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Abstract

In this thesis we investigate minimal and constant mean curvature (CMC) hypersurfaces as they

arise (and converge), in two limiting procedures, of distinct type, and under a certain control for

the (Morse) index.

In the first part of this thesis, which is joint work with C. Bellettini, we investigate CMC hyper-

surfaces which arise as the limit interface of sequences of particular (min-max, hence with index

at most 1) solutions to the inhomogeneous Allen–Cahn equation. We prove that on a compact

Riemannian manifold of dimension 3 or higher, with positive Ricci curvature, the Allen–Cahn min-

max scheme of Bellettini–Wickramasekera [14], with prescribing function taken to be a non-zero

constant λ, produces an embedded hypersurface of constant mean curvature λ. More precisely,

we prove that the limit interface arising from said min-max contains no even-multiplicity minimal

hypersurface and no quasi-embedded points (both of these occurrences are in principle possible in

the conclusions of the aforementioned work by Bellettini–Wickramasekera).

In the second part of this thesis, we investigate sequences of bubble converging minimal hypersur-

faces, or CMC hypersurfaces, in compact Riemannian manifolds without boundary, of dimension

4, 5, 6 or 7, and prove upper semi-continuity of index plus nullity, for such bubble converging se-

quences. This complements the previously known lower semi-continuity results for the index. The

strategy of the proof is to analyse an appropriate weighted eigenvalue problem along the bubble

converging sequence of hypersurfaces.
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Impact Statement

This thesis lies in the area of geometric analysis, and contains results and work on minimal and

constant mean curvature (CMC) hypersurfaces in Riemannian manifolds. These objects are varia-

tional in nature, in that they arise as critical points to appropriately chosen area-type functionals.

Key developments in understanding their properties (regularity, compactness, index etc.) as such

critical points has led to applications in many mathematical areas including Riemannian and dif-

ferential geometry, and general relativity. Moreover, as these area-type functionals are some of

the simplest, yet mathematically rich, non-linear geometric functionals, the study of their critical

points has had immnese impacts on the calculus of variations and non-linear PDE theory.

In this thesis we produce several results concerning this variational theory for these hypersurfaces.

More specifically, in Chapter 2 we further develop the min-max theory for CMC hypersurfaces,

which culminates in a previously unknown existence result for embedded CMC hypersurfaces.

Then, in Chapter 3 we produce results concerning the index of minimal and CMC hypersurfaces,

in particular the behaviour of this variational property along certain degenerating sequences of

such hypersurfaces.

Moreover, in Chapter 2 we study these hypersurfaces through the phase transition framework.

As such we further develop this phase transition theory, in particular the study of min-max solu-

tions to the inhomogeneous Allen–Cahn equation. The theory of phase transitions is widely used

throughout mathematics and the natural and physical sciences, and developments of this theory

have and will continue to have impacts on the wide range of areas that this theory is used in.

These areas include, but are not limited to: theoretical physics, material science, mathematical

biology and computer imaging.
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Introduction

Problems arising in geometry and the physical sciences are often variational in nature, and thus

may be studied through analysing critical points to (often non-linear) functionals. One such class of

non-linear geometric functionals is that of area-type functionals, which have minimal and constant

mean curvature (CMC) hypersurfaces as examples of critical points. It is the properties of such

variational hypersurfaces that are studied in this thesis.

These area-type functionals have attracted a significant portion of research attention within geo-

metric analysis and the calculus of variations. The development of the theory of such functionals

and their critical points has had significant impacts on a wide variety of mathematics and the

physical sciences, including but not limited to: geometry, general relativity and material science.

Moreover, as these functionals are some of the simplest, yet mathematically rich, non-linear geo-

metric functionals that one can think up, the techniques and ideas generated through this direction

of research have also had substantial influence within non-linear PDE theory and the calculus of

variations.

When studying such variational problems it is of crucial importance to be able to take appropriate

limits of sequences of critical points, and analyse how their properties may change under such con-

vergence. As such, the regularity and compactness theory accompanying the variational problem

is key to any developments and applications. For instance, the compactness and regularity theory

for stable minimal hypersurfaces of Schoen–Simon–Yau [52] and Schoen–Simon [51] (see also the

recent proof by Bellettini [10]), have become indispensable tools within geometric analysis, differ-

ential geometry and general relativity, and are crucial to the now classical existence theory of such

hypersurfaces.

Theorem 1. (Almgren [2], Pitts [45], Schoen–Simon [51]) For any compact n+1 dimensional Rie-

mannian manifold (N, g), without boundary, there exists a smooth, embedded minimal hypersurface

M , and,

• M is closed when 2 ≤ n ≤ 6,

• M \M consists of finitely many points when n = 7,

• dimH(M \M) ≤ n− 7, when n ≥ 8.

As seen by the Simons cone ([55, Theorem 6.1.2]), the regularity of these hypersurfaces is in general

optimal.

Further advancements in the regularity and compactness theory for stable minimal hypersurfaces

by Wickramasekera [67], have led to a new, streamlined proof of Theorem 1 by Guaraco [30] via the

theory of phase transitions (building on the previous work of Hutchinson–Tonegawa [33], Tonegawa
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[59] and Tonegawa–Wickramasekera [60]). The result in Theorem 1 has also recently been extended

(Marques–Neves [39], Irie–Marques–Neves [34], Chodosh–Mantoulidis [20], and Song [56]) to prove

not just the existence of one, but in fact infinitely many distinct minimal hypersurfaces in every

compact Riemannian manifold without boundary of dimension 3 ≤ n+ 1 ≤ 7.

While the existence theory (and corresponding regularity and compactness theory) for minimal

hypersurfaces is by now classical, the corresponding theory for CMC hypersurfaces is more recent.

Theorem 2. (Zhou–Zhu [71], Bellettini–Wickramasekera [12, 14], Dey [24]) For any λ ∈ R\{0},
and any compact n+1 dimensional Riemannian manifold (N, g), without boundary, there exists a

smooth, two-sided, quasi-embedded hypersurface M , with constant mean curvature λ, and

• M is closed when 2 ≤ n ≤ 6,

• M \M consists of finitely many points when n = 7,

• dimH(M \M) ≤ n− 7, when n ≥ 8.

Again the dimensional restrictions on M \M are in general optimal.

Here we recall that a quasi-embedded hypersurface is a smooth immersion, with any self-intersections

being tangential, and with the local structure being that that of two smooth embedded n-dimensional

disks lying on opposite sides of each other (see Figure 1 for heuristic a picture, and Definition 1

for a detailed definition). As such, points in a quasi-embedded hypersurface can be characterised

into two disjoint sets. Those points where locally M is a properly embedded hypersurface (which

we call embedded points) and those where M is not (which we call non-embedded points).

For the case of minimal hypersurfaces, λ = 0, by the one-sided maximum principle such non-

embedded points cannot exist. However, for λ ∈ R \ {0}, in general such non-embedded points

need to be accounted for by considering simple examples like that of two touching spheres or two

touching cylinders (Figure 2). Thus the presence of such non-embedded points is a characteristic

that is unique to the theory of λ-CMC hypersurfaces for λ ̸= 0, and is a major difference between

these two theories with genuine technical consequences. For example, at such points our immersed

hypersurface is no longer smoothly embedded, and thus such points can be viewed as a type

of geometric singularity for the hypersurface. Furthermore, the size of the set of non-embedded

points may be relatively large (potentially of Hausdorff dimension n − 1, as demonstrated by

the two touching cylinders). As such this set can affect the ambient variational properties (for

example index) of these hypersurfaces, as these points cannot simply be ignored through capacity

arguments. To develop the theory and applications of CMC hypersurfaces it is thus necessary to

develop our understanding of this set of non-embedded points. For example, some basic questions

one may ask are:

10



M

(a) Local picture about an em-
bedded point of M

M

(b) Local picture about a non-
embedded point of M

Figure 1: The two possible local pictures about a point in a quasi-embedded hypersurface M

(a) Two spheres touching at a point (b) Two cylinders touching along a line

Figure 2: Examples of quasi-embedded CMC hypersurfaces with non-embedded points
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– What geometric and variational properties of the hypersurface and ambient space can affect

how big this set can be?

– What local and global structure can this set have?

– In which scenarios can we rule out the presence of this set altogether?

In the first part of this thesis (Chapter 2), which is joint work with Bellettini (and the published

version of this work may be found here [15]), we manage to answer such questions (and in fact rule

out the presence of such non-embedded points) in a particular class of CMC hypersurfaces. As a

direct result we obtain the following existence theory for embedded CMC hypersurfaces.

Theorem 3. For any λ ∈ R\{0}, and any compact n+1 dimensional Riemannian manifold (N, g),

without boundary, and with positive Ricci curvature, there exists a smooth, two-sided, embedded

hypersurface M , with constant mean curvature λ, and

• M is closed when 2 ≤ n ≤ 6,

• M \M consists of finitely many points when n = 7,

• dimH(M \M) ≤ n− 7, when n ≥ 8.

This is a new result and one of the first of its kind where we manage to prove existence of embedded

CMC hypersurfaces for all values λ ∈ R \ {0}, in a fixed class of Riemannian metrics. As a direct

result of ruling out such non-embedded points we are also able to conclude that this particular

class of λ-CMC hypersurfaces considered have Morse index equal to 1.

However, in general, we cannot rule out the existence of such non-embedded points. Even when

considering the class of fully embedded CMC hypersurfaces it is necessary to study such non-

embedded points, as they can arise in limits of objects within this class. For example, we may

consider two disjoint spheres or cylinders coming together and smoothly touching (as in Figure 2),

or even worse, a sequence of unduloids with singular convergence leading to a string of touching

spheres (Figure 3). In this singular convergence, information (index, genus, total curvature etc.)

may be lost to the touching point. In low dimensions (2 ≤ n ≤ 6), by curvature estimates one can

see that non-embedded points arising through such singular convergence, must be points of index

concentration along the sequence. Using this, Bourni–Sharp–Tinaglia [16] carried out a bubble

analysis of sequences of CMC hypersurfaces arising as boundaries (in these low dimensions), and

concluded that such singular points of convergence must be modelled on catenoids. Moreover,

through this bubble analysis, Bourni–Sharp–Tinaglia were able to prove a quantisation result for

the total curvature, and a lower semicontinuity result for the index. Essentially these results say

that any loss in total curvature when taking this singular limit can be exactly accounted for by

counting the number of catenoid bubbles, and also some of the index lost through this limit may
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Figure 3: Unduloids exhibiting singular convergence to a line of touching spheres. Necks in the
Unduloids shrink leaving the touching points between the spheres in the singular convergence.

also be accounted for by counting the index of these catenoid bubbles. However one may ask if

such a bubble analysis is sharp in accounting for all the index along such a singular limit to a

non-embedded point. It is this question we approach in Chapter 3 of this thesis (the pre-print

of this work can be found here [68]), and answer, in dimensions 3 ≤ n ≤ 6, by deducing an

upper semicontinuity result for the index plus nullity (Theorem 8). In fact the method we use is

rather general and equally holds for proving an appropriate upper semicontinuity of index plus

nullity result for suitable sequences of bubble converging minimal hypersurfaces, as well as CMC

hypersurfaces which do not necessarily arise as boundaries (again in dimension 3 ≤ n ≤ 6).
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A Guide to Reading this Thesis

We make a brief note on how this thesis should be read. Chapter 1 begins with some general

preliminaries on minimal and CMC hypersurfaces (Section 1.1), and varifolds and Caccioppoli sets

(Section 1.2). The main purpose of these preliminary sections is to set notation and definitions

that will be used in both chapters of this thesis. For a detailed discussion and introduction to these

areas we refer the reader to the relevant references listed in these sections. After this preliminary

chapter, we recommend that the reader approaches both of the remaining Chapters (2 and 3)

independently of each other. In fact both contain their own independent introductions which

describe the projects in much more detail than we have went into in the above. Moreover there

are some slight subtle changes in notation between both Chapters 2 and 3. These changes are to

replicate the notation of each chapters own independent background references.
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Chapter 1

General Preliminaries

1.1 Minimal and CMC Hypersurfaces

Throughout this thesis (N, g) will denote a compact Riemannian manifold without boundary of

dimension n+ 1 ≥ 3. We denote the open geodesic ball in N , of radius r > 0, about point p ∈ N

by BN
r (p). In Euclidean space Rm, we denote the open ball of radius r > 0 (with respect to the

standard Euclidean metric), centred at p ∈ Rm by Bm
r (p). Consider an open set Ω ⊂ N , and a

smooth hypersurface M ⊂ N , such that in Ω, M is properly embedded. For a point x ∈ M ∩ Ω,

we define the second fundamental form of M , at x (which is a vector valued bilinear form) by,

AM(x) : TxM × TxM → (TxM)⊥,

(X, Y ) 7→ g(∇XY, ν)ν,

where ν is a choice of unit normal to M at x. We may then define the mean curvature vector H⃗,

at x ∈M ∩ Ω, by,

H⃗(x) := trTxM(AM(x)(·, ·)).

If H⃗(x) = 0⃗, for all x ∈ M ∩ Ω, we say that M is a minimal hypersurface in Ω. For a constant

λ ∈ R, if g(H⃗(x), H⃗(x)) = λ2, for all x ∈M ∩Ω, then we say that M is a constant mean curvature

hypersurface, of mean curvature λ (λ-CMC) in Ω. Note that M being minimal in Ω (λ = 0) is

a special case of M being a CMC hypersurface. Secondly note that if λ ̸= 0, then there exists a

choice of unit normal ν, for M ∩ Ω, such that, H⃗ = λν, on M ∩ Ω. Such hypersurfaces (minimal

and CMC) may also be characterised as being critical points of certain area-type functionals. We

now discuss this below.

Define the set S(N) to be the set of smooth, properly embedded hypersurfaces of N . On this set
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we consider the area functional (with respect to the metric g),

Ag(M) : S(N) → R,

M 7→ Hn
g (M),

where Hk
g denotes the k-dimensional Hausdorff measure on N , with respect to the metric g. Often

we will drop the subscript g when the implied ambient metric is clear. Letting Γ(TN) denote the

space of smooth vector fields on N , and taking X ∈ Γ(TN), then for small ε > 0, we may define

a flow,

Φ: N × (−ε, ε) → N,

such that
∂

∂t
Φ( · , 0) = X( · ).

We define the first variation of Ag, at M , in direction X by

δAg(M)(X) :=
d

dt |t=0
Ag(Φ(M, t)),

and say that δAg(M) = 0 (M is a critical point of Ag) if δAg(M)(X) = 0, for all X ∈ Γ(TN). We

may localise this definition to an open set Ω ⊂ N , by only considering the subset of vector fields

which have compact support in Ω, which we denote,

Γc(TΩ) = {X ∈ Γ(TN) : sptX ⊂ Ω}.

In particular, we say that M is a critical point of Ag in Ω, if δAg(M)(X) = 0, for all X ∈ Γc(TΩ).

Then, as shown in [22, Chapter 1, Section 1.3], if Ω ⊂⊂ N \ (M \M), then M is a critical point

of Ag in Ω, if and only if, and M is a minimal hypersurface in Ω.

As in many problems in the calculus of variations (and even in basic calculus) one may look to

study critical points to a functional by analysing the second derivative of the functional at that

point. In the setting considered here, we refer to this second derivative as the second variation of

Ag at M , which we define (in direction X) by,

δ2Ag(M)(X) :=
d2

dt2 |t=0
Ag(Φ(M, t)).

For open sets Ω ⊂⊂ N \ (M \M), it is sufficient to only consider the following vector subspace of

Γ(TN), with an appropriate equivalence relation,

Γc(T (M ∩ Ω)⊥) := {[X] : X ∈ Γc(TΩ), and for allx ∈M, X(x) ⊥ TxM,

and [X] = [Y ] if and only ifX = Y onM}
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Then for X ∈ Γc(T (M ∩ Ω)⊥), we have that ([22, Chapter 1, Section 8.1])

δ2Ag(M)(X) = −
∫
M

g(X,LX),

where L is a second order elliptic differential operator, which we call the stability operator. For a

point x ∈M , taking {E1, . . . , En} to be an orthonormal basis of TxM , we may define the operator

at x by

LX = ∆⊥
MX +

n∑
i,j=1

g(AM(Ei, Ej), X)AM(Ei, Ej) + TrRN( · , X) ·

where ∆⊥
M is the normal Laplacian to M , AM is the second fundamental form of M , and RN is

the Riemann curvature tensor of N .

We now consider the larger class of vector fields, supported in Ω, with zero Dirchlet boundary

condition on ∂Ω, which we denote Γ0(TΩ). In particular, this is the set of vector fields on N ,

which are smooth in Ω, equal to 0 on N \ Ω, and continuous across ∂Ω. Then, similarly to before

we define,

Γ0(T (M ∩ Ω)⊥) := {[X] : X ∈ Γ0(TΩ), and for allx ∈M, X(x) ⊥ TxM,

and [X] = [Y ] if and only ifX = Y onM}

We say that κ ∈ R is an eigenvalue of L, in Ω , if there exists an X ∈ Γ0(T (M ∩ Ω)⊥), such that

X ̸= 0, and

LX + κX = 0,

in M ∩ Ω. By standard theory [28, Section 8.12], the set of eigenvalues for L in Ω, (counted

with the multiplicity given by the dimension of the linear subspace of all eigensections with such

eingenvalue) is a countable, discrete set which is bounded from below, and converges to +∞,

κ1 ≤ κ2 ≤ · · · ↗ +∞

Then we define the Morse index of M in Ω (indΩ (M)), to be the number of negative eigenvalues

of L, counted with the above notion of multiplicity. Equivalently the Morse index in Ω may also

be defined by

indΩ(M) = sup

{
dimΠ: for allX ∈ Π ≤ Γ0(T (M ∩ Ω)⊥),

∫
M

g(X,LX) > 0

}
The nullity of M in Ω (nulΩ (M)), is defined to be the number of zero eigenvalues, counted with

multiplicity. We define M to be stable in Ω, if indΩ(M) = 0.

If M has trivial normal bundle in Ω, then we may identify Γ0(T (M ∩ Ω)⊥) with C∞
0 (M ∩ Ω)
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in the following way; let ν denote a continuous choice of unit normal for M ∩ Ω, and for X ∈
Γ0(T (M ∩ Ω)⊥), we may define the function,

fX(x) = g(X(x), ν(x)) ∈ C∞
0 (M ∩ Ω),

and for f ∈ C∞
0 (M ∩Ω), by a standard extension argument there exists an Xf ∈ Γ0(T (M ∩Ω)⊥),

such that

f(x) = g(Xf (x), ν(x)).

Then, we define the bilinear form

BL[f, f ] := δ2Ag(M)(Xf ) =

∫
M

g(∇Mf,∇Mf)− (|AM |2 +Ricg(ν, ν))f
2 dHn,

which can be extended to be a bilinear form on W 1,2
0 (M ∩ Ω). Thus, integrating this expression

by parts, we see that studying the operator L on Γ0(T (M ∩ Ω)⊥), is equivalent to studying the

operator (which we also call the stability operator and denote by L),

L = ∆M + |AM |2 +Ricg(ν, ν),

on the function space C∞
0 (M ∩ Ω). Here ∆M is the Laplace–Beltrami operator on M ∩ Ω (with

respect to the ambient metric g restricted to M ∩ Ω), |AM |2 denotes the square of the Hilbert–

Schmidt norm of AM , and Ricg denotes the ambient Ricci curvature of (N, g).

Thus if M ∩ Ω has trivial normal bundle, then the Morse index of M in Ω may be defined as the

number of negative eigenvalues (counted with multiplicity) of the operator L on C∞
0 (M ∩ Ω), or

indΩ (M) = sup{dimΠ: for all f ∈ Π ≤ W 1,2
0 (M ∩ Ω), BL[f, f ] < 0}.

Note that throughout the thesis (especially in Chapter 3) we will often drop the sub- and super-

scripts on ∆M and ∇M when it is clear we are working on the hypersurface M .

Alternatively to S(N), and the area-functional Ag, we may consider the following set,

S(N) = {(M,E) : M ∈ S(N), E ⊂ N, open, with ∂E =M},

and for λ ∈ R, the following area-type functional

Fλ : S(N) → R,

(M,E) 7→ Hn(M)− λHn+1(E).

As before, for Ω ⊂⊂ N \ (M \M), and taking X ∈ Γc(T (M ∩ Ω)⊥), we define the first variation
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of Fλ, at (M,E), in direction X, [7, Propositions 2.3 and 2.5]

δFλ(M,E)(X) :=
d

dt |t=0
Fλ(Φ(M, t),Φ(E, t)).

By computing ([7, Propositions 2.3]) one will see that (M,E) is a critical point of Fλ in Ω, if and

only if M ∩Ω is a λ-CMC hypersurface, with H⃗ = λν, where ν points into E. For a critical point

(M,E) in Ω, and defining f = g(X, ν) on M ∩Ω, as before we may take the second variation and

compute,

δ2Fλ(M,E)(X) :=
d2

d2t |t=0
Fλ(Φ(M, t),Φ(E, t)) = BM [f, f ] = −

∫
M

f Lf,

where BL, and L = ∆M + |AM |2 + Ricg(ν, ν), are defined exactly as before. We then similarly

define the index and nullity of M in Ω.

We shall revisit and extend this discussion on index, nullity and the stability operator in Section

3.1.2.

In studying such hypersurfaces and their variational properties (in particular analysing sequences

and taking limits), it is necessary to expand the class of objects (smooth, closed, properly embedded

hypersurfaces) that we consider. We define one such object below (which is at the centre of study

in Chapter 2), and even weaker notions in Section 1.2.

For a point x ∈ N , an n-dimensional subspace T ⊂ TxN , and constants ρ, τ ∈ (0, inj (N)/2), we

define the cylinder,

Cx,T,ρ,τ := {expx(y + sνT ) : y ∈ BTxN
ρ (0) ∩ T, s ∈ (−τ, τ)},

where νT is a choice of unit normal to T .

Definition 1. (Quasi-embedded hypersurface) A set M ⊂ N is defined as a quasi-embedded

hypersurface if there exists a smooth manifold S, of dimension n, and a smooth proper immersion

ι : S → N , such that M = ι(S), and for each x ∈ M , there exists ρ, τ ∈ (0, inj (N)/2), a n-

dimensional subspace T ⊂ TxN (with a choice of unit normal νT ), along with a finite, ordered

collection of distinct smooth functions u1 ≤ u2 ≤ . . . ≤ uk, for some k = k(x) ∈ Z≥1,

u1, . . . , uk : B
TxN
ρ (0) ∩ T → (−τ, τ),

with ui(0) = 0, and ∇ui(0) = 0, for all i = 1, . . . , k, such that,

M ∩ Cx,T,ρ,τ =
k⋃

i=1

{expx(y + ui(y)νT ) : y ∈ BTxN
ρ (0) ∩ T}.
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If k = 1, then we call x an embedded point of M , and if k ≥ 2, we call x a non-embedded point

of M .

Definition 2. (Quasi-embedded λ-CMC hypersurface) For λ ∈ R, a set M ⊂ N , is defined as a

quasi-embedded λ-CMC if M is a quasi-embedded hypersurface as defined in Definition , and for

each x ∈M , the graph of each function u1, . . . , uk has constant mean curvature λ.

Remark 1. (See [12, Remark 2.6]) Note that if λ = 0 (i.e. M is minimal) then by the one-sided

maximum principle for each x ∈ M , k = 1. Similarly, if λ ̸= 0, and for x ∈ M , such that

k ≥ 2, then in fact k = 2. Moreover, if H⃗i denotes the mean curvature vector of graph (ui), then

gx(H⃗1(x), νT ) = λ, and gx(H⃗2(x), νT ) = −λ.

It is also worth noting that in the literature these hypersurfaces are defined under different names.

In [71] they are referred to as almost embedded, and in [16] they are referred to as effectively

embedded. We opt for the name quasi-embedded as in [14].

1.2 Varifolds and Caccioppoli Sets

We denote n-rectifiable varifolds V , in N , by V = (Σ, θ), where Σ ⊂ N is an n-rectifiable set, and

θ : Σ → R≥0, is a Hn
g -measureable function on Σ. To a varifold V , we define its weight measure

∥V ∥ (which is a Radon measure on N), by

∥V ∥(A) =
∫
Σ∩A

θ dHn, A ⊂ N, (1.1)

and we define spt ∥V ∥ as the support of the Radon measure ∥V ∥ on N . If θ takes positive integer

values ∥V ∥-a.e. then we say that V is an integer n-rectifiable varifold. For an n-rectifiable varifold

V , and a sequence of n-rectifiable varifolds {Vi}, we say that Vi → V if ∥Vi∥ ⇀ ∥V ∥ as Radon

measures.

We also note that the definition of an n-rectifiable varifold is always up to an equivalence (see the

first paragraph of [54, chapter 4]), and unless otherwise stated we will take Σ = spt ∥V ∥, and for

p ∈ Σ,

θ(p) = lim inf
r→0

µV (B
N
r (p))

ωnrn
,

where we are setting, ωn = Hn(Bn
1 (0)).

