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Abstract
Background and Objectives
Cognitive decline rates in Alzheimer disease (AD) vary greatly. Disease-modifying treatments
may alter cognitive decline trajectories, rendering their prediction increasingly relevant. We
aimed to construct clinically applicable prediction models of cognitive decline in amyloid-
positive patients with mild cognitive impairment (MCI) or mild dementia.

Methods
From the AmsterdamDementia Cohort, we selected amyloid-positive participants withMCI or
mild dementia and at least 2 longitudinal Mini-Mental State Examination (MMSE) measure-
ments. Amyloid positivity was based on CSF AD biomarker concentrations or amyloid PET.
We used linear mixed modeling to predict MMSE over time, describing trajectories using a
cubic time curve and interactions between linear time and the baseline predictors age, sex,
baseline MMSE, APOE e4 dose, CSF β-amyloid (Aβ) 1–42 and pTau, and MRI total brain and
hippocampal volume. Backward selection was used to reduce model complexity. These models
can predict MMSE over follow-up or the time to anMMSE value. MCI andmild dementia were
modeled separately. Internal 5-fold cross-validation was performed to calculate the explained
variance (R2).

Results
In total, 961 participants were included (age 65 ± 7 years, 49% female), 310 had MCI
(MMSE 26 ± 2) and 651 had mild dementia (MMSE 22 ± 4), with 4 ± 2 measurements
over 2 (interquartile range 1–4) years. Cognitive decline rates increased over time for
both MCI and mild dementia (model comparisons linear vs squared vs cubic time fit; p <
0.05 favoring a cubic fit). For MCI, backward selection retained age, sex, and CSF Aβ1–42
and pTau concentrations as time-varying effects altering the MMSE trajectory. For mild
dementia, retained time-varying effects were Aβ1–42, age, APOE e4, and baseline MMSE.
R2 was 0.15 for the MCI model and 0.26 for mild dementia in internal cross-validation.
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A hypothetical patient with MCI, baseline MMSE 28, and CSF Aβ1–42 of 925 pg/mL was predicted to reach an MMSE
of 20 after 6.0 years (95% CI 5.4–6.7) and after 8.6 years with a hypothetical treatment reducing decline by 30%.

Discussion
We constructed models for MCI and mild dementia that predict MMSE over time. These models could inform patients about
their potential cognitive trajectory and the remaining uncertainty and aid in conversations about individualized potential
treatment effects.

Introduction
Alzheimer disease (AD) is a progressive neurodegenerative
disease with considerable variability in the rate of cognitive
decline.1 The disease is highly prevalent, with roughly 100
million people estimated to be in the mild cognitive impair-
ment (MCI) and dementia stages of the disease.2 From the
MCI stage, it is estimated to take 4 years on average before
people have progressed to dementia.3 New disease-modifying
treatments targeting amyloid plaques slow disease pro-
gression in the MCI and mild dementia stages of AD.4-6

However, the clinical meaningfulness of these medications is
debated.7 Two factors in this debate are the challenge of
translating the identified 30% reduction in decline rates into
outcomes relevant to patients and the complexity of assessing
the impact of disease-modifying treatments on an individual’s
decline trajectory because of heterogeneity in progression.

Patients are highly interested in their expected disease course.8,9

To accommodate these needs, prediction models of individual-
ized natural cognitive trajectories and the associated uncertainty
are urgently needed. When these individualized natural course
predictions are combined with intervention efficacy data, the
putative intervention benefits can be personalized.

Predicting progression from MCI to dementia has received
much attention in the literature.10 While the future risk of
dementia can be predicted with reasonable precision usingMRI
and CSF biomarker information,10-12 this crude end point may
not be the most meaningful to patients. In addition, patients
with mild dementia do not benefit from these predictions while
prognostic information is equally important to them. In a study
on outcomes that matter to patients with AD and their care-
givers, participants indicated cognitive decline to be among the
most important factors.8 Earlier models predicting cognitive
decline have been published.12-14 However, they are either
limited to patients with MCI12 or the models have not been
built for easy clinical use.13,14 Therefore, we aimed to construct
clinically applicable prediction models of cognitive decline in
amyloid-positive patients with MCI or mild dementia.

Methods
Design and Patients
In this longitudinal study, we included participants from the
Amsterdam Dementia Cohort, which is a mixed memory
clinic cohort of all patients with memory complaints pre-
senting at Alzheimer Center Amsterdam. While the Amster-
dam Dementia Cohort does not have exclusion criteria,
elderly patients are often referred to the geriatric outpatient
clinic and thus do not present themselves for inclusion in the
cohort. Inclusion criteria for this study were a baseline di-
agnosis of MCI or mild dementia (clinical dementia rating of
less than 2), amyloid positivity at baseline, and a baseline and
at least 1 follow-up Mini-Mental State Examination (MMSE).
Participants had their baseline visit between August 2002 and
December 2022. This study followed the Transparent Report
of a Multivariable Prediction Model for Individual Prognosis
or Diagnosis reporting guideline.

