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Abstract 9 

The interaction between ageing and multiple sclerosis is complex and carries significant 10 

implications for patient care. Managing multiple sclerosis effectively requires an understanding of 11 

how ageing and multiple sclerosis impact brain structure and function. Ageing inherently induces 12 

brain changes, including reduced plasticity, diminished grey matter volume, and ischaemic lesion 13 

accumulation. When combined with multiple sclerosis pathology, these age-related alterations may 14 

worsen clinical disability. Ageing may also influence the response of multiple sclerosis patients to 15 

therapies and/or their side-effects, highlighting the importance of adjusted treatment 16 

considerations. Magnetic resonance MRI is highly sensitive to age- and multiple sclerosis-related 17 

processes. Accordingly, MRI can provide insights into the relationship between ageing and 18 

multiple sclerosis, enabling a better understanding of their pathophysiological interplay and 19 

informing treatment selection. This review summarizes current knowledge on the immuno-20 

pathological and MRI aspects of ageing in the central nervous system in the context of multiple 21 

sclerosis. Starting from immunosenescence, ageing-related pathological mechanisms, and specific 22 

features like enlarged Virchow-Robin spaces, this review then explores clinical aspects, including 23 

late-onset multiple sclerosis, the influence of age on diagnostic criteria, and comorbidity effects 24 

on imaging features. The role of MRI in understanding neurodegeneration, iron dynamics, and 25 
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myelin changes influenced by ageing and how MRI can contribute to defining treatment effects in 1 

ageing multiple sclerosis patients, are also discussed. 2 
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Introduction 3 

Multiple sclerosis is an inflammatory, demyelinating and neurodegenerative disease 4 

characterized by the progressive accumulation of CNS damage.1 On the other hand, as individuals 5 

age, their brains tend to alterations, including limited plasticity, intra- and extracellular protein 6 

accumulation, reduced grey matter (GM) volume, increased white matter (WM) abnormalities and 7 

ischaemic lesions.2 In multiple sclerosis patients, the interplay between the disease and ageing is 8 

complex and has substantial implications since it may determine cumulative and potentiation 9 

effects that exacerbate the pathophysiological changes observed in both conditions separately. 10 

By acting in parallel, these two factors may contribute to the overall cumulative burden of 11 

CNS pathology. The physiological neurodegenerative phenomena occurring with ageing can be 12 

compounded by the inflammatory, demyelinating and neurodegenerative processes of multiple 13 

sclerosis, leading to a greater overall impact on brain health. Age-related decline in neuroplasticity 14 

and regenerative capacity may exacerbate the neuronal damage and functional impairments caused 15 

by multiple sclerosis. This detrimental potentiation effect means that older multiple sclerosis 16 

patients might experience more severe disease progression and disability compared to younger 17 

individuals with the same disease duration. Conversely, multiple sclerosis can accelerate ageing-18 

related features. Chronic inflammation, demyelination, and neurodegeneration associated with 19 

multiple sclerosis may lead to premature brain ageing. This accelerated aging can manifest as 20 

earlier onset of age-related cognitive decline, increased brain atrophy, and other neurodegenerative 21 

changes typically seen in older adults. 22 

Understanding the interplay between ageing and multiple sclerosis mechanisms is crucial for 23 

effective management of patients. This is particularly relevant because the proportion of patients 24 

experiencing a clinical onset of multiple sclerosis at an advanced age has increased in recent 25 

years.3-5 Furthermore, patients with multiple sclerosis are more likely to reach an older age due to 26 

early diagnosis and early initiation of effective treatments, since both ageing and multiple sclerosis 27 

affect brain structure and function and their combination may have detrimental additive and even 28 

multiplicative effects. Ageing may also influence the management of multiple sclerosis patients 29 
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since it is associated with increased risk of treatment side effects and lower occurrence of clinical 1 

relapses and new lesions on MRI scans,6 thus emphasizing the need for age-adjusted treatment 2 

considerations.7 3 

MRI is highly sensitive to age- and multiple sclerosis-related processes and it plays a crucial 4 

role in tracking disease progression, CNS damage accumulation, and treatment efficacy. 5 

Accordingly, MRI can provide insights into the relationship between ageing and multiple sclerosis, 6 

enabling a better understanding of the underlying pathophysiological processes and their interplay, 7 

and guiding treatment. 8 

An international meeting within the Magnetic Resonance Imaging in multiple sclerosis 9 

(MAGNIMS) network (https://www.magnims.eu/) was held on the 10th of November 2023, which 10 

involved neurologists, immunologists, pathologists, physicists, and (neuro)radiologists with 11 

expertise in multiple sclerosis and MRI (see Supplementary material for details) to summarize the 12 

most recent knowledge on the immuno-pathological and neuroimaging aspects of ageing in the 13 

CNS in the context of multiple sclerosis. The key aspects discussed in the meeting included the 14 

most recent evidence regarding immunosenescence, ageing-related pathological mechanisms, and 15 

specific features like enlarged Virchow-Robin spaces and glymphatic system dysfunction. Clinical 16 

aspects, including late-onset multiple sclerosis, the influence of age on diagnostic criteria, and 17 

comorbidity effects on imaging features were also reviewed. Finally, the role of MRI in 18 

understanding neurodegeneration, iron dynamics, and myelin changes influenced by ageing and 19 

how MRI can contribute to defining treatment effects in ageing multiple sclerosis patients were 20 

examined. 21 

Experts provided a summary related to each topic (see Supplementary Table 1 for search 22 

strategy and selection criteria). A group consensus was reached during the meeting and 23 

summarized in a first draft, which was circulated among the speakers and additional experts in the 24 

field for critical discussion and revision.  25 
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Immuno‐pathology of ageing CNS in multiple sclerosis 1 

Senescence of the immune system 2 

Ageing is characterized by an irreversible physiological decline in immunological defense 3 

that is caused by several immune modifications resulting, among others, in the exacerbation of the 4 

severity of chronic diseases.8,9 Numerous causal determinants of age-related changes that occur in 5 

many cell types at both the molecular and cellular levels have been described, and the 6 

characteristics of many of them resemble the immune changes that occur in multiple sclerosis 7 

patients.9  8 

Immunological ageing is characterized by phenotypical and functional changes in different 9 

cell populations, including myeloid cells as well as T and B lymphocytes, that can assume the so-10 

called senescence-associated secretory phenotype (SASP), that indicates the onset of senescent 11 

cells that become able to secrete high levels of pro-inflammatory cytokines and chemokines, along 12 

with a variety of molecules able to modulate immune response, including growth factors, 13 

proteases, exosomes containing enzymes, microRNA, DNA fragments, among others. In turn, 14 