We now look to define the first variation of a n-rectifiable varifold V . Let f : N → N , be a proper

C1 map, then

f#V := (f(Σ), θ ◦ f−1),
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defines a rectifiable n-varifold. Then, for a smooth vector field X on N (recall that X generates a

flow Φ), we define the first variation of V in direction X by

δV (X) :=
d

dt t=0
∥Φ(·, t)#V ∥(N) =

∫
Σ

(divΣX) θ dHn.

We then say that V has generalised mean curvature H⃗, if

δV (X) = −
∫
Σ

(X · H⃗) θ dHn.

holds for all smooth vector fields X on N . If H⃗ = 0, we say that V is stationary.

We define the following three sets on spt ∥V ∥:

1. The regular set of V (denoted regV ) is the set of points x ∈ spt ∥V ∥, such that there exists

a ρ ∈ (0, inj (N)), such that spt ∥V ∥ ∩BN
ρ (x) is a smoothly embedded hypersurface.

2. The generalised regular set (denoted gen-regV ), is the set of points x ∈ spt ∥V ∥, such that

there exists ρ ∈ (0, inj (N)), such that spt ∥V ∥ ∩BN
ρ (x) is a quasi-embedded hypersurface.

3. The singular set of V (denoted singV ), is the set of points x ∈ spt ∥V ∥ \ gen-regV .

It is worth noting that by the one-sided maximum principle for minimal hypersurfaces, if V is

stationary, then gen-regV = regV . Moreover, with this notation, if M is a quasi-embedded

hypersurface (Definition 1), with Hn(M \ M) = 0, then we may define a rectifiable n-varifold

V = (M, 1), the set of embedded points of M will be contained in regV , the set of non-embedded

points of M will be contained in gen-regV \ regV , and singV will be contained in M \M .

We refer the reader to [54, Chapter 4] for a more detailed discussion on n-rectifiable varifolds.

Another geometric object used in this thesis is that of Caccioppoli sets. Before we state the

definition of Caccioppoli sets we need to define functions of bounded variation.

Definition 3. (Functions of Bounded Variation) We define the set of functions BV (N), to be the

set of functions f ∈ L1(N), such that,

V (f) := sup

{∫
N

f divX : X ∈ Γ(TN), ∥X∥L∞(N) ≤ 1

}
< +∞

Equivalently, there exists a Radon measure |Df |, and |Df |-measureable vector field σ on N , with

|σ|(x) = 1 for x |Df |-a.e. such that∫
N

f divX = −
∫
N

g(X, σ) d|Df |
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holds for all smooth vector fields X on N .

Definition 4. (Caccioppoli sets) A set E ⊂ N is a Caccioppoli set (or a set of finite perimeter) if

the characteristic function of E,

χE(x) =

1, x ∈ E,

0, x ̸∈ E,

lies in BV (N).

For a Caccioppoli set E, we define the reduced boundary of E, ∂∗E, as the set of points x such

that,

1. |DχE|(BN
r (x)) > 0 for all r ∈ (0, inj (N)),

2. For any smooth vector field X on N

lim
r→0+

1

ωnrn

∫
BN

r (x)

g(σ,X) d|DχE| = g(σ,X),

3. |σ|(x) = 1

We refer the reader to [25, Chapter 5] for a more detailed discussion on functions of bounded

variation and Caccioppoli sets.
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Chapter 2

Embeddedness of Min-Max CMC

Hypersurfaces in Manifolds with

Positive Ricci Curvature

This chapter of the thesis contains joint work with Bellettini. The published version of this work

may be found here [15]. Our main result is the following existence result,

Theorem 4. For any λ ∈ R \ {0}, and compact, n+1 dimensional (n ≥ 2) Riemannian manifold

(N, g), without boundary, and with positive Ricci curvature, there exists a smooth, embedded, two-

sided hypersurface M , with constant mean curvature λ (λ-CMC), and

1. M is closed when 2 ≤ n ≤ 6,

2. M \M consists of finitely many points when n = 7,

3. dimH (M \M) ≤ n− 7, when n ≥ 8.

In Theorem 4 the emphasis is on the fact thatM is embedded: this is a new result. The statement

of Theorem 4 with embedded replaced by (the weaker notion of) quasi-embedded was on the other

hand known, as detailed below (with two methods available). We recall that quasi-embedded

means that the hypersurface is a smooth immersion, with any self-intersections being tangential,

and with local structure around any point of tangential intersection being that of two embedded

disks lying on opposite sides of each other (see Definitions 2 and 2).

As it will be important for our arguments, we begin by recalling that the existence result in

Theorem 4, with embedded replaced by quasi-embedded, follows from the work by Bellettini–

Wickramasekera in [14]. In fact, [14, Theorem 1.1] proves the following more general result.

Given a compact Riemannian manifold, (N, g), dimN ≥ 3 (without any curvature assumptions)

and a non-negative Lipschitz function h : N → R, there exists a quasi-embedded, two-sided C2
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hypersurfaceMh such that, for each x ∈Mh, the scalar mean curvature ofMh at x is given by h(x);

the singular set Mh \Mh satisfies the dimensional estimates listed in Theorem 4. The construction

of Mh is carried out in the Allen–Cahn min-max framework, and serves as a starting point for the

present work. We briefly recall it here in the case h = λ constant, with further details in Section

2.1.1.

Consider a sequence of functions {ui} in W 1,2(N), where each ui is the solution of the appropriate

εi-scaled inhomogeneous Allen–Cahn equation, with εi → 0. Assuming uniform energy bound, the

works of Hutchinson–Tonegawa [33] and Röger–Tonegawa [46] give, in the εi → 0 limit, an integral

varifold V (a “limit interface”), with generalised mean curvature HV ∈ L∞(spt∥V ∥), along with a

Caccioppoli set E, with ∂∗E ⊂ spt ∥V ∥, such that,HV (x) = λ, θV (x) = 1, Hn − a.e. x ∈ ∂∗E,

HV (x) = 0, θV (x) ∈ 2Z≥1, Hn − a.e. x ∈ spt ∥V ∥ \ ∂∗E.

In the presence of such a sequence {ui}, the two major roadblocks to an existence result for a

λ-CMC are (i) ∂∗E may be empty, in which case the limit interface is actually minimal (ii) even

if ∂∗E ̸= ∅, it may not have sufficient regularity ([14, Figure 1] illustrates how lack of regularity

could prevent ∂∗E from being an admissible candidate). In [14] a (first) sequence {ui} is produced

by means of a classical mountain pass lemma; the Morse index of each ui is at most 1 (as a

consequence of the fact that the min-max has one parameter). It is moreover shown (see [14,

Remark 6.7]) that in the case of ambient manifold with positive Ricci curvature (and with h = λ

constant), occurrence (i) cannot arise, that is, ∂∗E is non-trivial when ui is the sequence obtained

from the min-max. For arbitrary ambient manifolds, in the event that ui leads to occurrence (i),

[14] implements a gradient flow that yields a (second) sequence {vi}, for which ∂∗E ̸= ∅ and with

Morse index 0. The matter is thus reduced to a regularity question for the limit interface arising

from a sequence ui with uniformly bounded Morse index. This index control is used in a key way to

obtain regularity ([14, Theorem 1.2]), whose proof relies on extensions of Tonegawa’s work [59] and

Tonegawa–Wickramasekera’s work [60], and crucially on the (non-variational) varifold regularity

result of Bellettini–Wickramasekera [13, Theorem 9.1] (see also [14, Theorem 3.2]). In conclusion,

[14] obtains that V = Vλ + V0, where spt ∥Vλ∥ = ∂E = Mλ and spt ∥V0∥ = M0; here Mλ is a two-

sided, quasi-embedded λ-CMC hypersurface, and M0 an embedded minimal hypersurface, both

satisfying the dimensional estimates listed in Theorem 4. Furthermore, any intersections between

Mλ and M0, and self-intersections of Mλ, are always tangential intersections of C
2 graphs lying on

one side of each other.

With this as a starting point, our first step in establishing Theorem 4 is to show that when Ricg > 0,

the one-parameter Allen–Cahn min-max just recalled does not produce any minimal components

in the limit interface, i.e. V0 = 0. (As mentioned earlier, in this case [14] establishes already that
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Vλ ̸= 0 for the ui produced by min-max.)

Theorem 5. Let (N, g) be a compact Riemannian manifold, without boundary, of dimension ≥
3, with positive Ricci curvature, and λ > 0. The one-parameter Allen–Cahn min-max in [14],

with prescribing function set to λ, produces a two-sided λ-CMC hypersurface and no minimal

hypersurface.

Theorem 5 is achieved by exhibiting a suitable continuous path, admissible in the min-max con-

struction (which employs paths that are continuous in W 1,2(N)). This path will move through

functions that are each modelled on a level set of the signed distance to Mλ. The idea is to try to

place a 1-dimensional Allen–Cahn profile along the normal direction to a given level set and thus

produce a function (a point in the path). This might appear problematic due to the presence of

points where the level sets are not smoothly embedded in N (which, for example, may be caused

by the presence of the singular set Mλ \Mλ, or by the fact that Mλ has quasi-embedded points).

We handle this after observing that all “problematic points” are contained in a closed n-rectifiable

set. The open complement (in N) of this n-rectifiable set is described (via a diffeomorphism) as

an open subset of M̃ ×R, where M̃ is a (abstract) n-manifold whose immersion into N gives Mλ.

We will refer to this open subset as the Abstract Cylinder (which is endowed with a metric pulled

back from N). Each level set of the distance function becomes a subset of M̃ ×{s}, where s is the
chosen distance value. The sought path is then defined by “sliding” the 1-dimensional Allen–Cahn

profiles in the R-direction in the whole cylinder M̃ × R, then restricting these functions to the

Abstract Cylinder, and passing them to N . We check that this indeed produces a continuous path

in W 1,2(N). Furthermore, performing the energy calculations on the Abstract Cylinder, we see

that the potentially “problematic points” do not cause any issues. The sliding argument yields a

path with the (key) property that the relevant Allen-Cahn energy attains a maximum (along the

path) at the function obtained in correspondence of Mλ (signed distance equal to 0); this relies

on the positivity of the Ricci curvature. This property of the path easily implies that V0 = 0

(no minimal component), for otherwise the min-max characterisation of V would be contradicted.

Theorem 4 is then proven by showing that the λ-CMC hypersurface arising in Theorem 5 is, in

fact, embedded. This is again done by exhibiting a suitable path (admissible in the min-max).

This path is constructed by editing the previous one about its maximum, under the contradiction

assumption that a non-embedded point exists in Mλ. The modification requires the identifica-

tion of suitable hypersurfaces obtained by deforming Mλ about the non-embedded point. This

construction ensures that the modified path attains a maximum that is strictly smaller than the

maximum obtained for the path used in the proof of Theorem 5. This contradicts the min-max

characterisation. We stress that these path constructions capitalise on the a priori knowledge (from

[14]) that Mλ and M0 are sufficiently regular.

We remark that Theorem 5 is somewhat interesting in its own sake: it is an open question whether

(and under what assumptions) a sequence of solutions to the inhomogeneous Allen–Cahn equation
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with nowhere vanishing inhomogeneous term, and with a uniform bound on the Morse index, can

produce minimal components. (The regularity result in [14] recalled earlier allows us to refer to the

minimal and prescribed-mean-curvature components as hypersurfaces that are separately smooth,

except for a possible small singular set when the ambient dimension is 8 or higher.) Theorem 5 rules

out minimal components in the special instance in which the solutions come from a one-parameter

min-max (in N compact with RicN > 0) and the inhomogeneous term is constant.

The absence of minimal components and of non-embedded points established by Theorem 4 has,

among its consequences, a Morse index estimate:

Corollary 1. The λ-CMC hypersurface in Theorem 5 has Morse index equal to 1.

This follows directly from the work of Mantoulidis [38]. Alternatively, the arguments of Hiesmayr

[31] apply verbatim.

As we recalled, [14] employs an Allen–Cahn approximation scheme to construct the λ-CMC quasi-

embedded hypersurface. The statement of Theorem 4 with embedded replaced by quasi-embedded

can also be obtained (without any curvature assumption on N) using the so-called Almgren–Pitts

method for the min-max, see the combined works of Zhou–Zhu [71] (2 ≤ n ≤ 6) and Dey in [24]

(for n ≥ 7, relying on the compactness theory of Bellettini–Wickramasekera [12, 13]).

Regardless of the method used for the min-max construction, and without the need of curvature

assumptions, if 2 ≤ n ≤ 6 the λ-CMC hypersurface obtained is closed and immersed (completely

smooth). In White’s work [63, Theorem 35] it is proven that for each λ ∈ R, there exists a generic

set (in the sense of Baire category) of smooth metrics on the ambient manifold such that any closed,

codimension-1 (completely smooth) immersion with constant mean curvature λ, is self-transverse.

Therefore, combining the existence of quasi-embedded λ-CMC ([14] or [71]) with [63, Theorem

35], one obtains: when 2 ≤ n ≤ 6, for any λ, there exists a generic set of metrics on N , such that

each admits an embedded λ-CMC hypersurface.1

This argument relies however on the complete smoothness of the λ-CMC hypersurface, which

is not available for n ≥ 7 in the existence results. The flavour of Theorem 4 differs from the

statement just given in that it allows a singular set and can handle all dimensions; moreover the

class of metrics (Ricci positive metrics) is the same for all λ ∈ R. We also stress that the proof

of embeddedness in Theorem 4 exploits the min-max characterisation of the λ-CMC, while one

can apply [63, Theorem 35] to any smooth CMC immersion, not necessarily one coming from a

min-max. Theorem 4 and 5 may also hold with other assumptions on the metric on N , or other

choices on the set of prescribing functions. (In these different scenarios an alternative approach to

1A more general version of this statement is available for h-PMC hypersurfaces, 2 ≤ n ≤ 6, by again combining
[63, Theorem 35] with either [14] or [72]. Note that the class of prescribing functions, h, is different in these two
results.
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the sliding argument mentioned above could be a gradient flow, for example, along the lines of [8,

Section 5.4] and [14, Section 6.9].)

2.1 Preliminaries

2.1.1 Allen-Cahn and Construction of CMC Immersion

We recall the min-max construction in [14], of critical points to the inhomogeneous Allen–Cahn

energy,

Fε,λ(u) =

∫
N

ε

2
|∇u|2 + W (u)

ε
− σ

∫
N

λu, ε ∈ (0, 1), u ∈ W 1,2(N). (2.1)

WhereW is a smooth function on R, withW (±1) = 0 being non-degenerate minima, andW (t) > 0,

for t ∈ R \ {±1}. Furthermore, we impose that W has only three critical points, t = 0, ±1, and

quadratic growth outside some compact interval. For example W (t) = (1− t2)2/4, for t ∈ [−2, 2]

and has quadratic growth outside [−3, 3]. The constant σ is given by,

σ =

∫ 1

−1

√
W (s)/2 ds.

Moreover, we take λ > 0.

Consider the first and second variations of (2.1) with respect to φ ∈ C∞(N),

δFε,λ(u)(φ) =

∫
N

ε∇u · ∇φ+

(
W ′(u)

ε
− σλ

)
φ, (2.2)

δ2Fε,λ(u)(φ, φ) =

∫
N

ε|∇φ|2 + W ′′(u)

ε
φ2. (2.3)

We say that u is a critical point of (2.1), if δFε,λ(u)(φ) = 0, for all φ ∈ C∞(N), and then by

standard elliptic theory we have that u ∈ C∞(N), and strongly solves,

ε∆u =
W ′(u)

ε
− σλ. (2.4)

If u is a critical point of (2.1), then (similarly to the discussion in Section 1.1) we may define the

Morse index of u in Ω ⊂ N , as

indΩ(u) := sup
{
dimΠ: for allφ ∈ Π ≤ W 1,2

0 (Ω), δ2Fε,λ(u)(φ, φ) < 0
}
. (2.5)

If indΩ(u) = 0, then we say u is stable in Ω. By Figure 2.1, we see that there exists two stable

constant solutions on N , aε > −1, and bε > 1. Furthermore, as ε → 0, we have that aε → −1,

and bε → 1. As Ricg > 0, [9, Proposition 7.1] shows that these are the only stable critical points
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εσλ

W ′(t)

aε bεcε

Figure 2.1: Intersection points, aε, bε, and cε, are the solutions to W ′(t) = εσλ.

of (2.1).

The existence of these isolated, stable solutions permits us to find non-trivial critical points of

(2.2) via a min-max argument.

Proposition 1. (Existence of Min-Max Solution, [14, Proposition 5.1]) For ε > 0, let Γ denote

the collection of all continuous paths γ : [−1, 1] → W 1,2(N), such that γ(−1) = aε, and γ(1) = bε.

Then there exists an ε0 > 0, such that for all ε < ε0,

inf
γ∈Γ

sup
u∈γ([−1,1])

Fε,λ = βε > Fε,λ(aε) > Fε,λ(bε), (2.6)

is a critical value, i.e. there exists uε ∈ W 1,2(N), which is a critical point of Fε,λ, with Fε,λ(uε) =

βε. Moreover, uε has Morse index ≤ 1.

In our Ricci positive setting, as aε and bε are the only stable critical points we actually have that

uε has Morse index equal to 1.

Now taking a sequence {εi}i∈N ⊂ (0, ε0), with εi → 0, and associated critical points from Proposi-

tion 1, {ui = uεi}, we associate the following Radon measures,

µi := (2σ)−1

(
εi
2
|∇ui|2 +

W (ui)

εi

)
dµg. (2.7)

Where µg is the volume measure of (N, g). Moreover there exists constants K, L > 0, such that

for all i,

sup
N

|ui|+ µi(N) ≤ K, (2.8)

and

µi(N) ≥ L. (2.9)

By the bounds of (2.8) and (2.9), there exists a subsequence {ui′} ⊂ {ui}, along with a u0 ∈
BV (N), with u0(y) ∈ {+1,−1} for all y ∈ N , and a non-zero Radon measure µ, such that
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ui′ → u0 in L1(N), and µi′ ⇀ µ as Radon measures. By [33, Theorem 1] and [46, Theorem 3.2],

we have that µ is the weight measure of an integral n-rectifiable varifold V , with the following

properties:

1. V , is an integral n-rectifiable varifold with bounded generalised mean curvature HV .

2. The set E := interior({u0 = +1}) is a Caccioppoli set, with reduced boundary ∂∗E ⊆
spt ∥V ∥ ⊂ N \ E ̸= ∅.

3. For Hn-a.e. x ∈ ∂∗E, θV (x) = 1, and HV (x) · ν(x) = λ; where ν is the inward pointing unit

normal to ∂∗E, i.e. ν = ∇u0/|∇u0|.

4. For Hn-a.e. x ∈ spt ∥V ∥ \ ∂∗E, θV (x) is an even integer ≥ 2, and HV (x) = 0.

Optimal regularity of V was then proven in [14] (recall definitions from Section 1.2).

1. V = V0 + Vλ

2. V0 is a (possibly zero) stationary integral n-varifold with singular set of Hausdorff dimension

at most n− 7.

3. Vλ = (∂∗E, 1) ̸= 0, and gen-regVλ is a quasi-embedded hypersurface with constant mean

curvature λ, with respect to unit normal pointing into E. The singular set of Vλ has Hausdorff

dimension at most n− 7.

Therefore, we have the following

Theorem 6. (Theorem 1.1 [14]) Let (N, g) be a compact Riemannian manifold, without boundary,

of dimension n+1 ≥ 3, with positive Ricci curvature, and let λ ∈ (0,∞) be a fixed constant. There

exists a smooth, quasi-embedded λ-CMC hypersurface (recall Definition 2 and Remark 1) M ⊂ N ,

with;

1. M \M = ∅, if 2 ≤ n ≤ 6;

2. M \M is finite if n = 7;

3. dimH(M \M) ≤ n− 7, if n ≥ 8.

We restate Theorems 4 and 5 with our new notation.

Theorem 7. Let (N, g) be a compact Riemannian manifold, without boundary, of dimension n+

1 ≥ 3, with positive Ricci curvature, and let λ ∈ (0,∞) be a fixed constant. The limiting varifold

V = Vλ + V0 from Section 2.1.1 has the following properties

1. M := gen-regVλ is embedded, connected and has index 1.

2. V0 = 0.

31



2.1.2 One Dimensional Allen–Cahn Solution

We refer to [9, Section 2.2] as a reference for this section.

We define the function H on R to denote the unique, monotonically increasing, finite energy

solution to the ODE u′′ −W ′(u) = 0, with the conditions H(0) = 0 and limt→±∞ H(t) = ±1. We

then define Hε( · ) = H(ε−1 ·), which solves the ODE εu′′ − ε−1W ′(u) = 0.

We define an approximation for Hε. Start by considering the following bump function

χ ∈ C∞
c (R),

χ(t) = 1, t ∈ (−1, 1),

χ(t) = 0, t ∈ R \ (−2, 2),

χ(t) = χ(−t), t ∈ R,

χ′(t) ≤ 0, t ≥ 0.

For ε ∈ (0, 1), we define the truncation of Hε by

Hε(t) :=

χ((εΛ)−1t)Hε(t) + 1− χ((εΛ)−1t), t > 0,

χ((εΛ)−1t)Hε(t)− 1 + χ((εΛ)−1t), t < 0,

where Λ = 3| log ε|. There exists a constant β = β(W ) < +∞, such that for all ε ∈ (0, 1/4),

2σ − βε2 <

∫
R

ε

2
|(Hε)

′(t)|2 + W (Hε(t))

ε
dt < 2σ + βε2.

2.2 Idea of the Proof

We first prove Theorem 4 for the case λ > 0. To then prove for λ < 0, we take λ̃ = −λ > 0, and

reverse the direction of the unit normal on the resulting λ̃-CMC hypersurface. From here on we

take λ > 0. Moreover we assume that N is connected. If not then we simply take a connected

component of N .

For Caccioppoli sets Ω ⊂ N , we define the following functional,

Fλ(Ω) := Hn(∂∗Ω)− λµg(Ω).

Recall our converging sequence of critical points {uεj}, along with our limiting varifold V = Vλ+V0,

and Caccioppoli set E from Section 2.1.1. We have, as εj → 0,

Fεj ,λ(uεj) → 2σFλ(E) + 2σ∥V0∥(N) + σλµg(N)
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Therefore, constructing optimal paths between ∅ and N for Fλ, will provide insight into optimal

paths from aε to bε for Fε,λ.

As N is compact, one obvious path that includes E, is {Et} for t ∈ [−2 diam(N), 2 diam(N)],

where,

Et := {y : d̃(y) > t}.

Here d̃ is the signed distance function to M := ∂∗E, taking positive values in E, and negative

values in N \ E. We also denote,

Γt := {y : d̃(y) = t} = ∂Et.

Assuming sufficient regularity on the sets Γt and Et, and the functions t 7→ Hn(Γt) and t 7→ µg(Et),

we have for t > 0,

Fλ(Et)−Fλ(E) =

∫ t

0

d

ds
Hn(Γs) ds− λ

∫ t

0

d

ds
µg(Es) ds,

=

∫ t

0

∫
Γs

λ−HΓs(x) dHn(x) ds,

(2.10)

where HΓs is the scalar mean curvature of Γs with respect to unit normal ∇d̃. Recalling that

HΓ0 = λ, a straightforward calculation yields the following inequalities.HΓt ≥ λ+mt, t ≥ 0,

HΓt ≤ λ+mt, t ≤ 0,

where m = min|X|=1 Ricg(X,X) > 0. Therefore, by (2.10) for t ≥ 0,

Fλ(Et) ≤ Fλ(E).

The same inequality holds for t ≤ 0. Here we see the importance of the assumption on the Ricci

curvature. Therefore,

γ : t ∈ [−2 diam(N), 2 diam(N)] 7→ E−t ∈ {Caccioppoli sets ofN},

is a path from ∅ to N , that has maximum height Fλ(E).

We look to replicate this path in W 1,2(N). Consider the Lipschitz function on N ,

vtε = Hε(d̃(x)− t),

which can be thought of as placing the truncated one dimensional Allen-Cahn solution from Section
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2.1.2 along the normal profile of Γt. By the Co-Area formula, we have,

Fε,λ(v
t
ε) =

∫
R
Qε(s− t)Hn(Γs) ds− σλ

∫
R
Hε(s− t)Hn(Γs) ds,

were,

Qε(t) =
ε

2
|
(
Hε

)′
(t)|2 +

W
(
Hε(t)

)
ε

The functions

t 7→
∫
R
Qε(s− t)Hn(Γs) ds, and t 7→ σλ

∫
R
Hε(s− t)Hn(Γs) ds,

act as smooth approximations to t 7→ 2σHn(Γt), and t 7→ 2σλµg(Et)− σλµg(N), respectively.

