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Abstract: Innovative solutions in Earthquake Engineering are pushing the boundaries towards the design of 

seismic-resilient structures able not only to meet the life safety requirements, but also to overcome rare 

earthquakes with limited damage, thus reducing repair costs and downtime. Self-Centering Dissipative (SCD) 

systems represent an efficient solution to meet this goal, thanks to their capacity to reduce structural damage 

and avoid residual drifts. Although the performance benefits have been widely demonstrated, their application 

in practice is still limited due to the lack of general methodologies and code provisions regarding their design 

and use. Featuring a distinctive flag-shaped hysteresis behaviour, SCD systems exhibit reduced energy 

dissipation capabilities compared to conventional non-linear systems. This may lead to high displacement and 

acceleration demands, making conventional design assumptions inapplicable and unsafe. Within this context, 

determining the relationship between the inelastic demand of SCD systems and equivalent linear systems with 

the same initial stiffness and damping ratio is a key aspect of the definition of simplified design procedures. 

The present study performs a parametric analysis on SCD Single Degree of Freedom (SDoF) systems with 

various hysteretic properties as defined by the initial stiffness, post-yielding hardening, energy dissipation 

capacity, and displacement ductility. For each configuration, non-linear time-history analyses are performed in 

Opensees with a set of 240 ground motions scaled to reach a target ductility value, while evaluating the 

influence of the hysteretic properties on the statistics of the demands. Moreover, constant-ductility spectra are 

defined in terms of displacements and accelerations. The results inform methods for predicting the seismic 

demands for SCD systems based on the equivalent elastic system, which is useful information for the definition 

of simplified design procedures. 

1 Introduction 

Earthquakes are among the deadliest and costliest catastrophic events worldwide, posing significant threats 

to people and the built environment. The earthquake engineering community is now focused on developing 

lateral force-resisting systems that fulfil both life-safety and functional recovery requirements. The primary goal 

is to prevent casualties and ensure that a structure can be quickly and economically restored after an 

earthquake (e.g., EERI 2019, Freddi et al. 2021). In this context, Self-Centering Dissipative (SCD) systems 

have emerged as a promising solution, ensuring life safety and minimal damage while keeping residual drifts 

negligible (Zhong & Christopoulos 2022, Fang et al. 2022). These systems dissipate seismic energy in specific 

components, such as friction dampers or yielding elements, acting as fuses. They also provide self-centring 

behaviour through specific elements, such as post-tensioned steel rods or special materials, which restore the 

structure to its original position after an earthquake. 

Many analytical, experimental, and numerical studies have confirmed the effectiveness of SCD systems in 

enhancing the seismic performance of structures (Karavasilis et al. 2011, Dimopoulos et al. 2013, Pei et al. 

2019, Latour et al. 2019, Freddi et al. 2020, Wang et al. 2021, Shen et al. 2022). Despite these advances, the 
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practical application of SCD systems remains limited, as no established methodologies and code provisions 

exist for their design and implementation (Pieroni et al. 2022). In this context, academic efforts are needed to 

generalize prior academic findings and foster the knowledge transfer from academia to building codes, 

advancing the use of SCD systems in construction practice. 

This research endeavour was initiated by Christopoulos et al. (Christopoulos et al. 2002, Seo & Sauce 2005), 

who conducted parametric studies on the inelastic demand of SCD SDoF systems when subjected to 

acceleration time histories. Both studies considered a set of earthquake records and investigated several 

hysteretic behaviours (i.e., flag-shape and bilinear plastic) with different initial and post-yielding stiffness and 

yielding strength. Predictably, the results showed that due to their flag-shape hysteretic behaviour, SCD 

systems dissipate less energy than conventional Bilinear Plastic (BP) systems, leading to higher displacement 

and acceleration demands. These findings were confirmed for SCD multi-degree of freedom systems by 

Pieroni et al. and Lettieri et al. (Pieroni et al. 2022, Lettieri et al. 2023).  

