesia of the Eurasian badger (Meles meles L.). Veterinary 
Journal, 167, 186–193.

DEFRA. (2020). Next steps for the strategy for achieving bovine tuber-
culosis free status for England—The government's response to the 
strategy review, 2018.

DEFRA. (2022). Setting the minimum and maximum numbers in badger 
cull areas in 2022: Advice to Natural England.

Delahay, R. J., Walker, N., Smith, G. S., Wilkinson, D., Clifton-Hadley, R. 
S., Cheeseman, C. L., Tomlinson, A. J., & Chambers, M. A. (2013). 
Long-term temporal trends and estimated transmission rates for 
Mycobacterium bovis infection in an undisturbed high-density badger 
(Meles meles) population. Epidemiology and Infection, 141, 1445–1456.

Donnelly, C. A., & Woodroffe, R. (2015). Badger-cull targets unlikely to 
reduce TB. Nature, 526, 640.

Efford, M. (2004). Density estimation in live-trapping studies. Oikos, 106, 
598–610.

Efford, M. (2022a). Vignette: Habitat masks in the package secr.
Efford, M. (2022b). Vingette: a tutorial on fitting spatially explicit cap-

ture–recapture models in secr.
Efford, M. (2023a). Vignette: Mark–resight in secr 4.6.
Efford, M. G. (2023b). secr: Spatially explicit capture-recapture models.
Fitzgibbon, C. D. (1997). Small mammals in farm woodlands: The effects 

of habitat, isolation and surrounding land-use patterns. Journal of 
Applied Ecology, 34, 530–539.

Foster, R. J., & Harmsen, B. J. (2012). A critique of density estimation from 
camera-trap data. Journal of Wildlife Management, 76, 224–236.

 26888319, 2024, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12378 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [10/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/2688-8319.12378
https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/2688-8319.12378
https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/2688-8319.12378
https://doi.org/10.5281/zenodo.8431621
https://doi.org/10.5061/dryad.gb5mkkwwk
https://doi.org/10.5061/dryad.gb5mkkwwk
https://orcid.org/0009-0003-7064-5488
https://orcid.org/0009-0003-7064-5488
https://orcid.org/0000-0003-2104-3133
https://orcid.org/0000-0003-2104-3133
https://orcid.org/0000-0002-0195-2463
https://orcid.org/0000-0002-0195-2463
https://orcid.org/0000-0003-4341-9664
https://orcid.org/0000-0003-4341-9664
https://orcid.org/0000-0002-9281-038X
https://orcid.org/0000-0002-9281-038X
https://orcid.org/0000-0003-4057-8491
https://orcid.org/0000-0003-4057-8491
https://orcid.org/0009-0003-4249-5291
https://orcid.org/0009-0003-4249-5291
https://orcid.org/0000-0002-4286-6887
https://orcid.org/0000-0002-4286-6887


14 of 15  |     MILES et al.

Gougelet, P. (2020). XnView MP. http://​www.​xnview.​com
Greenspan, E., Anile, S., & Nielsen, C. K. (2020). Density of wild felids 

in Sonora, Mexico: A comparison of spatially explicit capture-
recapture methods. European Journal of Wildlife Research, 66, 60.

Ham, C., Donnelly, C. A., Astley, K. L., Jackson, S. Y. B., & Woodroffe, R. 
(2019). Effect of culling on individual badger Meles meles behaviour: 
Potential implications for bovine tuberculosis transmission. Journal 
of Applied Ecology, 56, 2390–2399.

Henrich, M., Hartig, F., Dormann, C. F., Kühl, H. S., Peters, W., Franke, F., 
Peterka, T., Šustr, P., & Heurich, M. (2022). Deer behavior affects 
density estimates with camera traps, but is outweighed by spatial 
variability. Frontiers in Ecology and Evolution, 10, 881502.

Hof, A. R., & Bright, P. W. (2010). The value of agri-environment schemes 
for macro-invertebrate feeders: Hedgehogs on arable farms in 
Britain. Animal Conservation, 13, 467–473.

Howe, E. J., Buckland, S. T., Després-Einspenner, M.-L., & Kühl, H. S. 
(2017). Distance sampling with camera traps. Methods in Ecology 
and Evolution, 8, 1558–1565.