We say that v0ε is an Allen–Cahn approximation of M as,

Fε,λ(v
0
ε) → 2σHn(M)− σλµg(E) + σλµg(N \ E) =: A2,

as ε → 0, Section 2.3.6. Carrying out a calculation which replicates the previous one, we deduce

that for all τ > 0, there exists an ετ > 0, such that for all ε ∈ (0, ετ ),

max
t∈[−2 diam(N),2 diam(N)]

Fε,λ(v
t
ε) < A2 + τ = A1 − 2σ∥V0∥(N) + τ,

where A1 := 2σHn(M) + 2σ∥V0∥(N) − σµg(E) + σµg(N \ E). Connecting v
2 diam(N)
ε = −1 to aε,

and v
−2 diam(N)
ε = +1 to bε, by constant functions, we see that we have an appropriate min-max

path in W 1,2(N).

This path proves that we cannot have a minimal piece V0. We also get criterion for M . Indeed, as

there exists a ’Wall’, [14, Lemma 5.1], that all min-max paths must climb over, we have that

2σλHn(M)− σλµg(E) + σλµg(N \ E) > σλµg(N).

Rearranging yields,

Hn(M) > λµg(E).

We note that the above path can be constructed for any suitable λ-CMC hypersurface which

encloses a volume. Therefore, for any such pair (M,E), the above inequality holds, and our min-

max must choose the pair that minimises the positive quantity Hn(M)− λµg(E). From this, one

can deduce that E must be connected.

We turn our attention to proving that M is embedded. We prove by contradiction, exploiting the

min-max characterisation of M . We now know that, given our sequence of critical points {uεj},
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and potentially after taking a subsequence,

Fεj ,λ(uεj) → 2σHn(M)− σλµg(E) + σλµg(N \ E) = A2,

as εj → 0. Assume that M has a non-embedded point z0. Then for every εj > 0, we construct a

continuous path,

γεj : [−1, 1] → W 1,2(N),

where, γεj(−1) = aεj , and γεj(1) = bεj . This path satisfies the following, there exists a J ∈ Z≥1,

and ς > 0, independent of j, such that for all j ≥ J ,

max
t∈[−1,1]

Fεj ,λ(γεj(t)) < 2σHn(M)− σλµg(E) + σλµg(N \ E)− ς,

This is a contradiction of the min-max characterisation of uεj .

We sketch the main ideas of the path in the ε-limit, Figure 2.2.

The picture at z0 is Figure 2.3a. The limiting energy for this structure is A2. The starting point

for building this path is to construct a competitor with lower limiting energy. Then we wish to

connect this competitor to +1 and −1, with energy always remaining a fixed amount below A2.

Step 1 : Construction of Competitor, (1) → (2) in Figure 2.2, Section 2.5

The structure at z0 is two smooth, embedded CMC disks, that touch tangentially at z0 and lie either

side of each other. To construct the competitor, we locally push these disks together, and delete

portions of the disks that are pushed past each other. This reduces the area of our structure while

also increasing the size of E, leading to a drop in energy. Indeed, consider open balls B1 ⊂⊂ B2

about z0. We smoothly bump the disks at z0 such that inside B1 we move the disks distance ρ > 0,

and outside B2 we remain fixed. The balls B1, and B2, along with ρ, are chosen so that the area

inside B1 gets deleted, Figure 2.3b. Letting,

ς =
σ

2
Hn(B1 ∩M),

we see that our competitor has energy lying below, A2 − ς.

Step 2 : Path to +1, Section 2.7

To construct the competitor, we only editedM locally about z0. Therefore, pushing the competitor

to the level set Γ−ρ will correspond to a similar drop in energy from pushing M to Γ−ρ. This is

(2) → (6) in Figure 2.2. See Figures 2.3b and 2.3f for local pictures about z0. From Γ−ρ we can

easily connect to +1 by pushing along level sets Γ−r, as previously discussed.
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Step 3 : Path to −1, Section 2.6

We look to follow a similar method as in Step 2 by connecting our competitor to a level set Γr0 ,

for r0 > 0, then push this along level sets Γr for r in [r0, 2 diam(N)] to connect it to −1. By

pushing our competitor straight to Γr0 we run the risk of pushing through M and increasing our

energy back up to A2. Therefore, we carry out our path in stages, again making use of the fact

that our edit about z0 was local.

The first stage is (2) → (3) in Figure 2.2. We fix our competitor in B2, and outside we push

forward, so that outside some larger ball B3, we line up with Γr0 . See Figures 2.3b and 2.3c for

local pictures about z0. Again, as our edit is local about z0, this corresponds to a similar drop in

energy of pushingM to Γr0 , and the drop will be of order r20. For a large enough r0 this will give us

a large enough energy drop to be able to undo the edit inside B2, and still have our energy remain

below A2 − ς. This is the second stage from (3) → (4), in Figure 2.2. See Figure 2.3d, for local

picture about non-embedded point. From here we push up inside B3 to line up with Γr0 , (4) →
(5) in Figure 2.2, Figure 2.3e. Finally, we connect to −1 by sliding along level sets as previously

stated.

Path at ε Level

We carry out this ’pushing’, on what we refer to as our abstract cylinder, M̃ × R. See Section

2.3.3. Here M̃ is an n-dimensional manifold and ι : M̃ → M is a smooth immersion. We define

the following map,

F : M̃ × R → N,

(x, t) 7→ expι(x)(tν(x))),

with ν being a smooth choice of unit normal to immersion, pointing into E. Therefore, we view

points (x, t) on our cylinder M̃×R as having base point ι(x) and moving length t along the geodesic

with initial direction ν(x). See Figure 2.4.

Recall our function v0ε = Hε ◦ d̃, then by the Co-Area formula,

Fε,λ(v
0
ε) =

∫
R

(
ε

2
|(Hε)

′(t)|2 + W (Hε(t))

ε
− σλHε(t)

)
Hn(Γt) dt,

=

∫
R

∫
M̃

(
ε

2
|(Hε)

′(t)|2 + W (Hε(t))

ε
− σλHε(t)

)
θt(x) dHn(x) dt,

where θt : M̃ → R, is defined in Section 2.3.4 such that for all t ∈ R, and any Hn-measurable

function on N , ∫
Γt

g dHn =

∫
M̃

(g ◦ Ft) θt dHn,
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A1

A2

A2 − ς

(1)

(2)

(3)

(4)

(5)

−1

(6)

+1

Figure 2.2: The Paths. To prove V0 = 0, we follow the path from −1 to (5), then the dotted line
to (1), dotted line to (6), then complete the path to +1. The dashed line from (1) to (2) is the
construction of the competitor. Then, to prove that M is embedded, we follow the path from −1
to +1 given by the solid lines. Refer to Figure 2.3 for the local picture about the non-embedded
point z0 at each numbered stage on the paths.
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+1

+1

−1 −1

(a) (1): Non-embedded point z0

+1

+1

−1 −1

(b) (2): Competitor

+1

+1

−1 −1

(c) (3): Move competitor to Γr0 outside
ball B3 centred at z0.

+1

+1

−1 −1

(d) (4): Undo the edit inside B2.

+1

+1

−1 −1

(e) (5): Push up in B3 to come into line
with Γr0 .

+1

+1

−1 −1

(f) (6): Push Competitor to come in line
with Γ−ρ.

Figure 2.3: Stages of the Path at the non-embedded point z0. In each image, the dashed lines
represent the original λ-CMC disks, as a reference to what we are changing at each step. Further-
more, in each image, it is the solid lines that are the boundaries between the ’+1’ and ’−1’ regions.
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D1

D2

ν1

ν2

+1

+1

−1

−1

−1

−1

F

∂t

∂t

t

t

t = 0

t = 0

D̃1

D̃2

x10

x20

(a) On the left we have a local picture about a non-emebedded point z0 of
M . On the right the two local pictures about x10 and x20 in M̃ ×R, where
ι(x10) = z0 = ι(x20). We have, F (D̃i) = Di, and dFxi

0
(∂t) = νi, for i = 1

and 2. The dotted line on the left picture respresents points in N which
are of equal distance to D1 and D2. The dotted lines on the right-hand
picture are the preimages of the dotted line on the left, under the map F .

D +1

−1

ν

F
D̃ t = 0

t
∂t

(b) On the left, a local picture about an embedded point of M . On the
right is its preimage in T̃ under the map F .

Figure 2.4: Local pictures about points in M

with Ft( · ) = F ( · , t). Then we carry out the relevant ’pushings’ by considering a continuous family

of functions {gr}r∈[0,r′] ⊂ C(M̃),

Fε,λ(v
r
ε) =

∫
R

∫
M̃

(
ε

2
|(Hε)

′(t− gr(x))|2 +
W (Hε(t− gr(x)))

ε

−σλHε(t− gr(x))

)
θt(x) dHn(x, t) dt.

See Figure 2.5.

2.2.1 Structure of the Paper

The paper is organised as follows. We start with setup:

• Section 2.3 is devoted to set up of objects used in the main computation.
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D1

D2

+1

+1

−1

−1

−1

−1

F

t

t

t = 0

t = 0

D̃1

D̃2

Figure 2.5: How the competitor is constructed as the graph of bump functions about points x10
and x20 over M̃ . Whatever is bumped out beyond the dotted line, on the right-hand side, is not
considered in N . In other words, it is deleted.

• In Section 2.4 we carry out the main computation. The constructions that follow are carried

out by plugging explicitly defined functions into this computation.

To prove Theorem 5:

• In Section 2.8.2 we build the dotted path (5) → (1) → (6) in Figure 2.2. Theorem 5 then

follows upon combining this with computations in Sections 2.6.4 and 2.7.2; in these sections

we build the paths (5) → −1, and (6) → +1, in Figure 2.2.

To prove Theorem 4 we argue by contradiction, assuming that M has a non-embedded point z0:

• In Section 2.5 we construct our competitor about z0. This is the dashed path (1) → (2) in

Figure 2.2.

• In Section 2.6 we construct a path from the competitor to the stable constant aε. This is the

solid path (2) → (6) → +1, in Figure 2.2.

• In Section 2.7 we construct a path from the competitor to the stable constant bε. This is the

solid path (2) → (3) → (4) → (5) → −1 in Figure 2.2.

• In Section 2.8.3 we piece together this continuous path from aε to bε, inW
1,2(N). The energy

Fε,λ, is less than A2 − ς for every point along this path, Figure 2.2. This contradicts the

min-max construction, proving that M is embedded.

Finally, in Section 2.9 we prove Corollary 1 (the Morse index ofM is equal to 1, which also implies

that M must be connected).
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2.2.2 A Note on Choice of Constants

The biggest subtlety in the construction of the path in Sections 2.5, 2.6 and 2.7 is the choice of

constants, and the order that we choose them in. We explicitly list the order of choices here, and

reference where they have been chosen.

1. We first choose a non-embedded point z0

2. We choose δ = δ(z0, N,M, g, λ,W ) > 0, in Remarks 6, 7, 8, 9, 17.

3. We choose L = L(z0, N,M, g, δ, λ,W ) > 0, in Remarks 13, 22.

4. We choose k = k(z0, N,M, g, δ, L, λ,W ), in Remark 23.

5. We choose r0 = r0(z0, N,M, g, δ, L, k, λ,W ) > 0, in Remarks 13, 22.

6. We choose ρ = ρ(z0, N,M, g, δ, L, k, r0, λ,W ) > 0, in Remarks 10, 11, 12, 15, 19, 24.

7. We define l = l(ρ) in (2.11).

8. We choose τ > 0 in Sections 2.8.2 and 2.8.3.

9. We finally choose ε = ε(z0, N,M, g, δ, L, k, r0, ρ, τ, λ,W ) > 0, in Remarks 16, 20, 21 and

Sections 2.8.2 and 2.8.3.

2.3 Construction of Objects

2.3.1 Signed Distance Function

Let dM : N → R be the distance function to the closed set M ⊂ N . As M is closed, and N is

complete, Hopf–Rinow tells us that, for each z in N , the value, dM(z), is obtained by a geodesic

from z to a point on M . Furthermore, dM is Lipschitz, with Lipschitz constant 1.

The set E = int({u0 = 1}) is open in N , andM = ∂E. This allows us to define the signed distance

function, d̃ : N → R, to M , which takes positive values in E, and negative values in N \ E,

d̃(y) =

dM(z), x ∈ E,

−dM(z), x ̸∈ E.

This is a Lipschitz function on N , with Lipschitz constant 1.
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2.3.2 Abstract Surface

M is a quasi-embedded λ-CMC hypersurface, Definition 2.

Remark 2. (Local graphical representation ofM) For a point z ∈M , there exists an n-dimensional

linear subspace T = Tz ⊂ TzN , and a unit vector νz ∈ T⊥, along with r = r(z) > 0, s = s(z) > 0,

and S = S(z) > 0, with max{r, s} ≤ S < inj (N), such that we can define the cylinder

Cz,T,r,s := expz

(
{X + tνz : X ∈ BTzN

r (0) ∩ T, t ∈ (−s, s)}
)
⊂ BN

S (z),

and, one of the following holds:

1. (See Figure 2.4b) There exists a smooth function,

f : Bz,T,r := BTzN
r (0) ∩ T → (−s, s),

which satisfies, 
f(0) = 0,

∇Tf(0) = 0,

∆Tf(0) = λ,

and,

M ∩ Cz,T,r,s = expz(Graph (f)) = expz({X + f(X)νz : X ∈ Bz,T,r})

Furthermore, we have that,

E ∩ Cz,T,r,s = expz({X + tνz : X ∈ Bz,T,r, f(X) < t < s}),

and we can define a smooth choice of unit normal to expz(Graph (f)),

ν : expz(Graph (f)) → T (expz(Graph (f)))⊥,

such that ν(z) = νz.

2. (See Figure 2.4a) There exists two smooth functions,

f1, f2 : Bz,T,r → (−s, s),

42



which satisfy, 

f1(0) = 0 = f2(0),

f1 ≥ f2,

∇Tf1(0) = 0 = ∇Tf2(0),

∆Tf1(0) = λ = −∆Tf2(0),

and,

M ∩ Cz,T,r,s =
⋃
i=1,2

expz(Graph (fi)) =
⋃
i=1,2

expz({X + fi(X)νz : X ∈ Bz,T,r}).

Furthermore, we have that,

E ∩ Cz,T,r,s = expz({X + tνz : X ∈ Bz,T,r, f1(X) < t < s})

∪ expz({X + tνz : X ∈ Bz,T,r, −s < t < f2(X)}),

and we can define smooth choices of unit normals,

νi : expz(Graph (fi)) → T (expz(Graph (f)))⊥,

such that ν1(z) = νz, and ν2(z) = −νz.

Recall that if Case 1 holds, then we say that z is an embedded point of M , and alternatively if

Case 2 holds, we say that z is a non-embedded point of M . In either case, the tangent space of M

at z is given by, TzM := Tz.

The set of non-embedded points of M satisfies the following

Claim 1. ([12, Remark 2.6]) The set of non-embedded points of M is locally contained in an

(n− 1)-dimensional submanifold of M , and thus this set of non-embedded points has Hn-measure

0.

We define our abstract surface M̃ by

M̃ = {(z, ν) : z ∈M, ν ∈ TzM
⊥, with |ν| = 1, and points intoE}.

Locally M̃ is a smooth, embedded CMC disk in N , therefore, M̃ is a smooth n-dimensional

manifold.
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2.3.3 Abstract Cylinder

Consider x in M̃ , then x = (z,X), for some z in M and X in TzM
⊥. We define two, smooth

projections, first from M̃ to TM⊥,

ν : (z,X) 7→ X,

and secondly, from M̃ to M ,

ι : (z,X) 7→ z.

From these we define the following map,

F : M̃ × R → N,

(x, t) 7→ expι(x)(tν(x)),

which, as N is complete, is well-defined. For a fixed x in M̃ , F is a unit parametrisation of a

geodesic which, at time 0, passes through ι(x), with velocity ν(x). The set {t : dM(F (x, t)) = |t|},
is the set of times t, at which this geodesic achieves the shortest distance from F (x, t) to M .

Consider the subset {t : d̃(F (x, t)) = t} ⊂ {t : dM(F (x, t)) = |t|}, and its endpoints,

σ+(x) = sup{t : d̃(F (x, t)) = t} ≥ 0,

σ−(x) = inf{t : d̃(F (x, t)) = t} ≤ 0.

These are uniformly bounded functions on M̃ , and in fact as the next claim shows, {t : d̃(F (x, t)) =
t} is a closed and connected interval on R.

Claim 2. We have that

[σ−(x), σ+(x)] = {t : d̃(F (x, t)) = t}.

Proof. Consider the geodesic, γ : t 7→ F (x, t), and define the following function,

f : t 7→ d̃(F (x, t)).

This is a 1-Lipschitz function with f(0) = 0. Indeed,

|f(t1)− f(t2)| ≤ |d(F (x, t1), F (x, t2))| ≤ Length(γ|[t1,t2]) = |t1 − t2|.

Thus, for t0 ≥ 0, such that f(t0) ̸= t0, we must have f(t0) < t0. Moreover, for any t > t0,

f(t) = f(t)− f(t0) + f(t0),

≤ t− t0 + f(t0),

< t.

44



Similarly, if we have t0 ≤ 0, such that f(t0) ̸= t0, then f(t) ̸= t, for all t < t0.

By continuity, we have that d̃(F (x, σ+(x))) = σ+(x), and therefore by above, for all t ∈ [0, σ+(x)],

we must have that d̃(F (x, t)) = t. By definition of σ+(x), for all t > σ+(x), d̃(F (x, t)) < t.

Therefore,

[0, σ+(x)] = {t ≥ 0: d̃(F (x, t)) = t}.

Similarly, [σ−(x), 0] = {t ≤ 0: d̃(F (x, t)) = t}.

We define the abstract cylinder,

T̃ = {(x, t) : x ∈ M̃, t ∈ (σ−(x), σ+(x))} ⊂ M̃ × R.

Defining the projection map from M̃ ×R onto R, p : (x, t) 7→ t, then on T̃ we have that d̃ ◦F = p.

We wish to work on T̃ instead of N . The following Lemma is crucial in that respect.

Lemma 1. (Geodesic Touching Lemma) For all y in N \M , there exists a geodesic from y to

M that achieves the length of dM(y). The end point of this geodesic on M must in fact be a

quasi-embedded point of M , and the geodesic will hit M orthogonally.

Proof. Identical argument to [9, Lemma 3.1], except we replace the Sheeting Theorem of [51,

Theorem 1] (alternatively [67, Theorem 3.3]) for minimal hypersurfaces, with the Sheeting Theorem

of [12, Theorem 3.1] for CMC hypersurfaces.

From this Lemma, the following result is immediate,

Proposition 2. For all y in N \ (M \M), there exists an x in M̃ , such that F (x, d̃(y)) = y.

Claim 3. The functions, σ+, σ− : M̃ → R, are continuous.

Proof. We prove by contradiction. Suppose there exists an x̂ ∈ M̃ such that, lim infx→x̂ σ
+(x) =

α < σ+(x̂). Choose 0 < δ < σ+(x̂)− α, then there exists xn → x̂ in M̃ such that σ+(xn) < α+ δ.

Now consider the points,

zn = F (xn, α+ δ) → z := F (x̂, α+ δ).

By Claim 2, d̃(zn) < α+ δ. By Proposition 2 there exists a sequence x̃n, such that,

F (x̃n, d̃(zn)) = zn.

After potentially taking a subsequence and renumerating we have that there exists a y ∈M , such

that ι(x̃n) → y, then note d(y, z) = d̃(z) = α + δ. Therefore, by Lemma 1, y ∈ M , and as
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t 7→ F (x̂, t) is the unique length minimising geodesic from M to z, x̃n → x̂ in M̃ . Now we have

that,

F (xn, α+ δ) = zn = F (x̃n, d̃(zn)).

However, (xn, α+ δ) ̸= (x̃n, d̃(zn)), and

lim
n→∞

(xn, α+ δ) = (x̂, α+ δ) = lim
n→∞

(x̃n, d̃(zn)).

This implies that F is not a diffeomorphism about the point (x̂, α+ δ), and therefore by classical

theory of geodesics, [48, Lemma 2.11], t 7→ F (x̂, t) is no longer length minimising to M beyond

time t = α + δ. This contradicts α + δ < σ+(x̂).

Now suppose that σ+(x̂) < lim supx→x̂ σ
+(x) = β < +∞. Choose 0 < δ < β−σ+(x̂), and sequence

xn → x̂, such that,

σ+(xn) > σ+(x̂) + δ.

Define,

zn = F (xn, σ
+(x̂) + δ),

then d̃(zn) = σ+(x̂) + δ. By continuity of F ,

zn → z := F (x̂, σ+(x̂) + δ).

However, by definition of σ+(x̂), d̃(z) < σ+(x̂) + δ = d̃(zn). This contradicts continuity of d̃.

Similar arguments show that σ− is also continuous.

We define the Cut Locus of M to be the following points in N ,

Cut (M) = {F (x, σ+(x)) : x ∈ M̃} ∪ {F (x, σ−(x)) : x ∈ M̃} ⊂ N,

and by Proposition 2, we have that,

N \ (M \M) = F (T̃ ) ∪ Cut (M).

Proposition 3. Cut (M) is an n-rectifiable set.

To prove Proposition 3, we first classify points in Cut(M).

Proposition 4. A point y in N \ (M \ M), lies in Cut(M) if and only if at least one of the

following conditions holds:

1. y lies in N \M , and there exists an x in M̃ such that F (x, d̃(y)) = y, and dF(x,d̃(y)) : TxM̃ ×
R → TyN , is non-invertible.
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2. y lies in N \M , and there exists at least two unique geodesics from y to M which achieve

the length dM(y).

3. y is a non-embedded point of M .

Proof. Consider a point y = F (x, 0) ∈M . If y is an embedded point of M , then case 1 of Remark

2 holds, and there exists an S > 0, such that M ∩ BS(y) is a smooth, embedded, n-dimensional

CMC disk. Therefore, ([37, Proposition 4.2]) there exists an r in (0, S/2), such that for all t in

(−r, r), d̃(F (x, t)) = t. Therefore, if y ∈M ∩ Cut(M), then y must be a non-embedded point.

Alternatively, if y is a non-embedded point then case 2 of Remark 2 holds, and (y, ν) and (y,−ν)
both lie in M̃ . Moreover, for t ∈ (−s, 0), t < f2(0), implying that F ((y, ν), t) = expy(tν) lies in E.

Therefore, d̃(F ((y, ν), t)) ≥ 0, implying that σ−(y, ν) = 0, and thus y is a point in Cut(M).

For y ∈ N \ M , the conclusion follows from standard theory of geodesics, see [48, Chapter II,

Section 2]. As observed in [9, Proposition 3.1], thanks to Lemma 1, we may use this classical

theory for minimising geodesics to smooth closed submanifolds in our setting.

Remark 3. By standard theory of geodesics [48, Lemma 2.11], if a point y is in Cut (M), then

any length minimising geodesic between y and M , emanating from M , can no longer be length

minimising (to M), beyond length |d̃(y)|. Thus F (T̃ ) and Cut (M) must be disjoint. Therefore,

by point 1 of Proposition 4, F must be a local diffeomorphism on T̃ . Moreover, by point 2,

F : T̃ → F (T̃ ) is a bijection.

Proof. (of Proposition 3) As Cut(M) ∩ M consists of non-embedded points of M , by Claim 1

we have Hn(Cut(M) ∩M) = 0. Therefore, to prove that Cut(M) is n-rectifiable, we just need

to concern ourselves with Cut(M) \ M . Again this follows from the observation made in the

proof of [9, Proposition 3.1], that as Lemma 1 holds, the arguments in [37, Theorem 4.10] hold

verbatim.

Remark 4. As M is smooth, we have that d̃ is smooth in F (T̃ ), [37, Proposition 4.2].

Denoting h = F ∗g, we have that F : (T̃ , h) → (F (T̃ ), g), is a bijective, local isometry.

Consider the projection map,

p : M̃ × R → R,

(x, t) 7→ t.

In T̃ , we have that p = d̃ ◦ F , and

|∇p(x, t)|h = |∇d̃(F (x, t))|g = 1.
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We denote the sets,

Γ̃t = p−1(t) ∩ T̃ ,

and,

Γt = d̃−1(t) ⊂ N.

Note,

F (Γ̃t) =

Γt ∩ F (T̃ ) = Γt \ Cut(M), t ̸= 0,

{embedded points of M}, t = 0.

Denote HΓ̃t
(x, t) as the scalar mean curvature of Γ̃t, at (x, t), with respect to unit normal ∇p(x, t),

and define the following function,

Ht : M̃ → R,

x 7→

HΓ̃t
(x, t), (x, t) ∈ T̃ ,

0, (x, t) ̸∈ T̃ .

For (x, t) in T̃ , we have,

Ht(x) = −trT(x,t)Γ̃t
h(∇· ∇p(x, t), · ) = −∆Γ̃t

p(x, t).

