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ABSTRACT

Decentralized finance (DeFi) is revolutionizing the traditional centralized finance paradigm with its
attractive features such as high availability, transparency, and tamper-proofing. However, attacks
targeting DeFi services have severely damaged the DeFi market, as evidenced by our investigation of
80 real-world DeFi incidents from 2017 to 2022. Existing methods, based on symbolic execution,
model checking, semantic analysis, and fuzzing, fall short in identifying the most DeFi vulnerability
types. To address the deficiency, we propose Context-Sensitive Concolic Verification (CSCV), a
method of automating the DeFi vulnerability finding based on user-defined properties formulated in
temporal logic. CSCV builds and optimizes contexts to guide verification processes that dynamically
construct context-carrying transition systems in tandem with concolic executions. Furthermore,
we demonstrate the effectiveness of CSCV through experiments on real-world DeFi services and
qualitative comparison. The experiment results show that our CSCV prototype successfully detects
76.25% of the vulnerabilities from the investigated incidents with an average time of 253.06 seconds.
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1 Introduction

Decentralized Finance (DeFi) has been marred by significant security challenges. In our investigation, 80 real-world
DeFi incidents that occurred between November 2017 and December 2022 have proved to be considerable threats to the
stability of the DeFi market, resulting in financial damages ranging from 2,400 to 600 million dollars. We classify their
underlying vulnerabilities into six types based on their root causes and sort their severity regarding the average loss in
US dollars per incident, as detailed in Table 1.

Unfortunately, the three most severe root causes, accounting for the largest financial losses, pose a formidable challenge
for existing methods. BF (e.g., the Eleven Finance hack in 2021) and RE variants (e.g., the Rari Capital hack in 2022),
which exploit conformance issues between requirement specifications and implementations, render highly automated
methods (Frank et al. [2020], Nguyen et al. [2020]) ineffective, while other methods (Choi et al. [2021], So et al.
[2021]) struggle with scalability when addressing these non-patterned vulnerabilities. Besides, PM vulnerabilities
offer attackers lucrative arbitrage opportunities with minimal attack costs via flash loans, yet current methods based on
control flow (Frank et al. [2020]), data flow analysis (Choi et al. [2021]), symbolic execution (So et al. [2021]), and
fuzzing (Nguyen et al. [2020]) fall short in identifying these plausibly normal financial behaviors.

∗This is the preprint version of the conference paper presented in International Conference on Software Engineering, 2024.
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Table 1: Investigated Typical DeFi Vulnerabilities

Root Cause Description Total Loss
BF Business Logic Flaw 23 $1.4B
RE Reentrancy 9 $147M
PM Price Oracle Manipulation 20 $92M
IV Insufficient Validation 10 $12M
AF Access Control Flaw 13 $14M
UE Unexpected External Call 5 $3M

Motivated by addressing the challenge, we propose Context-Sensitive Concolic Verification (CSCV) to automatically
find all classified types of DeFi vulnerabilities by user-defined temporal properties. Concolic verification distinguishes
itself from standard concolic execution by leveraging formal verification, effectively synergizing concolic execution
(Baldoni et al. [2018]) with model checking (Clarke et al. [2018]).

2 CSCV in a Nutshell

In concolic verification of a temporal property ϕ specifying DeFi service P, finding a vulnerability is framed as
searching an attack vector, an alternating sequence comprising global states

#»

S and invocation of functions selected
from set F of external write functions, such that ∃s ∈ #»

S : s ̸|= ϕ. However, the brute-force enumeration of all possible
combinations of state variables and functions to identify an attack vector is computationally infeasible, given the
enormous number of potential permutations. Therefore, we formulate CSCV by introducing contexts to guide concolic
verification processes that dynamically construct context-carrying transition systems in tandem with concolic execution
during transitions to find attack vectors. The overview of CSCV is visually shown in Figure 1.

Figure 1: Overview of CSCV.

Context Construction The context generator processes P along with ϕ to construct a context that encapsulates an
evaluation function of state variables at a specific block, and a relevance function hierarchizing F for each f ∈ F .
The context construction is governed by a property-based algorithm that filters out extraneous information regarding ϕ.
The algorithm formulates the smallest evaluation function by analyzing the state variable dependency and shapes the
relevance function by ranking the self-excluded F based on the number of commonly shared state variables.

Context Optimization Property spatialization mitigates the state explosion problem in temporal property verification
by encoding temporal formulas into non-temporal assertions that are coded as preconditions and postconditions into
respective functions in F . Function constantization simplifies the execution logic by substituting free nullary
read function calls with constants based on the dependency analysis regarding modified state variables. Heuristic
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identification accelerates concolic verification processes by pinpointing heuristics obtained from properties, business
logic, and historical incidents in context elements.

Concolic Verification Concolic verification dynamically constructs a context-carrying transition system that steers
concolic executions. Each conditional transition corresponds to an external write function invocation, where conditions
are derived from the preconditions encoded from ϕ. The nondeterminism of transition selection is resolved by the
relevance function in contexts. Each transition also initiates a concolic execution following the shortest execution path
from the initial state to the current state. If a postcondition is violated, the concolic verifier reports a counterexample
and terminates. In cases when the completeness threshold is guaranteed, the concolic verifier confirms that ϕ holds.
Otherwise, the concolic verifier terminates within a predefined time frame or diameter.

3 Evaluation

We mechanized CSCV into a prototype primarily in Java and backed by the Z3 solver for experiments.

Effectiveness Our experiments are designed to selectively utilize a specific proportion (0%, 25%, 50%, and 75%) of
heuristics, randomly chosen from an established heuristic base for each investigated DeFi vulnerability in Table 1. The
experiment results show that our prototype successfully identified 38 (47.50% of the total) vulnerabilities and 432 attack
vectors, including all six classified vulnerability types, even with 0% heuristics. Moreover, with 75% heuristics, our
prototype identified 61 vulnerabilities (76.25% of the total) and 1,498 attack vectors, including 20.96% of previously
unknown attack vectors, with an average time of 253.06 seconds.

Comparison Our qualitative evaluation offers a comparison between the CSCV methodology and existing methods
across a set of criteria, including: vulnerable function path finding (PF), malicious assignment generation (AG),
code-level property specification (CP), protocol-level property specification (PP), cross-contract analysis (CC), and
DeFi-focus analysis (DF). The evaluation results, detailed in Table 2, demonstrate the potential of CSCV in addressing
the challenge of effectively identifying various DeFi vulnerabilities.

Table 2: Feature comparison with existing methods.

Method PF AG CP PP CC DF
sFuzz (Nguyen et al. [2020]) G#  # # # #
ETHBMC (Frank et al. [2020]) #  G# G# G# #
Smartian (Choi et al. [2021]) #   # # #
SmarTest (So et al. [2021]) #   # # #
CSCV       
 : full support, G#: partial support, #: no support.
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