Howe, E. J., Buckland, S. T., Després-Einspenner, M.-L., & Kühl, H. S. 
(2019). Model selection with overdispersed distance sampling data. 
Methods in Ecology and Evolution, 10, 38–47.

Hutchings, M. R., Service, K. M., & Harris, S. (2002). Is population density 
correlated with faecal and urine scent marking in European badgers 
(Meles meles) in the UK? Mammalian Biology, 67, 286–293.

Jimenez, J., Chandler, R., Tobajas, J., Descalzo, E., Mateo, R., & Ferreras, 
P. (2019). Generalized spatial mark-resight models with incomplete 
identification: An application to red fox density estimates. Ecology 
and Evolution, 9, 4739–4748.

Jordan, M. J., Barrett, R. H., & Purcell, K. L. (2011). Camera trapping es-
timates of density and survival of fishers Martes pennanti. Wildlife 
Biology, 17, 266–276.

Judge, J., Wilson, G. J., Macarthur, R., Delahay, R. J., & McDonald, R. A. 
(2014). Density and abundance of badger social groups in England 
and Wales in 2011-2013. Scientific Reports, 4, 3809.

Judge, J., Wilson, G. J., Macarthur, R., McDonald, R. A., & Delahay, R. J. 
(2017). Abundance of badgers (Meles meles) in England and Wales. 
Scientific Reports, 7, 276.

Karanth, K. U., & Nichols, J. D. (1998). Estimation of tiger densities in 
India using photographic captures and recaptures. Ecology, 79, 
2852–2862.

Kruuk, H. (1989). The social badger: Ecology and behaviour of a group-living 
carnivore (Meles meles). Oxford University Press.

Kruuk, H., & Parish, T. (1982). Factors affecting population-density, 
group-size and territory size of the European badger, Meles-meles. 
Journal of Zoology, 196, 31–39.

Mason, S. S., Hill, R. A., Whittingham, M. J., Cokill, J., Smith, G. C., 
& Stephens, P. A. (2022). Camera trap distance sampling for 
terrestrial mammal population monitoring: Lessons learnt from 
a UK case study. Remote Sensing in Ecology and Conservation, 8, 
717–730.

McClintock, B. T., Hill, J. M., Fritz, L., Chumbley, K., Luxa, K., & Diefenbach, 
D. R. (2014). Mark-resight abundance estimation under incom-
plete identification of marked individuals. Methods in Ecology and 
Evolution, 5, 1294–1304.

Miles, V. (2024a). Camera-based badger density estimation using the 
REM, CT-DS, and SMR [code]. Zenodo. https://​doi.​org/​10.​5281/​
zenodo.​8431621

Miles, V. (2024b). Camera-based badger density estimation using the 
REM, CT-DS, and SMR [dataset]. Dryad. https://​doi.​org/​10.​5061/​
dryad.​gb5mk​kwwk

Miller, D. L., Rexstad, E., Thomas, L., Marshall, L., & Laake, J. L. (2019). 
Distance sampling in R. Journal of Statistical Software, 89, 1–28.

Moeller, A. K., Lukacs, P. M., & Horne, J. S. (2018). Three novel methods 
to estimate abundance of unmarked animals using remote cameras. 
Ecosphere, 9(8), e02331.

Nakashima, Y., Fukasawa, K., & Samejima, H. (2018). Estimating animal 
density without individual recognition using information deriv-
able exclusively from camera traps. Journal of Applied Ecology, 55, 
735–744.

Natural England. (2015). Badgers: protection and licences. https://​www.​
gov.​uk/​guida​nce/​badge​rs-​prote​ction​-​surve​ys-​and-​licen​ces#​when-​
youll​-​need-​a-​licence

Natural England. (2023). Cage-trapping and marking of badgers under li-
cence (to enable vaccination) to prevent the spread of bovine TB—Best 
practice guide.

Neal, E. (1986). The natural history of badgers. Croom Helm.
Palencia, P., Rowcliffe, J. M., Vicente, J., & Acevedo, P. (2021). Assessing 

the camera trap methodologies used to estimate density of un-
marked populations. Journal of Applied Ecology, 58, 1583–1592.