However, as ∇p is a geodesic vector field

∇∇p∇p = 0,

and as |∇p| = 1,

h(∇X∇p,∇p) =
1

2
X(|∇p|) = 0.

Therefore, ∆Γ̃t
p(x, t) = ∆T̃p(x, t), and thus for (x, t) in T̃ ,

Ht(x) = −∆p(x, t).

Proposition 5. ([29, Corollary 3.6]) For (x, t) in T̃ ,

∂tHt(x) = −∇p(∆p)(x, t) ≥ m,

where m = inf |X|=1Ricg(X,X) > 0.

Remark 5. Consider fixed x in M̃ . For σ−(x) < 0, we have H0(x) = λ. If σ−(x) = 0, we still have,

lim
t↘0

Ht(x) = λ.
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Thus, by Proposition 5, we have for (x, t) ∈ T̃ ,
Ht(x) ≥ λ+mt, t > 0,

H0(x) = λ,

Ht(x) ≤ λ+mt, t < 0.

2.3.4 Area Element

We define the function on M̃ ,

θt(x) =

JΠt(x), (x, t) ∈ T̃ ,

0, (x, t) ̸∈ T̃ ,

where, JΠt is the Jacobian of the map Πt : x ∈ M̃ 7→ (x, t) ∈ M̃ × R. By the Area Formula,∫
M̃

θt dHn = Hn(Γ̃t).

Proposition 6. ([29, Theorem 3.11]) For (x0, t0) in T̃ ,

∂t log(θt)(x0)|t=t0 = −Ht0(x0).

Consider a fixed point (x0, t0) in T̃ . First, consider t0 ≥ 0. For all t in (0, t0], (x0, t) lies in

T̃ , which implies that the function t 7→ θt(x0) is smooth on the interval (0, t0]. Furthermore,

limt→0+ θt(x0) = 1, and applying the Fundamental Theorem of Calculus,

log(θt0(x0)) ≤ −t0
(
λ+

1

2
mt0

)
.

Therefore,

θt0(x0) ≤ e−t0(λ+ 1
2
mt0).

Identical inequality holds for t0 ≤ 0.

The term −t(λ + 1
2
mt) achieves a global maximum at t = − λ

m
. As θt0(x0) = 0 for all (x0, t0) not

in T̃ , we conclude that

0 ≤ θt0(x0) ≤ e
λ2

2m ,

for all (x0, t0) in M̃ × R.
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2.3.5 Construction About Non-Embedded point

Let z0 in M be a non-embedded point.

Remark 6. We are in case 2 of Remark 2. We can choose δ = δ(z0,M,N, g) such that,

B2δ(z0) ⊂ Cz0,T,r,s.

We have three disjoint sets,

E1 := expz({X + tν : X ∈ Bz0,T,r, f1(X) < t < s}) ∩BN
2δ(z0),

F := expz({X + tν : X ∈ Bz0,T,r, f2(X) ≤ t ≤ f1(X)}) ∩BN
2δ(z0),

E2 := expz({X + tν : X ∈ Bz0,T,r, −s < t < f2(X)}) ∩BN
2δ(z0).

As ∂Ei∩BN
2δ(z0) = expz({Graph (fi)})∩BN

2δ(z0) =: Di, the following signed distance functions are

well-defined for i = 1, 2,

d̃i : B
N
2δ(z0) → R,

y 7→

dDi
(y), y ∈ Ei,

−dDi
(y), y ∈ BN

2δ(z0) \ Ei.

For y in BN
δ (z0) ⊂⊂ BN

2δ(z0),

d̃(y) = max{d̃1(y), d̃2(y)}.

Furthermore, by [37, Proposition 4.2], we may choose δ > 0, such that d̃1 and d̃2 will be smooth

on BN
2δ(z0).

For i = 1, 2, we define

D̃i := {(z, νi(z)) : z ∈ Di} ⊂ M̃,

and points xi0 = (z0, νi(z0)).

Remark 7. We make a choice of δ = δ(N,M, g, z0) > 0 small enough such that, for each i = 1, 2,

we have open sets Ṽi ⊂ M̃ × R, and maps,

Fi : Ṽi → BN
2δ(z0),

such that D̃i = Ṽi ∩ {t = 0}, and Fi = F|Ṽi
, is a diffeomorphism. We also insist that δ =

δ(N,M, g, z0) > 0, is chosen small enough such that the cut loci of D1 and D2 in BN
2δ(z0) are

empty. We know we can pick such a δ > 0 by [37, Proposition 4.2]
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By choice of δ > 0 in Remark 7, and Proposition 4,

Cut(M) ∩BN
δ (z0) = {y ∈ BN

δ (z0) : d̃1(y) = d̃2(y)} ⊂ BN
δ (z0) \ E.

Remark 8. Denote the set,

A = {y ∈ BN
2δ(z0) : d̃1(y) = d̃2(y)}.

For i = 1, 2, we consider the functions,

ψi : Ṽi → R,

(x, t) 7→ d̃1(Fi(x, t))− d̃2(Fi(x, t)).

Therefore, A = Fi({ψi = 0}). Moreover,

∂tψi(x
i
0, 0) = g(∇d̃1(z0), (dFi)(xi

0,0)
(∂t))− g(∇d̃2(z0), (dFi)(xi

0,0)
(∂t)) = 2 ̸= 0.

Thus, by Implicit Function Theorem we may choose δ = δ(z0, N,M, g) > 0, such that set A =

Cut (M) ∩BN
2δ(z0) is a smooth n-submanifold in BN

2δ(z0), and σ
− is smooth on D̃1 ∪ D̃2.

We now look to define the push out function to construct our competitor, Figure 2.5.

We wish to determine the amount we want to push out by, and the set we wish to push out on.

Fix ρ > 0, and we set l = l(ρ), to be,

l(ρ) = sup{t : for allx ∈ BM̃
t (x10), |σ−(x)| < ρ}. (2.11)

Here, BM̃
t (x) is the geodesic ball in M̃ , about point x, of radius t. As σ− is smooth about x10,

and σ−(x10) = 0, this implies that l(ρ) > 0 for all ρ > 0. As σ−(x) = 0 if and only if ι(x)

is a non-embedded point, and such points have Hn-measure 0 (Claim 1) in M̃ , we have that

limρ→0+ l(ρ) = 0.

Remark 9. As σ− is smooth on D̃1, σ
− ≤ 0, and σ−(x10) = 0, then, by considering the local Taylor

expansion of σ− about x10, there exists a C1 = C1(N,M, g, z0) < +∞, and a δ = δ(N,M, g, z0),

such that for all x in D̃1,

σ−(x) ≥ −C1d
2
M̃
(x, x10).

As l(ρ) → 0, as ρ→ 0, this implies that we can choose ρ > 0, (Remark 10), such that

BM̃
l(ρ)(x

1
0) ⊂⊂ D̃1.

Then, there exists an x′ in D̃1, such that dM̃(x′, x10) = l, and σ−(x′) = −ρ. Therefore, by Remark
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9,

ρ ≤ C1l
2.

Remark 10. Note that we have made our first choice of ρ = ρ(z0, N,M, g, δ).

We push out on disks D1 and D2 equally, so that they meet on Cut (M) in BN
δ (z0), which is our

previously denoted set A, as seen in Figure 2.5. We consider the open sets W̃i ⊂ D̃i, defined by,

W̃i = {x : Fi(x, σ
−(x)) ∈ Bδ(z0)}.

Clearly xi0 lies in W̃i, therefore these sets are non-empty. We can then define a diffeomorphism

between W̃1, and W̃2.

Ψ: W̃1 → W̃2,

x 7→ (π ◦ F−1
2 ◦ F1 ◦ (id, σ−))(x),

where we define, π by,

π : M̃ × R → M̃,

(x, t) 7→ x,

and (id, σ−), by

(id, σ−) : M̃ → M̃ × R,

x 7→ (x, σ−(x)).

The function Ψ is smooth and has smooth inverse given by

Ψ−1 : W̃2 → W̃1,

x 7→ (π ◦ F−1
1 ◦ F2 ◦ (id, σ−))(x).

We note that, dΨx1
0
= Id.

Remark 11. We choose ρ = ρ(z0, N,M, g, δ) > 0, such that,

BM̃
2l (x

1
0) ⊂⊂ W̃1.
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Consider a push out function, which lies in C∞
c (D̃1), and has the following properties,

f1(x) =


−1, x ∈ BM̃

l (x10),

[−1, 0], x ∈ BM̃
2l (x

1
0) \BM̃

l (x10),

0, x ∈ D̃1 \BM̃
2l (x

1
0).

We further impose the condition,

|∇f1| ≤
2

l
.

Define f2 in C∞
c (D̃2), by

f2(x) =

(f1 ◦Ψ−1)(x), x ∈ W̃2,

0, x ∈ D̃2 \ W̃2.

The support of f2 will lie in Ψ(BM̃
2l (x

1
0)) ⊂⊂ Ψ(W̃1) = W̃2. We then define the function f in

C∞
c (M̃), by f = f1 + f2.

Define the sets,

B2l = BM̃
2l (x

1
0) ∪Ψ(BM̃

2l (x
1
0)),

Bl = BM̃
l (x10) ∪Ψ(BM̃

l (x10)),

Al = B2l \Bl.

We will similarly define the sets,

Bt = BM̃
t (x10) ∪Ψ(BM̃

t (x10)),

for t > 0, such that BM̃
t (x10) ⊂ W̃1.

Remark 12. We choose ρ = ρ(z0,M,N, g, δ,W, λ) > 0, such that

F1 (B2l × (−2ρ, 2ρ)) ⊂⊂ BN
δ (z0)

In the final part of this section we look to define the function that will ’push out away from the

non-embedded point’. This function will define the path from (2) to (3) in Figure 2.2.

Remark 13. (Choice of L and r0) We choose L = L(z0, N,M, g, δ) > 0 and

r0 = r0(z0, N,M, g, δ) > 0, such that,

BM̃
L (x10) ⊂⊂ W̃1,
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and,

F (BL × (−2r0, 2r0)) ⊂⊂ BN
δ (z0).

For a sets Ω̃ and Ω, were Ω is open and Ω̃ ⊂⊂ Ω, we define the 2-Capacity of Ω̃ in Ω as the value,

Cap2(Ω̃,Ω) = inf

{∫
Ω

|∇φ|2 dHn : φ ∈ C∞
c (Ω), φ ≥ χΩ̃

}
.

For n ≥ 3, by [25, Theorem 4.15 (ix), Section 4.7.1 and Theorem 4.16, Section 4.7.2],

lim
k→∞

Cap2(B
M̃
L
k
(x10), B

M̃
L (x10)) = Cap2({x10}, BM̃

L (x10)) = 0.

Identical proofs show that this also holds for n = 2. Therefore, for all γ > 0, there exists a function

φγ,k, such that, 
φγ,k ∈ C∞

c (BM̃
L (x10)),

φγ,k : M̃ → [0, 1],

φγ,k(x) = 1, x ∈ BM̃
L
k

(x10),

and, defining φ̃γ,k = φγ,k + φγ,k ◦Ψ−1, we have∫
M̃

|∇φ̃γ,k|2 dHn(x) < γ.

We consider the function f̃ = 1− φ̃γ,k in C∞(M̃), and ∥∇f̃∥2
L2(M̃)

< γ.

Remark 14. We will later make fixed choices for L = L(z0,M,N, g, δ,W, λ),

r0 = r0(z0,M,N, g, δ,W, λ, L), γ = γ(z0, N,M, g, δ, r0, L), and k = k(z0, N,M, g, δ, L, γ).

Remark 15. We make a further choice of ρ = ρ(z0, N,M, g, δ, L, r0, k), such that,

B2l ⊂⊂ BL
k
,

We will make a further choice of ρ later on, so that ρ = ρ(z0, N,M, g, δ, L, k, r0).

2.3.6 Approximating Function for CMC

We use the tools we have constructed to give a simple proof that the function,

vε(y) = Hε(d̃(y)),

is suitable approximation of M , i.e.

lim
ε→0

Fε,λ(vε) = 2σHn(M)− σλµg(E)− σλµg(N \ E).
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By the Co-Area formula on the function d̃,

Fε,λ(vε) =

∫
N

ε

2
|∇vε|2 +

W (vε)

2
− σλ

∫
N

vε,

=

∫
R

∫
Γt

Qε(t) dHn dt− σλ

∫
R

∫
Γt

Hε(t) dHn dt,

where,

Qε(t) =
ε

2
((Hε)

′(t))2 +
W (Hε(t))

ε
.

Using the fact that N \F (T̃ ) is a set of 0 µg-measure, and that F : (T̃ , h) → (F (T̃ ), g), is a bijective

local isometry, we have,

Fε,λ(vε) =

∫
R
Qε(t)Hn(Γ̃t) dt− σλ

∫
R
Hε(t)Hn(Γ̃t) dt.

From analysis of Hε, we have that, sptQε ⊂ [−2εΛ, 2εΛ], and

2σ − βε2 ≤
∫
R
Qε(t) dt ≤ 2σ + βε2.

Furthermore,

Hε(t) ≤

1, t > −2εΛ,

−1, t ≤ −2εΛ,

and,

Hε(t) ≥

1, t > 2εΛ,

−1, t ≤ 2εΛ.

Therefore,

Fε,λ(vε) ≤ (2σ + βε2) ess sup
t∈[−2εΛ,2εΛ]

Hn(Γ̃t)− σλ

∫ +∞

2εΛ

Hn(Γ̃t) dt+ σλ

∫ 2εΛ

−∞
Hn(Γ̃t) dt.

Similarly,

Fε,λ(vε) ≥ (2σ − βε2) ess inf
t∈[−2εΛ,2εΛ]

Hn(Γ̃t)− σλ

∫ +∞

−2εΛ

Hn(Γ̃t) dt+ σλ

∫ 2εΛ

−∞
Hn(Γ̃t) dt.

We have,

Hn(Γ̃t) =

∫
M̃

θt(x) dHn(x),
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and by applying Dominated Convergence Theorem to θt, we have that,

lim
t→0

Hn(Γ̃t) = lim
t→0

∫
M̃

θt(x) dHn(x) = Hn(M̃ ∩ T̃ ) = Hn(M̃).

This implies that,

lim
ε→0

ess sup
t∈[−2εΛ,2εΛ]

Hn(Γ̃t) = Hn(M̃) = Hn(M),

and,

lim
ε→0

ess inf
t∈[−2εΛ,2εΛ]

Hn(Γ̃t) = Hn(M̃) = Hn(M).

As θt is bounded and lower semicontinuous in the variable t, by the Dominated Convergence

Theorem we have that the function t 7→ Hn(Γ̃t) is also bounded and lower semicontinuous (and

hence measurable). Thus,

lim
ε→0

∫ +∞

±2εΛ

Hn(Γ̃t) dt =

∫ +∞

0

Hn(Γ̃t) dt = Hn+1({y ∈ N : d̃(y) > 0}) = µg(E),

and,

lim
ε→0

∫ ±2εΛ

−∞
Hn(Γ̃t) dt =

∫ 0

−∞
Hn(Γ̃t) dt = Hn+1({y ∈ N : d̃(y) < 0}) = µg(N \ E).

Therefore, we have,

lim
ε→0

Fε,λ(vε) = 2σHn(M)− σλµg(E) + σλµg(N \ E).

2.4 Base Computation

Consider a smooth function,

η : R× M̃ → R.

and define the following

vr,ηε : M̃ × R → R,

(x, t) 7→ Hε(t− η(r, x)).

Take (x, t) in M̃ ×R, such that dF(x,t) is invertible, then the metric h = F ∗g, is well defined about

(x, t), and by the Gauss Lemma ([29, Lemma 2.11]), it will have the form

h(x, t) = hM̃×{t}(x) + dt2,
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where we define,

hM̃×{t}(x) := h(x, t)|TxM̃
.

Thus,

|∇vr,ηε (x, t)|2 = ((Hε)
′(t− η(r, x)))2(1 + |∇xη(r, x)|2(x, t)),

where, (∇xη(r, x))(x, t), is the gradient at (x, t), of the function (x, t) 7→ η(r, x), with respect to

the metric h. By the co-area formula on p,

Fε,λ(v
r,η
ε ) =

∫
T̃

ε

2
|∇vr,ηε |2 + W (vr,ηε )

ε
− σλvr,ηε dµh,

=

∫
R

∫
Γ̃t

ε

2
((Hε)

′(t− η(r, x)))2|∇xη(r, x)|2(x, t) dHn(x, t) dt

+

∫
R

∫
Γ̃t

ε

2
((Hε)

′(t− η(r, x)))2 +
W (Hε(t− η(r, x)))

ε

−σλHε(t− η(r, x)) dHn(x, t) dt,

=

∫
M̃

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− η(r, x)))2|∇xη(r, x)|2(x, t) θt(x) dt dHn(x)

+

∫
M̃

∫ σ+(x)

σ−(x)

(
ε

2
((Hε)

′(t− η(r, x)))2 +
W (Hε(t− η(r, x)))

ε

−σλHε(t− η(r, x))

)
θt(x) dt dHn(x),

In the last equality we use Fubini’s Theorem to switch the integrals.

We have,

Fε,λ(v
r,η
ε )−Fε,λ(v

0,η
ε ) =

∫
M̃

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− η(r, x)))2|∇xη(r, x)|2(x, t) θt(x) dt dHn(x)

−
∫
M̃

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− η(0, x)))2|∇xη(0, x)|2(x, t) θt(x) dt dHn(x),

+

∫
M̃

∫ σ+(x)

σ−(x)

(Qε(t− η(r, x))−Qε(t− η(0, x)))θt(x) dt dHn(x)

−
∫
M̃

∫ σ+(x)

σ−(x)

σλ(Hε(t− η(r, x))−Hε(t− η(0, x))) θt(x) dt dHn(x),

We have the following two terms,

Ir,ηε =

∫
M̃

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− η(r, x)))2|∇xη(r, x)|2(x, t) θt(x) dt dHn(x)

−
∫
M̃

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− η(0, x)))2|∇xη(0, x)|2(x, t) θt(x) dt dHn(x),
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and, by Fundamental Theorem of Calculus and Fubini’s Theorem,

IIr,ηε =

∫
M̃

∫ σ+(x)

σ−(x)

(Qε(t− η(r, x))−Qε(t− η(0, x)))θt(x) dt dHn(x)

−
∫
M̃

∫ σ+(x)

σ−(x)

σλ(Hε(t− η(r, x))−Hε(t− η(0, x))) θt(x) dt dHn(x),

= −
∫ r

0

∫
M̃

∂sη(s, x)

∫ σ+(x)

σ−(x)

Q′
ε(t− η(s, x)) θt(x) dt dHn(x) ds

+

∫ r

0

∫
M̃

∂sη(s, x)

∫ σ+(x)

σ−(x)

σλ(Hε)
′(t− η(s, x)) θt(x) dt dHn(x) ds,

= −
∫ r

0

∫
M̃

∂sη(s, x)Qε(σ
+(x)− η(s, x)) θ+(x) dHn(x) ds

+

∫ r

0

∫
M̃

∂sη(s, x)Qε(σ
−(x)− η(s, x)) θ−(x) dHn(x) ds

+

∫ r

0

∫
M̃

∂sη(s, x)

∫ σ+(x)

σ−(x)

Qε(t− η(s, x)) ∂tθt(x) dt dHn(x) ds

+

∫ r

0

∫
M̃

∂sη(s, x)

∫ σ+(x)

σ−(x)

σλ(Hε)
′(t− η(s, x)) θt(x) dt dHn(x) ds,

= −
∫ r

0

∫
M̃

∂sη(s, x)Qε(σ
+(x)− η(s, x)) θ+(x) dHn(x) ds

+

∫ r

0

∫
M̃

∂sη(s, x)Qε(σ
−(x)− η(s, x)) θ−(x) dHn(x) ds

+

∫ r

0

∫
M̃

∂sη(s, x)

∫ σ+(x)

σ−(x)

Qε(t− η(s, x)) (λ−Ht(x)) θt(x) dt dHn(x) ds

+λ

∫ r

0

∫
M̃

Θ1
ε,η(s, x)−Θ2

ε,η dHn(x) ds,

Where,

θ+(x) = lim
t↗σ+(x)

θt(x),

θ−(x) = lim
t↘σ−(x)

θt(x),

Θ1
ε,η(s, x) = σ

∫ σ+(x)

σ−(x)

∂sη(s, x)(Hε)
′(t− η(s, x))θt(x) dt,

Θ2
ε,η(s, x) =

∫ σ+(x)

σ−(x)

∂sη(s, x)Qε(t− η(s, x))θt(x) dt.

For the last equality of IIr,ηε we are using ∂tθt(x) = −Ht(x)θt(x), for t in (σ−(x), σ+(x)) (Proposi-

tion 6).
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2.5 Competitor

2.5.1 Calculation on M̃ × R

Here we construct the path in Figure 2.2 from (1) to (2).

Set η1(r, x) = rf(x), take r in [0, ρ], where ρ ∈ (0, 1) will be chosen later and f : M̃ → R as defined

in Section 2.3.5.

Remark 16. (Choice in ε1) We choose ε1 = ε1(ρ) ∈ (0, 1/4), such that,

2ε1Λ = 6ε1| log ε1| << ρ.

From here we consider ε in (0, ε1).

We have,

IIr,η1ε =−
∫ r

0

∫
M̃

f(x)Qε(σ
+(x)− sf(x)) θ+(x) dHn(x) ds

+

∫ r

0

∫
M̃

f(x)Qε(σ
−(x)− sf(x)) θ−(x) dHn(x) ds

+

∫ r

0

∫
M̃

f(x)

∫ σ+(x)

σ−(x)

Qε(t− sf(x)) (λ−Ht(x)) θt(x) dt dHn(x) ds

+ λ

∫ r

0

∫
M̃

Θ1
ε,η1

(s, x)−Θ2
ε,η1

(s, x) dHn(x) ds.

(2.12)

Concentrate on the second term of the right hand side of (2.12). As the integrand is non-positive,

f = −1 on Bl and sptQε ⊂ [−2εΛ, 2εΛ], we have∫ r

0

∫
M̃

f(x)Qε(σ
−(x)− sf(x)) θ−(x) dHn(x) ds

≤ −(2σ − βε2)

∫
Bl∩{−r+2εΛ≤σ−(x)≤−2εΛ}

θ−(x) dHn(x)

We look for lower bounds on θ−.

Remark 17. Choose δ = δ(z0, N,M, g) > 0, such that,

min
y∈BN

δ (z0)
{∆d̃1(y),∆d̃2(y)} ≥ λ

2
,

and,

max
y∈BN

δ (z0)
{∆d̃1(y),∆d̃2(y)} ≤ 3λ

2
.
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Therefore, for (x, t) in T̃ , such that, F (x, t) lies in BN
δ (z0), we have that,

λ

2
≤ Ht(x) ≤

3λ

2
.

Thus by similar calculations carried out in Section 2.3.4, for all (x, t) in T̃ , such that F (x, t) lies

in BN
δ (z0), we have,

θt(x) ≥

e−
3λt
2 , t ≥ 0,

e−
λt
2 , t ≤ 0.

For x in Bl, we have σ−(x) > −ρ, and by choice of ρ in Remark 12, we have that F ({x} ×
(σ−(x), 0)) ⊂ BN

δ (z0). Thus

θ−(x) = lim
t↘σ−(x)

θt(x) ≥ e−
λσ−(x)

2 ≥ 1,

for all x in Bl. Therefore,∫ r

0

∫
M̃

f(x)Qε(σ
−(x)− sf(x)) θ−(x) dHn(x) ds

≤ −2σHn({x : x ∈ Bl, −r + 2εΛ ≤ σ−(x) ≤ −2εΛ}) + C2ε
2,

for C2 = C2(N,M, g, λ,W ) < +∞. This is a lower bound for the area deleted in pushing the disks

together.

Concentrate on First term on the right hand side of (2.12). By choice of δ > 0 in Remark 7

and ρ > 0 in Remark 12 we have that for x in spt f ⊂ B2l, σ
+(x) > 2ρ >> 2εΛ. Thus, as

sptQε ⊂ [−2εΛ, 2εΛ], ∫ r

0

∫
M̃

f(x)Qε(σ
+(x)− sf(x)) θ+(x) dHn(x) ds = 0.