SASP phenotype can maintain a chronic, sterile, low-grade inflammation that develops in the 15 

absence of overt infections and has been defined inflammageing.10-12 This is a systemic 16 

phenomenon, the trigger of which has not been yet clarified, but in which both endogenous and 17 

exogenous factors, namely genetics, infections and the environment, including diet, play a crucial 18 

role. Similarly, in the pathogenesis of multiple sclerosis inherited susceptibility accounts for about 19 

one third of the overall disease risk, while factors such as infections, nutrition, smoking and 20 

vitamin D levels are can facilitate the onset of the disease in genetically vulnerable persons. 21 

Starting from cells belonging to innate immunity, inflammageing causes and maintains cell 22 

activation.  23 

Ageing microglia often exhibit dystrophic morphology, characterized by retracted and less 24 

complex processes.9,13-15 These changes are thought to impair their surveillance capabilities. 25 

Moreover, phagocytic activity of microglia declines with age, reducing their efficiency in clearing 26 

cellular debris and damaged cells. Additionally, aged microglia show a dysregulated response to 27 

injury and disease, often leading to an exaggerated inflammatory response, with the adoption of a 28 

more pro-inflammatory phenotype. Consequently, in multiple sclerosis patients, the aged CNS 29 
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environment may promote persistent microglia activation not only in chronic active lesions, but 1 

also in the normal-appearing WM. 2 

Ageing is also associated with an increase in the density of CNS-Associated Macrophages 3 

(CAMs), which include meningeal, choroid plexus, and perivascular macrophages.14 Such changes 4 

might impact their roles in maintaining CNS homeostasis and immune surveillance. Similar to 5 

microglia, CAMs also tend towards a pro-inflammatory state during ageing and to show reduced 6 

efficiency in clearing debris and maintaining the blood-brain barrier.  7 

With ageing, T lymphocytes increasingly display markers related to T helper (Th) 1 and Th17 8 

activity, as well as changes in cytotoxicity and decreased regulatory capability.11 Also, 9 

inflammageing creates a microenvironment that predisposes to the development of 10 

neurodegenerative diseases, with progressive dysfunction and degeneration of neurons in the CNS. 11 

Similarly, in MS, the inflammation that is triggered by the first autoimmune reaction in the CNS 12 

is capable of causing an imbalance between the autoinflammatory and autoregulatory capabilities 13 

of CD4+ and CD8+ T lymphocytes that infiltrate the CNS itself. In turn, they become able to 14 

activate microglia, astrocytes and monocytes present in the microenvironment, promoting neuro-15 

inflammation. Of note, this phenomenon seems to be self-limiting, since focal inflammatory 16 

lesions become less frequent with the age and the duration of multiple sclerosis, even if 17 

demyelinated lesions can remain chronically active. This could suggest that inflammatory 18 

processes, i.e., cells of the innate immunity, trigger modifications of the microenvironment that 19 

cause irreversible damage to the cells present in that area, whose functional alterations (such as 20 

those affecting energy metabolism, mitochondrial functionality, intercellular communications, 21 

among others8) cause and maintain degenerative processes and the eventual onset of new 22 

demyelinated lesions in the absence of strictly inflammatory molecules and cells. 23 

During ageing, thymic involution and stem cell exhaustion lead to complex remodeling of 24 

key immune functions that can be identified by measuring the so-called “immune risk phenotype”. 25 

This includes a CD4:CD8 ratio of <1, poor T-cell proliferative responses, increased number of late 26 

differentiated CD8+ cells, low B cell numbers, and cytomegalovirus-seropositivity.16,17 These 27 

changes reflect the decreased effectiveness in protecting the host from external and internal 28 

threatens, such as different types of pathogens, or the accumulation of damage that disturb cellular 29 

homeostasis and cause either degeneration at the organelle or cell level, and eventually lead to the 30 
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onset of autoimmune phenomena. Such phenomena can be controlled, at least in part, by regulatory 1 

T lymphocytes (Tregs, both CD4+ and CD8+), whose role in physiological ageing is still 2 

controversial,17,18 but which have a fundamental role in counteracting autoimmunity and 3 

maintaining tolerance, but display decreased functionality during inflammageing. In multiple 4 

sclerosis, the number of these cells seems to remain unchanged, whereas their functional 5 

suppressive capabilities are decreased and their tendency to produce Th1-type inflammatory 6 

molecules is increased.19,20 As a result, autoimmune clones and the phenomena that follow the 7 

initial damage and lead to neurodegeneration are no longer controllable. 8 

Concerning B cells, besides becoming plasma cells that produce antibodies, they exert other 9 

critical regulatory functions in activating or suppressing immune responses. With age, they can 10 

secrete inflammatory molecules such as tumor necrosis factor (TNF) and interleukin 6 (IL-6), 11 

produce autoantibodies (i.e., anti-DNA, not necessarily correlated to an autoimmune disease), and 12 

expand clones after chronic viral infections such as those by Epstein–Barr virus (EBV) or 13 

Cytomegalovirus (CMV).21 In the pathogenesis of multiple sclerosis, such cells play a pivotal role, 14 

and indeed several studies have demonstrated the presence of self-reacting, immunoglobulin-15 

producing B cell clones in the CSF, meninges and brain. Thus, anti-CD20 therapies, that spare 16 

plasma cells but deplete B lymphocytes, are indeed extremely effective in treating MS, and, 17 

interestingly, the immunosuppressive cytokine IL-10 produced by plasma cells has a protective 18 

value when present in multiple sclerosis lesions. 19 

Finally, in the non-coding part of the genome of human senescent cells the most recently 20 

integrated endogenous retroviruses (ERVs), i.e., HERVK (HML-2) are unlocked to transcribe viral 21 

genes and produce retrovirus-like particles (RVLPs), which become a message to elicit senescence 22 

phenotypes in young cells. The activation of ERVs was recently described in tissues and serum 23 

from aged donors, and indeed the repression of ERVs activity ameliorates cellular senescence and 24 

degeneration of different tissues and, in turn, ageing of the individuals,22 likely opening a new 25 

chapter in the search of strategies to improve immune performances during ageing. 26 

 27 
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Pathological mechanisms and ageing in multiple sclerosis 1 

Improvements in general health care and multiple sclerosis treatment have increased life 2 

expectancy of patients with multiple sclerosis during the last decades. In a Norwegian study 3 

including 1388 multiple sclerosis patients with onset from 1953 through 2012, the standardized 4 

mortality ratios (SMR) of multiple sclerosis relative to the general populations dropped gradually 5 

from 3.1 for disease onset during 1953–1974, to 2.6 for disease onset during 1975–1996 and 0.7 6 

for disease onset during 1997–2012.23 Similarly, in a Danish study including 18847 patients with 7 

definite or probable multiple sclerosis and onset from 1950 through 1999, the SMR of multiple 8 

sclerosis relative to the general populations dropped gradually from 4.48 in the 1950–1959 onset 9 

cohort to 1.80 in the 1990–1999 onset cohort.24 Moreover, mean age of death gradually increase 10 

from 50.6 years in patients died between 1950 and 1959 to 65.4 years in those died between 2000 11 

and 2009.24 This has also been confirmed by a recent systematic analysis for the Global Burden of 12 