At our memory clinic, a standardized 1-day diagnostic workup
is performed, including medical history; neurologic, physical,
and neuropsychological tests; MRI; and lumbar puncture.15

This includes measurements of height, weight, systolic and
diastolic blood pressure, and information on depression with
the Geriatric Depression Scale,16 education on the Verhage
scale,17 and smoking history. Diagnosis of dementia due to
AD and MCI was made in a multidisciplinary meeting.18 All
diagnoses fulfilled the core clinical criteria, National Institute
on Aging-Alzheimer’s Association criteria.19,20 During annual
follow-up, medical examination and neuropsychological tests
were performed without blinding to information gathered at
baseline.

We used the MMSE as the main cognitive outcome in this
study.21 Those with MCI had a median follow-up of 3
(interquartile range [IQR] 2–5) years with on average 4
(SD 2) MMSE measurements per participant for a combined
1,315 measurements. The mild dementia group had a median
of 2 (IQR 1–3) years of follow-up with an average of 3 (SD 2)
MMSE measurements per participant for a combined 2,113

Glossary
Aβ = β-amyloid; AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; IQR = interquartile range;
MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination; RAVLT = Rey Auditory Verbal Learning Test.
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measurements. As an additional outcome to provide in-
formation on the decline in memory, we used the Dutch
version of the Rey Auditory Verbal Learning Test (RAVLT)
Immediate Recall score (total available: n = 2,855, MCI: n =
1,227, mild dementia: n = 1,628).22

Amyloid Positivity and CSF Measurements
Amyloid positivity was defined based on either AD bio-
markers in CSF or on amyloid PET within 6 months after the
baseline MMSE. β-Amyloid (Aβ) 1–42 and phosphorylated
threonine 181 (pTau) information from CSF was available in
874 (91%) participants. Before 2018, sandwich ELISA was
used (Innotest, Fujirebio, Gent, Belgium). Innotest Aβ values
were drift corrected.23 From 2018 onward, CSF was analyzed
using Elecsys (Roche, Rotkreuz, Switzerland). For the
Innotest assays, a drift-corrected Aβ1–42 below 813 pg/mL
was considered positive, and for Elecsys assays, a pTau/
Aβ1–42 ratio of more than or equal to 0.020 was considered
positive.24 For the prediction models, Innotest CSF values
were bridged to Elecsys.25 In total, 860 participants were
amyloid positive based on their CSF.

Amyloid PET imaging was performed for 309 (32%) partic-
ipants using 3-Tesla Ingenuity TF PET/MRI, Ingenuity TF
PET/CT, and Gemini TF PET/CT scanners (Philips
Healthcare, Amsterdam, the Netherlands) with the 11C-
Pittsburgh compound B, 18F-flutemetamol, and 18F-
florbetaben compounds.26,27 Visual rating was performed
according to company guidelines or for 11C-Pittsburgh
compound B according to previously published methods and
discriminated between positive scans (n = 297) and negative
scans.28

Two hundred twenty-two (23%) participants had both CSF
and PET measurements. Participants could be included when
either their CSF or amyloid PET was positive. CSF and PET
were concordant for 196 (20%) participants and discordant
for 26 (3%) based on positive CSF and negative amyloid PET
(n = 12) or vice versa (n = 14).

MRI Measurements
MRI was performed on site in 762 (79%) participants. Before
2008, 1-T and 1.5-T scanners were used (Magnetom Avanto,
Impact, and Sonata, Siemens; Signa, GE Healthcare). From
2008 onward, 3-T scanners were used (Magnetom Siemens;
Discovery MR750, Signa GE Medical Systems; Ingenuity TF
PET/MR, Philips Medical Systems; and Titan, Toshiba
Medical Systems). All scans were performed using a stan-
dardized protocol.29

Volumetric MRI measurements were the primary MRI bio-
markers used in this study. Left and right hippocampal volume
and whole brain volume were quantified using Freesurfer
version 7.1 (available in 709 [74%] participants), visually
checked, and scanner-related differences were adjusted for
thorough harmonization using the ComBat procedure.30

Statistical Analyses
Baseline information was missing for some participants
(eTable 1) on all predictors except for age, sex, and baseline
MMSE and diagnosis. Missing information was imputed using
multiple imputations by chained equations in 25 imputation
data sets. Variables used in the identification of donors were
selected based on a minimal correlation of 0.05 with the
variable being imputed. Baseline diagnosis was used in all
donor selections. Parameter estimates were pooled across the
imputation sets. The distribution of imputed values and
convergence were assessed visually.

We used linear mixed models to model MMSE over time,
including a random slope and intercept per individual. Sepa-
rate models were developed for MCI and mild dementia.
First, the trajectory of MMSE over time (including baseline in
the outcome) was described using only a cubic time curve.
Subsequently, we used backward selection procedures to
construct models predicting MMSE over follow-up using a
cubic time curve and baseline measurements. The baseline
measures could be included as predictors with a constant
effect over time (no interaction with time) or as predictors
with a time-varying effect (interaction of linear time × baseline
predictor). In these models, baseline MMSE was included as
a potential predictor. Backward selection was started from (1)
a base model including age, sex, and baseline MMSE; (2) a
biomarker model adding to the base model: CSF Aβ1–42 and
pTau, MRI total brain and hippocampal volume, and APOE
e4; or (3) a full model adding a range of clinical variables and
risk factors encompassing the Verhage score, Geriatric De-
pression Scale, systolic and diastolic blood pressure, body
mass index (categorized as <25, 25–30, and >30 kg/m2), and
smoking history. The various models represent variations in
information availability in clinical settings. Variables that were
selected (p < 0.10) in at least half of the 25 imputed sets were
included in the final models pooled over all imputed sets. The
time, age, and sex variables were preselected in all imputation
sets.

