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Abstract—Fluid antennas embrace all forms of flexible-position
antennas, both movable and non-movable. The concept of fluid
antenna system (FAS) hence introduces a new dimension to en-
hance multiple-input multiple-output (MIMO) antenna systems,
which is essential for achieving more ambitious goals in wireless
communications. FAS fundamentally changes the way MIMO
systems are optimized. In addition to optimizing precoding and
decoding matrices, a flexible-position MIMO system, referred to
as MIMO-FAS, needs to optimize the positions (i.e., ports) of the
antennas to achieve the best performance. Unfortunately, due to
the near-continuous nature of antenna position adjustment as
well as the resulting high dimensionality, optimizing MIMO-FAS
is NP-hard, complicated by the coupling between the optimization
variables. Given the rapid advances in artificial intelligence (AI),
it is fitting to harness its capabilities to alleviate the challenges of
MIMO-FAS. This article explores a vision of how AI empowers
FAS to overcome these hurdles using a learning-based approach,
enabling FAS to excel. Furthermore, we use emerging integrated
sensing and communication (ISAC) scenarios as a case study to
illustrate the potential of enhancing FAS with AI capability.

Index Terms—Artificial intelligence, flexible-position MIMO,
fluid antenna system, learning-aided optimization.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) has been carrying
the physical layer of wireless communications since its third
generation (3G) in 2000. Its ability to create bandwidth from
space has positioned it as an indispensable mobile communica-
tion technology. In the fourth generation (4G), MIMO came in
the form of multiuser MIMO to accommodate multiple users
on the same channel while MIMO has evolved into the massive
version in the fifth generation (5G). A 5G base station (BS)
has 64 antennas to support a maximum of 12 user equipments
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(UEs) delivering super-directivity on the same time-frequency
resource unit. Looking ahead, recent trend suggests that an
even greater number of antennas be deployed at the BS.

However, the same increase in the number of antennas at
the UE has not been seen. Three decades have passed but the
standard only requires just 4 receive antennas at the UE for the
core 5G bands. The main reason is due to the small available
space at the mobile devices. Electrically small metamaterial-
based antennas have emerged to overcome this limitation [I]
but it is not just the antenna size and mutual coupling between
elements but also the radio frequency (RF) components that
come with it. Traditionally, it is strongly believed that antennas
should have at least a half-wavelength separation among them
to justify the cost. The rationale is that antennas should ensure
to receive statistically independent signals to be worthy.

Recent advances in reconfigurable antennas have led to the
concept of fluid antennas. Fluid antenna represents all forms of
movable and non-movable flexible-position antennas [2]." This
provides a new way to obtain spatial diversity with less number
of RF chains in a relatively small space [3]. Of relevance is
the non-movable flexible-position antenna realizable by pixel
based antennas that can influence the physical layer of wireless
communications without noticeable delay [4].

Fluid antenna systems (FASs) were first introduced by Wong
et al. in [5] where the receiver used a flexible-position antenna
to maximize the signal-to-noise ratio (SNR). Subsequent work
in [6] provided deeper analysis on the impact of the size and
resolution of FAS on the performance while [7] made a critical
contribution on refining the spatial correlation model for the
analysis of FAS. Additionally, flexible-position MIMO system,
referred to as MIMO-FAS, was studied recently in [8], which
showed that there is enormous diversity gain over traditional
fixed-position MIMO systems, see TABLE I. The substantial
diversity should translate into saving of energy consumption
over fixed antenna systems though a deeper analysis is needed
when taking into account of the energy consumption due to
the practical implementation of FAS.