Disease Study, which showed an 11.5% global decrease in age-standardized death rates in 2016 13 

compared to 1990.25 14 

This implies that most patients reach an age at which age-related health problems may 15 

interfere with the disease process. This interference may happen coincidentally or through the 16 

direct interaction of disease-specific mechanisms and ageing-related brain damage. 17 

Multiple sclerosis is a chronic inflammatory disease of the CNS leading to demyelination 18 

and neurodegeneration. Inflammation is dominated by CD8+ T-cells and B-cell infiltrates, entering 19 

the CNS in active lesions but residing within the brain and spinal cord as tissue resident memory 20 

cells associated with progressive tissue damage.26,27 Demyelination and neurodegeneration are 21 

induced by a cascade of microglia activation, oxidative injury and mitochondrial dysfunction, 22 

resulting in a state of metabolic energy deficiency.28  23 

There are no qualitative differences in the multiple sclerosis pathology between different 24 

forms or stages of the disease. Thus, the entire spectrum of multiple sclerosis typical alterations 25 

can be seen in the brain and spinal cord of patients, who died during the relapsing or the progressive 26 

stage. However, systematic studies, based on a large patient cohort and lesion sample, revealed 27 

major quantitative differences.29,30 Active lesions with massive macrophage infiltration are mainly 28 

seen in the early disease stages but are rare in patients with progressive disease. Chronic active 29 

lesions and, more specifically, the slowly-expanding lesions slowly increase with disease duration 30 
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and peak at the transition stage between relapsing and progressive disease, while the extent of 1 

remyelination remains similar throughout all disease stages. A gradual increase in incidence with 2 

a peak in the progressive stage of the disease is also seen for cortical lesions and diffuse injury in 3 

the normal appearing WM.31  4 

In the early stages of the disease, new multiple sclerosis lesions can arise at any sites in the 5 

brain and spinal cord, but with disease progression they tend to accumulate in the periventricular 6 

WM and subpial layers of the cortex,32 and lateral or posterior columns of the spinal cord. 7 

Pathological changes associated with disease progression consist of gradual chronic expansion for 8 

years of pre-existing lesions29,30,33 in WM and GM, and slow accumulation of diffuse inflammation 9 

and neurodegeneration in the normal appearing WM or GM.  10 

Recent genetic studies have identified four potential candidate genes, associated with disease 11 

severity in multiple sclerosis,34 which may also play a role in disease progression. Zink finger 12 

protein 386 mediates transcriptional repression of unintegrated viral DNA (possibly EBV and 13 

HERV-W),  dysferlin and dynamin 3 are involved in the repair of cell membrane damage, whereas 14 

phosphatidylinositol glycan anchor (GPI) biosynthesis class C protein is important for the 15 

expression of GPI anchored membrane proteins. Thus, the latter three may be involved in the repair 16 

of damaged cells or cell processes.35 17 

 Progressive brain damage in multiple sclerosis can be augmented by mechanisms related 18 

to ageing, disease duration or the accumulation of brain damage. Oxidative injury and 19 

mitochondrial dysfunction propagate brain damage also in ageing and in age-related vasculo-20 

ischaemic diseases,36 and this is further amplified by age-related accumulation of iron within the 21 

human brain.37,38 Similarly, microglia activation is prominent in age-related neurodegeneration39 22 

and susceptibility to neurodegenerative diseases, such as Alzheimer’s disease, is in part associated 23 

with polymorphisms in genes linked to microglia function.40,41 Chronic brain inflammation may 24 

induce misfolded proteins in neurons, which may contribute to neurodegeneration.42 Finally, 25 

remyelination capacity decreases with ageing and chronic brain inflammation.43,44  26 

 Thus, comorbidities with vascular and neurodegenerative diseases are likely to enhance 27 

clinical disease and neurodegeneration in ageing multiple sclerosis patient. As mentioned above, 28 

this is particularly relevant for vasculo-ischaemic diseases,45 which share molecular mechanisms 29 

with disease progression in multiple sclerosis. In contrast to experimental studies, which suggest 30 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

ae251/7718946 by Eastm
an D

ental Institute user on 08 August 2024



11 

that demyelination propagates amyloid deposition46 and that Aß oligomers are toxic for myelin,47 1 

no significant difference was noted in the development and phenotype of Alzheimer’s disease 2 

associated neuropathology between patients with long lasting progressive multiple sclerosis and 3 

age matched controls.48 However, the data also document the occurrence of Alzheimer’s disease 4 

in ageing multiple sclerosis patients and this emerging co-pathology may amplify cognitive 5 

disabilities.  6 

 7 

Enlarged Virchow‐Robin spaces and glymphatic impairment 8 

Perivascular or Virchow-Robin spaces are fluid, or extracellular matrix filled spaces (areas) 9 

between the basement membranes of the astrocytic feed processes and the brain endothelium of 10 

arteries, capillaries, and veins of the CNS (Figure 1).49 11 

Perivascular spaces are involved in brain waste clearance processes, by allowing CSF entry 12 

from the subarachnoid space into the periarterial compartment. This process is facilitated by 13 

aquaporin 4 (AQP4) dependent fluid transfer to the brain interstitial fluid. Additionally, an 14 

intramural periarterial drainage pathway has been suggested, transporting debris from the 15 

interstitium against the arterial blood flow direction, into the smooth musculature of 16 

subarachnoidal arteries (Figure 1).50 17 

Under normal conditions, perivascular spaces in the deep WM are not visualized on brain 18 

MRI scans using standard clinical protocols at 1.5 and 3 Tesla. However, enlarged perivascular 19 

spaces (ePVS) become more prevalent with age and are associated with a broad range of 20 

neurological conditions.51 Different mechanisms for perivascular space enlargement have been 21 

suggested in the context of multiple sclerosis, including perivenous inflammation, brain atrophy, 22 

expansion of perivascular extra-cellular matrix and features of brain ageing, such as cerebral small 23 

vessel disease (cSVD), including debris accumulation and arterial tortuosity.52 24 

Perivenous inflammation is a key feature of multiple sclerosis lesions and in 25 

histopathological sections perivenous inflammatory infiltrates in lesions can reach counts of > 200 26 

cells on an axial section (mean=40.9, standard deviation=36.7),53 suggesting that this feature could 27 

be visualized with MRI. Furthermore, systemic inflammation has repeatedly been associated with 28 

perivascular space enlargement across several neurological conditions54 and multiple sclerosis 29 
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cohorts. Among individuals with high disease activity, correlations with gadolinium-enhancing 1 

lesions have been reported.55 By contrast, periarteriolar extracellular matrix depositions and cSVD 2 

features in ePVS have been identified in multiple sclerosis,56 though without histological 3 

validation in active multiple sclerosis. 4 

The decrease of CSF clearance57 and reduction in diffusivity along perivascular spaces in 5 

multiple sclerosis have been shown to be pronounced within the first four years, correlating with 6 

higher WM lesion volume, brain volume loss and worse disability.58 Reduced clearance of CSF-7 

derived toxic molecules may lead to gradients of tissue injury along CSF surfaces.59 8 

cSVD is known to correlate with age60 and is increased in multiple sclerosis.45 cSVD-related 9 