We investigated the effect of the statistical method used by
evaluating 2 additional modeling approaches without back-
ward selection: no parameter penalization and ridge penali-
zation. Both statistical methods were applied to the 3 models
listed above. For ridge penalization,31 local shrinkage was
applied in 4 groups: the cubic time curve, MMSE at baseline,
other parameters without time-varying effects, and parameters
with linear time-varying effects.

Predictive performance was assessed using internal 5-fold
cross-validation for the no parameter penalization, backward
selection, and ridge penalization models. Out-of-sample root
mean squared error, median absolute deviation, and pro-
portion of explained variance (R2) were calculated. Internal
cross-validation of ridge penalization was performed using 5
imputed data sets because of computational limitations. For
MCI and mild dementia, 1 statistical method and model
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(base, biomarker, full model) was selected to highlight based
on the model performance and the number of parameters
included in the models, favoring a more parsimonious model.

We visualized the predicted decline pattern in the MCI and
mild dementia groups in one of the imputed data sets (arbi-
trarily the first) based on the estimated fixed and random
effects, highlighting the 2nd, 16th, 50th, 84th, and 98th per-
centiles of predicted decline at different time points. To vi-
sualize the interindividual variation (error) and provide
insight into the uncertainty surrounding individualized pre-
dictions, we plotted 1,000 samples from the random effect
distribution around the predicted mean MMSE for a hypo-
thetical patient with MCI and mild dementia. The hypo-
thetical patients were based on the median predictor values in
each group. The decline is also shown with hypothetical in-
terventions that reduce the predicted meanMMSE decline by
10%, 30%, and 50%.

To simplify the interpretation of the predicted decline, we
used the model to estimate the time to reach a threshold
MMSE of 20 (indicating mild dementia) for MCI and 15 for
moderate dementia.32 The time to the threshold MMSE was
calculated for different baseline CSF Aβ1–42 and baseline
MMSE measurements; other predictors were fixed at the
median. In addition, we provide the time to threshold MMSE
with a hypothetical intervention that reduced decline by 30%.

We performed external validation for all constructed models in
data from Alzheimer’s Disease Neuroimaging Initiative
(ADNI).33 ADNI is a longitudinal self-referral scientific cohort of
patients with cognitively unimpairment, MCI, and dementia
aged 55–99 years.33 Important exclusion criteria were the pres-
ence of significant neurologic disease other than AD or prior
psychiatric diagnoses interfering with the cognitive assessments.
The cohort was launched in 2003 to test whether serial MRI,
PET, other biological markers, and clinical and neuro-
psychological assessment can be combined to measure the
progression of MCI and early AD. Baseline and follow-up
measurements in ADNI included all information needed to
validate the models. No visual MRI read information was avail-
able from ADNI. From ADNI, participants who met the in-
clusion criteria were included for this study (see eTable 2 for
baseline characteristics). For the MCI sample, we selected those
with “late”MCI.34 In total, 598 ADNI participants were included
(389 MCI; 209 mild dementia), with 2 (IQR 1–4) years of
follow-up and 4 (IQR 3–6) MMSE measurements on average.
The mean age was 74 years (SD 8), and 41% were female.

The modeling and validation steps were also performed with
RAVLT as the outcome (see eMethods for additional in-
formation). Exploratory analyses using visual MRI read bio-
markers and excluding CSF as potential predictors are
included in eMethods and eResults.

The highlighted models are available as a shiny app as a proof
of concept for the implementation of prediction tools on

predictmmse.com. Normally distributed variables are displayed
with means and SD and skewed distributions with medians
and IQRs. Model diagnostics were assessed graphically. All
analyses were performed in R version 4.2.1,35 with the use of
the “lme4,” “mgcv,” and “mice” packages.

Standard Protocol Approvals, Registrations,
and Patient Consents
The study protocol of the Amsterdam Dementia Cohort was
approved by the ethical review board of the VU University
Medical Center (2016.061). Written informed consent was
obtained from all patients for the use of their data for research
purposes.

Data Availability
Data can be made available upon reasonable request.

Results
Within the Amsterdam Dementia Cohort, there were 1,789
amyloid-positive participants with MCI (n = 436) or mild
dementia (n = 1,344) and a baseline MMSEmeasurement. Of
those, 961 participants also had a follow-up MMSE mea-
surement (Table 1), 310 of whom hadMCI and 651 had mild
dementia; 462 (48%) were female; over 90%wereWhite, with
an average age (SD) of 65 years (7). Themild dementia group
without follow-up had a 1.7 (SE 0.2) point lower baseline
MMSE and 93 (SE 12) pg/mL lower CSF Aβ1–42 concen-
tration (eTable 3) than the group with follow-up.