The ability to flexibly change antenna position also presents
a whole new technique for multiuser communications. In [9],
it was hypothesized that if FAS could switch to the position
with the minimum sum-interference plus noise signal on a per
symbol basis, a UE could deal with hundreds of interferers
utilizing a small-sized FAS with one RF chain. More recently,
[10] considered a more practical setting where each UE’s FAS
only switches its position if the channel changes, and when
it does, the FAS maximizes the average signal-to-interference
plus noise ratio (SINR). The slow fluid antenna multiple access

'In a broader sense, fluid antenna even includes flexibility in size and shape
for other reconfigurabilities such as operating frequency and pattern.
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TABLE I
DIVERSITY ORDER COMPARISON BETWEEN MIMO AND MIMO-FAS
UNDER RICH SCATTERING ENVIRONMENTS.

Size (in \2)F MIMO MIMO-FAS
0.5 x 0.5 Ix4=16 13 x 13 = 169
Ix1 9x9=8l 23 x 23 = 529
15x1.5 16 x 16 = 256 | 34 x 34 = 1156
2 % 2 25 x 25 = 625 | 48 x 48 = 2304
25 <25 || 36 x 36 = 1296 | 60 x 60 = 3600
3x3 49 x 49 = 2401 | 73 x 73 = 5329

The size corresponds to the size of a two-dimensional (2D) FAS
surface at each end where A denotes the wavelength.

(FAMA) scheme in [10] could handle several UEs on the same
channel without the need of power control and precoding.

It is fair to say that FAS research is still in their infancy. A
majority of results thus far largely considered the operation of
FAS under ideal conditions, concerning less on how channel
state information (CSI) is obtained, and how the optimization
of position change (a.k.a. port selection) is done. For instance,
FAS entails a large number of ports while the available RF
chains are limited, making CSI prediction for each port chal-
lenging. Traditional optimization-based prediction approaches
would struggle to address channel prediction problems in this
scale. Furthermore, integrating MIMO with FAS comes with
additional challenges, especially in scenarios where complete
CSI is not available. This integration further complicates the
joint optimization problem of non-convex precoding and NP-
hard port selection. It is evident that traditional optimization
methods are ill-equipped to deal with such high-dimensional
mixed optimization problems. There are also desires to syner-
gize with other emerging technologies such as reconfigurable
intelligent surfaces (RIS), integrated sensing and communica-
tions (ISAC) and more. Even more complex optimization is
therefore anticipated if FAS is employed.

With the explosive growth of artificial intelligence (Al), it is
hopeful that the signal processing of FAS can become feasible
under practical conditions. FAS exploits a series of spatially
correlated signals while Al is known for its uncanny ability
to recognize hidden correlations. This makes a great marriage
between the two. The purpose of this article is to discuss some
key areas in FAS in which learning-based approaches can be
very effective. We will start with a brief review on the types
of FAS, highlighting the anticipated capability of single and
multiuser MIMO-FAS in Section II. Section III then outlines
the design challenges in FAS before presenting how ideas in
Al such as deep learning, can tackle the challenges in Section
IV. A case study on ISAC will be discussed in Section V where
we show how Al-assisted FAS can deliver great performance.
Finally, Section VI gives a list of future research topics and
we have our concluding remarks in Section VII.

II. PRELIMINARIES AND OPPORTUNITIES

A. Types of Fluid Antenna

For decades, antennas were made of blocks of metal mate-
rials and they have been very efficient. But the emergence of
cognitive radio and related applications has created the demand

for highly reconfigurable antennas that motivate some to study
using soft materials as antennas for additional reconfigura-
bility. Recently, it is even proposed that an antenna can be
made of many reconfigurable RF pixels [4]. These advances
in antennas enable various kinds of flexibility, one of which
is position flexibility that is believed to be game changing.