Concentrate on the third term on the right hand side of (2.12). Consider s > 0, and x in M̃ , such

that sf(x) < −2εΛ. Again, using the fact that sptQε ⊂ [−2εΛ, 2εΛ], and the inequalities on Ht

in Remark 5,∫ σ+(x)

σ−(x)

Qε(t− sf(x)) (λ−Ht(x)) θt(x) dt =

∫ 2εΛ

−2εΛ

Qε(ξ)(λ−Hξ+sf(x))θξ+sf(x)dξ,

≥ 0.
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For sf(x) ≥ −2εΛ, we have,∫ σ+(x)

σ−(x)

Qε(t− sf(x)) (λ−Ht(x)) θt(x) dt =

∫ 2εΛ

−2εΛ

Qε(ξ)(λ−Hξ+sf(x))θξ+sf(x)dξ,

≥ C2 min
t∈[−4εΛ,2εΛ]

(λ−Ht(x))θt(x),

potentially rechoosing C2 = C2(M,N, g, λ,W ). Therefore we have that for all r in [0, ρ],

IIr,η1ε ≤ −2σHn({x : x ∈ Bl, −r + 2εΛ ≤ σ−(x) ≤ −2εΛ})

+C2

(
r

∫
B2l

q1ε(x) dHn(x) +

∫ r

0

∫
M̃

Θ1
ε,η1

(s, x)−Θ2
ε,η1

(s, x) dHn(x) ds+ ε2
)
,

where,

q1ε(x) = max
t∈[−4εΛ,2εΛ]

(Ht(x)− λ)θt(x) ≥ 0,

and we have potentially rechosen C2 = C2(M,N, g, λ,W ). Therefore, for r < 4εΛ,

IIr,η1ε ≤ C2

(
r

∫
B2l

q1ε(x) dHn(x) +

∫ r

0

∫
M̃

Θ1
ε,η1

(s, x)−Θ2
ε,η1

(s, x) dHn(x) ds+ ε2
)
,

and for r ≥ 4εΛ,

IIr,η1ε ≤ −2σHn({x : x ∈ Bl, −r + 2εΛ ≤ σ−(x) ≤ 0})

+C2

(
Hn({x : x ∈ Bl,−2εΛ < σ−(x) ≤ 0})

+

∫
B2l

q1ε(x) dHn(x) +

∫ r

0

∫
M̃

Θ1
ε,η1

(s, x)−Θ2
ε,η1

(s, x) dHn(x) ds+ ε2
)
.

Again we are potentially rechoosing C2 = C2(M,N, g, λ,W ).

We now turn our attention to the term,

Ir,η1ε =

∫
M̃

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− rf(x)))2|r∇f |2(x, t) θt(x) dt dHn(x),

=

∫
M̃

∫ 2εΛ

−2εΛ

ε

2
((Hε)

′(ξ))2|r∇f |2(x, ξ + rf(x)) θξ+rf(x)(x) dξ dHn(x).

Remark 18. Recall choice of δ = δ(z0,M,N, g) in Remark 7. Consider |t| < δ, and x, such that

ι(x) lies in BN
δ (z0). Take {E1, . . . , En} to be an orthonormal basis for TxM̃ , with respect to the

metric hM̃×{0}. Then, as previously shown, we have the following metric about x on M̃ ,

(hM̃×{t})ij(x) = hM̃×{t}(x)(Ei, Ej).
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For a function φ on M̃ ,

|∇φ|2(x, t) = (hM̃×{t})
ij(x)dφ(Ei)dφ(Ej).

We make a further choice δ = δ(z0, N,M, g) > 0, such that there exists a C3 = C3(z0, δ,M,N, g),

1 ≤ sup

{
(hM̃×{t})

ij(x)XiXj : ι(x) ∈ BN
δ (z0), |t| ≤ δ/2,

∑
i

X2
i = 1

}
≤ C3 <∞,

and,

0 < C−1
3 ≤ inf

{
(hM̃×{t})

ij(x)XiXj : ι(x) ∈ BN
δ (z0), |t| ≤ δ/2,

∑
i

X2
i = 1

}
≤ 1.

By choices of ρ in Remark 12, and ε in Remark 16, for all x in Al, r in [0, ρ], and ξ in [−2εΛ, 2εΛ],

|r∇f |2(x, ξ + rf(x)) ≤ C3r
2|∇f |2(x, 0) ≤ 4C3

r2

l2
.

Note that for x in M̃ \ Al, |∇f |(x, t) = 0, for all t. We have,

Ir,η1ε ≤ C3Hn(Al)
r2

l2
,

where we have potentially rechosen C3 = C3(z0, N,M, g, δ, λ,W ) <∞.

For r in [0, 4εΛ), we have,

Ir,η1ε + IIr,η1ε ≤ C3
(εΛ)2

l2
+ C2

(
εΛ

∫
B2l

q1ε(x) dHn(x)

+

∫ r

0

∫
M̃

Θ1
ε,η1

(s, x)−Θ2
ε,η1

(s, x) dHn(x) ds+ ε2
)
.

Again, we are potentially rechoosing C3 = C3(z0, N,M, g, δ, λ,W ) <∞.

For r in [4εΛ, ρ] we define the following non-decreasing function,

Pε(r) :=
Hn({x : x ∈ Bl, −r + 2εΛ ≤ σ−(x) ≤ 0})

Hn(Al)
,

and we have,

Ir,η1ε + IIr,η1ε ≤ Hn(Al)

(
C3
r2

l2
− 2σPε(r)

)
+C2

(
Hn({x : x ∈ Bl,−2εΛ < σ−(x) ≤ 0}) +

∫
B2l

q1ε(x) dHn(x)

+

∫ r

0

∫
M̃

Θ1
ε,η1

(s, x)−Θ2
ε,η1

(s, x) dHn(x) ds+ ε2
)
.
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We now define the following function on [0, 1],

κε(s) =

0, s ∈ [0, (4εΛ)/ρ),

C3
ρ2

l2
s2 − 2σPε(sρ), s ∈ [(4εΛ)/ρ, 1].

Note that,

Pε(ρ)
ε→0−−→ Hn(Bl)

Hn(Al)

ρ→0−−→ 1

2n − 1
,

and furthermore, recalling the bound ρ ≤ C1l
2, C1 = C1(z0, N,M, g, δ) < +∞, we have,

0 <
ρ2

l2
≤ C1ρ

ρ→0−−→ 0.

Remark 19. Choose ρ = ρ(z0, N,M, g, δ, λ,W ) > 0, such that

C3
ρ2

l2
<

σ

2(2n − 1)
,

and,
Hn(Bl)

Hn(Al)
>

7

8(2n − 1)
.

Remark 20. There exists an ε2 = ε2(z0,M,N, g, δ,W, λ, ρ) > 0, such that, ε2 ≤ ε1, and for all ε in

(0, ε2),

Pε(ρ) >
3

4(2n − 1)
.

From here we always choose ε in (0, ε2).

We have that,

max
s∈[0,1]

κε(s) ≤ C3
ρ2

l2
<

σ

2(2n − 1)
,

and,

κε(1) < − σ

2n − 1
.

We have, for r in [0, 4εΛ),

Fε,λ(v
r,η1
ε ) ≤ Fε,λ(vε) + III1,rε ,

where,

III1,rε = C4

(
εΛ

∫
B2l

q1ε(x) dHn(x) +

∫ r

0

∫
M̃

Θ1
ε,η1

(s, x)−Θ2
ε,η1

(s, x) dHn(x) ds+ (εΛ)2
)
,

and C4 = C4(z0,M,N, g, δ,W, λ, ρ) < +∞.
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For r in [4εΛ, ρ],

Fε,λ(v
r,η1
ε ) ≤ Fε,λ(vε) +Hn(Al)κε

(
r

ρ

)
+ III2,rε , (2.13)

where,

III2,rε = C2

(
Hn({x : x ∈ Bl,−2εΛ < σ−(x) ≤ 0}) +

∫
B2l

q1ε(x) dHn(x)

+

∫ r

0

∫
M̃

Θ1
ε,η1

(s, x)−Θ2
ε,η1

(s, x) dHn(x) ds+ ε2
)
.

Furthermore,

Fε,λ(v
ρ,η1
ε ) ≤ Fε,λ(vε)−

σHn(Al)

2n − 1
+ III2,ρε . (2.14)

2.5.2 Appropriate Function on Manifold

We wish to show that for every r in [0, ρ], there exists an ṽr,η1ε , in W 1,∞(N) ⊂ W 1,2(N), such that,

for every (x, t) in T̃ ,

ṽr,η1ε (F (x, t)) = vr,η1ε (x, t).

This implies that Fε,λ(ṽ
r,η1
ε )(N) = Fε,λ(v

r,η1
ε )(T̃ ). Indeed, this follows from the fact that µg(N \

F (T̃ )) = µg(Cut(M)∪ (M \M)) = 0, and F : (T̃ , h) → (F (T̃ ), g) is an isometric bijection between

open sets.

We have the following,

BN
δ (z0) = Υ1 ⊔ A ⊔Υ2,

where,

Υ1 ={y ∈ BN
δ (z0) : d̃1(y) > d̃2(y)},

Υ2 ={y ∈ BN
δ (z0) : d̃2(y) > d̃1(y)},

A ={y ∈ BN
δ (z0) : d̃1(y) = d̃2(y)},

and, recall from Remark 8, that A is a smooth n-submanifold in BN
δ (z0). Also, recall the diffeo-

morphisms, for i = 1, 2, defined in Remark 7,

Fi : Ṽi ⊂ M̃ × R → BN
2δ(z0).

We then define, ṽr,η1ε ,

ṽr,η1ε (y) =


Hε(d̃(y)), y ̸∈ BN

δ (z0),

vr,η1ε (F−1
1 (y)), y ∈ Υ1 ∩BN

δ (z0),

vr,η1ε (F−1
2 (y)), y ∈ Υ2 ∩BN

δ (z0).
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For (x, t) in T̃ , we have ṽr,η1ε (F (x, t)) = vr,η1ε (x, t). Indeed, first we consider the case that F (x, t)

lies in Υ1 ∪Υ2. In Υi, F = Fi, and we have,

ṽr,η1ε (F (x, t)) = vr,η1ε (F−1
i (F (x, t))) = vr,η1ε (x, t).

As A ⊂ Cut(M), we know that F (x, t) cannot lie on A. Last case to consider is F (x, t) lies in

N \ BN
δ (z0). By Remark 12 (x, t) must lie in T̃ \ (B2l × (−2ρ, 2ρ)). If x lies in M̃ \ B2l, then

f(x) = 0, and,

vr,η1ε (x, t) = Hε(t) = Hε(d̃(F (x, t))) = ṽr,η1ε (F (x, t)).

If x lies in B2l, then |t| ≥ 2ρ > r|f(x)|+ 2εΛ, and therefore,

vr,η1ε (x, t) = Hε(t− rf(x)) =

1, t ≥ 2ρ > rf(x) + 2εΛ,

−1, t ≤ −2ρ < rf(x)− 2εΛ.

Also, d̃(F (x, t)) = t, implies that,

ṽr,η1ε (F (x, t)) = Hε(t) =

1, t ≥ 2ρ > 2εΛ,

−1, t ≤ −2ρ < −2εΛ.

Therefore, for all (x, t) in T̃ , we have that vr,η1ε (x, t) = ṽr,η1ε (F (x, t)).

We now just look to show that ṽr,η1ε lies in W 1,∞(N). First consider y in N \ F (B2l × (−2ρ, 2ρ)).

There exists an x in M̃ , such that, F (x, d̃(y)) = y, and (x, d̃(y)) lies in (M̃ ×R)\ (B2l× (−2ρ, 2ρ)).

By previous argument we see that,

ṽr,η1ε (y) = Hε(d̃(y)).

and therefore, ṽr,η1ε is Lipschitz on the set N \ F (B2l × (−2ρ, 2ρ)).

As

F (B2l × (−2ρ, 2ρ)) ⊂⊂ BN
δ (z0),

showing that ṽr,η1ε is Lipschitz on BN
δ (z0), implies that it is Lipschitz on N . As ṽr,η1ε is smooth

with bounded Lipschitz constant in Υ1 ∪Υ2 ⊂ BN
δ (z0), we just need to show that it is continuous

across the smooth n-submanifold A = ∂Υ1 ∩ BN
δ (z0) = ∂Υ2 ∩ BN

δ (z0). Consider y on A, then

d̃1(y) = d̃2(y), and by construction of f and Ψ,

f(π(F−1
1 (y))) = f(π(F−1

2 (y))).
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Therefore,

vr,η1ε (F−1
1 (y)) = vr,η1ε (F−1

2 (y)),

and ṽr,η1ε is well defined and continuous across A. Thus we have that ṽr,η1ε lies in W 1,∞(BN
δ (z0)).

2.5.3 Continuity of the Path

We show that the path,

γ : [0, ρ] → W 1,2(N),

r 7→ ṽr,η1ε ,

is continuous in W 1,2(N).

Take r and s in [0, ρ]. Recalling that µg(N \ F (T̃ )) = µg(Cut(M) ∪ (M \M)) = 0,

∥ṽr,η1ε − ṽs,η1ε ∥2L2(N) =

∫
F (T̃ )

|ṽr,η1ε − ṽs,η1ε |2,

=

∫
R

∫
M̃

|Hε(t− rf(x))−Hε(t− sf(x))|2θt(x) dHn(x) dt,

s→r−−→ 0,

by Dominated Convergence Theorem.

Noting that, ṽr,η1ε = ṽ0,η1ε on N \BN
δ (z0), for all r in [0, ρ], and µg(B

N
δ (z0)\ (Υ1∪Υ2)) = µg(A) = 0,

∥∇ṽr,η1ε −∇ṽs,η1ε ∥2L2(N) =

∫
Υ1∪Υ2

|∇ṽr,η1ε −∇ṽs,η1ε | dµg.

As F−1
i : (Υi, g) → (F−1

i (Υi), h) is an isometry, we have,

∥∇ṽr,η1ε −∇ṽs,η1ε ∥2L2(N) =

∫
F−1
1 (Υ1)∪F−1

2 (Υ2)

|∇vr,η1ε (x, t)−∇vs,η1ε (x, t)|2,

=

∫
F−1
1 (Υ1)∪F−1

2 (Υ2)

(H′
ε(t− rf(x))−H′

ε(t− sf(x)))2

+|∇xf(x)|2(rH
′
ε(t− rf(x))− sH′

ε(t− sf(x)))2,
s→r−−→ 0,

by Dominated Convergence Theorem.
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2.6 Path to aε

2.6.1 Fixed Energy Gain Away from Non-Embedded Point

We construct the path from (2) to (3) in Figure 2.2.

Recall f̃ from Section 2.3.5 and set,

η2(r, x) = ρf(x) + rf̃(x),

for r in [0, r0], where r0 ∈ (0,min{1, diam(N)/2}), will be chosen later. Denote, Ak
L = BL \BL

k
.

Remark 21. We choose 0 < ε3 ≤ ε2, such that 2ε3Λ = 6ε3| log ε3| << r0. From here on we consider

ε on (0, ε3).

We slightly edit the Base Computation in Section 2.4. Consider r > 2εΛ,

Fε,λ(v
r,η2
ε )−Fε,λ(v

0,η2
ε ) = Ir,η2ε + (IIr,η2ε − II2εΛ,η2ε ) + II2εΛ,η2ε .

We have,

IIr,η2ε − II2εΛ,η2ε =−
∫ r

2εΛ

∫
M̃\BL

k

f̃(x)Qε(σ
+(x)− sf̃(x)) θ+(x) dHn(x) ds

+

∫ r

2εΛ

∫
M̃\BL

k

f̃(x)Qε(σ
−(x)− sf̃(x)) θ−(x) dHn(x) ds

+

∫ r

2εΛ

∫
M̃\BL

k

f̃(x)

∫ σ+(x)

σ−(x)

Qε(t− sf̃(x)) (λ−Ht(x)) θt(x) dt dHn(x) ds

+ λ

∫ r

2εΛ

∫
M̃

Θ1
ε,η2

(s, x)−Θ2
ε,η2

(s, x) dHn(x) ds.

(2.15)

Considering the first term on the right hand side of (2.15),

−
∫ r

2εΛ

∫
M̃\BL

k

f̃(x)Qε(σ
+(x)− sf̃(x)) θ+(x) dHn(x) ds ≤ 0.

Considering the second term on the right hand side of (2.15), and by applying similar arguments

for when we considered the corresponding term on the right-hand side of (2.12) in Section 2.5.1,∫ r

2εΛ

∫
M̃\BL

k

f̃(x)Qε(σ
−(x)− sf̃(x)) θ−(x) dHn(x) ds

≤ C2Hn({x : x ∈ M̃ \BL
k
, σ−(x) ≥ 2εΛ(f̃(x)− 1)}),
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where we are potentially rechoosing C2 = C2(M,N, g,W, λ) < +∞.

Considering the third term on the right hand side of (2.15). Applying similar arguments in Ak
L

from when we considered the corresponding term on the right hand side of (2.12) in Section 2.5.1,∫ r

2εΛ

∫
M̃\BL

k

f̃(x)

∫ σ+(x)

σ−(x)

Qε(t− sf̃(x)) (λ−Ht(x)) θt(x) dt dHn(x) ds

≤
∫ r

2εΛ

∫
M̃\BL

∫ 2εΛ

−2εΛ

Qε(ξ)(λ−Hξ+s(x))θξ+s(x) dξ dHn(x) ds

+ C2

∫
Ak

L

q2ε(x) dHn(x),

(2.16)

where, q2ε(x) := maxt∈[−2εΛ,4εΛ](λ−Ht(x))θt(x), and we are potentially rechoosing

C2 = C2(M,N, g, λ,W ) < ∞. Note that for the inequality, when considering the region Ak
L, we

are using the fact that λ−Ht ≤ 0, for t > 0.

Define the following measurable set,

Ωr = {x ∈ M̃ : σ+(x) > 2r }.

Remark 22. We choose L = L(z0, N,M, g, δ) > 0, such that,

Hn(M̃ \BL) >
3

4
Hn(M̃).

Then we can find an r0 = r0(z0,M,N, g, δ, L) > 0, such that, for all r in [0, r0],

Hn({(x, 2r) : x ∈ Ωr \BL}) >
1

2
Hn(M̃).

For all x in Ωr, s in (2εΛ, r), and ξ in [−2εΛ, 2εΛ], s + ξ lies in (0, σ+(x)). Therefore, recalling

bounds on Ht and θt from Remark 5 and Proposition 6, we have,

(λ−Hξ+s(x))θξ+s(x) < −m(s+ ξ)θξ+s ≤ −m(s− 2εΛ)θ2r(x).

Then for r in (2εΛ, r0], we compute an energy decrease from the first term on the right hand side

of (2.16),∫ r

2εΛ

∫
M̃\BL

∫ 2εΛ

−2εΛ

Qε(ξ)(λ−Hξ+s(x))θξ+s(x) dξ dHn(x) ds ≤ −mσ
2

Hn(M̃)r2 + C2εΛ,

potentially rechoosing C2 = C2(N,M, g, λ,W ) < +∞.
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For r in [0, 2εΛ], by repeating arguments similar to those in Section 2.3.6,

IIr,η2ε ≤ C2

(∫
M̃\BL

k

m1
ε(x) dHn(x) + εΛ

)
,

where we are potentially rechoosing C2 = C2(N,M, g,W, λ), and m1
ε(x) = maxt∈[−2εΛ,4εΛ] θt(x) −

mint∈[−2εΛ,4εΛ] θt(x).

For r in [0, r0], consider the term,

Ir,η2ε =

∫
Ak

L

∫ 2εΛ

−2εΛ

ε

2
((H)′(ξ))2|r∇f̃ |2(x, rf̃(x) + ξ)θrf̃(x)+ξ(x) dξ dH

n(x).

By choice of L and r0 in Remark 13, and constant C3 = C3(z0,M,N, g, δ, λ,W ) from Remark 18,

we have, for all x in Ak
L = BL \BL

k
, r in [0, r0], and ξ in [−2εΛ, 2εΛ],

|∇f̃ |2(x, rf̃(x) + ξ) ≤ C3|∇f̃ |2(x, 0).

Thus we have,

Ir,η2ε ≤ C3∥∇f̃∥2L2(M̃)
r2.

Again we are potentially rechoosing C3 = C3(z0,M,N, g, δ,W, λ).

Remark 23. Recalling definition of f̃ from Section 2.3.5, we may choose k = k(z0,M,N, g, δ,W, λ, L)

such that

∥∇f̃∥2
L2(M̃)

< C−1
3

mσ

8
Hn(M̃).

Therefore,

Ir,η2ε ≤ mσ

8
Hn(M̃)r2.

For r in (0, 2εΛ],

Fε,λ(v
r,η2
ε )−Fε,λ(v

0,η2
ε ) ≤ III3,rε ,

where,

III3,rε = C2

∫
M̃\BL

k

m1
ε(x) dHn(x) + εΛ

 ,

where we are potentially rechoosing C2 = C2(N,M, g,W, λ) < +∞. For r in (2εΛ, r0],

Fε,λ(v
r,η2
ε )−Fε,λ(v

0,η2
ε ) ≤ −3mσ

8
Hn(M̃)r2 + III4,rε (2.17)
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where,

III4,rε = C2

(
Hn({x : x ∈ M̃ \BL

k
, σ−(x) ≥ 2εΛ(f̃(x)− 1) })

+

∫
Ak

L

q2ε(x) dHn(x) +

∫ r

2εΛ

∫
M̃

Θ1
ε,η2

(s, x)−Θ2
ε,η2

dHn(x) ds+ εΛ

)
,

again, we are potentially rechoosing C2 = C2(M,N, g,W, λ).

As η2(0, x) = η1(ρ, x), we have, for r in (0, 2εΛ] (recalling (2.14)),

Fε,λ(v
r,η2
ε ) ≤ Fε,λ(vε)−

σHn(Al)

2n − 1
+ III2,ρε + III3,rε ,

and for r in (2εΛ, r0],

Fε,λ(v
r,η2
ε ) ≤ Fε,λ(vε)−

σHn(Al)

2n − 1
− 3mσ

8
Hn(M̃)r2 + III2,ρε + III4,rε .

We may define the appropriate function on N , for r in [0, r0],

ṽr,η2ε (y) =


Hε(d̃(y)− r), y ̸∈ BN

δ (z0),

vr,η2ε (F−1
1 (y)), y ∈ Υ1 ∩BN

δ (z0),

vr,η2ε (F−1
2 (y)), y ∈ Υ2 ∩BN

δ (z0).

Following similar arguments to Sections 2.5.2, and 2.5.3, we may show that ṽr,η2ε lies in W 1,∞(N),

Fε,λ(ṽ
r,η2
ε )(N) = Fε,λ(v

r,η2
ε )(T̃ ) and that the path r 7→ ṽr,η2ε is continuous in W 1,2(N).

2.6.2 Reversing Construction of Competitor

We construct the path from (3) to (4) in Figure 2.2.

For r in [0, ρ], we set,

η3(r, x) = r0f̃(x) + (ρ− r)f(x).

For x in B2l,

η3(r, x) = (ρ− r)f(x) = η1(ρ− r, x),

and for x in M̃ \B2l,

η3(r, x) = r0f̃(x) = η3(0, x).

Therefore,

Fε,λ(v
r,η3
ε )−Fε,λ(v

0,η3
ε ) = Fε,λ(v

ρ−r,η1
ε )−Fε,λ(v

ρ,η1
ε ).
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As η1(ρ, x) = η2(0, x), and η3(0, x) = η2(r0, x), we have,

Fε,λ(v
r,η3
ε ) = Fε,λ(v

ρ−r,η1
ε ) + Fε,λ(v

r0,η2
ε )−Fε,λ(v

0,η2
ε ).

Remark 24. We choose ρ > 0, such that,

σHn(Al)

2n − 1
<
mσ

4
Hn(M̃)r20.

Therefore (recalling (2.17)), we have that

Fε,λ(v
r,η3
ε ) < Fε,λ(v

ρ−r,η1
ε )− σHn(Al)

2n − 1
− mσ

8
Hn(M̃)r20 + III4,r0ε .

Furthermore (recalling (2.13)), for r in [0, ρ− 4εΛ], we have,

Fε,λ(v
r,η3
ε ) < Fε,λ(vε) +

σHn(Al)

2(2n − 1)
+ III2,ρ−r

ε − σHn(Al)

2n − 1
− mσ

8
Hn(M̃)r20 + III4,r0ε ,

= Fε,λ(vε)−
σHn(Al)

2(2n − 1)
− mσ

8
Hn(M̃)r20 + III2,ρ−r

ε + III4,r0ε .

For r in (ρ− 4εΛ, ρ], we similarly have,

Fε,λ(v
r,η3
ε ) < Fε,λ(vε)−

σHn(Al)

2n − 1
− mσ

8
Hn(M̃)r20 + III1,ρ−r

ε + III4,r0ε .

We define the appropriate function on N . For r in [0, ρ],

ṽr,η3ε (y) =


Hε(d̃(y)− r0), y ̸∈ BN

δ (z0),

vr,η3ε (F−1
1 (y)), y ∈ Υ1 ∩BN

δ (z0),

vr,η3ε (F−1
2 (y)), y ∈ Υ2 ∩BN

δ (z0).