In both MCI and mild dementia, the yearly decline in MMSE
increased during follow-up (model comparisons for linear vs
squared, and squared vs cubic time fit; p < 0.05). In MCI, the
average MMSE declined from 26.4 (95% CI 26.2–26.7) to
25.8 (25.5–26.1) after 18 months, to 24.2 (23.7–24.6) after 3
years, and to 21.0 (20.2–21.7) after 5 years. In mild dementia,
the averageMMSE declined from 22.4 (95%CI 22.0–22.7) to
19.8 (19.4–20.2), 15.3 (14.7–15.9), and 7.8 (6.8–8.9),
respectively.

Internal cross-validation indicated that the models captured
some of the variation in decline in MMSE in patients with
MCI and mild dementia, albeit considerable uncertainty
remained (Table 2). The backward selected models per-
formed comparably with the models without penalization and
had slightly lower performance than the ridge penalization
model (eTables 4–6), but we highlight the backward selected
models because they use fewer parameters. In the backward
selected models, the biomarker model (model 2) performed
slightly better than the basic model (model 1) and similar to
the full model (model 3), albeit with fewer parameters. Thus,
we focus on the biomarker model in the following sections. In
the MCI group, the mean out-of-sample R2 and median ab-
solute deviation in internal validation (Table 2) were 0.17 and
2.05, respectively, and in the mild dementia group, 0.26 and
2.83. This means that in half of the predictions made for
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Table 1 Baseline Characteristics

Total (n = 961)

Partition based on diagnosis

MCI (n = 310) Mild dementia (n = 651)

Age at baseline, y, mean ± SD 65 ± 7 66 ± 7 65 ± 7

Female, n (%) 461 (48.0) 141 (45.5) 320 (49.2)

MMSE at baseline, mean ± SD 23.6 ± 3.9 26.5 ± 2.3 22.3 ± 3.8

No. of MMSE measurements, mean ± SD 3.6 ± 1.8 4.2 ± 2.1 3.2 ± 1.5

Years between first and last MMSE, median (IQR) 2.2 (1.2–3.6) 3.1 (2.0–4.9) 2.0 (1.1–3.1)

RAVLT Immediate Recall at baseline, mean ± SD 25.3 ± 8.5 30.2 ± 7.3 22.9 ± 8.1

Years of education,a mean ± SD 12.2 ± 3.0 12.5 ± 3.1 12.0 ± 2.9

Geriatric Depression Scale, median ± IQR 2.8 ± 2.4 3.0 ± 2.5 2.7 ± 2.3

Systolic blood pressure, mm Hg, mean ± SD 147 ± 19 146 ± 19 148 ± 19

Diastolic blood pressure, mm Hg, mean ± SD 84 ± 10 84 ± 10 84 ± 10

Body mass index, kg/m2, n (%)

Below 18.5 18 (2.0) 3 (1.0) 15 (2.5)

18.5–25 522 (57.6) 157 (53.2) 365 (59.7)

25–30 303 (33.4) 118 (40.0) 185 (30.3)

Over 30 63 (7.0) 17 (5.8) 46 (7.5)

Reported smoking status, n (%)

Never 473 (49.7) 146 (47.6) 327 (50.8)

Stopped 331 (34.8) 108 (35.2) 223 (34.6)

Current smoker 147 (15.5) 53 (17.3) 94 (14.6)

CSF measures

β-Amyloid 1–42, pg/mL, mean ± SD 757 ± 210 789 ± 217 742 ± 205

Phosphorylated tau, pg/mL, median (IQR) 32.2 (23.8–43.2) 29.7 (22.9–41.0) 33.5 (24.3–45.3)

MRI measures

Medial temporal atrophy score, mean ± SD 1.1 ± 0.8 0.8 ± 0.7 1.3 ± 0.8

Global atrophy score, mean ± SD 0.9 ± 0.6 0.7 ± 0.6 1.0 ± 0.7

Fazekas score, mean ± SD 1.0 ± 0.8 1.0 ± 0.7 1.0 ± 0.8

Lacunes visually present, n (%) 152 (20.7) 63 (25.0) 89 (18.4)

Microbleeds visually present, n (%) 62 (8.2) 27 (10.5) 35 (7.0)

Total brain volume, mL, mean ± SD 1,078 ± 110 1,102 ± 113 1,066 ± 106

Hippocampal volume, mL, mean ± SD 6.8 ± 0.9 7.0 ± 0.9 6.6 ± 0.9

APOE «4 alleles, n (%)

0 247 (26.4) 67 (22.4) 180 (28.3)

1 447 (47.8) 140 (46.8) 307 (48.3)

2 241 (25.8) 92 (30.8) 149 (23.4)

Abbreviations: IQR = interquartile range; MMSE = Mini-Mental State Examination; RAVLT = Rey Auditory Verbal Learning Test.
Baseline characteristics shown before imputation.
a Years of education were calculated from the Verhage score.
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patients with MCI, the observed MMSE deviated by less than
2 points from the predicted MMSE. Correspondingly, the
deviation was less than approximately 3 points in mild
dementia.