The paradigm of fluid antenna embraces all forms of mov-
able and non-movable flexible-position antennas. Apparantly,
liquid-based antennas are movable while pixel-based antennas
are not. A detailed coverage of the types of fluid antennas can
be found in [2, Secs. 2.1 & 3.5]. It is worth pointing out that
movable antennas may have limited use because to impact the
physical layer, it will require a position change in the order of
10 cm in milliseconds, which equates to having an acceleration
of 2 x 10° ms~2.% Ignoring whether such unreal acceleration
is practically possible, such antenna would be too dangerous
to be allowed on a handset.® For this reason, the only feasible
option for FAS is using pixel antennas (see Fig. 1), or packing
many sub-wavelength metamaterial-based small antennas* in
space. Fig. 1 shows the channel hardening phenomenon when
using FAS as a receiver with different sizes. The channels for
FAS are not typical channels as are traditional fixed-position
MIMO systems. In FAS, the channels at different positions can
be strongly correlated to each other. Under rich scattering, the
spatial correlation follows the well-known Jake’s or Clarke’s
model. For more information on the model, see [3].

To some people, Fig. 1 might look like placing a mini-RIS
onto a handset. It is worth realizing that the working principles
of RIS and FAS are fundamentally different. RIS operates on
passive elements while FAS is based on active elements. FAS
is hence closer to MIMO than RIS. As explained earlier, FAS
brings position flexibility to liberate MIMO and makes MIMO
much better, see e.g., TABLE 1. Another point is that in FAS,
each pixel is much smaller than a normal antenna which may
be formed by joining several pixels together. Architecturally,
RIS and FAS are thus not similar. Their distinct characteristics
makes them suitable to different setups. While RIS is more of
an intelligent repeater situated between BS and UE, FAS can
form part of the BS, UE and RIS if flexible-position elements
are deployed. Therefore, RIS and FAS are complementary, not
mutually exclusive. Also, one possible application of FAS is
to simplify the processing of RIS [2, Sec. 3.1].

B. Opportunities arising from FAS

1) Precoding: It goes without saying that MIMO is abso-
lutely essential for mobile communications. Space-time codes
and beamforming were the main techniques when MIMO was
first introduced. As low-mobility, indoor UEs have begun to
dominate and mobile networks move to small cells, precoding
becomes more realistic as accurate CSI is possible at the BS.
Nowadays precoding is a core technology for 5G and has been
considered by many to synergize with other technologies.

2This is same as the acceleration of a bullet leaving the muzzle of a rifle
with a speed of 600 ms— !, witha 0.9 m long barrel.

3That said, movable antennas can be of great interest in situations where
the position change responds only to statistical channel knowledge.

4A compact massive antenna array can also be viewed as a form of FAS.
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Fig. 1. FAS in the form of pixels or densely-packed small antennas, with results on the right illustrating its channel hardening effects at 39 GHz and 50 x 20
ports. Increasing the size from 5 cm X 10 cm to 15 cm X 10 cm decreases the variance of channel power from 1.18 to 0.47.

Upscaling the number of BS antennas is an obvious way to
give mobile networks more power to serve more UEs, deliver
higher rates and more. Nonetheless, this normally comes with
an increased number of RF chains that can be very costly.
FAS hence offers an interesting alternative that comes with
additional spatial diversity but not necessarily the RF chains.
Given the same number of RF chains, MIMO-FAS delivers
greater diversity and capacity than fixed-position MIMO [8].
As a consequence, replacing fixed-position MIMO by MIMO-
FAS in communication systems, will add essential degree-of-
freedom (DoF) to enhance wireless system performance.

In Fig. 2, a vision that illustrates how FAS can be adopted to
improve wireless system performance under different applica-
tion scenarios, is presented. For example, we see that FAS can
be used at the BS to liberate MIMO for improved precoding to
UEs and/or RISs. Additionally, it is also possible to equip RIS
with FAS technology on an unmanned aerial vehicle (UAV)
to strengthen the channel from the BS to UEs when the UAV
serves as a mobile RIS or relay. Intriguingly, FAS in RIS can
play a key role in providing physical layer security. Note that
traditional RIS uses precoding to construct a secrecy channel
for reducing information leakage to eavesdroppers but its effect
goes down when the UE and the eavesdropper locate along the
same spatial direction. FAS in this case can give the needed
dimension to differentiate the UE and eavesdropper’s channels.
Clearly, FAS can also be useful in vehicular communications
when it is deployed at vehicles to provide reliable connections
to mobile infrastructures. ISAC will benefit from the adoption
of FAS as well because MIMO-FAS can have more DoF to
balance between sensing and communication performance. In
Section V, we will use ISAC as a case study to help understand
the great potential of FAS over conventional MIMO.