WM lesions are associate with, and grow around, ePVS in both normal ageing61 and multiple 10 

sclerosis.56 The decreasing diagnostic accuracy of the “central vein sign” (CVS) with age and 11 

presence of ePVS62 highlight that the limited specificity of MRI for WM lesions in older multiple 12 

sclerosis patients, likely hindering our understanding of age- and cSVD-related brain involvement 13 

in multiple sclerosis, its progression and therefore the applicability of diagnostic criteria. 14 

Overall, while data on the contribution of vascular ageing to tissue damage in multiple 15 

sclerosis remain limited, there is evidence supporting the hypothesis of an initial inflammation 16 

associated with (potentially perivenous) perivascular space enlargement. This is followed by 17 

depositions of extracellular matrix components in the perivascular space, decreased perivascular 18 

diffusivity in early disease stages and accelerated periarteriolar cSVD, associated with brain 19 

atrophy and global WM lesion burden. 20 

 21 

Clinical aspects of ageing CNS in multiple sclerosis 22 

Late-onset multiple sclerosis 23 

While multiple sclerosis is typically diagnosed in young adulthood, recent epidemiological 24 

studies have revealed that 5 to 20% of patients experience their first symptom at older ages.5,63-65 25 

This condition is commonly referred as late-onset multiple sclerosis (Table 1).63-65 At present, there 26 

is no unified consensus on the cut-off of age at onset for defining late-onset multiple sclerosis,65 27 
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however, the majority of authors consider it as late-onset multiple sclerosis forms of the disease 1 

with a clinical presentation after the age of 50.63-69  2 

Several studies have attempted to delineate the most common clinical features at initial 3 

presentation, disease course, and progression of these patients.66,68,70,71 Compared to adult-onset 4 

multiple sclerosis, late-onset multiple sclerosis is commonly associated with a more severe disease 5 

course and faster disability progression,72 with a significantly shorter time to reach clinically-6 

relevant milestones of disability,73,74 a higher proportion of progressive disease clinical 7 

phenotypes66,71 and lower frequency of inflammatory relapses.68 Several factors may contribute to 8 

explain these differences. First, in late-onset multiple sclerosis patients the involvement of the 9 

spinal cord at clinical onset is typically more frequent than in younger age classes, partially 10 

explaining the worse outcome.5,72 Second, young multiple sclerosis patients exhibit some 11 

capability to compensate for pathological changes during the early inflammatory stages, such as 12 

through remyelination. However, in the ageing multiple sclerosis brain, compensatory reserve 13 

declines, ultimately resulting in a faster disease progression in elderly multiple sclerosis.64  14 

A recent work that explored the histopathological differences in multiple sclerosis patients 15 

by age of onset revealed that, late-onset multiple sclerosis patients had fewer actively 16 

demyelinating WM lesions (including both active or chronic active) and less leptomeningeal and 17 

perivascular inflammation compared to adult-onset multiple sclerosis patients.75 However, both 18 

groups had a similar volume of cortical lesions, which represented a greater proportion of the total 19 

lesion volume in late-onset multiple sclerosis patients.75 Neuron density was also similar in both 20 

groups except in the cingulate gyrus and the thalamus, where late-onset multiple sclerosis patients 21 

had significantly lower density.75 Differently from adult-onset multiple sclerosis patients, no 22 

significant association between thalamic neuron density and demyelination or inflammation was 23 

found in late-onset multiple sclerosis patients. Moreover, an older onset was characterized by an 24 

already reduced neuron density in the pons and thalamus. These findings suggest that a later onset 25 

of the disease may be preceded by a prolonged prodromal phase with lower inflammatory 26 

demyelinating activity compared to adult-onset multiple sclerosis, culminating in a more 27 

neurodegenerative form of the disease at breakthrough.75 28 

Additionally, “inflammageing” may contribute to brain tissue damage, promoting the 29 

accumulation of clinical disability.10 Indeed, recent findings suggest that microglia assume an 30 
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activated state already during biological ageing,76 thus possibly promoting a receptive setting for 1 

the development of pathogenic microglia following multiple sclerosis onset. This chronically 2 

inflamed environment could be poorly conducive to remyelination and could contribute to a more 3 

rapid development of irreversible disability.9  4 

Finally, as in the general population, ageing in multiple sclerosis patients is accompanied by 5 

the development and accumulation of comorbidities. Rising incidence of diabetes, hypertension, 6 

and hyperlipidaemia has been described in multiple sclerosis patients, with an upward trend 7 

associated with advancing age.77 These comorbidities interact with multiple sclerosis pathology, 8 

potentially complicating disease diagnosis, treatment management, and prognosis, as discussed 9 

below.64 10 

Regarding the cognitive profile of late-onset multiple sclerosis patients, some studies have 11 

demonstrated a comparable frequency and pattern of cognitive deficits between this group and 12 

adult-onset multiple sclerosis patients.68 On the contrary, other studies have shown more 13 

pronounced cognitive deficits in late-onset multiple sclerosis compared to younger patients.78 14 

These deficits include impairment in visual learning and memory domains,53 and a higher 15 

prevalence of depressive symptoms.66 These differences may be attributed to the presence of 16 

comorbidities and age-related neurodegeneration.79,80 One study found severe cortical, cerebellar, 17 

and brainstem atrophy in late-onset multiple sclerosis patients with cognitive impairment.78 18 

Taken together, the clinical and cognitive profiles of late-onset multiple sclerosis patients 19 

suggest a form of the disease that is characterized by pronounced neurodegenerative processes and 20 

a high degree of cognitive impairment. These considerations suggest that diagnosis, monitoring 21 

and treatment of late-onset multiple sclerosis present unique challenges.  22 

 23 

Multiple sclerosis diagnostic criteria in aged patients 24 

The current diagnostic criteria for multiple sclerosis, i.e., the 2017 revision of the McDonald 25 

criteria,81 have been validated primarily using data from adult patients under 50 years of age with 26 

a typical clinically isolated syndrome (CIS) suggestive of multiple sclerosis and no comorbidities. 27 

However, healthy individuals older than 50 years often exhibit incidental T2-hyperintense WM 28 

lesions in the brain, possibly due to age-related comorbiditie.82,83 These lesions may be 29 
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indistinguishable from multiple sclerosis demyelinating lesions, they may substantially contribute 1 

to the overall WM lesion burden in multiple sclerosis patients, and they may be included in the 2 

count required to define the fulfillment of dissemination in space (DIS) criteria.81 3 