Different variables were retained in the MCI and mild de-
mentia groups (Table 3, eTables 4, and 6). In MCI, baseline
MMSE was retained as a time-constant effect and retained
time-varying effects were age, sex, and CSF pTau and Aβ1–42.

In mild dementia, retained time-constant effects were sex and
CSF pTau and retained time-varying effects were age, baseline
MMSE, APOE e4, and CSF Aβ1–42. Volumetric MRI in-
formation was retained in none of the biomarker models.

We visualized the heterogeneity in predicted decline in the study
cohort (Figure 1) to allow patients to compare themselves with a
representative “population.” The 84th (+1 SD from the mean)
and 16th (−1 SD from the mean) percentiles of the predicted

Table 2 Predictive Performance of the MMSE Prediction Models in Internal Cross-Validation

Model
No. of parameters
(n; range over folds) RMSE (range over folds) MAD (range over folds) R2 (range over folds)

Mild cognitive impairment

Base model

No penalization 10 3.67 (3.36–3.97) 2.17 (1.84–2.75) 0.06 (−0.15 to 0.24)

Backward selection 8 (7–8) 3.62 (3.38–3.96) 2.13 (1.85–2.50) 0.09 (−0.15 to 0.23)

Ridge 10 3.52 (3.20–3.93) 2.09 (1.84–2.59) 0.15 (−0.09 to 0.26)

Biomarker model

No penalization 18 3.48 (3.15–3.88) 2.06 (1.77–2.50) 0.16 (−0.04 to 0.30)

Backward selection 13 (11–15) 3.47 (3.13–3.85) 2.05 (1.71–2.58) 0.17 (−0.08 to 0.28)

Ridge 18 3.39 (3.12–3.84) 2.07 (1.84–2.54) 0.21 (0.01 to 0.32)

Full model

No penalization 36 3.49 (3.12–3.88) 2.14 (1.78–2.46) 0.16 (−0.02 to 0.32)

Backward selection 15 (13–19) 3.51 (3.17–3.88) 2.11 (1.86–2.58) 0.14 (−0.10 to 0.30)

Ridge 36 3.38 (3.08–3.86) 2.07 (1.76–2.51) 0.22 (0.02 to 0.34)

Mild dementia

Base model

No penalization 10 4.77 (4.20–5.25) 2.90 (2.80–3.01) 0.22 (0.05 to 0.42)

Backward selection 9 (8–9) 4.75 (4.19–5.24) 2.90 (2.80–3.10) 0.22 (0.05 to 0.41)

Ridge 10 4.48 (4.06–4.87) 2.78 (2.73–2.87) 0.31 (0.18 to 0.47)

Biomarker model

No penalization 20 4.65 (4.14–5.16) 2.83 (2.56–3.02) 0.26 (0.08 to 0.42)

Backward selection 13 (12–15) 4.65 (4.12–5.14) 2.83 (2.55–2.96) 0.26 (0.09 to 0.42)

Ridge 20 4.44 (4.03–4.92) 2.75 (2.62–2.86) 0.32 (0.17 to 0.48)

Full model

No penalization 36 4.68 (4.17–5.14) 2.78 (2.46–3.03) 0.25 (0.09 to 0.44)

Backward selection 19 (17–22) 4.69 (4.20–5.14) 2.84 (2.56–2.99) 0.24 (0.09 to 0.43)

Ridge 36 4.40 (3.97–4.86) 2.70 (2.46–2.86) 0.33 (0.18 to 0.50)

Abbreviations: Aβ = β-amyloid; MAD = median absolute deviation; RMSE = root mean squared error.
The different prediction models were 5-fold internal cross-validation using all imputed data sets. Basic predictors included time, time2, time3, MMSE at
baseline, age, sex, and the interaction of all these variables with a linear fit of time. Biomarker predictors also included APOE e4 allele count, CSF Aβ1–42 and
pTau, MRI normalized total brain and hippocampal volume, and the interaction of all these variables with a linear fit of time. The full model also included
Geriatric Depression Scale, Verhage score, smoking history, body mass index, systolic and diastolic blood pressure, and their interactions with a linear fit of
time. For the ridge prediction models, normalization of the variables was performed based on the mean and standard deviation of the variables in the
imputed Amsterdam Dementia Cohort. For the ridge cross-validation, only 5 imputed data sets were used.
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meanMMSE in theMCI group after 9 months were 28.0 and
24.7, respectively. After 5 years, the predicted mean MMSE
measurements were 25.4 (84th percentile) and 16.2 (16th
percentile). The 84th and 16th percentiles of the predicted
mean MMSE in the mild dementia group after 9 months
were 25.3 and 17.5, respectively, and 21.5 and 8.4 after 3
years. Against this population distribution, individualized
predictions can be shown.