2) Fading/Interference-immune Receiver: The fading phe-
nomenon is widely regarded as the curse for wireless commu-
nications. It leads to an unpredictable signal fluctuation at the
receiver end, causing the signal to disappear in deep fades. In
fixed MIMO, the principle has been to mix the signals received
at multiple fixed locations in a clever way to produce a more
stable, stronger signal. FAS on the other hand provides a novel
alternative, one that collects a large number of correlated signal
samples in space and then selects the best signal in a manner

of selection diversity.” It is well known that FAS has a decent
channel hardening effect if the position resolution is good and
the size is reasonable [6], as also depicted in Fig. 1. Unlike
MIMO, FAS works even with only one RF chain. Evidently,
if FAS is added to MIMO, the power is even greater [8].

Besides, FAS provides a whole new way of handling inter-
ference. The traditional understanding is that interference is
either avoided or eliminated. Zero-forcing precoding utilizing
fixed MIMO is an example of avoiding interference at desig-
nated receivers while successive interference cancellation lets
interference exist but attempts to subtract (or eliminate) it from
the receivers after the interference is estimated. Both methods
work really well under ideal conditions. However, precoding
requires accurate CSI and enough DoF at the transmitter side
whereas interference cancellers will fail if there are too many
interferers. By contrast, FAMA by adopting FAS looks at the
interference mitigation problem in a very different way. FAMA
is a receiver-based approach that needs neither precoding nor
CSI at the transmitter side, and does not perform interference
cancellation. Also, one RF chain is enough to operate.

The rationale behind FAMA is that with fading, signals in
the spatial domain go up and down naturally, and it is possible
to find a spatial window in which the aggregate interference
suffers from a deep fade but the desired signal prevails. FAS
gives UE the ability to access such opportunity to prevent from
interference. FAMA was first proposed in [9] when the FAS
was assumed to track and switch to the position in which the
ratio of the instantaneous energy of the desired signal to that
of the sum-interference plus noise signal was maximized on a
per symbol basis. Recently in [10], a more practical scheme,
referred to as slow FAMA, that limited the position change to
only once during the channel coherence time, was proposed.
Both approaches can deal with interference without precoding
nor interference cancellation, with fast FAMA [9] capable of
supporting a large number of UEs on the same channel while
slow FAMA [10] can still handle several UEs.

This is shown by the results in Fig. 3 where an interference
channel is considered and each transmitter uses a fixed antenna
but each receiver is equipped with FAS. As we can see, for
both slow and fast FAMA, the larger the size of FAS or the

SDifferent from conventional selection diversity, in FAS, the number of
signal samples involved is massive and they are generally correlated.
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Fig. 2. A vision showing pervasive use of FAS in wireless networks for different applications.

more the number of flexible positions (i.e., ports), the higher
the network sum-rate. Additionally, the results show that slow
FAMA can support 5 or 6 UEs on the same channel but will
find it difficult to cope if there are too many UEs. The situation
for fast FAMA is, however, very different. The results indicate
that for fast FAMA, the sum-rate continues to increase even
with hundreds of UEs, suggesting that fast FAMA is able to
deal with a massive number of interferers.

Presumably, there will be many situations in wireless net-
works where FAMA can play a role in managing interference.
FAMA can help remove some burden from the BS in terms of
overheads for CSI acquisition. Furthermore, FAMA would be
particularly useful in mitigating out-of-cell interference where
accurate CSI is just too difficult to obtain.

III. DESIGN CHALLENGES

The great potential of FAS inevitably comes with consider-
able challenges. Here, we briefly cover three main ones.