Following similar arguments to Sections 2.5.2, and 2.5.3, we may show that ṽr,η3ε lies in W 1,∞(N),

Fε,λ(ṽ
r,η3
ε )(N) = Fε,λ(v

r,η3
ε )(T̃ ) and that the path r 7→ ṽr,η3ε is continuous in W 1,2(N).

2.6.3 Lining Up With Level Set Γr0

We construct path from (4) to (5) in Figure 2.2

For r in [0, r0], consider,

η4(r, x) = r0f̃(x) + r(1− f̃(x)) = (r0 − r)f̃(x) + r ≥ r.
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By applying similar arguments to those in Section 2.5.1, we have

IIr,η4ε ≤ C3

(
Hn({x ∈ BL : σ

−(x) ≥ −2εΛ}) + εΛ

+

∫ r

0

∫
M̃

Θ1
ε,η4

(s, x)−Θ2
ε,η4

(s, x) dHn(x) ds

)
,

where we are potentially rechoosing C3 = C3(z0,M,N, g, δ,W, λ) < +∞.

Similar to Section 2.6.1, and recalling Remark 23 we have

Ir,η4ε =

∫
Ak

L

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− (r0 − r)f̃(x)− r))2(r0 − r)2|∇f̃ |2(x, t) θt(x) dt dHn(x)

−
∫
Ak

L

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− r0f̃(x)))
2r20|∇f̃ |2(x, t) θt(x) dt dHn(x),

≤ C3r
2
0∥∇f̃∥L2(M̃),

≤ mσ

8
Hn(M̃)r20.

Therefore, for all r in [0, r0],

Fε,λ(v
r,η4
ε )−Fε,λ(v

0,η4
ε ) = Ir,η4ε + IIr,η4ε ,

≤ mσ

8
Hn(M̃)r20 + III5,rε ,

where

III5,rε ≤ C3

(
Hn({x ∈ B2L : σ

−(x) ≥ −2εΛ}) + εΛ

+

∫ r

0

∫
M̃

Θ1
ε,η4

(s, x)−Θ2
ε,η4

(s, x) dHn(x) ds

)
.

As η4(0, x) = η3(ρ, x), we have, for r in [0, r0],

Fε,λ(v
r,η4
ε ) ≤ Fε,λ(vε)−

σHn(x)

2(2n − 1)
+ III1,0ε + III4,r0ε + III5,rε .

Consider the following function on N , for r in [0, r0],

ṽr,η4ε (y) =


Hε(d̃(y)− r0), y ̸∈ BN

δ (z0),

vr,η4ε (F−1
1 (y)), y ∈ Υ1 ∩BN

δ (z0),

vr,η4ε (F−1
2 (y)), y ∈ Υ2 ∩BN

δ (z0).
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We can show, as in Section 2.5.2 and 2.5.3, that ṽr,η3ε lies inW 1,∞(N), Fε,λ(ṽ
r,η4
ε )(N) = Fε,λ(v

r,η4
ε )(T̃ ),

and that, r 7→ ṽr,η4ε is a continuous path in W 1,2(N).

2.6.4 Completing Path to aε

We construct the path from (5) to ’-1’ in Figure 2.2.

Consider, for r in [r0, 2 diam(N)],

η5(r, x) = r.

As 2εΛ << r0, and Ht ≥ λ for t ≥ 0 (Remark 5), we have

Fε,λ(v
r,η5
ε )−Fε,λ(v

r0,η5
ε ) ≤ III6,rε ,

where

III6,rε = λ

∫ r

ρ

Θ1
ε,η5

(s, x)−Θ2
ε,η5

(s, x) dHn(x) ds.

Recalling that, η5(r0, x) = η4(r0, x), we have, for all r in [r0, 2 diam(N)],

Fε,λ(v
r,η5
ε ) ≤ Fε,λ(v

r0,η4
ε ) + III6,rε ,

< Fε,λ(vε)−
σHn(Al)

2(2n − 1)
+ III1,0ε + III4,r0ε + III5,r0ε + III6,rε .

Define the function, ṽr,η5ε (y) = Hε(d̃(y)− r), in N . This function lies in W 1,∞(N), Fε,λ(ṽ
r,η5
ε )(N) =

Fε,λ(v
r,η5
ε )(T̃ ), and r 7→ ṽr,η5ε is a continuous path in W 1,2(N).

As |d̃(y)| ≤ diam(N), we have that,

d̃(y)− 2 diam(N) ≤ − diam(N) < −2εΛ.

Therefore,

ṽ2 diam(N),η5
ε (y) = Hε(d̃(x)− 2 diam(N)) = −1.

Recall that our end point is aε > −1. We connect −1 to aε, by constant functions,

urε(y) = r

for r in [−1, aε]. Then,

Fε,λ(u
r
ε) =

∫
N

W (r)

ε
− σλr dµg ≤ Fε,λ(u

−1
ε ).
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As u−1
ε = ṽ

2 diam(N),η5
ε , we have that, for all r in [−1, aε],

Fε,λ(u
r
ε) < Fε,λ(vε)−

σHn(Al)

2(2n − 1)
+ III1,0ε + III4,r0ε + III5,r0ε + III6,2 diam(N)

ε .

2.7 Path to bε

2.7.1 Lining Up With Level Set Γ−ρ

We construct the path from (2) to (6) in Figure 2.2

We consider, for r in [0, ρ], and x in M̃ ,

η6(r, x) = ρf(x)− r(1 + f(x)).

First consider r in (2εΛ, ρ],

Fε,λ(v
r,η6
ε )−Fε,λ(v

0,η6
ε ) = Ir,η6ε + (IIr,η6ε − II2εΛ,η6ε ) + II2εΛ,η6ε

Similar to Section 2.6.1 we have,

IIr,η6ε − II2εΛ,η6ε ≤ λ

∫ r

2εΛ

∫
M̃

Θ1
ε,η6

(s, x)−Θ2
ε,η6

(s, x) dHn(x) ds.

For r in [0, 2εΛ], again by similar arguments to those in Section 2.6.1

IIr,η6ε ≤ C2

(∫
{ρf≥−2εΛ}

m2
ε(x) dHn(x) + εΛ

)
,

where,

m2
ε(x) := max

t∈[−6εΛ.2εΛ]
θt(x)− min

t∈[−6εΛ,2εΛ]
θt(x),

and we are potentially rechoosing C2(M,N, g,W, λ) <∞.

For r in [0, ρ], we consider,

Ir,η6ε =

∫
Al

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− η4(r, x)))
2(ρ− r)2|∇f |2(x, t)θt(x) dt dHn(x)

−
∫
Al

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− η4(0, x)))
2ρ2|∇f |2(x, t)θt(x) dt dHn(x)

Following similar arguments to Section 2.5.1, and after potentially rechoosing
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C3 = C3(z0,M,N, g, δ,W, λ) <∞, we have that,

Ir,η6ε ≤ C3Hn(Al)
ρ2

l2
.

Therefore, recalling our choice of ρ > 0 in Remark 19, we have

Ir,η6ε ≤ σHn(Al)

2(2n − 1)
.

Thus, for r in [0, 2εΛ],

Fε,λ(v
r,η6
ε )−Fε(v

0,η6
ε ) <

σHn(Al)

2(2n − 1)
+ III7,rε ,

where,

III7,rε = C2

(∫
{ρf≥−2εΛ}

m2
ε(x) dHn(x) + εΛ

)
.

For r in (2εΛ, ρ],

Fε,λ(v
r,η6
ε )−Fε(v

0,η6
ε ) <

σHn(Al)

2(2n − 1)
+ III8,rε + III7,2εΛε ,

where

III8,rε = C2

(∫ r

2εΛ

∫
M̃

Θ1
ε,η6

(s, x)−Θ2
ε,η6

(s, x) dHn(x)

+

∫
{ρf≥−2εΛ}

m2
ε(x) dHn(x) + εΛ

)
.

As η6(0, x) = η1(ρ, x), we have, for r in [0, 2εΛ],

Fε,λ(v
r,η6
ε ) ≤ Fε,λ(vε)−

σHn(Al)

2(2n − 1)
+ III2,ρε + III7,rε ,

and for r in (2εΛ, ρ], we have,

Fε,λ(v
r,η6
ε ) ≤ Fε,λ(vε)−

σHn(Al)

2(2n − 1)
+ III2,ρε + III8,rε + III7,2εΛε , .
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For r in [0, ρ], we define the following function on N ,

ṽr,η6ε (y) =


Hε(d̃(y) + r), y ̸∈ BN

δ (z0),

vr,η6ε (F−1
1 (y)), y ∈ Υ1 ∩BN

δ (z0),

vr,η6ε (F−1
2 (y)), y ∈ Υ2 ∩BN

δ (z0).

We can show, as in Section 2.5.2 and 2.5.3 that, ṽr,η6ε lies inW 1,∞(N), Fε,λ(ṽ
r,η6
ε )(N) = Fε,λ(v

r,η6
ε )(T̃ ),

and the path r 7→ ṽr,η6ε is continuous in W 1,2(N).

2.7.2 Completing Path to bε

We construct the path from (6) to ’+1’ in Figure 2.2. This is done in an identical way to Section

2.6.4.

For r in [ρ, 2 diam(N)], we define the following function on N ,

ṽr,η7ε (y) := Hε(d̃(y) + r).

Similar to arguments in Section 2.6.4 we have,

Fε,λ(ṽ
r,η7
ε ) ≤ Fε,λ(vε)−

σHn(Al)

2(2n − 1)
+ III2,ρε + III8,ρε + III9,rε ,

where,

III9,rε = λ

∫ r

ρ

Θ1
ε,η6

(s, x)−Θ2
ε,η6

(s, x) dHn(x) ds.

Again as in Section 2.6.4, we connect ṽ
2 diam(N),η7
ε = 1, to bε, by constant functions, urε = r, for r

in [1, bε]. We have that for all r in [1, bε],

Fε,λ(u
r
ε) ≤ Fε,λ(ṽ

2 diam(N),η7
ε ) ≤ Fε,λ(vε)−

σHn(Al)

2(2n − 1)
+ III2,ρε + III8,ρε + III9,2 diam(N)

ε .

Both ṽr,η7ε , and urε give continuous paths in W 1,2(N) with respect to r.
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2.8 Conclusion of the Paths

2.8.1 Error Terms

Theta Error Terms

Consider a function η : R× M̃ → R, and the term

Θ1
ε,η(s, x)−Θ2

ε,η(s, x) = σ

∫ σ+(x)

σ−(x)

∂sη(s, x)(Hε)
′(t− η(s, x))θt(x) dt

−
∫ σ+(x)

σ−(x)

∂sη(s, x)Qε(t− η(s, x))θt(x) dt.

Assuming that η is monotone in the first variable, we have,

|Θ1
ε,η(s, x)−Θ2

ε,η(s, x)| ≤ 2σ|∂sη(s, x)|mε(η(s, x), x) + C4ε
2,

where,

mε(T, x) = max
t∈[T−2εΛ,T+2εΛ]

θt(x)− min
t∈[T−2εΛ,T+2εΛ]

θt(x).

and C4 = C4(N,m, λ,W, |η|C1) < +∞.

Now we assume that ∂sη ≥ 0, and |∂sη|C0(R×M̃) < +∞. Apply Fubini’s Theorem to swap integrals,

∫ r

0

∫
M̃

∣∣Θ1
ε,η(s, x)−Θ2

ε,η(s, x)
∣∣ dHn(x) ds ≤ 2σ

∫
M̃

∫ η(r,x)

η(0,x)

mε(T, x) dT Hn(x) + C4rε
2.

Fixing x in M̃ , we see that for all T in R \ {σ−(x), σ+(x)},

mε(T, x) → 0, as ε→ 0,

and furthermore, we have the following bounds, 0 ≤ mε(T, x) ≤ e
λ2

2m . Therefore we can apply

Dominated Convergence Theorem for fixed x in M̃ and r in [0,∞),∫ η(r,x)

η(0,x)

mε(T, x) dT → 0, as ε→ 0.

Furthermore, as 0 ≤ η(r, x)− η(0, x) ≤ |∂sη|C0(R×M̃) r, we have the bounds,

0 ≤
∫ η(r,x)

η(0,x)

mε(T, x) dT ≤ |∂sη|C0(R×M̃)re
λ2

2m .
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Therefore, again by Dominated Convergence Theorem, we have, for fixed r in [0,∞)∫
M̃

∫ η(r,x)

η(0,x)

mε(T, x) dT Hn(x) → 0, as ε→ 0.

Define the following continuous function on [0,+∞),

Mη
ε (r) =

∫
M̃

∫ η(r,x)

η(0,x)

mε(T, x) dT Hn(x).

We have that Mη
ε (r) → 0, pointwise, as ε→ 0, and furthermore, as

0 ≤ mε1(T, x) ≤ mε2(T, x),

for all T in R, x in M̃ , and 0 < ε1 < ε2, this implies that,

0 ≤Mη
ε1
(r) ≤Mη

ε2
(r),

for all r in [0,+∞). Therefore, by Dini’s Theorem (a monotonic sequence of continuous functions,

which converges pointwise to a continuous function, must in fact converge uniformly on compact

sets), we have that,

Mη
ε → 0, as ε→ 0,

uniformly on compact sets of [0,+∞). Thus,∫ r

0

∫
M̃

∣∣Θ1
ε,η(s, x)−Θ2

ε,η(s, x)
∣∣ dHn(x) ds→ 0 (2.18)

as ε → 0, uniformly in r, on compact sets of [0,+∞). The same holds assuming that η satisfies

∂sη ≤ 0, on R× M̃ , and |∂sη|C0(R×M̃) < +∞.

For i = 1, . . . , 7 our ηi’s are monotone in the first variable and |∂sηi|C0(R×M̃) < +∞. Therefore

(2.18) holds for each i.

The Other Error Terms

We first consider, ∫
B2l

q1ε(x) dHn(x),

with,

q1ε(x) = max
t∈[−4εΛ,2εΛ]

(Ht(x)− λ)θt(x).
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By choice of ε > 0, in Remark 16, 2εΛ << ρ. Therefore by choice of ρ > 0, in Remark 12, and

δ > 0, from Remark 17, we have

0 ≤ max
x∈B2l

q1ε(x) ≤
λ

2
e

λ2

2m .

Fixing x′ in B2l \ {x : σ−(x) = 0}, we see that there exists an ε′ = ε′(x′) > 0, such that for all

0 < ε ≤ ε′,

[−4εΛ, 2εΛ] ⊂ (σ−(x′), σ+(x′)).

Therefore, (Ht(x
′)− λ)θt(x

′), is a smooth function in t on [−4εΛ, 2εΛ], and clearly,

max
t∈[−4εΛ,2εΛ]

(Ht(x
′)− λ)θt(x

′) → 0, as ε→ 0.

Thus q1ε → 0, Hn–a.e in B2l, and we can apply Dominated Convergence Theorem to say that∫
B2l

q1ε(x) dHn(x) → 0, as ε→ 0.

Identically we also have, ∫
Ak

L

q2ε(x) dHn(x) → 0, as ε→ 0,

recalling q2ε(x) = maxt∈[−2εΛ,4εΛ](λ−Ht(x))θt(x).

For the remaining error terms, as Hn({x ∈ M̃ : σ−(x) = 0}) = 0, by Dominated Convergence

Theorem, we have that,

Hn({x ∈ M̃ : σ−(x) ≥ −2εΛ}) → 0,

and ∫
M̃

mi
ε(x) dHn(x) → 0,

where,

m1
ε(x) = max

t∈[−2εΛ,4εΛ]
θt(x)− min

t∈[−2εΛ,4εΛ]
θt(x),

m2
ε(x) = max

t∈[−6εΛ,2εΛ]
θt(x)− min

t∈[−6εΛ,2εΛ]
θt(x).

2.8.2 Path for Theorem 5

Consider the following continuous path in W 1,2(N), for ε > 0,

γε(t) =


−1− 2diam (N)− t, t ∈ [−2 diam (N)− aε − 1,−2 diam (N)],

Hε(d̃− t), t ∈ [−2 diam (N), 2 diam (N)],

1− 2 diam (N) + t, t ∈ [2 diam (N), 2 diam (N) + bε − 1],
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which satisfies γε(−1− 2diam (N)− aε) = aε, and γε(1− 2 diam (N) + bε) = bε.

Replacing r0 = 2εΛ, in Section 2.6.4, and ρ = 2εΛ, in Section 2.7.2, we see that, for all ε in (0, ε̃),

for some ε̃ = ε̃(N,M, g, λ,W ) > 0, fixed,

Fε,λ(γε(t)) < Fε,λ(vε) + III
6,2 diam (N)
ε , t ∈ [−2 diam (N)− aε − 1, 2 diam (N)],

Fε,λ(γε(t)) < Fε,λ(vε) + III6,−t
ε , t ∈ [−2diam (N),−2εΛ],

Fε,λ(γε(t)) < Fε,λ(vε) + III9,tε , t ∈ [2εΛ, 2diam (N)],

Fε,λ(γε(t)) < Fε,λ(vε) + III
9,2 diam (N)
ε , t ∈ [2 diam (N), 2 diam (N) + bε − 1].

Recalling from Section 2.3.6

Fε,λ(vε) → 2σHn(M)− σλµg(E) + σλµg(N \ E),

as ε→ 0, and Section 2.8.1,

max
t∈[2εΛ,2 diam (N)]

(
III6,tε + III9,t

)
→ 0,

as ε → 0. Therefore, for τ > 0, there exists a 0 < ετ = ετ (N,M, g, λ,W ) ≤ ε̃, such that for all ε

in (0, ετ ) and t in [−2 diam (N)− aε − 1, 2 diam (N) + bε − 1] \ (−2εΛ, 2εΛ),

Fε,λ(γε(t)) < 2σHn(M)− σλµg(E) + σλµg(N \ E) + τ.

Furthermore by similar arguments to those in Section 2.3.6, and after potentially rechoosing ετ > 0,

we have that for all ε in (0, ετ )

max
t∈[−2εΛ,2εΛ]

Fε,λ(γε(t)) < 2σHn(M)− σλµg(E) + σλµg(N \ E) + τ.

Therefore this is an admissible path in W 1,2(N), that proves that for the limiting varifold V =

Vλ + V0, we must have that V0 = 0. This completes the proof of Theorem 5.

Remark 25. Note that we can build the path γε, for any suitable Caccioppoli set E. The suitable

properties are the following:

1. ∂∗E ̸= ∅, and gen-reg (∂∗E, 1) is a quasi embedded λ-CMC hypersurface, with respect to

unit normal pointing into E.

2. ∂E satisfies the Geodesic Touching Lemma (Lemma 1).

From Remark 25 we can deduce that E must be a single connected component and minimises the

value

Fλ(E) = Hn(∂∗E)− λµg(E) > 0,
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among all suitable competitors satisfying the two properties of Remark 25.

2.8.3 Contradiction Path for Theorem 4

Recall all the error terms from Sections 2.5, 2.6 and 2.7. By Section 2.3.6 and 2.8.1, for τ > 0,

there exists an ετ = ε(z0,M,N, g, δ,W, λ, L, k, r0, ρ, τ) ∈ (0, ε3), such that for all ε in (0, ετ ), we

have that

Fε,λ(vε) + max
r∈[0,4εΛ)

III1,rε + max
r∈[4εΛ,ρ]

III2,rε + max
r∈[0,2εΛ]

III3,rε

+ max
r∈(2εΛ,r0]

III4,rε + max
r∈[0,r0]

III5,rε + max
r∈[r0,2 diam (N)]

III6,rε

+ max
r∈[0,2εΛ]

III7,rε + max
r∈(2εΛ,ρ]

III8,rε + max
r∈[ρ,2 diam (N)]

III9,rε

< 2σHn(M)− σλµg(E) + σλµg(N \ E) + τ.

Therefore, for any τ > 0, there exists an ετ > 0, such that for any ε in (0, ετ ), we can define the

continuous path,

γε : [−1− aε, 4 diam (N) + r0 + ρ+ bε − 1] → W 1,2(N),

by

γε(t) =



−1− t, t ∈ [−1− aε, 0],

Hε(d̃+ t− 2 diam (N)), [0, 2 diam (N)− r0],

ṽ
2 diam (N)−t,η4
ε , [2 diam (N)− r0, 2 diam (N)],

ṽ
2 diam (N)+ρ−t,η3
ε , [2 diam (N), 2 diam (N) + ρ],

ṽ
2 diam (N)+ρ+r0−t,η2
ε , [2 diam (N) + ρ, 2 diam (N) + ρ+ r0],

ṽ
t−(2 diam (N)+ρ+r0),η6
ε , [2 diam (N) + ρ+ r0, 2 diam (N) + 2ρ+ r0],

Hε(d̃+ t− (2 diam (N) + ρ+ r0)), [2 diam (N) + 2ρ+ r0, 4 diam (N) + ρ+ r0],

1 + t− (4 diam (N) + ρ+ r0), [4 diam (N) + ρ+ r0, 4 diam (N) + ρ+ r0 + bε − 1]

This path satisfies the following; γε(−1− aε) = aε, γε(4 diam (N) + r0 + ρ+ bε − 1) = bε, and

γε(t) < 2σHn(M)− σλµg(E) + σλµg(N \ E)− σHn(Al)

2(2n − 1)
+ τ,

for all t in [−1 − aε, 4 diam (N) + r0 + ρ + bε − 1]. This contradicts the min-max construction of

M , implying that M must be embedded, and therefore completing Theorem 4.
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2.9 Morse Index

Recall the discussion from Section 1.1 that, for an embedded CMC hypersurfaceM , withM = ∂E,

for an open set E ⊂ N , then for an open set Ω ⊂ N , such that Ω ⊂⊂ N \ (M \M), we define the

index of M in Ω (indΩ(M)), as the largest dimensional subspace of W 1,2
0 (M ∩ Ω), such that the

bilinear form,

BLM
[φ, ψ] =

∫
M

∇Mφ · ∇Mψ − (|AM |2 +Ricg(ν, ν))φψ dHn,

is negative definite. We then define,

ind(M) = sup
Ω⊂⊂N\(M\M)

(indΩ(M)).

Now consider our M from Theorem 5. Thus, as M is embedded, and our sequence of critical

points {ui} from Section 2.1.1 has indui ≤ 1 (Proposition 1), by [38, Theorem 1a.], we have that

ind(M) ≤ 1.

Remark 26. AsM is two-sided and embedded, and the inhomogeneous term is a constant, we may

also apply the ideas and arguments of [31] verbatim to conclude that ind(M) ≤ 1.

Claim 4. indM = 1.

Proof. We only need to show a lower bound, which follows from the Ricci positivity on N . We

construct an appropriate function on M , using a similar argument to [9, Lemma 5.1].

We wish to prove that we can find a set Ω ⊂⊂ N \ (M \M), and a function φ in W 1,2
0 (M ∩ Ω)

such that,

BM(φ, φ) < 0.

By the Ricci positivity of N , for any Ω ⊂⊂ N \ (M \M), and φ in W 1,2
0 (M ∩ Ω), we have

BM(φ, φ) ≤
∫
M

|∇Mφ|2 − |AM |2φ2 dHn.

If M \M = ∅, we set Ω = N , and φ = 1,

BM(φ, φ) ≤ −
∫
M

|AM |2 dHn < 0.

ForM \M ̸= ∅, we first we note that we must have n ≥ 7, and Hn−2(M \M) = 0. Furthermore, as

(M, 1) is a multiplicity 1 integral n-varifold with uniformly bounded generalised mean curvature,
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we have a monotonicity formula [54, Corollary 17.8], which implies Euclidean volume growth about

each point in M . Both of these facts combined imply that for each δ > 0, we can construct a

function φδ, on N , with the following properties (see [66, pp. 89-90])

φδ ∈ W 1,∞
c (N),

sptφδ ⊂⊂ N \ (M \M),

φδ(y) ∈ [0, 1], y ∈ N,

∥∇Mφδ∥L2(M) ≤
√
δ,

Hn(M ∩ {φδ = 1}) > Hn(M)− δ,

Thus, taking δ > 0 small enough we may set Ω = sptφδ ⊂⊂ N \ (M \M), and have that

BM(φδ, φδ) ≤ δ − n−2λ2Hn({φδ = 1} ∩M) < 0.

This implies that indM ≥ 1.

The fact that M is connected immediately follows from this, as on each connected component we

could construct a function as in Claim 4. Therefore each connected component adds atleast 1 to

the index.
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Chapter 3

Upper Semicontinuity of Index Plus

Nullity for Minimal and CMC

Hypersurfaces

As previously, let (N, g) be a compact Riemannian manifold, with no boundary, of dimension

n + 1 (in this Chapter we will mostly focus on 2 ≤ n ≤ 6), and H > 0, be a fixed constant.

In this chapter we investigate two classes, M(N, g), and CH(N, g). Here, M(N, g) is the class of

smooth, closed, properly embedded, minimal hypersurfaces of N , with respect to the metric g, and

CH(N, g) is the class of smooth, closed, properly embedded hypersurfaces in N , of constant mean

curvature H > 0, with respect to the metric g.