Next, we visualized the estimated trajectory with the un-
explained interindividual variation (Figure 2). For the hypo-
thetical patient with MCI with median predictor values, the
predicted mean MMSE after 5 years was 21.0 (95% CI
20.9–23.0). By drawing 1,000 samples from the random-effect
distribution, we can visualize the unexplained interindividual
variation surrounding this predicted MMSE, showing 90% was
between 30 and 13 MMSE points, indicating substantial vari-
ation for individuals with the same predictor values. As a next
step, the MMSE predictions can also be made in the hypo-
thetical situation where an intervention reduces decline by
30%. For this patient with MCI, a 30% reduction in decline
would give a predicted mean MMSE after 5 years of 23.7.
Within the interindividual variation surrounding the natural
decline, this reduced decline places at the 69th percentile of the
distribution. So, compared with the natural decline trajectory of
100 patients with MCI with the same predictor values, 69 are
likely to have a lower MMSE after 5 years and 31 a higher
MMSE. With a steeper predicted natural decline, the projected
effect of interventions that reduce decline deviates more from
the unexplained interindividual variation in MMSE (Figure 2).

To make the results of the models more intuitive, we also
visualized the models as a personalized predicted time to a
certain MMSE value (Figure 3). The predicted mean time to
reach an MMSE of 20 for a patient with MCI with a baseline
MMSE of 28 and CSF Aβ1–42 of 925 pg/mL was 6.0 years
(95%CI 5.4–6.7 years). For a patient with mild dementia with

Table 3 Regression Coefficients of the Backward Selected
PredictionModels ofMMSEOver Time inMCI and
Mild Dementia

Variable names

MCI Mild dementia

Coefficient (SE) Coefficient (SE)

Intercept 12.9446 (2.4238) −10.2450 (2.4825)

Years since baselinea −1.6700 (1.1730) −9.9597 (1.4078)

Years since baseline squareda −0.2090 (0.0486) −0.2196 (0.0582)

Years since baseline cubeda 0.0141 (0.0091) 0.0227 (0.0139)

Age at baseline, y 0.0147 (0.0239) 0.1020 (0.0274)

Sex, reference female 0.4329 (0.3227) −0.0811 (0.2718)

MMSE at baseline 0.5283 (0.0534) 1.0006 (0.0561)

No. of APOE «4 alleles — 0.5419 (0.2842)

CSF pTau, pg/mL log transformed −1.1162 (0.4153) −1.0403 (0.2990)

CSF Aβ1–42, pg/mL 0.0008 (0.0008) 0.0019 (0.0010)

Interaction of years since baseline

Age at baseline, y 0.0188 (0.0142) 0.0376 (0.0156)

MMSE at baseline — 0.1299 (0.0345)

No. of APOE «4 alleles — 0.4768 (0.1636)

CSF Aβ1–42, pg/mL 0.0006 (0.0005) 0.0009 (0.0006)

Sex, reference female 0.2884 (0.1926) —

CSF pTau, pg/mL log
transformed

−0.3894 (0.2484) —

Abbreviations: Aβ = β-amyloid; MCI = mild cognitive impairment; MMSE =
Mini-Mental State Examination.
In backward selection, the cubic time curve, age, and sex were forced into
the model. The other variables were backward selected based on a p-value
of <0.10 andwere included in the finalmodel if the variableswere selected in
at least half the imputed data set. Parameter estimates and standard error
are based on pooling between the imputed data sets.
a Centered by subtracting 2.3.

Figure 1 Distribution of Predicted MMSE Trajectories in the MCI and Mild Dementia Groups

MMSE trajectories over time were esti-
mated for all participants based on
their patient characteristic and esti-
mated random intercept and slope us-
ing the backward selected prediction
models for mild cognitive impairment
(A) and mild dementia (B) using the
biomarker model. Arbitrarily, complete
data from the first imputed data set
were used. From all estimated MMSE
trajectories, the predicted MMSE mea-
surements at the 98th, 84th, 50th, 16th,
and 2nd percentiles are plotted. Pre-
dictedMMSEmeasurements outside of
the possible range (0–30) havenot been
plotted. Predicted MMSE is first dis-
played after 6 months. MCI = mild cog-
nitive impairment,MMSE =Mini-Mental
State Examination.
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a baseline MMSE of 20 and CSF Aβ1–42 of 625 pg/mL, the
predicted mean time to reach an MMSE of 15 was 2.3 years
(95% CI 2.1–2.5). These estimates can also be used to eval-
uate potential time gains with inventions that reduce the rate
of decline. With a hypothetical intervention that reduces de-
cline by 30%, the time to threshold would be 8.6 years for the
patient with MCI and 3.3 years for the patient with mild
dementia.

External validation of all prediction models in ADNI showed
comparable performance between the model-building ap-
proaches (eTable 7). The mild dementia backward selected
biomarker model (model 2) had an R2 of 0.20 and median
absolute deviation of 2.19 in ADNI. The MCI model had an
R2 of 0.21 and median absolute deviation of 1.97 (eTable 7).