A. Estimation of Nearly Continuous CSI

Position flexibility in FAS not only gives a new dimension
for performance enhancement but also the need to acquire the
CSl in this additional dimension. A high-resolution FAS would
mean that a nearly continuous CSI function in space needs to
be acquired so that FAS can be intelligently optimized. In this
case, if conventional estimation methods are to be used, it will
incur an unbearable system overhead. Imagine if FAS needs
to switch amongst a massive number of positions to estimate
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Fig. 3. Data rates of (a) slow FAMA [10] and (b) fast FAMA [9] against
the number of UEs with different sizes and resolutions of FAS at each UE.
One-dimensional FAS with N, flexible positions is assumed at each UE. Also,
the data rate is computed assuming binary symmetric channels under uncoded
quadrature phase shift keying (QPSK) transmissions. The operating frequency
is 39 GHz and the channel has a Rice factor of 7 with two scattered paths.
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the CSI, then it will take a very long time and by the time
the process is completed, the CSI may have already changed.
As a result, a more feasible approach would be to estimate
the CSI for only a small number of FAS positions and then
adopt extrapolation techniques to predict the rest [11]. To this
end, deep learning-based extrapolation stands out for its data-
driven nature and model-free characteristics. Unlike traditional
approaches, it can intelligently learn the channel correlations
in real-world scenarios, and mitigate the generalization issues
between theoretical models and practical environments.

B. Antenna Position Optimization

Antenna position optimization, a.k.a. port selection, aims to
find the best position out of all the accessible positions of FAS
provided the CSI is known. This is also the basic operation of
FAS. Normally, if CSI is available and the performance metric
is easily accessible, port selection will be a straightforward
task. Unfortunately, given the high dimensionality of FAS, this
is non-trivial. It is also much more challenging if the metric
is not directly computable. For example, in fast FAMA, each
UE should calculate the ratio of the instantaneous energy of
the desired signal to that of the sum-interference and noise
signal at all the ports, based on the received signals at all the
positions. Estimating these ratios itself is a challenge, not to
mention the difficulty of obtaining the received signals at all
the positions if we only allow to observe received signals from
a few positions. On the other hand, if FAS is equipped with
multiple RF chains, then several ports can be activated and
port selection will involve choosing and activating a number of
best ports simultaneously. For this reason, the powerful fitting
capability of deep learning should hold promise to directly fit
the optimal port positions. By adopting a data-driven approach,
it bypasses the need to solve extremely challenging signal
decomposition and combination optimization problems.

C. Joint Antenna Position and Beamforming Optimization

For MIMO-FAS, the great benefits come from jointly opti-
mizing the antenna positions and the beamforming matrices.
With FAS at both ends, the beamforming design and multi-port
selection are strongly coupled that makes the joint optimiza-
tion problem extremely challenging to solve. To alleviate this,
approximate optimization techniques are often used to simplify
the objective function and attempt to convexify the problem.
What approximations would be appropriate and how efficient
they are to obtain valid solutions in MIMO-FAS, are not well
understood. The challenges are also more severe if multiuser
scenarios and/or other technologies are considered. Due to the
strong coupling of variables and the complexity of the solution
space, it is difficult for traditional optimization methods to
obtain an efficient solution. Fortunately, deep reinforcement
learning (DRL) can uncover solutions from extensive datasets
generated through interactions with environments, bypassing
the intractability of nonconvex optimization problems.

IV. LEARNING-AIDED SOLUTIONS

This article sees the great potential of using deep learning
to provide tractable approaches to handle the challenges in the

design of FAS-aided wireless communications. Here, we shed
light on how deep learning can be used to optimize FAS.