These findings shed light on the comparison between the behaviour of SCD and BP SDoF systems; 

nevertheless, the development of a reliable and consistent design procedure remains a crucial aspect to be 

addressed. For this purpose, determining the relationship between the inelastic demand of non-linear SDoF 

systems and the equivalent Linear Elastic (LE) systems with the same initial stiffness and damping ratio is a 

key aspect for the definition of simplified design procedures. While estimates were developed for bilinear 

plastic SDoF systems (see e.g., Veletsos & Newmark 1960, Miranda 2000), there is limited information on how 

to relate the demand of SCD SDoF systems to elastic demands. 

A recent study extended the Displacement-Based Design approach via Inelastic Displacement Ratio (Cμ) to 

SCD systems (Priestley et al. 2007, De Francesco 2019). A statistical and analytical characterization of Cμ 

(i.e., the ratio between the peak displacement of the non-linear SDoF system and the equivalent elastic SDoF 

system) was developed for SCD systems to estimate their inelastic demands based on the elastic demand. 

Analytical formulations for the estimates of Cμ were provided for SCD systems based on ductility, initial and 

post-yielding stiffness, and energy dissipation capacity. This was a pivoting study in the definition of a 

consistent and simplified design procedure for SCD systems; nevertheless, only two scenarios of energy 

dissipation capacity were investigated, and inelastic demands, such as forces, accelerations, and residual 

drifts, were not assessed. 

The present study aims to relate the inelastic demand of SCD SDoF systems to the demand of equivalent 

elastic SDoF systems subjected to the same acceleration time histories. A parametric analysis is developed 

by investigating a large number of SDoF systems with different properties of the hysteretic behaviour, such as 

initial stiffness, post-yielding hardening, energy dissipation capacity, and ductility. For each SDoF system, non-

linear time-history analyses are performed in Opensees with a set of 240 ground motions scaled to reach a 

target displacement ductility. Constant-ductility spectra are defined for displacements and accelerations as the 

ratio between the maximum inelastic demand of the SCD SDoF system and the maximum demand of the 

equivalent elastic SDoF system. The results inform the development of simplified methods for predicting the 

inelastic demands for SCD SDoF to be used in the design. 

2 Self-Centering Dissipative System 

Figure 1 (a) shows the force-displacement behaviour of three different SDoF systems when subjected to the 

same acceleration time history. These systems comprise i) a non-linear SCD-SDoF system, ii) the equivalent 

LE SDoF system with the same initial elastic stiffness (k0) and viscous damping factor (ξ), iii) the equivalent 

BP SDoF system with the same elastic and post yielding stiffness (k0, k1) and viscous damping factor (ξ). 

As demonstrated in the literature (Veletsos & Newmark 1960), BP SDoF systems with long fundamental 

periods of vibration have inelastic displacement demands that can be assumed to be conservatively equal to 

the elastic demand of the equivalent LE SDoF system (i.e., equal displacement rule). The estimation of the 

inelastic displacement of BP systems from elastic demands was extensively studied, and several simplified 

yet reliable analytical formulations were provided considering the influence of ground motions’ characteristics 

(i.e., soil conditions, earthquake magnitude, and epicentral distance) and hysteretic properties (i.e., hysteretic 

shape, post-yielding stiffness ratio, unloading stiffness) (Miranda 2000). Nevertheless, these estimates are not 

valid for SCD SDoF systems. Being characterized by a flag-shape force-displacement behaviour, these 
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systems dissipate less energy than the equivalent EP SDoF system (i.e., a smaller area enclosed by the force-

displacement curve), leading to higher inelastic displacement demands. 

Figure 1 (b) shows the main characteristics of a SCD SDoF system compared to its equivalent LE system. In 

this Figure, k0 is the initial stiffness, Fy and uy are, respectively, the force and displacement at yielding of the 

SCD SDoF system, and k1 is the post-yielding stiffness. When subjected to an acceleration time history, um, 

Fm, and am are the peak displacement, force, and acceleration of the SCD system, while u0, F0, and a0 are the 

equivalent parameters for the LE SDoF system. Fd is the forward-to-reverse activation force and is a measure 

of the energy dissipated by the SCD SDoF system. 

The behaviour of the SCD SDoF system is entirely defined by four properties: the initial stiffness (k0), the post-

yielding stiffness ratio (α), the displacement ductility ratio (μ), and the energy dissipation coefficient (β) that 

can be calculated as follows. 
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Figure 1:(a) Force-Displacement behaviour of Self Centering Dissipative SDoF systems and equivalent 

Linear Elastic and Bilinear Plastic systems. (b) Main hysteretic properties of the flag-shape behaviour. 