In an additional set of analyses, we constructed prediction
models for RAVLT Immediate Recall (eTables 8–10).
Compared with the backward selected MMSE models, fewer
variables were retained with time-varying effects. In internal
cross-validation, RAVLT models in participants with MCI
performed comparably with MMSE models with R2 ranging
between 0.11 and 0.20 (eTable 11). Performance of the
RAVLT models in mild dementia was slightly better than
that of the MMSE models, with an R2 ranging between 0.32
and 0.34. This is also reflected in the external validation of
the RAVLT models in ADNI, where the R2 of the mild
dementia models clustered around 0.50 (eTable 12). The R2

of the MCI RAVLT models in ADNI ranged between 0.25
and 0.33.

Discussion
We constructed clinically applicable prediction models of cog-
nitive decline measured by MMSE or RAVLT for patients with
amyloid-positive MCI and mild dementia. Adding MRI and
CSF biomarkers to base variables somewhat improved predic-
tions, although the modest explained variance illustrates that
making individualized predictions inherently comes with un-
certainty. Our models can be used to predict the time to reach a
certain level of MMSE or RAVLT. We incorporate these
models in a calculator with visualization as a prototype tool to
discuss prognosis, the uncertainty surrounding the predictions,
and the impact of intervention strategies with patients.

The overall predictive performance of themodels for bothMCI
and mild dementia indicates a substantial amount of variation
in MMSE decline could already be explained by clinical vari-
ables age, sex, baseline MMSE, and time since baseline. Addi-
tional information on MRI volumetric and CSF Aβ1–42 and
pTau biomarkers, representing etiologic disease characteris-
tics,36 aided in the prediction of MMSE decline in our amyloid-
positive sample. However, further increasing model complexity
by adding other clinical and vascular risk factors did not im-
prove predictive performance despite their known association

Figure 2 Simulated Interindividual Variation Surrounding Predicted MMSE Trajectories

Depicts predictedMMSE trajectories for hypothetical patientswithMCI andmild dementia withmedian predictor values in each group. For theMCI group,
the fixed parameter values were sex: male; age: 66 years; log CSF pTau: 3.415 ng/L; CSF Aβ1–42: 796.22; and baseline MMSE 27. For the mild dementia
group, the fixed parameters values were sex: female; age: 66 years; APOE e4 alleles: 2; log CSF pTau: 3.498 ng/L; CSF Aβ1–42: 758.8; and baselineMMSE 23.
Predictions were made using the model based on the backward selection biomarker model. The black solid line is the predicted mean MMSE trajectory
based on the median values, the “natural” trajectory. The colored lines surrounding the predicted MMSE depict 1,000 simulated random intercepts and
effects, indicating interindividual variation in MMSE trajectories not explained by the available predictors. The dashed lines show expected MMSE
trajectories with interventions that reduce decline by 10%, 30%, or 50%, respectively. The circle at year 0 indicated the baseline MMSE. Predicted MMSE is
first presented after 6 months of follow-up. Aβ = β-amyloid; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination.
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with AD dementia.37,38 Potentially, tau PET information could
improve predictive performance because of the associationwith
AD-associated symptom severity,39 but we could not in-
corporate this because of a lack of data.

Compared with other studies that predictedMMSE decline, our
models showed similar12 or even better13,14 predictive perfor-
mance while requiring less12 or similar13,14 information. Two
studies used MCI Biofinder patients13 or amyloid-positive
ADNI patients12 to build prediction models for MMSE decline,
after 2 and 4 years, based on demographic and plasma bio-
marker information13 or a wide variety of CSF,MRI volumetric,
cognitive test, and vascular risk factor information.12 The “AD
course map” model used cognitively normal patients or those
with MCI clinical AD from ADNI and jointly modeled decline
in cognition, PEThypometabolism andMRI cognitive thinning,
and hippocampal deformation.14 One study predicted decline in
functional impairment through the Clinical Dementia Rating
Sum of Boxed Score and showed similarly modest predictive
performance compared with the various MMSE studies.40

These former studies used different statistical techniques,
namely linear regression,12,13 multivariate nonlinear mixed-
effect models,14 gradient boosting,13,40 and different ways to
weigh data.13 We investigated localized shrinkage with ridge
regression and no penalization of linear mixed model coeffi-
cients as additional approaches, which both did not substantially
alter the predictive performance compared with backward se-
lection. Our finding that the statistical approach did not have a

strong effect on the predictive performance follows the relative
equivalence in performance from different statistical models in
the literature. This implies 2 things. First, additional predictors
are needed to capture the remaining unexplained variation. A
possible avenue would be combining clinical predictors and
polygenetic risk scores.41 Second, the use of novel statistical
techniques does not result in large gain in performance. Thus,
keeping models simple and the way in which the model can be
used is more relevant than the small performance variation
between techniques. The linear mixed model approach we used
allows for prediction at any point in time within the data range
(approximately 5 years in this study) and visualization of dif-
ferent sources of uncertainty in individualized prediction.