Periventricular lesions and “capping” increase with age, especially in subjects with cSVD 4 

(Figure 2).84,85 The requirement for three instead of one periventricular lesions needed to 5 

demonstrate periventricular involvement improved the specificity, reduced sensitivity, but had a 6 

marginal impact on accuracy of the 2017 McDonald criteria for DIS in CIS patients older than 40-7 

45 years.35,86 As a consequence, looking for more than one periventricular lesion may be prudent 8 

in older multiple sclerosis patients, certainly those with cerebrovascular risk factors.81,87  9 

Lesions close to the cortex increase with ageing,82 but the impact of age on fulfilling the 10 

criterion for cortical/juxtacortical involvement for DIS has not been explored yet. However, lesions 11 

associated with cSVD usually spare the cortex, and juxtacortical U fibers (Figure 2) since these 12 

regions receive dual blood supply, superficially from cortical penetrating arteries as well as from 13 

deeper vessels that ascend from medullary arteries. Therefore, a meticulous assessment of 14 

juxtacortical/cortical lesions is crucial for distinguishing multiple sclerosis from other 15 

comorbidities especially in older patients. 16 

Pontine lesions can occur with ageing, but they are typically located in the central portions 17 

of the pons and medial lemniscus, a distribution characteristic for cSVD (Figure 2)83,88,89since 18 

these regions correspond to vascular border zones, supplied by different penetrating arteries arising 19 

from the basilar and superior cerebellar arteries.90  Conversely, peripheral pontine lesions are more 20 

specific for multiple sclerosis.83 Therefore, in older multiple sclerosis patients, especially with 21 

cerebrovascular risk factor, peripheral pontine involvement and lesions abutting the 4 th ventricle 22 

may be useful to discriminate multiple sclerosis-related lesions from those due to other 23 

comorbidities (Figure 2). 24 

Spinal cord lesions are not observed with normal ageing or with age-related comorbidities.91-25 
93 Moreover, even though spinal cord arteriolosclerosis has been observed and may contribute to 26 

spinal WM pallor and myelin abnormalities, focal microinfarcts and cerebral amyloid angiopathy 27 

were not observed within the spinal cord parenchyma.94 Consequently, evaluating spinal cord 28 

involvement is crucial especially in older multiple sclerosis patients for both diagnostic and 29 

prognostic purposes. 30 
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Among potential diagnostic MRI markers under investigation, a proportion of WM lesions 1 

with the CVS (between 35% and 50%) on susceptibility-based imaging or having at least 3 or 6 2 

CVS-positive lesions (3- or 6-lesion rule) may help distinguish multiple sclerosis from other 3 

conditions (Figure 2).95-100 However, a significantly lower proportion of CVS-positive WM lesions 4 

occurs with ageing, with older multiple sclerosis patients (i.e., ≥50 years) having a significantly 5 

lower percentage of CVS-positive lesions compared to younger multiple sclerosis patients (61.5% 6 

vs 77.5%).62 Despite this, age had a minimal effect on fulfilling the different aforementioned CVS 7 

criteria, as most multiple sclerosis patients satisfied the different criteria.62 8 

Paramagnetic rim lesions (PRLs) (Figure 2), i.e., lesions showing a paramagnetic rim on 9 

susceptibility-based images, are specific to multiple sclerosis, can differentiate multiple sclerosis 10 

from other neurological conditions and may predict conversion from CIS to multiple sclerosis.101 11 

A recent meta-analysis estimated that the pooled prevalence of PRLs at lesion-level was 9.8%, but 12 

this showed a significant decrease with advancing age. However, at the patient level, the pooled 13 

prevalence of PRLs was 40.6%, and this prevalence was not influenced by age.102 Accordingly, 14 

although total number of PRLs decreases with age, the proportion of multiple sclerosis patients 15 

with at least one PRL seems stable throughout the lifespan, thus limiting the impact of ageing on 16 

this candidate diagnostic marker. 17 

 18 

Comorbidities: effects on imaging features 19 

There are several reasons why the effect of vascular comorbidities on the ageing multiple 20 

sclerosis population needs to be considered. First, vascular comorbidities, such as hypertension, 21 

and hyperlipidaemia are often present at multiple sclerosis onset, but become even more frequent 22 

5 years after multiple sclerosis diagnosis.103 These comorbidities increase with age (i.e., 23 

hypertension occurs in more than 50% of people with multiple sclerosis over the age of 60 years) 24 

and are associated with brain atrophy, WM lesions and cognitive changes even in people without 25 

multiple sclerosis.104 The interaction between comorbidities and multiple sclerosis may explain 26 

variability in clinical outcomes; for instance, people with multiple sclerosis who have vascular 27 

comorbidities might need a walking aid sooner and may take less time for treatment escalation 28 

than those without these comorbidities.105 Dual pathology or potentiation of multiple sclerosis-29 

related damage may explain these negative outcomes. In fact, systemic vascular disease showed a 30 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

ae251/7718946 by Eastm
an D

ental Institute user on 08 August 2024



17 

stronger association with cSVD in people with multiple sclerosis compared with those without, 1 

and the burden of cSVD linked with multiple sclerosis inflammatory activity.45 Vascular damage 2 

may lead to neuronal loss, as suggested by studies showing that permanent T1-hypointense lesions 3 

tend to occur in areas of low cerebral perfusion.106 In addition, treatments for vascular 4 

comorbidities may affect multiple sclerosis imaging outcomes (i.e., people with multiple sclerosis 5 

on antidiabetic drugs showed lower T2-hyperintense lesion volume than those not on these 6 

treatments).107  7 

There have been several cross-sectional and longitudinal studies looking at the effect of 8 

vascular comorbidities on MRI outcomes (Table 2).108,109 Most studies are small (mainly on CIS 9 

or relapsing-remitting multiple sclerosis), with heterogeneous definitions of comorbidity, and often 10 

not considering comorbidity treatments or smoking status. Overall combined vascular scores are 11 

associated with a faster brain parenchymal fraction loss. A similar effect was seen for hypertension, 12 

ischaemic heart disease and diabetes.108,109 In secondary progressive multiple sclerosis vascular 13 

comorbidities are associated with a decrease in normalized whole brain volume.110 Discrepant 14 

effects of vascular comorbidities on global T2-hyperintense lesion volume and contrast-enhancing 15 

lesions have been reported108 and vascular comorbidities do not appear to affect conversion from 16 

CIS into clinically definite multiple sclerosis in young patients.111 In face of a new T2-hyperintense 17 

WM lesion in an multiple sclerosis patient with vascular comorbidities, one could scrutinize its 18 

shape and topography. Each vascular comorbidity may affect T2 ‘multiple sclerosis-like lesions’, 19 

such as Dawson fingers, juxtacortical lesions82 or lesions with CVS62 differently (i.e., dyslipidemia 20 

is associated with a higher proportion of juxtacortical lesions, and hypertension is associated with 21 

a lower proportion CVS-positive WM lesions). Vascular comorbidities do not associate with 22 

lesions in the peripheral pons, typically affected in multiple sclerosis, but may increase the 23 

likelihood of lesions occurring in topographies usually affected by cSVD (i.e., central pons).83 24 