3 Parametric Study 

The present study aims to relate the inelastic demand of SCD SDoF systems to the elastic demand of 

equivalent LE SDoF systems subjected to the same acceleration time histories. To this purpose, the present 

study performs an extensive parametric analysis by investigating a large number of SDoF systems with 

different properties of hysteretic behaviour, following a non-dimensional approach employed by some of the 

authors of this study to analyse other type of systems (Tubaldi et al., 2014). Specifically, 108 SDoF systems 

are defined, combining different values of T, β, α, and μ that are chosen as follows: 

• Four values of T are selected (i.e., 0.3, 0.9, 1.5, 2.0 s). 

• Three values of β are considered to investigate the effect of the energy dissipation capacity (i.e., 0, 0.4, 

1). It is worth specifying that β=0 is related to systems with no energy dissipation (i.e., no hysteresis 

loop, bilinear hyper elastic systems), β=1 is associated with SCD systems with the maximum dissipated 

energy while ensuring a full self-centering capability. 

• Three values of α are taken into account according to admissible values of post-yielding hardening for 

self-centering systems (i.e., 0%, 5%, 20%) (Seo & Sauce 2005). α=0% is associated with elastoplastic 

systems. 

• Three values of μ are considered to cover a wide range of potential scenarios (i.e., 1, 4, 8). μ=1 is 

indicative of elastic systems. 
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For all SDoF systems, the damping ratio is assumed to be ξ=0.03, which is a reference value typically used 

for steel structures. k0 is defined based on T and m (i.e., k0 = mω2 = m(2π/T)2 where ω is the circular frequency). 

For each SDoF system, non-linear time history analyses are performed in Opensees using a set of 240 ground 

motion records to account for the influence of the uncertainty related to the earthquake input (i.e., the record-

to-record variability). Figure 2 (a) shows the spectra in pseudo acceleration (SA(T, ξ)) of the selected ground 

motions. The considered set was selected by Baker et al. (Baker et al. 2011) for the analysis of a variety of 

structural systems located in active seismic regions. A large number of zeros acceleration points (i.e., 40 s) 

were added at the end of each record to allow the free vibrations to stop and to correctly capture the residual 

displacements. 

                                               (a)                                                                         (b) 

Figure 2:(a) Unscaled ground motions (gms). (b) Example of scaled ground motions for a SCD SDoF system 
to reach the target ductility. 

 

Figure 3 shows a schematic representation of the model developed in Opensees (McKenna et al. 2010) for 

the SDoF systems. It consists of a truss element fixed at one end (i.e., node 1) and connected to a mass at 

the other end (i.e., node 2) that has roller support. The truss is assigned length L=1 m and cross-sectional 

area A=1m2. The mass is applied in node 2 and assumed to be equal to m=1 kg. The non-linear response of 

the element is modelled by ‘uniaxial  elf  entering’ material in the cases of β equal to 0, 0.4, and 0.8 and 

‘uniaxial  teel  ’ material in the case of β equal to 2. An arbitrary value is assigned to the yielding force, Fy = 

1N. During the non-linear time history analyses, the displacement and acceleration of node 2 are recorded, 

together with the axial force in the truss. 

 
Figure 3: Schematic of the model developed in Opensees.  

 

For each SDoF system, the 240 ground motions are scaled to have a pseudo-spectral acceleration SA(T, 

ξ)=1m/s2. Subsequently, a Scale Factor (SF) is applied to these ground motions such that the mean value of 

peak displacement ductility (�̅�) is within a 0.1% tolerance of the target ductility (μ). All the ground motion have 

the same values of pseudo-spectral acceleration equal to SA(T, ξ)=SF m/s2. The iterative scaling process to 

reach the target ductility requires significant computational effort and time (Freddi et al. 2021). Once the target 

ductility is reached (�̅�~𝜇) and the associated scaling factor is defined (SFμ), the demands of the considered 

SDoF system and the equivalent LE SDoF system that need to withstand the same input without yielding can 

be defined. Figure 2 (b) shows the linear elastic spectra in pseudo acceleration SA(T, ξ) of the selected ground 
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motions for the SCD SDoF system with T=1.5 s, β=0.4, α=0.2. The scaling factor obtained to reach the target 

ductility μ=4 is SFμ=3.67 and all ground motions are scaled to the same value of SA(1.5, ξ)= SFμ. 