Patients with AD and their care partners want to know their
future cognitive functioning.8Our predictionmodels can be used
to inform patients about their cognitive decline, but our results
also indicate that providing a precise prognosis is challenging.
Thus clinicians need to talk about the inherent uncertainty
surrounding the predictions with their patients.42 Visualizations
of the uncertainty can form the basis for meaningful doctor-
patient conversations about the predicted cognitive decline.43

In the communication of prognostic information to patients, a
link needs to bemade between the answers models can provide
and the questions patients and their care partners have such as
“how long can I still drive a car” or “how long can I in my
hobby.”8 TheMMSE provides an indication of global cognition

Figure 3 Time to a Further Cognitive Stage

Time to reach a thresholdMMSEof 20and 15was calculatedusing thebackward selected biomarkermodel. Themedian value of all selectedpredictors in theMCI
andmild dementia groupswas used, varying only CSF Aβ1–42andMMSEat baseline. TheCSFAβ1–42 values approximately reflect theP25, P50, andP75 values in
the overall cohort. For theMCI group, the fixed parameters values were sex: male; age: 66 years; and log CSF pTau: 3.415 ng/L. For the mild dementia group, the
fixed parameter values were sex: female; age: 66 years; APOE e4 alleles: 2; and log CSF pTau: 3.498 ng/L. The white areas indicate the expected additional time to
reach the threshold MMSE with a hypothetical DMT that reduces decline by 30%. The statistical uncertainty surrounding the time estimates is left out for visual
clarity and is given in the text. Aβ = β-amyloid; DMT = disease-modifying treatment; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination.
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and does not answer these questions. However, no currently
available cognitive test addresses all the questions patients have
or takes into consideration the diversity in patients’ living sit-
uations affecting the extent to which they can use their
remaining cognitive function.44 In the future, we hope pre-
diction models will become available directly predicting
patient-reported outcomes such as quality of life and daily
functioning. Such data are currently being collected,45 but long-
term follow-up is needed to develop robust models. Until then,
there is an important role for clinicians in translating the ob-
served and predicted cognitive function scores into answers to
patients’ questions. We attempted to aid clinicians by trans-
lating the rate of decline into a clinicallymeaningful outcome by
providing estimations of time to a certain MMSE level.

In both the analysis of the interindividual variation in decline and
time to a certainMMSE level, we added hypothetical medication
effects. By calculating the “additional” time to a certain MMSE
level when slowing decline with hypothetical interventions,
we provide an easier way to think about clinical meaningfulness
than absolute changes in memory score. At the same time, these
figures visualize that benefits be difficult to distinguish from
variation in natural decline patterns. The applied hypothetical
interventions extrapolate beyond the time frame of the amyloid-
targeting therapy trial results.4-6 We assumed the effects would
be stable over time and across disease stages or patient sub-
groups such as APOE subtype or sex. These assumptions could
be inappropriate and long-term follow-up of patients undergoing
treatment is essential to further refine such models in the future.

Strengths of this study include, first, the large, real-world
population used to build the prediction models. We selected
our sample to include patients who in theory could be eligible
for the novel generation of disease-modifying treatments, i.e.
patients with amyloid-positive MCI and mild dementia. In
addition, participants were included from a tertiary memory
clinic, a setting in which these interventions are likely to be
implemented first. This makes our study highly relevant
in helping shape the future patient journey.46 Second, we
used straightforward statistical methods, improving the in-
terpretability and acceptability of the final biomarker pre-
diction models in a clinical setting. For clinical applicability,
parsimonious and simple models are preferred over more
complex statistical models.

There are some limitations that warrant discussion. First, we used
MMSE as a measure of cognition because of the short time it
takes to collect in the clinic and its widespread use. However,
MMSE measurements show intraindividual variation in a cogni-
tively normal population.47 Furthermore, MMSE measurements
in our clinic are not always taken at the same time of day and
patients with cognitive decline might score lower later in the day
when they are more tired.48 Both factors increase unexplainable
noise in the outcome, reducing predictability. As an alternative,
we alsomodeled RAVLT as a second outcome. Contrary to what
might have been expected, we did not find higher predictive
accuracy for RALVT than for MMSE. Second, the models were

built for use in memory clinics based on tertiary memory clinic
data. Thus, generalizability to the general population could be
limited. Although external validation in ADNI did not show di-
minished performance, indicating generalizability to an older
population, MCI or dementia due to AD in the general pop-
ulation is likely to occur in individuals with more comorbidities
than are present in either the development or validation cohort.
Third, the selectedmild dementia population had a slightly higher
baseline MMSE score and Aβ1–42 than the average patient with
amyloid-positive mild dementia in our cohort. However, as the
rate of MMSE decline in mild dementia is modulated by these 2
predictors, the generalizability of the predictions should not be
affected. Fourth, no information was available on the number of
impaired cognitive domains from participants with MCI. This
information may have improved predictions.49

We constructed clinically applicable models to predict MMSE
and memory over time in patients with MCI or mild dementia
due to AD. There is a need among patients and care partners
for prognostic information on their cognitive trajectory. These
models can provide such information, although our results also
emphasize that the heterogeneity in cognitive trajectories can only
be partially captured. The models come with an easy-to-use cal-
culator allowing visualization of the predicted cognitive trajecto-
ries. Such a tool can form the basis for a meaningful discussion
about patients’ expected natural decline trajectory and how ini-
tiating hypothetical intervention strategiesmight alter this decline.
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