 25 
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MRI to investigate pathophysiology in ageing multiple 1 

sclerosis patients 2 

Ageing and brain atrophy in multiple sclerosis 3 

While age is often treated as a mere confounding variable in neuroimaging-based brain 4 

volumetric analyses, the effects of ageing and multiple sclerosis on brain atrophy are closely 5 

entangled (Figure 3). The relationship between age and brain volume is influenced by the disease 6 

and encodes disease-related information. Conversely, age is a fundamental modifier of multiple 7 

sclerosis clinical course and correlates with the outcomes that define treatment response.9 8 

Understanding the complex interaction between brain ageing and neurodegeneration and 9 

disentangling their overlapping imaging patterns and underlying mechanisms are the topics of 10 

increasing research interest. 11 

Normal ageing-related brain volume loss appears around the age of 30, with rates of around 12 

0.2% per year, and accelerates after the age of 50-60 up to 0.5% per year (5% per decade).112 13 

Against this background, multiple sclerosis is associated with disease-specific volume loss (i.e., 14 

atrophy in excess of normal ageing), which starts very early in the disease course, tends to follow 15 

specific spatial-temporal patterns, and is linked to poor clinical outcomes.113,114 Divergence from 16 

normal brain charts is observable as early as the preclinical phase, especially for the thalamus, with 17 

normal and multiple sclerosis lifespan trajectories of brain volume change tending to align in the 18 

elderly.115 Indeed, the proportion of brain atrophy that is attributable to ageing increases over time, 19 

while that attributable to multiple sclerosis pathology might decrease with age.116 Interestingly, a 20 

connection between ageing and multiple sclerosis-related brain atrophy has been demonstrated 21 

beyond the purely chronological level: shorter leukocyte telomere length, considered a marker of 22 

biological senescence, is associated with brain atrophy independent of chronological age and 23 

disease duration, suggesting that biological ageing may contribute to neurological injury in 24 

multiple sclerosis.117 25 

By flipping the classical paradigm of normative modelling, individual deviations from 26 

normal ageing trajectories can also be measured as the difference between neuroimaging-based 27 

age predictions relying on machine-learning techniques and chronological age.118 Using the brain-28 

age paradigm, various studies have consistently demonstrated that the brains of patients with 29 
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multiple sclerosis tend to look older than healthy controls on MRI, revealing premature/accelerated 1 

ageing.119,120 The brain-predicted age difference, proposed as an age-adjusted global measure of 2 

brain health, emerged as a promising biomarker in multiple sclerosis, and it correlates with 3 

disability scores both cross-sectionally and longitudinally.119 However, while the brain-age 4 

paradigm offers a window into brain ageing in multiple sclerosis, it may miss disease-specific 5 

effects.119  6 

In summary, the interaction between disease-specific and age-related brain volume changes 7 

remains complex and not completely understood, representing a crucial area for future research. 8 

Moreover, brain age is currently derived globally for the entire brain. In the future, 9 

determining brain age for each individual brain parcel could be useful, as brain atrophy associated 10 

with multiple sclerosis is non-random and it affects some regions more than others. 11 

 12 

Quantification of iron abnormalities 13 

Iron accumulation in the CNS occurs during physiological ageing as well as in 14 

neuroinflammatory and neurodegenerative disorders like multiple sclerosis.121 When ferrous iron 15 

(Fe2+)-content increases in the CNS - originating for example from micro-hemorrhages or 16 

degeneration of oligodendrocytes and myelin - reactive oxygen species (ROS) are produced that 17 

provoke metabolic dysfunction, oxidative stress, and glutamate Ca2+ excitotoxicity.122 Therefore, 18 

quantifying iron presence is fundamental to assess the extent of neurodegeneration that occurs in 19 

ageing and multiple sclerosis.  20 

MRI exploits “magnetic susceptibility (χ)” to assess the presence of iron in the CNS since 21 

this metal has the property to strongly increase the local magnetic field. Magnetic susceptibility 22 

can be acquired using gradient-echo (GRE) or echo-planar imaging (EPI) sequences, which 23 

provide images that can be reconstructed using T2star (T2*) mapping (when multi-echo data are 24 

available), susceptibility-weighted imaging (SWI) or quantitative susceptibility mapping (QSM).  25 

Applying QSM, it was possible to understand that iron specifically accumulates in some 26 

brain regions during the ageing process.123 According to the majority of QSM studies, there is an 27 

important iron increase in the putamen with less evidence available for the caudate, substantia 28 

nigra and other deep WM nuclei. In the cortex, most studies point to iron accumulation that is 29 
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especially evident in the frontal-parietal cortex,123 with one study showing that layer 5 in the motor 1 

cortex has a particular vulnerability to age-related QSM/iron increase.124 2 

It is also important to consider that different iron-sensitive quantitative MRI measures (i.e., 3 

quantitative T2, T2, T2* and maps derived from T2* data such as QSM) show peaks at different 4 

ages.125 This points to the need to interpret carefully imaging studies using measures that are 5 

sensitive to iron accumulation in the CNS. 6 

In multiple sclerosis patients, iron is stored in oligodendrocytes and myelin in the normal 7 

appearing WM and GM, whereas it is also found in microglia/macrophages and astrocytes in active 8 

and chronic active lesions.37 In contrast to healthy controls, iron appears to decrease with age in 9 

the subcortical WM of people with multiple sclerosis,37 although it is relatively increased in the 10 

peri-plaque tissue.37 Similarly, iron transport (Hephaestin) and oxidation (Ceruloplasmin) are 11 

increased in surrounding multiple sclerosis lesions.37 12 

Interestingly, iron in the basal ganglia appears to increase more over time in CIS vs multiple 13 

sclerosis patients (as measured with T2* data)126 and people with progressive multiple sclerosis 14 

exhibit more iron in the basal ganglia than people with relapsing-remitting multiple sclerosis.127 15 

However, the thalamus shows a peculiar behaviour with progressive iron decrease – which is more 16 

pronounced in secondary progressive multiple sclerosis vs relapsing-remitting multiple sclerosis128 17 

- even after correction for atrophy.129 Last, as previous mentioned, PRLs – a special lesion subtype 18 

that shows an iron accumulation at the edge – appear to decrease with age and disease duration.102 19 