The values of u0, F0, and a0 of the equivalent LE SDoF system under the 240 motion records can be calculated 

as follows: 

To relate the investigated SDoF systems to the equivalent LE SDoF system, constant-ductility spectra are 

defined in terms of displacement and accelerations as follows. 

• Constant ductility inelastic displacement ratio (Cμ) 

 
𝐶𝜇 =  

𝑢𝑚̅̅ ̅̅

𝑢𝑜

  
3 

where 𝑢𝑚̅̅ ̅̅  is the mean peak displacement among the 240 motion records. 

Cμ is a measure of the difference between the seismic behaviour of elastic and inelastic systems in terms of 

maximum displacement. If information on Cμ is available, the maximum inelastic displacement of SCD SDoF 

system can be estimated based on the response of the equivalent LE SDoF system in terms of u0. For BP 

SDoF systems with long fundamental periods of vibration, Cμ≈1 according to the equal displacement rule 

(Veletsos & Newmark 1960). 

• Constant ductility inelastic acceleration ratio (Aμ): 
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where 𝑎𝑚̅̅ ̅̅  is the mean peak acceleration among the 240 motion records. 

Aμ is a measure of the relative performance of the SCD system compared to the EL system in terms of 

accelerations. 

                                    (a)                                                                                 (b) 

 
 

                                    (c)                                                                                 (d) 

 

Figure 4: Results of the scaling process for two SCD SDoF systems with (T, β, α, and μ . (a), (c) Force-
displacement behaviour. (b), (d) Values of ductility. 
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Figure 4 (a) and (b) show the flag shape behaviour and the displacement ductility obtained from the 240 ground 

motion records after the scaling process for the SCD SDoF system with T=1.5 s, β=0.4, α=0.2, and μ=4. The 

scaling factor obtained to reach the target ductility μ=4 is SFμ=3.67. Figure 4 (a) shows the force-displacement 

flag shape behaviour of the SCD SDoF system obtained from the 240-scaled ground motion and the equivalent 

LE SDoF system that has F0=3.67 m/s2. In Figure 4 (b) the dots represent the values of μ for the SCD SDoF 

system obtained from the 240-scaled ground motion, while the black line is the mean value of μ among all the 

ground motions and is �̅�≈4. Figure 4 (c) and (d) show the results for another SCD SDoF system with T=1.5 s, 

β=0.4, α=0.05, and μ=4 and the obtained scaling factor is SFμ=3.51. 

Figure 5 shows the results of Cμ and Aμ for the two SCD SDoF systems considered in Figure 4. For each 

period the grey dots represent the values obtained from the 240 ground motion records scaled at SA(T, ξ)= 

SFμ to reach the target ductility. The black line represents the mean values, and the dotted lines represent the 

mean plus and minus the standard deviation showing the variability of the results. 

                                         (a)                                                                                  (b) 

 

                                         (c)                                                                                  (d) 

 

Figure 5:(a) Constant ductility inelastic displacement ratio. (b) Constant ductility acceleration ratio for two 
SCD SDoF systems with (β, α, and μ) and different values of period (T). 

4 Constant ductility spectra 

Figure 6 illustrates the constant ductility spectra obtained for few combinations of the parameters describing 

the SDoF system’s properties (T, β, α, and μ). It is worth mentioning that the spectra are based on mean values 

of the quantities among the 240 ground motion records. 
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                             (a)                                                      (b)                                                     (c) 

 

                             (d)                                                     (e)                                                      (f) 

 
Figure 6: Constant ductility spectra for SDoF systems with different hysteretic properties. (a)-(c) Constant 

ductility inelastic displacement ratio. (d)-(f) Constant ductility acceleration ratio. 
 