Palencia, P., Vicente, J., Barroso, P., Barasona, J. A., Soriguer, R. C., & 
Acevedo, P. (2019). Estimating day range from camera-trap data: 
The animals' behaviour as a key parameter. Journal of Zoology, 309, 
182–190.

Penn, M. J., Miles, V., Astley, K. L., Ham, C., Woodroffe, R., Rowcliffe, 
M., & Donnelly, C. A. (2024). Sherlock—A flexible, low-resource 
tool for processing camera-trapping images. Methods in Ecology and 
Evolution, 15, 91–102.

Pollock, K. H., Nichols, J. D., Brownie, C., & Hines, J. E. (1990). Statistical 
Inference for Capture-Recapture Experiments. Wildlife Monographs, 
107, 1–97.

R Core Team. (2021). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing.

Rogers, L. M., Cheeseman, C. L., Mallinson, P. J., & Clifton-Hadley, R. 
(1997). The demography of a high-density badger (Meles meles) 
population in the west of England. Journal of Zoology, 242, 705–728.

Rogers, L. M., Delahay, R., Cheeseman, C. L., Langton, S., Smith, G. C., 
& Clifton-Hadley, R. S. (1998). Movement of badgers (Meles meles) 
in a high-density population: Individual, population and disease 
effects. Proceedings of the Royal Society B: Biological Sciences, 265, 
1269–1276.

Rowcliffe, J. M. (2021a). camtools. https://​github.​com/​Marcu​sRowc​liffe/​​
camtools

Rowcliffe, J. M. (2021b). CTtracking V0.3.2.
Rowcliffe, J. M., Carbone, C., Jansen, P. A., Kays, R., & Kranstauber, B. 

(2011). Quantifying the sensitivity of camera traps: An adapted 
distance sampling approach. Methods in Ecology and Evolution, 2, 
464–476.

Rowcliffe, J. M., Field, J., Turvey, S. T., & Carbone, C. (2008). Estimating 
animal density using camera traps without the need for individual 
recognition. Journal of Applied Ecology, 45, 1228–1236.

Rowcliffe, J. M., Jansen, P. A., Kays, R., Kranstauber, B., & Carbone, C. 
(2016). Wildlife speed cameras: Measuring animal travel speed 
and day range using camera traps. Remote Sensing in Ecology and 
Conservation, 2, 84–94.

Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C., & Jansen, P. A. 
(2014). Quantifying levels of animal activity using camera trap data. 
Methods in Ecology and Evolution, 5, 1170–1179.

Royle, J. A., Chandler, R. B., Sollmann, R., & Gardner, B. (2013). Spatial 
capture-recapture. Academic Press.

Scott, D. M., Baker, R., Charman, N., Karlsson, H., Yarnell, R. W., Mill, A. 
C., Smith, G. C., & Tolhurst, B. A. (2018). A citizen science based 
survey method for estimating the density of urban carnivores. PLoS 
One, 13, e0197445.

Smith, G. C., McDonald, R. A., & Wilkinson, D. (2012). Comparing badger 
(Meles meles) management strategies for reducing tuberculosis inci-
dence in cattle. PLoS One, 7, e39250.

Stewart, P. D., & Macdonald, D. W. (1997). Age, sex, and condition as 
predictors of moult and the efficacy of a novel fur-clip technique 
for individual marking of the European badger (Meles meles). Journal 
of Zoology, 241, 543–550.

 26888319, 2024, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12378 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [10/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.xnview.com
https://doi.org/10.5281/zenodo.8431621
https://doi.org/10.5281/zenodo.8431621
https://doi.org/10.5061/dryad.gb5mkkwwk
https://doi.org/10.5061/dryad.gb5mkkwwk
https://www.gov.uk/guidance/badgers-protection-surveys-and-licences#when-youll-need-a-licence
https://www.gov.uk/guidance/badgers-protection-surveys-and-licences#when-youll-need-a-licence
https://www.gov.uk/guidance/badgers-protection-surveys-and-licences#when-youll-need-a-licence
https://github.com/MarcusRowcliffe/camtools
https://github.com/MarcusRowcliffe/camtools


    |  15 of 15MILES et al.

Sun, C., Burgar, J. M., Fisher, J. T., & Burton, A. C. (2022). A cautionary 
tale comparing spatial count and partial identity models for esti-
mating densities of threatened and unmarked populations. Global 
Ecology and Conservation, 38, e02268.