 20 

Quantification of myelin damage and repair 21 

Assessing myelin damage and repair in vivo with MRI has been an ambitious goal for 22 

decades. The composition and architecture of myelin and its corresponding electromagnetic 23 

properties open the door for several quantitative MR techniques. This includes relaxation time 24 

mapping, myelin water fraction (MWF) mapping, magnetization transfer (MT) imaging, 25 

inhomogeneous MT, and the assessment of molecular diffusion.130 Latest developments include 26 

higher order diffusion models131 and magnetic susceptibility source separation which is based on 27 

the diamagnetic properties of myelin.132 Not all of the proposed methods are readily available for 28 

clinical application because of long acquisition times, extensive post-processing requirements or 29 
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limited sequence availability. Nevertheless, their validation is a fundamental prerequisite before 1 

being used as a specific MR biomarker for myelin. When considering all post-mortem validation 2 

studies carried out to date, best evidence regarding sensitivity and specificity is given for MWF 3 

and MT ratio (MTR) in particular when both the number of tissue samples included in these studies 4 

and the correlation factor are taken into account.133 However, care should be taken when 5 

extrapolating results from validation studies without considering fixation effects, measurement 6 

temperature and magnetic field strengths.  7 

Relevant insights into MR measures for myelin do not only come from validation studies but 8 

also from observations in longitudinal clinical and pre-clinical studies. Several studies have used 9 

MTR to track lesion evolution over time in multiple sclerosis. These studies have shown that the 10 

extent of demyelination and remyelination is the same in new and chronic lesions and that 11 

remyelination is incomplete in most lesions.134 This also suggests that completely demyelinated 12 

lesions, which are common in histopathology, represent lesions that must have undergone multiple 13 

episodes of demyelination and incomplete remyelination. While longitudinal studies on MWF in 14 

multiple sclerosis lesions are rare, they also highlight the dynamic changes of lesions, with only 15 

11% of silent lesions showing no change over a period of two years.135 Inhomogeneous MTR is 16 

believed to be particularly sensitive to highly restricted protons in lipid chains, making it more 17 

specific to the phospholipid bilayer of myelin compared to other MT imaging methods and 18 

MWF.136,137 Inhomogeneous MTR has been found to be reduced in WM lesions and normal-19 

appearing WM compared with control WM, and reduced in WM lesions compared with normal-20 

appearing WM.138,139 21 

Considering myelin changes in the ageing brain also raises the question of how ageing per 22 

se affects MR measures of myelin content and integrity.140 The most relevant MRI feature that 23 

changes with age is an increase in water content that begins around age 50 and is associated with 24 

prolonged T1 and T2 relaxation times.141 While changes in relaxation times are not expected to 25 

impact quantitative myelin measurements, subtle loss of microstructure and increased perivascular 26 

space have been shown to be a significant cause of underestimation of MWF in the ageing brain.142 27 

The same may be true for the MTR, but it is not yet proven. 28 

 29 
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MRI to measure treatment effect in the ageing multiple 1 

sclerosis patient 2 

MRI parameters, typically the presence of new/newly-enlarging T2-hyperintense and 3 

gadolinium (Gd)-enhancing WM lesions on follow-up scans, are central in the definition of 4 

treatment response scores in patients with multiple sclerosis.143 However, group-level treatment 5 

efficacy6 shows a decreasing trend with increasing age, probably due to less MRI-visible 6 

inflammation.144 Conversely, older patients tend to show incidental T2 WM hyperintensities, 7 

mostly of vasculo-ischaemic origin.145 Therefore, the question arises as to whether monitoring the 8 

appearance of new lesions in follow-up scans is the most appropriate way to assess treatment 9 

response in the ageing patient. Unfortunately, no studies have focused on the definition of 10 

treatment response in patients older than 55 years, but lessons can be learned from discontinuation 11 

studies mostly targeting older populations and from post-hoc analyses of randomized controlled 12 

trials as well as real-world studies looking at the specific impact of age on treatment effect on MRI 13 

inflammatory markers.  14 

The recent treatment discontinuation DISCOMS trial146 included stable (no relapse or new 15 

MRI lesions in the previous three years) multiple sclerosis patients older than 55 years of age (for 16 

a median age of 62/63 years for both trial arms) who were randomized to discontinue or maintain 17 

their disease-modifying drug. New T2-hyperintense WM lesions were observed in 3.9% of patients 18 

treated (10.7% in discontinued patients) over the 24 months of the study; this figure is much lower 19 

than that observed in treatment response studies,143,147 which is around 50%. Nonetheless, caution 20 

should be exercised as these figures are not directly comparable due to relevant design differences. 21 

Of note, in the DISCOMS trial the presence of comorbidities did not increase the risk of new T2-22 

hyperintense WM lesions, indicating that the use of specific markers to detect new multiple 23 

sclerosis lesions (i.e., PRLs or lesions with the CVS) may not be needed. A post-hoc analysis of 24 

the natalizumab trials148 looking at the impact of age on treatment effect has also shown that older 25 

age is associated with a lower prevalence and degree of focal inflammatory activity in both the 26 

placebo and in the interferon and natalizumab-treated arms. Unfortunately, no patients older than 27 

55 years were included in these trials, but such a trend may likely be maintained beyond that age. 28 

Again, a recent real-world study cohort including 30% of patients beyond 40 years of age found 29 

that older age was associated with lower risk of MRI activity over follow-up in treated patients.149 30 
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In summary, even though age is associated with a lower risk of MRI-measured inflammatory 1 

activity, a higher risk of disease progression is observed with increasing age in multiple sclerosis 2 

patients. Such trends are also observed in treated patients, thus monitoring active inflammation to 3 

assess treatment efficacy and effectiveness does not seem to be advisable. Other MRI parameters 4 

(e.g., brain volume changes and slowly expanding lesions) should be studied in this age group to 5 

make sure that the pathological underpinnings of treatment response are adequately gauged. 6 

 7 

Conclusions 8 

Peculiar immunological and pathological changes as well as a higher prevalence of 9 

comorbidities occurs with ageing. These factors may have substantial detrimental effects on 10 

disease evolution in addition to multiple sclerosis-related pathology in older patients. Since the 11 

prevalence of ageing multiple sclerosis patients is constantly increasing, it is fundamental to 12 

investigate the clinical, immuno-pathological and MRI features of ageing in multiple sclerosis. 13 

The application of different MRI techniques that are sensitive and specific to the different 14 

pathological processes of multiple sclerosis may offer a substantial and clinically relevant 15 

contribution to allow a timely and accurate diagnosis in this peculiar population, limiting the risk 16 

of misdiagnosis, as well as to optimize monitoring of treatment to improve the clinical evolution 17 

of ageing multiple sclerosis patients. A deeper understanding of the evolving dynamic 18 

pathophysiological processes that may be peculiar of an older age may also contribute to the 19 

identification of new potential targets for future neuroprotective therapeutic strategies. 20 
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Appendix 1 23 