A. Deep Learning for Channel Extrapolation

The extreme high-dimensionality in the CSI of FAS causes
concern if FAS can indeed be useful. Without the fine resolu-
tion in space, FAS would lose its ability to obtain rich diversity
and mitigate interference. The spatial correlation amongst the
CSI in the spatial domain, fortunately, gives a lifeline to FAS.
Channel extrapolation provides a tractable solution, which can
predict the full CSI based on a partial one [11]. To this end,
compressed sensing and deep learning are widely used, where
compressed sensing based approaches exploit channel sparsity
to recover the CSI under the approximation error constraint. Its
implementation, however, relies on the sparse structure of the
channel, which appears only if there are only a small number
of propagation paths. By contrast, deep learning is data-driven,
which can learn the nonlinear mapping from partial CSI to full
CSI, ideal for CSI prediction. For FAS, the strong correlation
between the CSI at different positions will allow extrapolation
to accurately derive the full CSI using deep learning.

To provide an initial evaluation of this idea, we adopt the
masked autoencoder (MAE) in [12] for channel extrapolation
in FAS based on partially observed ports. The block diagram
of the MAE estimator is illustrated in Fig. 4, which includes
two key blocks: encoder and decoder, with the “encoder” block
responsible for learning the latent representation of partial CSI
and the “decoder” block able to learn the mapping from the
latent representation to the full CSI. Specifically, we employ
the vision transformer-based encoder including linear projec-
tion, position encoding, and transformer modules, where the
position encoding is used to characterize the spatial relation-
ship of the CSI at different ports and the transformer module
uses the multi-head self-attention mechanism to capture the
fine-grained interrelationships among the spatial signatures. In
Fig. 5, the normalized minimum square error (NMSE) results
of the predicted CSI versus the number of observed ports are
shown for the FAS with 72 ports. The results demonstrate that
observing less than one-third of the ports would be sufficient
to obtain decent performance though a larger-sized FAS should
need more port observation due to weaker correlation.

B. Learning-induced Multi-port Selection

Multi-port selection in FAS is a very challenging combina-
torial optimization problem [2]. First, the huge search space
makes exhaustive search inapplicable. Also, existing methods
tend to have poor scalability and may fall into a local optimal
solution whose performance is not assured. Though supervised
learning can find a meaningful relationship between the CSI
and the optimal ports, they cannot be applied to variable sized
FASs, which will limit its practical significance.

To tackle this, pointer network has emerged as a new neu-
ral network architecture that can provide a learning-induced
approach with great generalization capability. Pointer network
has been confirmed to be effective in handling combinational
optimization problems, e.g., the travelling salesman problem
[13]. Therefore, we can employ a pointer network to optimize
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the port selection for FAS of variable sizes [13]. As depicted
in Fig. 4, the pointer network adopts the content based input
attention model including encoding and decoding modules.
The long short-term memory (LSTM) encoder first transforms
the CSI into an embedding matrix R, the hidden state enc-h,

and the cell state enc-c. Subsequently, a fully-connected net-
work adopts enc-h and enc-c as the input to learn the training
parameters <g>. Then the first LSTM decoder concatenates
<g>, enc-h, and enc-c to form the input and uses an attention-
based pointing mechanism to learn the optimal port of the
first fluid antenna, i.e., M; [14]. Afterwards, the i-th decoder
adopts the M;_;-th column of R and the latent memory state
of the (i — 1)-th decoder dec-h as the input to select the port
for the succeeding fluid antenna, and so on. This technique
will be considered and tested in the ISAC case study later.

C. DRL for Multiuser Multi-port Selection and Precoding

For multiuser MIMO-FAS in the downlink,’ the port selec-
tion at the BS and UEs, the precoding matrix at the BS and
the beamforming matrices at all the UEs need to be optimized
jointly. Supervised learning could be effective to acquire the
associations that exist between the input features (e.g., CSI)
and their corresponding output labels (i.e., the joint solution).
Unfortunately, such labeled training data do not exist. For this
reason, reinforcement learning is a more suitable tool that can
bypass the need of labeled training data.