Teton, B., Lewis, J. S., Wright, C. T., White, M., & Young, H. (2020). Using 
natural pelt patterns to estimate population abundance with mark-
resight models. Wildlife Society Bulletin, 44, 695–704.

Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., 
Hedley, S. L., Bishop, J. R. B., Marques, T. A., & Burnham, K. P. 
(2010). Distance software: Design and analysis of distance sam-
pling surveys for estimating population size. Journal of Applied 
Ecology, 47, 5–14.

Twining, J. P., McFarlane, C., O'Meara, D., O'Reilly, C., Reyne, M., 
Montgomery, W. I., Helyar, S., Tosh, D. G., & Augustine, B. C. (2022). 
A comparison of density estimation methods for monitoring marked 
and unmarked animal populations. Ecosphere, 13, e4165.

Vargas Zarco, L. (2019). AnimalTracker. https://​laura​vzarco.​github.​io/​
anima​ltrac​ker/​

Wilson, G., Harris, S., & McLaren, G. (1997). Changes in the British bad-
ger population, 1988 to 1997.

Wilson, G. J., Frantz, A. C., Pope, L. C., Roper, T. J., Burke, T. A., 
Cheeseman, C. L., & Delahay, R. J. (2003). Estimation of badger 
abundance using faecal DNA typing. Journal of Applied Ecology, 40, 
658–666.

Woodroffe, R., Donnelly, C. A., Cox, D. R., Bourne, F. J., Cheeseman, C. 
L., Delahay, R. J., Gettinby, G., Mcinerney, J. P., & Ivan Morrison, W. 
(2006). Effects of culling on badger Meles meles spatial organiza-
tion: Implications for the control of bovine tuberculosis. Journal of 
Applied Ecology, 43, 1–10.

Woodroffe, R., Donnelly, C. A., Ham, C., Jackson, S. Y. B., Moyes, K., 
Chapman, K., Stratton, N. G., & Cartwright, S. J. (2017). Ranging be-
haviour of badgers Meles meles vaccinated with Bacillus Calmette 
Guerin. Journal of Applied Ecology, 54, 718–725.

Woodroffe, R., Gilks, P., Johnston, W. T., Le Fevre, A. M., Cox, D. R., 
Donnelly, C. A., Bourne, F. J., Cheeseman, C. L., Gettinby, G., 
McInerney, J. P., & Morrison, W. I. (2008). Effects of culling on 
badger abundance: Implications for tuberculosis control. Journal of 
Zoology, 274, 28–37.

Woodruff, S. P., Johnson, T. R., & Waits, L. P. (2015). Evaluating the in-
teraction of faecal pellet deposition rates and DNA degradation 
rates to optimize sampling design for DNA-based mark–recapture 
analysis of Sonoran pronghorn. Molecular Ecology Resources, 15, 
843–854.

How to cite this article: Miles, V., Woodroffe, R., Donnelly, 
C. A., Brotherton, P. N. M., Ham, C., Astley, K., Aurélio, J., & 
Rowcliffe, M. (2024). Evaluating camera-based methods for 
estimating badger (Meles meles) density: Implications for 
wildlife management. Ecological Solutions and Evidence, 5, 
e12378. https://doi.org/10.1002/2688-8319.12378

 26888319, 2024, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12378 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [10/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://lauravzarco.github.io/animaltracker/
https://lauravzarco.github.io/animaltracker/
https://doi.org/10.1002/2688-8319.12378

	Evaluating camera-­based methods for estimating badger (Meles meles) density: Implications for wildlife management
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|Study area
	2.2|Data collection
	2.2.1|Camera surveys
	2.2.2|Badger vaccination and marking

	2.3|Data analysis
	2.3.1|Image processing
	2.3.2|Outlier analysis
	2.3.3|REM density estimation
	2.3.4|CT-­DS density estimation
	2.3.5|SMR density estimation


	3|RESULTS
	3.1|Camera survey
	3.2|Outlier analysis
	3.3|Marking badgers
	3.4|Reactive sequences
	3.5|Density estimation
	3.6|SMR simulations

	4|DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	PEER REVIEW
	DATA AVAILABILITY STATEMENT

	REFERENCES