As these hypersurfaces arise as critical points to appropriately chosen area-type functionals, a

natural property to study is their Morse index (with respect to the associated functional). For two

fixed numbers Λ > 0, and I ∈ Z≥0, we define the subclasses,

M(N, g,Λ, I) = {M ∈ M(N, g) : Hn
g (M) ≤ Λ, ind (M) ≤ I},

CH(N, g,Λ, I) = {M ∈ CH(N, g) : Hn
g (M) ≤ Λ, ind (M) ≤ I}.

Making use of the curvature estimates for stable minimal hypersurfaces by Schoen–Simon–Yau [52]

and Schoen–Simon [51] (see also the recent proof by Bellettini [10]), for 2 ≤ n ≤ 6, compactness

properties have been proven for M(N, g,Λ, I) by Sharp [53], and for CH(N, g,Λ, I) by Bourni–

Sharp–Tinaglia [16]. In dimension n + 1 = 3, it is worth noting that various other compactness

results have been shown for minimal surfaces by Choi–Schoen [21], Anderson [6], Ros [47], and

White [65], and for H-CMC surfaces by Sun [57]. We note that M(N, g,Λ, I) is sequentially

compact (under the correct notion of convergence), whereas for CH(N, g,Λ, I), we must expand

our class to quasi-embedded, H-CMC hypersurfaces (see Definition 1). We denote this enlarged

class by CH(N, g,Λ, I). We briefly describe this notion of convergence, with full details described
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in point 1 of Definition 5. Consider a sequence {Mk} ⊂ M(N, g,Λ, I) (resp. CH(N, g,Λ, I)), then

after potentially taking a subsequence and renumerating, there is a smooth, closed, embedded

minimal hypersurface (resp. H-CMC quasi-embedded hypersurface)M∞, and a finite set of points

I ⊂M∞, where |I| ≤ I, such that on compact subsets of N \I,Mk will converge toM∞, smoothly

and locally graphically, with integer multiplicity potentially greater than 1. It is then shown that

M∞ ∈ M(N, g,Λ, I) (resp. CH(N, g,Λ, I)). The set of points I ⊂M∞, is defined by the condition

that for each y ∈ I, there exists a sequence points {xyk ∈ Mk}k∈N, such that xyk → y, and the

curvature |AMk
(xyk)|, blows up as k → ∞. Thus we call I the singular set of the convergence.

In a bid to understand the formation of such singularities, a bubble analysis was carried out by

Chodosh–Ketover–Maximo [19], Buzano–Sharp [17], and Bourni–Sharp–Tinaglia [16]. Zooming in

at appropriate rates, along particular sequences of points converging onto I, yields a complete,

embedded, non-planar, minimal hypersurface in Rn+1, of finite index, with Euclidean volume

growth at infinity. These minimal hypersurfaces in Rn+1 are referred to as the ‘bubbles’, and they

are the singularity models at the singular points of the convergence. The hypersurface M∞ is

referred to as the ‘base’. This terminology is borrowed from other non-linear geometric problems.

See Figure 3.1 for a heuristic picture. In the case of n = 2, a bubble analysis has been carried

out by Ros [47], in R3 with the standard Euclidean metric, assuming uniform bounds on the total

curvature instead of the Morse index, and by White [65], in general 3-manifolds, assuming uniform

bounds on genus instead of Morse index.

One may be interested in certain information about the hypersurfaces along these sequences, for

example; genus ([19]), index and total curvature ([17, 16]). Understanding the formation of these

singularities through this bubble analysis allows us to track this information along the sequence,

and how it behaves when taking the limit Mk → M∞. For example, if we have our sequence

{Mk} as above, and we know all our ‘bubbles’ are given by Σ1, . . . ,ΣJ ⊂ Rn+1, then we say that

Mk → (M∞,Σ
1, . . . ,ΣJ) ‘bubble converges’ (see Definition 5 for a detailed definition), and [17, 16],

ind (M∞) +
J∑

j=1

ind (Σj) ≤ lim inf
k→∞

ind (Mk). (3.1)

This inequality gives a quantitative way of accounting for some of the index lost when taking the

limit Mk →M∞. In this work we are interested in proving an opposite inequality, which will give

a finer analysis and description of the index along such a converging sequence, and shows that in

certain situations, this bubble analysis will account for all the index in the limit.

Our main result is Theorem 8 below, however we first illustrate the conclusions in a simplified

setting with the following special case. We delay the statement of Theorem 8 until the end of this

section.
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M∞

y

Σ

Figure 3.1: The top row depicts a local picture of a converging sequence about a point y ∈ I,
which converges with multiplicity 2 on the base M∞. The second row then depicts a dilation of
the dotted circles in the top row, which when we take a limit, as seen in the last column, allows
us to see a catenoid as the bubble Σ.

86



Corollary 2. Consider a compact Riemannian manifold (N, g), without boundary and of dimen-

sion n+1, 3 ≤ n ≤ 6. Let {Mk} be a sequence of smooth, closed, embedded minimal hypersurfaces

of (N, g), such that Mk → (M∞,Σ
1, . . . ,ΣJ) bubble converges as in Definition 5, with M∞ ⊂ N

being a smooth, connected, two-sided, closed, embedded minimal hypersurface. Then:

lim sup
k→∞

(ind (Mk) + nul (Mk)) ≤ m(ind (M∞) + nul (M∞))

+
J∑

j=1

ind (Σj) + nulω
Σj ,R

(Σj),

where m ∈ Z≥1 is the multiplicity of the convergence onto M∞. Here,

ind (Σj) = lim
S→∞

indBn+1
S (0) (Σ

j),

and R may be chosen to be any finite positive real number greater than some R0 = R0(Σ
1, . . . ,ΣJ) ∈

[1,∞), and

ωΣj ,R(x) =

R−2, x ∈ Bn+1
R (0) ∩ Σj,

|x|−2, x ∈ Σj \Bn+1
R (0).

and,

nulω
Σj ,R

(Σj) = dim {f ∈ C∞(Σj) : ∆f + |AΣj |2f = 0, f 2 ωΣj ,R ∈ L1(Σj), |∇f |2 ∈ L1(Σj)}.

The inequality in Corollary 2 can be further strengthened by noting that in this situation if m ≥ 2,

then ind (M∞) = 0 ([53, Claim 6]), and nul (M∞) = 1 (as the first eigenvalue of the stability

operator will be simple).

Results on the lower semicontinuity of index along converging sequences (3.1), are common in

the literature. For certain classes of minimal hypersurfaces see Sharp [53], Buzano–Sharp [17],

Ambrozio–Carlotto–Sharp [5] and Ambrozio–Buzano–Carlotto–Sharp [4], and for certain classes

of CMC hypersurfaces see Bourni–Sharp–Tinaglia [16]. In the setting of Allen–Cahn solutions see

Le [35], Hiesmayr [31], Gaspar [27] and Mantoulidis [38]. For the setting of of bubble converging

harmonic maps see Moore–Ream [42, Theorem 6.1], and Hirsch–Lamm [32, Theorem 1.1].

The opposite upper semicontinuity inequality (Theorem 8) is more intricate. We recall a few

examples of such results from the literature. When convergence happens with multiplicity one

for sequences of critical points of the Allen–Cahn functional, upper semicontinuity of the index

plus nullity has been established by Chodosh–Mantoulidis [20, Theorem 1.9] and Mantoulidis [38,

Theorem 1 (c)]. In the case of bubble converging harmonic maps such an inequality was first

established by Yin [69, 70], and then by Da Lio–Gianocca–Rivière [23] and Hirsch–Lamm [32].
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Note that in [23] and [32, Section 6] the proofs are for a bubble converging sequence of critical

points for a general class of conformally invariant lagrangians (fixed along the sequence).

When combined with the lower semicontinuity of index, the inequality in Theorem 8 shows that

in the case of the limiting hypersurface being two-sided and minimal (as is the case of Corollary

2), the index along the sequence can be fully accounted for in the limit. Thus we should view

Theorem 8 as saying that we cannot lose index to the neck, or index cannot merely just disappear

in the bubble convergence of Chodosh–Ketover–Maximo [19] and Buzano–Sharp [17] for minimal

hypersurfaces (in dimensions 3 ≤ n ≤ 6).

In order to conclude that the inequality in Theorem 8 is non-trivial, we must show that for each

bubble, Σj, of finite index, nulω
Σj ,R

(Σj) < +∞. This is shown in Proposition 16. Proposition 16

also has the following Corollary which may be of interest to some readers (and may be compared

with [36, Corollary 2]).

Corollary 3. Let Σ be a complete, connected, n-dimensional manifold, n ≥ 3, and ι : Σ → Rn+1

be a two-sided, proper, minimal immersion, with finite total curvature,∫
Σ

|AΣ|n < +∞,

and Euclidean volume growth at infinity,

lim sup
r→∞

Hn(ι(Σ) ∩Bn+1
r (0))

rn
< +∞.

Then:

anl-nul (Σ) := dim {f ∈ W 1,2(Σ) : ∆f + |AΣ|2f = 0} < +∞.

We note that as Σ is not compact, Corollary 3 does not follow from analysing the spectrum of a

compact operator.

We briefly remark on the strategy of the proof for Theorem 8, which is close to the strategy of Da

Lio–Gianocca–Rivière [23]. We prove Theorem 8 by reframing the problem in terms of a weighted

eigenvalue problem. The weight is specifically chosen so that sequences of normalised weighted

eigenfunctions {fk}, along the sequence {Mk}, with non-positive weighted eigenvalues, exhibit good

convergence on the baseM∞, and the bubbles, Σ1, . . . ,ΣJ . The key steps for the proof are showing

the equivalence of the weighted and unweighted eigenvalue problems (Section 3.3), the convergence

on the base M∞ (Section 3.2.2), and the convergence on the bubbles Σ1, . . . ,ΣJ (Section 3.2.3),

along with a Lorentz–Sobolev inequality on the neck, which shows that the normalised weighted

eigenfunctions cannot concentrate on the neck (Section 3.2.4).

Due to the different settings, there are several key differences between our work and that of [23].

One such difference is our use of a Lorentz–Sobolev inequality to deduce strict stability on the
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neck. Another major difference is that in our setting the bubbles are non-compact. This poses

complications in the theory of the elliptic operator on the bubble. In particular its spectrum may

not be discrete, and thus effectively analysing the index and nullity of these bubbles is subtle.

It is worth pointing out that the method used in [23], and in Theorem 8 is rather general. In

the proof of Theorem 8, only a few aspects rely specifically on the mean curvature assumptions of

the submanifolds. Thus it is plausible that the ideas and techniques could be applied to a large

range of problems in which one wishes to study how an elliptic PDE behaves along a sequence of

(sub)manifolds which ‘bubble converge’ in an appropriate sense.

Theorem 8. For a compact Riemannian manifold (N, g) without boundary, of dimension n + 1,

3 ≤ n ≤ 6, if we have a sequence {Mk} ⊂ M(N, g) ({Mk} ⊂ CH(N, g)), such that Mk →
(M∞,Σ

1, . . . ,ΣJ) bubble converges as in Definition 5, with M∞ = ∪l
i=1M

i, where each M i is

a closed minimal hypersurface (resp. closed, quasi-embedded H-CMC hypersurface, with co(M i)

connected) and θ|M i = mi ∈ Z≥1 (θi = mi ∈ Z≥1), then

lim sup
k→∞

(ind (Mk) + nul (Mk)) ≤
l∑

i=1

co(m)i(anl-ind (co(M
i
∞)) + anl-nul (co(M i

∞)))

+
J∑

j=1

ind (Σj) + nulω
Σj ,R

(Σj),

where for each i = 1, . . . , l, co(m)i ∈ Z≥1, is such that co(m)i ≤ mi if M i is one-sided, and

co(m)i = mi if M
i is two-sided. Here,

ind (Σj) = lim
S→∞

ind (Σj ∩Bn+1
S (0)),

and R may be chosen to be any finite positive real number greater than some R0 = R0(Σ
1, . . . ,ΣJ) ∈

[1,∞), and

ωΣj ,R(x) =

R−2, x ∈ Bn+1
R (0) ∩ Σj,

|x|−2, x ∈ Σj \Bn+1
R (0).

and,

nulω
Σj ,R

(Σj) = dim {f ∈ C∞(Σj) : ∆f + |AΣj |2f = 0, f 2 ωΣj ,R ∈ L1(Σj), |∇f |2 ∈ L1(Σj)}.

The exact method of proof we employ does not extend to the case of n = 2 (2 dimensional surfaces

in 3-manifolds). Two key reasons are the choice of weight (Remark 31), and the criticality of the

Lorentz–Sobolev inequality (Proposition 10) for n = p = 2.
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We take a moment to comment on the terms anl-ind (M i
∞) and anl-nul (M i

∞), that appear in the

statement of Theorem 8. These terms respectively stand for the analytic index and analytic nullity

of M i
∞. This refers to the index and nullity of the stability operator acting on the function space

C∞(co(M i
∞)), where co(M i

∞) is a connected component of the two-sided double cover ofM i
∞ ⊂ N .

We explain the reasoning behind this with the following example, which is also demonstrated in

Figure 3.2. Consider a unit hypersphere in Rn+1 (this is a CMC hypersurface), then the function

f = 1 on the hypersphere, is an eigenfunction of the stability operator, with negative eigenvalue,

and corresponds to shrinking the hypersphere. Now consider a sequence of two disjoint unit

hyperspheres in Rn+1, such that in the limit they touch at a point. In order to account for these

eigenfunctions in the limit, we must allow for variations that act on the hyperspheres independently,

even at the touching point. Thus we view the hyperspheres as immersions, and allow variations

which ‘shrink’ the hyperspheres separately. This type of variation cannot arise through an ambient

vector field due to the behaviour at the touching point. Thus in general, the analytic index and

analytical nullity of M∞, will not be equivalent to the Morse index and nullity of M∞, which is

customarily defined through ambient vector fields. See Section 3.1.2 for further details.

Figure 3.2: Sequence of two spheres coming together to touch at a point. The arrows attached to
the spheres demonstrate the ambient vector field needed to give rise to the eigenfunction which
corresponds to ‘shrinking’ of these spheres. Notice that at the non-embedded point this vector
field is not well defined as an ambient one.

Finally we make note of another special case, by considering a sequence of H-CMC hypersurfaces

{Mk}, which bubble convergeMk → (∪l
i=1M

i,Σ1, . . . ,ΣJ), such that eachMk arises as the bound-

ary of some open set Ek ⊂ N . This particular setting has been analysed by Bourni–Sharp–Tinaglia

[16], were they showed that for each i, co(m)i = 1, and, by applying a uniqueness result of Schoen

[50, Theorem 3], that each bubble Σj, will be given by a catenoid C. Thus, as catenoids have index
1 ([58, Theorem 2.1]), we have that

lim sup
k→∞

(ind (Mk) + nul (Mk)) ≤
l∑

i=1

(anl-ind (co(M i
∞)) + anl-nul (co(M i

∞)))

+J(1 + nulωC,R (C)).
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In Section 3.6 we investigate nulωC,R(C), and show that it has a lower bound of n. In particular,

in Section 3.6 we analyse Jacobi fields on the n-dimensional catenoid C ⊂ Rn+1 (for n ≥ 3), which

arise from rigid motions of Rn+1 (translations, rotations and scalings). We show that the only non-

trivial such Jacobi fields which lie in W 1,2(C), or the weighted space W 1,2
ωC,R

(C) are those generated
by translations which are parallel to the ends of C.

3.1 Preliminaries

3.1.1 Bubble Convergence Preliminaries

In this section we give a precise definition of bubble convergence (Definition 5), and prove some

technical lemmas (Lemmas 2 and 3), which describe the structure of the neck regions in the bubble

convergence, as well as the ends of the bubbles.

In this chapter, for a quasi-embedded hypersurface M , we denote e(M) to be the set of embedded

points of M , and t(M) to be the set of non-embedded points of M . This is a slight change of

notation to that of Chapters 1 and 2. The reason for this is to keep notation consistent with that

of [16], which is one of the main background references for this chapter.

Definition 5. Consider a Riemannian manifold (N, g), of dimension n + 1, n ≥ 2, (and H > 0)

along with a sequence {Mk}k∈N ⊂ M(N, g) ({Mk}k∈N ⊂ CH(N, g)), an M∞ ∈ M(N, g) (M∞ ∈
CH(N, g)), and a collection of non-planar, complete, properly embedded, minimal hypersurfaces

{Σj}Jj=1 in Rn+1, with J ∈ Z≥1. Then, we say that

Mk → (M∞,Σ1, . . . ,ΣJ),

bubble converges, if:

1. For the case of minimal hypersurfaces; (Mk, 1) → (M∞, θ) as varifolds, where θ :M∞ → Z≥1,

and is constant on connected components of M∞. Moreover, there exists an at most finite

collection of points I ⊂ M∞, such that locally on M∞ \ I, Mk converges smoothly and

graphically, with multiplicity θ (see Remark 27 for a precise definition).

For the case ofH-CMC hypersurfaces; (Mk, 1) → (M∞, θ) as varifolds, whereM∞ = ∪a
i=1M

i
∞,

and each M i
∞ is a distinct, closed, quasi-embedded H-CMC hypersurface, such that for its

respective immersion, ιi : Si → M i
∞, Si is connected, and there exists a θi ∈ Z≥1, such that

θ(y) =
∑a

i=1(|(ιi)−1(y)|θi). Moreover, there exists an at most finite collection of points I ⊂
M∞, such that locally on M∞ \ I, Mk converges smoothly and graphically, with multiplicity

θ (see Remark 27 for a precise definition).
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2. For each i ∈ {1, . . . , J}, there exist point-scale sequences {(pik, rik)}k∈N, such that for each

k ∈ Z≥1, p
i
k ∈ Mk, and there exists a yi ∈ I, such that pik → yi, rik → 0. Moreover, for each

R ∈ (0,∞), and large enough k, the connected component of Mk ∩ BN
Rrik

(pik), through pik,

denoted Σi,R
k , is such that, if we rescale the geodesic ball BN

Rrik
(pik) by r

i
k, and denote

Σ̃i,R
k ∩Bn+1

R (0) :=
1

rik
exp−1

pik
(Σi,R

k ∩BN
Rrik

(pik)) ⊂ Bn+1
R (0) ⊂ Rn+1,

then Σ̃i,R
k → Σi∩BR(0) smoothly and graphically, and hence with multiplicity one. Further-

more, for i ̸= j, either

lim
k→∞

rik
rjk

+
rjk
rik

+
distNg (p

i
k, p

j
k)

rik + rjk
= ∞,

or for each R ∈ (0,∞), and then large enough k ∈ N, pjk ̸∈ Σi,R
k .

3. Defining,

dk(x) := min
i=1,...,J

distNg (x, p
i
k),

then,

lim
δ→0

lim
R→∞

lim
k→∞

sup
x∈Mk∩(∪y∈IB

N
δ (y)\∪J

i=1Σ
i,R
k )

∫
Mx

k∩B
N
dk(x)/2

(x)

|Ak|n = 0,

where Mx
k ∩BN

dk(x)/2
(x) is the connected component of Mk ∩BN

dk(x)/2
(x), that contains x.

Remark 27. We now remark on exactly what we mean byMk converging smoothly and graphically,

with multiplicity θ, locally on M∞ \ I.

1. First we consider y ∈ M∞ \ I being an embedded point (as is always the case for minimal

hypersurfaces). Then, there exists ρ, τ ∈ (0, inj(N)/2), and an n-dimensional subspace T ⊂
TyN , such that, defining the cylinder,

Cy,T,ρ,τ := {expy(X + sνT ) : X ∈ BTyN
ρ (0) ∩ T, s ∈ (−τ, τ)},

(where νT is a choice of unit normal to T ) we have that Cy,T,ρ,τ ⊂⊂ N \ I, and there exists

a smooth function,

u : BTyN
ρ (0) ∩ T → (−τ/2, τ/2),

such that,

M∞ ∩ Cy,T,ρ,τ = graph (u) := {expy(X + u(X)νT ) : X ∈ BTyN
ρ (0) ∩ T}.

Moreover, for large enough k, there exists θ(y) distinct smooth functions,

v1,k, . . . , vθ(y),k : B
TyN
ρ (0) ∩ T → (−τ, τ),
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such that,

Mk ∩ Cy,T,ρ,τ =

θ(y)⋃
l=1

graph (vl,k),

and for each l = 1, . . . , θ(y), vl,k → u smoothly.

2. For the case of y ∈ M∞ \ I being a non-embedded point of a quasi-embedded H-CMC

hypersurface, then, there exists ρ, τ ∈ (0, inj(N)/2), and an n-dimensional subspace T ⊂
TyN , along with two distinct smooth functions,

u1, u2 : B
TyN
ρ (0) ∩ T → (−τ/2, τ/2),

such that Cy,T,ρ,τ ⊂⊂ N \ I, and

M∞ ∩ Cy,T,ρ,τ = graph (u1) ∪ graph (u2),

with u1(0) = 0 = u2(0). Moreover, there exists i1, i2 ∈ {1, . . . , a} (potentially equal), such

that graph (uj) ⊂M
ij
∞. Then, for large enough k, there exists θ(y) smooth functions,

v1,k, . . . , vθ(y),k : B
TyN
ρ ∩ T → (−τ, τ),

such that,

Mk ∩ Cy,T,ρ,τ =

θ(y)⋃
l=1

graph (vl,k),

and for l = 1, . . . , θi1 , vl,k → u1, smoothly, and for l = θi1 + 1, . . . , θi1 + θi2 = θ(y), vl,k → u2,

smoothly.

Consider such a convergence Mk → (M∞,Σ
1, . . . ,ΣJ), as in Definition 5, then we may remark:

• The convergence considered in the bubble analysis of Chodosh–Ketover–Maximo [19] and

Buzano–Sharp [17] for minimal hypersurfaces, and Bourni–Sharp–Tinaglia [16] for CMC

boundaries, satisfies Definition 5.

• As the multiplicity function θ : M∞ → Z≥1 is uniformly bounded, and Hn(M∞ ∩ U) < +∞,

for U ⊂ N compact, then we may deduce by the varifold convergence that supk Hn(Mk∩U) <
+∞. Applying this fact, and using the monotonicity formula for varifolds with bounded mean

curvature ([54, Theorem 17.7]), we may deduce that each Σj must have Euclidean volume

growth at infinity (see [17, Corollary 2.6]).

• The final sentence of point 2 in Definition 5 guarantees that all of these bubbles are distinct.
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• For each j = 1, . . . , J , as Σj is complete and properly embedded, by [49] Σj is two-sided in

Rn+1.

• Without loss of generality we may assume that |AΣj |(0) > 0, for each j = 1, . . . , J .

We also now assume that each Σj has finite index. This is a reasonable assumption for us to make,

as if it does not hold then the result that we are interested in (Theorem 8) would hold trivially.

Thus, for 3 ≤ n ≤ 6, by a result of Tysk [61], the finite index and Euclidean volume growth at

infinity, imply that each bubble Σj will have finite total curvature;∫
Σj

|AΣj |n < +∞.

The following curvature estimate (Proposition 7) is important in our analysis. First we list some

notation. If ι : M → N is a proper immersion, and S ⊂ N , x ∈ M , and ι(x) ∈ S, then we denote

ι−1(S)x as the connected component of ι−1(S) which contains x.

Proposition 7. Consider (Bn+1
1 (0), g), where g is a Riemannian metric (a constant H > 0),

and a proper, g-minimal (g-H-CMC) immersion ι : M → Bn+1
1 (0), such that ι(∂M) ⊂ ∂Bn+1

1 (0).

There exists an ε0 = ε0(g)(= ε0(g,H)) > 0, such that for x ∈ ι−1(Bn+1
1/2 (0)), r ∈ (0, 1/4), and

ε ∈ (0, ε0), if ∫
ι−1(Bn+1

r (ι(x)))x

|A|n ≤ ε,

then,

sup
y∈Bn+1

r (ι(x)))x

distB
n+1
1 (0)

g (ι(y), ∂Bn+1
r (ι(x))) |A|(y) ≤ Cε,

with Cε = C(g, ε)(= C(g,H, ε)) < +∞. Moreover, Cε → 0 as ε→ 0.

Proof. The proof, detailed below, follows from a standard point-picking argument, which may be

found in [64, Lecture 3]. In the proof we will denote distB
n+1
1 (0)

g by distg.