Of great relevance is the work of [14] that proposed a neural
combinatorial optimization approach utilizing reinforcement
learning, which can be adopted to build an end-to-end learning
framework to learn the stochastic policy for assigning a high

SDownlink is considered here as an example. Similar challenges arise in
uplink and interference channels.
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probability to the activated ports and precoder that maximize
the sum-rate. In particular, we can use the pointer network to
first learn the activation probability of different ports, which
can be used later to generate the port selection with sampling.
With the activated ports, we can employ the unsupervised
learning approach to design the neural precoding network to
build the relationship between the input CSI and the optimized
precoder. Finally, it is possible to apply the advantage actor
and critic (A2C) based DRL approach to establish an end-to-
end learning framework including the two neural networks,
see Fig. 4. We consider the CSI of all current ports as states
in reinforcement learning, with the sum rate as the reward.
The action is defined based on a specific task. For instance, in
the port selection task, the action corresponds to the selected
port. In the joint design task of port selection and precoding,
the action may also include the precoding matrix.

Note that the critic network uses a deep neural network to
approximate the excepted reward obtained by the policy while
the actor network involves the pointer network and the neural
precoding network to design the optimal policy. Moreover, the
advantage function is adopted as the loss function which is the
difference between the action-value function and the baseline
function that is approximated by the critic network. Different
from supervised learning, the A2C based DRL approach does
not need labeled training data, but uses interactive feedback
from the environment to train the neural networks.

It is important to note that the instability of reinforcement
learning during the training phase significantly impacts the
convergence of the model [15]. Combining ensemble learning
with reinforcement learning is expected to mitigate learning
variance, thereby significantly improving training stability and
expediting model convergence. Specifically, the critic quanti-
tatively scores the actor’s strategies, known as Q-values, with
current research revealing significant variance in the predicted
Q-values. It is expected that employing ensemble learning to
merge evaluations from various critic model architectures can
address the issue of excessive Q-values variance, expediting
model convergence. Moreover, the e-greedy strategy that en-
courages actor exploration by randomly selecting actions, can
help prevent the policy from converging prematurely. Despite
this, its inherent randomness hampers exploration efficiency,
potentially slowing down model convergence. Manual tuning
of € at different stages is however required to achieve model
convergence. Leveraging the Bagging method in ensemble
learning to train multiple actors is expected to realize adaptive
exploration, a fine-tuning-free training process and robust
strategy generation through data and model diversity.

V. CASE STUDY: FAS-AIDED ISAC

To understand the effectiveness of the learning-aided FAS
described above, we consider a downlink multiuser multiple-
input single-output (MISO)-FAS for ISAC. There is a FAS-
aided BS, multiple UEs and sensing targets each with a single
fixed antenna. The objective is to maximize the network sum-
rate subject to a radar sensing power constraint by optimizing
the multi-port selection and the precoding matrix at the BS.

Fig. 4 illustrates a typical deep learning-aided joint opti-
mization scheme for port selection and precoding. It comprises
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Fig. 6. Network sum rate of a downlink 3-user MISO-FAS using the learning
structure in Fig. 4 against the percentage of unobserved ports with one target
having the radar sensing threshold of —3 dB. The operating frequency is
800 MHz. The power budget at the BS is 15 dBm while the noise power at
each UE is —80 dBm. The FAS at the BS has 10 x 10 flexible positions to
select 5 activated ports. The UEs are located at different distances from the
BS uniformly distributed within the range of 40 m to 60 m.

a MAE model for channel estimation, an A2C based DRL
for port selection, and a learning-induced neural network for
precoding design. Firstly, the MAE extrapolates the CSI of
other ports from the observed port CSI. Then DRL is adopted
to perform multi-port selection using the completed CSI.
Finally, the precoding network utilizes the selection as input
to optimize precoding. The A2C based DRL approach adopts
the feedback from multiple downlink UEs to jointly design
the pointer and neural precoding networks via gradient back-
propagation. However, the sensing constraint poses challenges
to implementation. Existing works usually utilize a penalized
deep learning approach which introduces a penalty parameter
to involve the constraints into the loss function. Neverthe-
less, there are no tractable approaches to design the penalty
parameter, and inappropriate parameters can deteriorate the
performance seriously. In order to devise an efficient design,
we propose a primal-dual based unsupervised deep learning
network to handle the constrained precoder design problem.
In particular, we introduce the Lagrange multiplier to involve
the constraint into the loss function and obtain a Lagrange dual
function. Then, using the alternating gradient ascent approach,
the Lagrange multiplier and the neural precoding network
parameters are optimized iteratively to minimize the Lagrange
dual function. Consequently, the neural precoding network can
be trained to maximize the downlink sum-rate subject to the
sensing power constraints, which is built in with the capability
of mastering the constrained optimization problem.