Collaborators: Ludwig Kappos, Gabriele De Luca, Menno Schoonheim. 24 

The authors and collaborators are members of the MAGNIMS Study Group (www.magnims.eu), 25 

a group of European clinicians and scientists with an interest in undertaking collaborative studies 26 

using MRI methods in multiple sclerosis. The network is independent of any other organization 27 
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and by the time the workshop this work is based upon was run by a steering committee whose 1 

members were: M. A. Rocca, J. Sastre-Garriga, F. Barkhof, O. Ciccarelli, N. de Stefano, M. Filippi, 2 

Claudio Gasperini, L. Kappos, Gabriele De Luca, C. Enzinger, À. Rovira, M. Schoonheim, and T. 3 

Yousry.  4 
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 20 

Figure legends 21 

Figure 1 The ageing perivascular compartment in multiple sclerosis. Perivascular spaces 22 

(PVS), which are implicated in brain waste removal, are involved by ageing and multiple sclerosis 23 

(MS) at different levels. Cerebrospinal fluid (CSF), produced in the choroid plexus, exchanges 24 

with brain interstitial fluid. In addition to the established CSF exit pathways along the spinal 25 

subarachnoid space, cranial nerves, and arachnoid granulations, a portion of CSF flows into the 26 

brain parenchyma via the periarterial space. This flow is part of the glymphatic drainage pathway, 27 

illustrated along the arteries and through pial fenestrations. Concurrently, protein degradation 28 
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products are conveyed within the muscularis of arteries, moving counter to the direction of blood 1 

flow, into the subarachnoid arteries. This process is part of the intramural periarterial drainage 2 

pathway, represented in cyan along the artery (A). At the arterial and arteriolar level, cross-3 

sectional views reveal that the perivascular space comprises the astrocytic end-feet processes 4 

(including their corresponding basement membrane), the pia mater (which becomes increasingly 5 

fenestrated closer to the capillary level), smooth muscle cells, and the endothelium (each with their 6 

respective basement membranes). Within capillaries, the perivascular space is defined by the 7 

shared basement membranes of the astrocytic end-feet processes and the endothelium. The CSF-8 

filled subarachnoid spaces are also evident along veins and venules, where the layers of smooth 9 

muscle cells are largely absent (B). Age-related factors such as atherosclerosis/arteriolosclero sis, 10 

elastin dysfunction, and periarterial collagen deposition have been implicated in vascular stiffness, 11 

diminished debris transport capacity, and an increased barrier to oxygen delivery. In MS, 12 

perivascular changes include collagen deposition and perivenous inflammatory infiltrates that 13 

come into contact with CSF (C). Abbreviations: cerebrospinal fluid (CSF); multiple sclerosis 14 

(MS). 15 

 16 

Figure 2 Summary of the typical lesional MRI findings in multiple sclerosis compared to 17 

ageing and cSVD. Typical MS lesions include (A) periventricular lesions, (B) juxtacortical and 18 

(B) cortical lesions, (C) WM lesions showing the CVS, (E) PRLs, (F) infratentorial lesions mainly 19 

located at the periphery, close to the CSF, and (G) spinal cord lesions. Typical lesions occurring 20 

with ageing and cSVD include (H) subcortical WM lesions, (I) deep WM lesions, (J) 21 

periventricular lesions and “capping”, (K) cortical microinfarcts, (L) central pontine lesions, and 22 

(L) no spinal cord lesions. See text for further details. Abbreviations: CSF=cerebrospinal fluid; 23 

cSVD=cerebral small vessel disease; CVS=central vein sign; MRI=magnetic resonance imaging; 24 

MS=multiple sclerosis; PRL=paramagnetic rim lesion; WM=white matter. 25 

 26 

Figure 3 Schematic representation of the interplay between the effects of multiple sclerosis -27 

related neurodegeneration and ageing on brain atrophy. Both ageing and MS are associated 28 

with brain atrophy, with partially overlapping patterns (blue arrows). Rather than being simply 29 

additive, the effects of ageing and MS on brain atrophy are linked by a complex interaction (red 30 
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arrow): the relationship between age and brain volume is influenced by MS and encodes disease-1 

related information; ageing shapes MS-related brain atrophy by modifying the disease course and 2 

the response to treatment. Created with http://www.biorender.com/. Abbreviations: MS=multiple 3 

sclerosis. 4 

 5 
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Table 1 Clinical and pathological features of late-onset multiple sclerosis 1 
Definition No unified consensus on the cut-off of age at onset  

Generally considered as those cases with disease onset after 50 years of age 

Possible underlying 

pathophysiological mechanisms 

More limited overt inflammatory activity  

More severe neurodegenerative phenonema (e.g., neuro-axonal loss) 
Less efficient remyelination capacity 

More limited CNS reserve and neuroplasticity 

Symptoms at clinical 
presentation 

High frequency of spinal cord involvement 
High proportion of progressive forms  

Disease course More severe disease course and faster disability progression  
Significantly shorter time to reach clinically-relevant milestones of disability 

Lower prevalence of clinical relapses and new white matter lesions 

Cognitive impairment Impairment in visual learning and memory  

Comorbidities High incidence of diabetes, hypertension, and hyperlipidaemia 

High prevalence of depression 

 2 
 3 
 4 

Table 2 Summary of the effects of vascular comorbidities on MRI outcomes 5 
Comorbidity WM lesions Gd-enhancing 

lesions 
Brain volume Reference(s) 

Hypertension +/− ? + 

(lower BPF, GM and cortical 
GM volume loss, lateral 
ventricle enlargement) 

Geraldes et al.,82 Pichler et al.,111 

Jakimovski et al.,150 Kappus et al.,151 
Lorefice et al.152 

Hyperlipidemia  + +/− +/− Lorefice et al.,152 Fitzgerald et al.,153 

Weinstock-Guttman et al.154 

Diabetes − ? + 
(lower BPF, GM volume, 

cortical GM volume) 

Salter et al.,109 Lorefice et al.,152 
Fitzgerald et al.153 

Ischaemic heart 
disease 

? ? + 
(GM and cortical GM volume 

loss) 

Kappus et al.151 

Obesity +/− 
(T1-hypointense 

lesion volume +, 
not T2-

hyperintense 
lesion volume) 

− +/− Fitzgerald et al.,153 Manuel Escobar et 

al.,155 Ben-Zacharia et al.,156 Galioto et 
al.157 

Grouped vascular 
co-morbidity 

+ ? + 
(Higher Framingham risk 

scores – reduced BPF loss 
over time) 

Marrie et al.158 

Count of comorbid 
conditions  

+ ? +/− Pichler et al.,111 Fitzgerald et al.153 

(+) The presence of the VRF/VRF score was reported to influence the imaging outcome; (+/−) Some studies reported that the presence of the 6 
VRF/VRF score influences the imaging outcome but not others; (−) No association was reported between the presence of the VRF/VRF score 7 
and the imaging outcome; (?) Insufficient evidence.  BPF=brain parenchymal fraction;  Gd=gadolinium; GM=gray matter;  VRF=vascular risk factor;  8 
WM=white matter. 9 
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