Figure 6 (a-c) show the obtained spectra for inelastic displacement ratio (Cμ). The lower bound for Cμ is 1, 

representing a SCD SDoF system experiencing the same peak displacement than the equivalent LE SDoF 

system. It is observed that given a value of β, Cμ increases for increasing values of μ and decreasing values 

of α.  or example, Cμ associated with μ=8 (dotted lines) is larger than Cμ associated with μ=4 (continuous 

lines) for all the values of T and α.  n the other hand, Cμ associated with α=0 (blue lines) is larger than Cμ 

associated with α=0.2 (red lines) for all the values of T and μ. This means that SCD SDoF systems with larger 

displacement ductility (μ) and smaller post-yielding ratios (α) experience larger peak displacements. Increasing 

the value of β, Cμ decreases. This means that increasing the energy dissipation leads to smaller peak 

displacements, and the response of SCD SDoF systems is similar to the equivalent BL SDoF systems. For 

long periods and increasing values of β, Cμ tends to 1, according to the equal displacement rule. Nevertheless, 

it's important to mention that in some cases, Cμ is below 1, indicating that that the inelastic displacement 

demand is smaller the elastic displacement demand. This finding aligns with results from prior studies (De 

Francesco 2019). 

Figure 6 (d-f) show the constant ductility inelastic acceleration ratio spectra (Aμ). The upper bound for values 

of Aμ is 1 as the investigated SDoF systems experience the same peak acceleration or smaller than the 

equivalent LE SDoF system. It is observed that given a value of β, Aμ increases for decreased values of μ and 

increased values of α.  or example, Aμ associated with μ=4 (dotted lines) is larger than Aμ associated with μ=8 

(continuous lines) for all the values of T and α. Whereas, Aμ associated with α=0.2 (blue lines) is larger than 

Aμ associated with α=0.2 (red lines) for all the values of T and μ. This means that SCD SDoF systems with 

smaller displacement ductility (μ) and larger post-yielding ratios (α) experience larger peak accelerations. 

Increasing the value of β, Aμ decreases, although Aμ is less sensitive to β than Cμ. This means that increasing 

the energy dissipation leads to smaller peak accelerations. 

It is worth mentioning that the cases with μ=1 represent LE SDoF systems; therefore Cμ=1 and Aμ=1 for all 

values of T, β and α. 
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5 Conclusions 

The present study aims to investigate the relationship between the inelastic demand of Self-Centering 

Dissipative (SCD) Single Degree of Freedom (SDoF) systems and the demand of equivalent elastic SDoF 

systems with the same initial stiffness and damping ratio when subjected to earthquake excitation. A 

parametric analysis is carried out by investigating a large number of SDoF systems with different properties of 

the hysteretic behaviour, such as initial stiffness, post-yielding hardening, energy dissipation capacity, and 

ductility. For each SDoF system, non-linear time-history analyses are performed in Opensees with a set of 240 

ground motions scaled to reach a target displacement ductility. Constant-ductility spectra are defined for the 

inelastic displacement ratio (Cμ) and acceleration ratio (Aμ), defined as the ratio between the maximum inelastic 

demand of the SCD SDoF system and the maximum demand of the equivalent elastic SDoF system. 

The results show that SCD SDoF systems experience larger peak displacements than the equivalent linear 

elastic SDoF system. Increasing the energy dissipation capacity and the post-yielding ratio and decreasing the 

displacement ductility leads to smaller peak displacements of the SCD SDoF system. For long periods and 

increased vales of energy dissipation capacity, the peak displacements of the SCD SDoF system tend to the 

elastic displacement of the equivalent linear elastic SDoF system. Peak accelerations are less sensitive to the 

energy dissipation capacity and increase, decreasing the displacement ductility and increasing the post-

yielding ratio. The results inform simplified methods for predicting the inelastic demands for SCD SDoF to be 

used in simplified design procedures. 

Future developments will include the extension of the parametric study to more values of initial stiffness, post-

yielding hardening, energy dissipation capacity, and ductility. Specifically, cases with energy dissipation 

capacity (β) between 1 and 2 will be investigated to consider SCD SDoF systems without a fully self-centering 

behaviour. Constant ductility spectra in terms of strength reduction factor (Rμ, i.e., the ratio between the peak 

force of the equivalent linear elastic SDoF system and the yielding force of the SCD SDoF system) will be 

added. Statistical and analytical characterization of Cμ, Aμ, and Rμ will be developed to predict the demands of 

SCD SDoF systems by starting from equivalent EL systems, without performing non-linear time history 

analyses. 
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