Fig. 6 shows the sum-rate results of the multiuser MISO-
FAS using the proposed learning-based approach against the
percentage of unobserved ports for different physical sizes of
FAS. The FAS is optimized for ISAC with a radar sensing
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power constraint. The mask ratio indicates the proportion of
ports that are not observed and require channel extrapolation.
It is evident that fewer observed ports will result in increased
prediction channel extrapolation errors, leading to a reduction
in the sum-rate performance. Fortunately, owing to the spatial
correlation of the channel, observing just 20% of the ports is
adequate to achieve performance comparable to observing all
ports. The larger the size of the FAS, the greater the number
of observed ports required due to weaker spatial correlation.
Nevertheless, the rate performance of MISO-FAS is better with
larger size for spatial diversity. The performance of multiuser
MISO with fixed antennas is also included in the figure for
comparison. As shown, the results illustrate significant sum-
rate gains of the proposed multiuser MISO-FAS over the fixed-
position MISO counterpart, confirming the great ability of the
learning method to take advantages of FAS.

VI. FUTURE DIRECTIONS

There are many other situations that can benefit greatly from
FAS but this article is unable to cover them due to insufficient
space. Some future research directions are listed below:

o A natural and important extension will be to study the
joint optimization of a multiuser MIMO-FAS where both
BS and UEs are equipped with flexible-position antennas.
The CSI estimation process will be an order of magnitude
harder to do, and so will be the overall optimization.

o A much larger FAS surface is possible in UAV or RIS and
will be another interesting area with great potential to ex-
plore. The FAS-aided UAV or RIS will be able to achieve
much more, but the challenges will need to be addressed.
Similarly, it will be intriguing to learn how beneficial it
is to incorporate FAS into other emerging technologies
such as non-orthogonal multiple access (NOMA).

« It will also be interesting to see if the high-dimensionality
of FAS would be useful in coding design. A differential
coding scheme using FAS can be an effective approach to
benefit from the diversity while reducing the burden for
CSI estimation in fast fading scenarios. Also, the high-
dimensionality in the FAS channel can be a useful feature
to design secrecy codes for information security.

o The fact that the required speed to change the antenna’s
position may be unrealistic, suggests that compact pixel-
based switchable antennas present a more realistic future
for flexible-position antennas. However, in this case, the
correlation among different pixel configurations will need
to be properly examined, in light of mutual coupling.

« Last but not least, it is important to investigate how each
FAS-aided UE could estimate the instantaneous energy
ratio to obtain the optimal position on a per-symbol basis
for fast FAMA under practical conditions.

VII. CONCLUSIONS

With the new paradigm of FAS providing additional DoF to
enhance wireless communications performance using flexible-
position antennas, this article discussed the opportunities and
challenges. In particular, we highlighted the unique character-
istics of FAS that promises superb diversity and interference

mitigation capability. But concerns in acquiring the nearly con-
tinuous CSI and the complexity for finding the best position(s)
and precoding are valid. This article has presented a machine
learning framework that injects the FAS-assisted terminal (BS
or UE) the ability to estimate the CSI with partial observations
and optimize port selection and precoding jointly. MAE, DRL
and pointer network are the main tools that make possible the
overall system design. We then used ISAC as an application
scenario to showcase the great power of multiuser MISO-FAS.
The results revealed considerable gains in the sum-rate over
fixed MISO with the same sensing performance.
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