Assume that the bound is not true. Then there exists a sequence of proper, g-minimal (g-H-CMC)

immersions {ιk : Mk → Bn+1
1 (0)}k∈N (from here on we will drop the subscript k from the maps ιk)

with points xk ∈Mk, radii {rk}k∈N, with rk < 1/4, such that,∫
ι−1(Bn+1

rk
(ι(xk)))xk

|Ak|n → 0,

but a fixed δ > 0, and points yk ∈ ι−1(Bn+1
rk

(ι(xk)))xk
⊂⊂Mk, such that

distg(ι(yk), ∂B
n+1
rk

(ι(xk)))|Ak|(yk) = sup
y∈ι−1(Bn+1

rk
(ι(xk))xk

distg(ι(y), ∂B
n+1
rk

(xk))|Ak|(y) ≥ δ.
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We can see that yk ̸∈ ι−1(∂Bn+1
rk

(ι(xk)))xk
. Denote,

Tk = |Ak|(yk),

ρk = distg(ι(yk), ∂B
n+1
rk

(ι(xk))) ≤ rk < 1/4.

Translate ι(yk) to the origin, rescale by Tk, and denote our new immersion by,

ι̃ : Mk → Bn+1
Tk

(−ι(yk)),

x 7→ Tk(ι(x)− ι(yk)).

This will be a proper minimal (T−1
k H-CMC) immersion in the appropriately translated and rescaled

metric, which we denote g̃k. After taking an appropriate rotation we may also assume that ι̃ maps

the tangent space TykMk to {xn+1 = 0}.

Denoting Ãk as the second fundamental form of Mk with respect to immersion ι̃, we have

|Ãk|(yk) = T−1
k |Ak|(yk) = 1,

Moreover, sk = Tkρk ≥ δ, and we have that for z ∈Mk ∩ ι̃−1(Bn+1
sk/2

(0))yk ⊂⊂Mk,

sk
2
|Ãk|(z) ≤ Cdistg̃k(z, ∂Bsk(0))|Ãk|(z),

≤ Cdistg̃k(0, ∂Bsk(0))|Ãk|(0),

= Csk,

where C = C(g) < +∞, will come from the fact that we can find a C ′ = C ′(g) < +∞, such that

1

C ′ |p− q| ≤ distg(p, q) ≤ C ′|p− q|,

for p, q ∈ Bn+1
5/6 (0). Thus, |Ãk|(z) ≤ 2C, and there will exist a constant l = l(g), such that for,

2τ = min{δ/2, l},

we have that there is a smooth function,

uk : B
n+1
τ (0) ∩ {xn+1 = 0} → R,

with uk = 0, ∇uk = 0, and for some connected set S ⊂ Mk, containing yk, ι̃(S) = graph(uk) (see

[22, Chapter 2, Lemma 2.4]). Moreover, this bound on |Ãk| translates to a uniform bound (only

dependent on g) on the C2-norm of these functions {uk}. Moreover, these functions solve the g̃k-

minimal surface equation (g̃k-T
−1
k H-CMC equation). Thus by Schauder theory (noting that T−1

k ≤
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(4δ)−1) [28, Section 6.1], we gain a uniform bound on the C2,α-norm of these functions. Therefore,

potentially after taking a subsequence and renumerating, there exists a u∞ ∈ C2,α(Bn+1
τ/2 (0) ∩

{xn+1 = 0}) such that uk → u∞ in C2(Bn+1
τ/2 (0) ∩ {xn+1 = 0}), a Riemannian metric g̃∞ on

Bn+1
2τ (0), such that g̃k → g̃∞ smoothly on Bn+1

2τ (0), and a constant Λ ∈ [0, (4δ)−1], such that

T−1
k → Λ. Again, by Schauder Theory we may upgrade this to smooth convergence and u∞ ∈
C∞(Bn+1

τ/2 (0) ∩ {xn+1 = 0}). Then u∞ solves the g̃∞-minimal surface equation (g̃∞-ΛH-CMC

equation), and denoting M∞ = graph(u∞), we have that 0 ∈M∞, and |A∞|(0) = 1. Thus,∫
M∞

|A∞|n ̸= 0.

However this contradicts the assumption that,∫
Mk∩Brk

(xk)

|Ak|n → 0,

due to the quantity’s scale invariance.

Proposition 7 implies that if we take a sequences δk → 0 and Rk → ∞, such that Rkr
j
k → 0 for all

j = 1, . . . , J , and δk ≥ 4Rkr
j
k for all k ∈ Z≥1 and j = 1, . . . , J , and pick a sequence of points,

xk ∈Mk ∩ (∪y∈IB
N
δk
(y) \ ∪J

i=1Σ
i,Rk

k ),

and denote, sk = dk(xk)/2, and

M̃k ∩Bn+1
1 (0) :=

1

sk
exp−1

xk
(Mk ∩BN

sk
(xk)),

then, after potentially taking a subsequence and renumerating, the component of M̃k through the

origin must smoothly converge to a plane through the origin, on compact sets of Bn+1
1 (0).

Lemma 2. Consider a point-scale sequence {(pik, rik)} from Definition 5, and a sequence sk → 0,

such that sk/r
i
k → ∞. Then if we denote M̃ ′

k ⊂ Bn+1
1 (0) to be the connected component of

M̃k ∩Bn+1
1 (0) :=

1

sk
exp−1

pik
(Mk ∩BN

sk
(pik)),

that passes through the origin, we have that after potentially taking a subsequence and renumerating,

there exists a hyperplane E ⊂ Rn+1, and an m ∈ Z≥1, such that,

(M̃ ′
k, 1) → (E,m),

in Bn+1
1 (0) as varifolds, and smoothly, as m disjoint graphs, on open sets of Bn+1

1 (0) which are

compactly contained away from finitely many points in Bn+1
1 (0).
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Proof. For any R ∈ (2,∞), and large enough k, consider the map,

GR
k : B

n+1
R (0) → BN

Rsk
(pik),

x 7→ exppik
(skx),

and the metric gk = s−2
k (GR

k )
∗ g, on Bn+1

R (0). We have that (gk)α,β → δα,β, smoothly as k → ∞.

Denote M̃k = (GR
k )

−1(Mk∩BN
Rsk

(pik)). By the monotonicity formula, for large enough k we deduce,

Hn
gk
(M̃k ∩Bn+1

R (0)) ≤ C Rn (sup
M∞

θ) (Hn
g (M∞) + 1)

with C = C(N, g)(= C(N, g,H)) < +∞ (and moreover, mean curvature skH). Denote M̃ ′
k to be

the connected component of M̃k that passes through the origin. Thus, by Allard’s Compactness

Theorem [1, Theorem 6.4] (we use the theorem as stated in [54, Theorem 42.7 and Remark 42.8])

we know that, after potentially taking a subsequence and renumerating, there exists an integral,

n-rectifiable, stationary varifold V in Bn+1
R (0), such that (M̃ ′

k, 1) → V , as varifolds. By the

monotonicity formula, as for each k, 0 ∈ M̃ ′
k, and M̃ ′

k is connected, then, 0 ∈ spt ∥V ∥ ̸= ∅, and
spt ∥V ∥ is a closed connected set. Thus, if we can show that spt ∥V ∥ is a plane, then by the

Constancy Theorem [54, Theorem 41.1] we may conclude that θ ≡ m ∈ Z≥1.

After potentially taking a subsequence and renumerating, we may assume that for each j =

1, . . . , J , the following sequence has a well defined limit (potentially +∞),

distNg (p
i
k, p

j
k)

sk
.

We denote the set,

Bi,{sk} = {j : lim
k→∞

distNg (p
i
k, p

j
k)/sk ≤ 2R},

and for each j ∈ Bi,{sk}, and large enough k, we denote,

qjk := (G3R
k )−1(pjk) ∈ Bn+1

3R (0),

and, again after potentially taking a subsequence and renumerating,

qj := lim
k→∞

qjk ∈ Bn+1
2R (0).

Claim 5. For each r > 0, there exists a sequence Rk → ∞, such that for large enough k,

GR
k ((M̃

′
k ∩Bn+1

R (0)) \ ∪j∈Bi,{sk}B
n+1
r (qj)) ⊂ (Mk \ ∪J

j=1Σ
j,Rk

k ) ∩BN
Rsk

(pik).

We prove this claim by contradiction. We assume there exists an r > 0, S < +∞, and a subse-
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quence, which we may renumerate by such that there is an l ∈ {1, . . . , J}, and points,

zk ∈ GR
k ((M̃

′
k ∩Bn+1

R (0)) \ ∪j∈Bi,{sk}B
n+1
r (qj)) ∩ Σl,S

k .

Thus,

distNg (zk, p
l
k) < Srlk,

and,

distNg (zk, p
i
k) < Rsk.

Moreover, for large enough k,

min
j=1,...,J

distNg (zk, p
j
k) ≥

r

2
sk,

which implies that,

sk <
2S

r
rlk,

and thus,

distNg (p
i
k, p

l
k) <

(
2R

r
+ 1

)
Srlk.

Then as Σ
l,2(r−1+R−1)SR
k and M̃ ′

k are both connected and contain zk, we have that,

pik ∈ Σ
l,2(r−1+R−1)SR
k .

However, by smooth convergence on the bubble,

sk|Ak|(pik) ≤
2S

r
rlk|Ak|(pik) ≤ 2

S

r
sup

Σl∩Bn+1

2(r−1+R−1)SR
(0)

|AΣl | < +∞

which contradicts fact that,

sk|Ak|(pik) =
sk
rik
rik|Ak|(pik) → ∞.

Therefore we have proven the claim.

Thus, for each r > 0, small enough so that for each k, M̃ ′
k ∩ Bn+1

R (0) \ ∪j∈Bi,{sk}B
n+1
r (qj) is non-

empty, we have by Point 3 of Definition 5, and Proposition 7, that spt ∥V ∥ \ ∪j∈Bi,{sk}B
n+1
r (qj)

must be a collection of hyperplanes. Moreover, by uniform bounds on the second fundamental

form, the convergence on Bn+1
R (0) \ ∪j∈Bi,{sk}B

n+1
r (qj), must be smooth, and thus by the em-

beddedness assumption along the sequence, these hyperplanes cannot intersect transversely on

Bn+1
R (0) \ ∪j∈Bi,{sk}B

n+1
r (qj). Therefore, after potentially taking R larger, and renumerating along

a further subsequence, we see that these hyperplanes must be parallel. Then taking r → 0 we see

that sptV must be this collection of parallel hyperplanes. To conclude we note that as sptV is

connected, it must just be a single hyperplane through the origin, which we converge to smoothly,
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away from the finite set of points {qj : j ∈ Bi,{sk}}.

Lemma 3. Take ρ > 0, a > 0, and n ≥ 2. Consider a sequence of smooth, embedded, minimal

(Hk-CMC) hypersurfaces, {Mk ⊂ Bn
ρ (0) × (−a, a)}, with respect to Riemannian metrics {gk},

which pass through 0, and ∂Mk ⊂ ∂(Bn
ρ (0) × (−a, a)). Suppose that gk smoothly converge to the

standard Euclidean metric on Bn
ρ (0)× (−a, a), (Hk → 0), and

(Mk, 1) → ({xn+1 = 0},m),

as varifolds, with m ∈ Z≥1, and that for compact sets K ⊂ Bn
ρ (0) \ {0} ⊂ {xn+1 = 0}, the

convergence is as m disjoint graphs over K, smoothly converging to 0. Moreover, suppose we have

a sequence rk → 0, such that for any other convergent sequence {tk} ⊂ (0, ρ], (say tk → t∞ ∈ [0, ρ]),

which satisfies,
tk
rk

→ ∞

we have the condition that, after potentially taking a subsequence and renumerating,

M̃k :=
Mk

tk
⊂ Bn

ρ/tk
(0)× (−a/tk, a/tk),

converges (potentially with multiplicity) to some plane E{tk}, through the origin, with the conver-

gence being smooth and graphical on compact sets of (Bn
ρ/t∞

(0)× (−a/t∞, a/t∞))\{0}, (Rn+1 \{0}
if t∞ = 0). Then for any sequence {tk} as above, E{tk} = {xn+1 = 0}, and there exists an R0,

such that if Ck is a connected component of Mk ∩ (Bn
ρ (0)× (−a, a)) \Bn+1

R0rk
(0)), then, C̃k := Ck/tk

converges to {xn+1 = 0} with multiplicity one.

Proof. We first prove the multiplicity one covergence of C̃k. The argument used is similar to that

in [11, Proposition 3], and we only include a sketch, referring the reader to [11] and the references

contained there for more details.

First we show that there exists an R0 ∈ (1,∞), such that, taking k large enough, for all t ∈
[R0rk, 3ρ/4), Mk intersects ∂Bt(0) transversely. Indeed, if not we can produce a subsequence, that

we may renumerate along, with tk ∈ (rk, 3ρ/4), such that,

tk
rk

→ ∞,

and points xk ∈Mk ∩ ∂Bn+1
tk

(0), such that

νk(xk) ⊥ ∂Bn+1
tk

(0), (3.2)

with respect to the metric gk. Here, νk denotes a choice of normal to Mk at xk, with respect to

the metric gk. Rescaling by tk, and potentially taking a subsequence and renumerating, we get,
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that tk → t∞ ∈ [0, 3ρ/4], and we denote

M̃k :=
Mk

tk
⊂ Bn

ρ/tk
(0)× (−a/tk, a/tk), x̃k :=

xk
tk

→ x̃∞ ∈ ∂Bn+1
1 (0).

Furthermore, we denote the appropriately rescaled metrics on Bn
ρ/tk

(0) × (−a/tk, a/tk), by g̃k,

and we see that g̃k will smoothly converge to the standard Euclidean metric on compact sets of

Bn
ρ/t∞

(0)× (−a/t∞, a/t∞) (Rn+1, if t∞ = 0). By the assumption in the statement of the Lemma,

M̃k converges on compact sets of Bn
ρ/t∞

(0) × (−a/t∞, a/t∞) (Rn+1, if t∞ = 0), as varifolds to a

plane E (potentially with multiplicity) through the origin. Furthermore, the convergence is smooth

on compact sets away from the origin, which when combined with the smooth convergence of the

rescaled metrics, implies that

νk(xk) → νE ∈ Tx̃∞∂B
n+1
1 (0),

where νE, denotes a choice of unit normal to the plane E, with respect to the standard Euclidean

metric. However this contradicts the condition (3.2) along the sequence.

Take a connected component of Mk ∩ Bn
ρ (0)× (−a, a) \ Bn+1

R0rk
(0), and call it Ck. We now look to

show that for all t ∈ [R0rk, 3ρ/4), Ck∩∂Bt(0) is a single connected component Define the following

function,

hk : Ck → R,

x 7→ |x|.

This is a smooth function on Ck, and by the transversality statement, and smooth convergence of

the metrics, for large enough k, hk will not have any critical points on Ck. Thus, by standard Morse

Theory ([41, Theorem 3.1]), we may use hk to construct a continuous deformation retraction of

Ck, onto {hk = t} = Ck∩∂Bn+1
t (0). Therefore, as Ck is connected, this implies that Ck∩∂Bn+1

t (0)

is also connected.

We may now prove the multiplicity one of the convergence. Now take any sequence {tk} ⊂ (0, 3ρ/4),

with tk → t∞ ∈ [0, 3ρ/4], such that
tk
rk

→ ∞,

and define,

C̃k :=
Ck

tk
⊂ (Bn

ρ/tk
(0)× (−a/tk, a/tk)) \Bn+1

R0rk/tk
(0).

Again, we denote the appropriately rescaled metrics by g̃k. We know that on compact sets of

Bn
ρ/t∞

(0)× (−a/t∞, a/t∞) (Rn+1 if t∞ = 0), g̃k smoothly converges to the Euclidean metric, and

C̃k → (E, m̃),
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as varifolds, with convergence being smooth on such compact sets away from the origin. As

previously, E is some hyperplane that passes through the origin. If we consider,

S̃k := C̃k ∩ ∂B1(0) =
1

tk
(Ck ∩ ∂Btk(0)),

by the previous discussion, S̃k is a smooth, connected and embedded hypersurface of ∂Bn+1
1 (0),

that smoothly converges to S̃∞ := E ∩ ∂B1(0), with multiplicity m̃. However, as ∂B1(0) is simply

connected, each S̃k, and S̃∞, must be two sided in ∂B1(0). Thus the smooth convergence implies

that m̃ = 1.

The fact that E = {xn+1 = 0} follows from a foliation and maximum principle argument in [17,

Claim 1 of Lemma 4.1] and [16, Lemma 5.6, Proposition 5.7]. For completeness we include a

sketch of this argument, however we note that it is identical to arguments contained in [17, Claim

1 of Lemma 4.1] and [16, Lemma 5.6, Proposition 5.7] and we refer the reader to them for further

details.

Choose τ ∈ (0, ρ/4), and then we know from above that,

Ck ∩ ((Bn
ρ/2(0) \Bn

τ (0))× (−a, a)),

consists of a single connected component, and there will be a function,

uk : B
n
ρ/2(0) \Bn

τ (0) → R,

such that,

Ck ∩ ((Bn
ρ/2(0) \Bn

τ (0))× (−a, a)) = {(x, uk(x)) : x ∈ Bn
ρ/2(0) \Bn

τ (0)},

and uk → 0, smoothly. If we are in the case of Hk-CMC hypersurfaces, we may assume that the

mean curvature vector points in the positive xn+1 direction. By [16, Proposition 5.7] we have the

following graphical foliation on an open neighbourhood of Bn
ρ/2(0)×{0}, which we briefly describe.

Taking k large enough, there exists a b ∈ (0, a/2), such that for each h ∈ (−b, b), there exists a

function,

vhk : B
n
ρ/2(0) → R.

which is a gk-minimal graph (gk-Hk-CMC graph, with mean curvature pointing in the positive

xn+1 direction), and,

vhk = uk + h, on ∂Bn
ρ/2(0).

Moreover, we have that the functions vhk vary smoothly with h, and vhk → h, smoothly as k → 0.
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We denote the open set,

Cρ/2,b = {(x, vhk (x)) : x ∈ Bn
ρ/2(0), h ∈ (−b, b)},

and for large enough k,

Bn
ρ/2(0)× [−b/2, b/2] ⊂ Cρ/2,b.

and we may define the following diffeomorphism,

Fk : B
n
ρ/2(0)× (−b, b) → Cρ/2,b,

(x, y) 7→ (x, vy+hk

k (x)),

where hk → 0, is uniquely chosen such that vhk
k (0) = 0. We then have that Fk → Id smoothly,

and we define the metric, ĝk = F ∗
k gk, which smoothly converges to the Euclidean metric.

Then, we have that in Bn
ρ/2(0)× (−b, b), the horizontal slices {y = c} are ĝk-minimal (ĝk-Hk-CMC,

with mean curvature vector pointing in the positive y direction), and Ĉk = F−1
k (Ck), is ĝk-minimal

(ĝk-Hk-CMC, with mean curvature vector pointing in positive y direction). Moreover,

∂Ĉk ∩ ∂(Bn
ρ/2(0)× (−b, b)) = {y = −hk} ∩ (∂Bn

ρ/2(0)× (−b, b)),

and,

∂Ĉk ∩ (Bn
ρ/2(0)× (−b, b)) ⊂ F−1

k (Bn+1
R0rk

(0)).

After taking a subsequence and renumerating, we may assume, without loss of generality, that

−hk ≥ 0.

Now suppose that E{tk} ̸= {xn+1 = 0}. We rescale by tk,

C̃k =
Ĉk

tk
⊂ Bn

ρ/(2tk)
(0)× (−b/tk, b/tk),

and denote our appropriately rescaled metrics by g̃k. Then, as Fk → Id, we have that g̃k converges

to the standard Euclidean metric, and,

C̃k → (E, 1),

smoothly on compact sets of Bn
ρ/(2t∞)(0)× (−b/t∞, b/t∞) (Rn+1, if t∞ = 0), away from the origin.

As E ̸= {y = 0}, then, if we consider the smooth function

fk : C̃k → R,

(x, y) 7→ y,
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there will exist points zk ∈ C̃k ∩ ∂Bn+1
r (0), with r = min{1/4, b/(4t∞)}, such that,

fk(zk) → Λ < 0,

Λ = Λ(b, t∞, E). However, for z ∈ ∂C̃k, either z ∈ ∂(Bn
ρ/(2tk)

× (−b/tk, b/tk)), and thus

fk(z) = −hk/tk ≥ 0,

, or, z ∈ F−1
k (Bn+1

R0rk/tk
(0)), and as rk/tk → 0, we have that

fk(z) > Λ/2,

for large enough k. Therefore, for large k, fk achieves an interior minimum, at say zk, fk(zk) =

γk. Therefore, Ck lies to one side of {y = γk}, and they touch tangentially at interior point

zk. However, as each horizontal slice is a g̃k-minimal (g̃k-Hk/tk-CMC) hypersurface, and by the

boundary condition for C̃k, C̃k ̸⊂ {y = γk}, we derive a contradiction to the one-sided maximum

principle for g̃k-minimal (g̃k-Hk/tk-CMC) hypersurfaces.

Remark 28. ([17, Claim 1 of Lemma 4.1] and [16, Lemma 5.6]) We remark that combining point 3

in Definition 5, along with a contradiction argument that makes use of Proposition 7 and Lemma

3, implies that there exists positive constants S0 and s0, such that for each y ∈ I, s ∈ (0, s0),

and S ∈ [S0,+∞), and taking large enough k, if we let Ck denote a connected component of

Mk ∩ (BN
s (y) \ ∪J

i=1Σ
i,S
k ), then there exists a non-empty open set Ak = Ak(Ck, s, S) ⊂ TyM∞, and

a smooth function,

uk : Ak → R,

such that,

Ck = {expy(x+ uk(x)ν(y)) : x ∈ Ak},

where ν(y) is a choice of unit normal to M∞ at y. Moreover, we have that

lim
s→0

lim
S→∞

lim
k→∞

∥uk∥C1 = 0.

Remark 29. Consider Σ, a connected, complete n-dimensional manifold (n ≥ 3), and ι : Σ → Rn+1,

a proper, minimal immersion, with finite total curvature,∫
Σ

|AΣ|n < +∞,

103



and Euclidean volume growth at infinity,

lim sup
R→∞

Hn(ι(Σ) ∩Bn+1
R (0))

Rn
< +∞

Given a compact exhaustion K1 ⊂ K2 ⊂ · · · , of Σ, we define an end E, of Σ, to be a nested

sequence of open sets of Σ,

U1 ⊃ U2 ⊃ U3 ⊃ · · · ,

such that each Ui ⊂ Σ \ Ki, is connected. We now look to show that Σ has finitely many such

ends, and each one may be represented by the graph of a function, with small gradient, over a

hyperplane of Rn+1 minus a compact set. The arguments in the proof are very similar to that

of Lemma 3, and in fact the general idea of the argument is somewhat standard. Therefore we

only present a sketch of these facts and refer the reader to [61, Lemma 3 and Lemma 4] and [11,

Proposition 3] for details.

Consider a sequence Ri → ∞. Applying classical geometric measure theory arguments (mono-

tonicity formula for stationary varifolds, and Allard’s compactness Theorem), which make use of

the minimality of the proper immersion, and the Euclidean volume growth at infinity, we see that

the sequence of blow downs of ι(Σ), given by

Vi =

(
ι(Σ)

Ri

, 1

)
,

will, after potentially taking a subsequence and renumerating, converge as varifolds, on compact

subsets of Rn+1, to a stationary, non-empty, n-rectifiable, integral varifold V (with locally finite

mass). Moreover, as this V arises from a sequence of blown downs, its support, which we denote

by C, will be a cone in Rn+1 (i.e. C is invariant under rescalings centred at the origin).

Now, the finite total curvature assumption along with the curvature estimate of Proposition 7

imply that, for each ε > 0, there exists an Rε, such that for all x ∈ Σ \ ι−1(Bn+1
Rε

(0)),

|ι(x)|2 |AΣ|2(x) ≤ ε, (3.3)

Therefore, following arguments similar to those in Lemma 2, we have that the blow downs of

our immersions, will converge smoothly and graphically to C (potentially with multiplicity), on

compact subsets of Rn+1 \ {0}. Moreover we will also have that,

C = ∪L
i=1Pi,

where each Pi is a hyperplane of Rn+1, which passes through the origin, and L ∈ Z≥1 is finite.

Then, applying identical arguments to Lemma 3 (cf. [11, Proposition 3]), we have that there exists
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an r0, such that for all R ∈ [r0,∞), ι(Σ) intersects ∂Bn+1
R (0) transversely. Then again applying

identical arguments to those in Lemma 3 (cf. [11, Proposition 3]) we have that for all S2 > S1 ≥ r0,

if we consider a connected component U of

Σ ∩ ι−1(Bn+1
S2

(0) \Bn+1
S1

(0)),

then, ∂U consists of two connected components, one of which is smoothly immersed, by ι, into

∂Bn+1
S1

(0), and one which is smoothly immersed, by ι, into ∂Bn+1
S2

(0).

Now consider an end E,

U1 ⊃ U2 ⊃ U3 ⊃ · · ·

given by this compact exhaustion, {ι−1(Bn+1
Ri

(0))}. From above, we have that for large enough i,

∂Ui will be connected, and
ι(∂Ui)

Ri

⊂ ∂Bn+1
1 (0),

will be a smooth immersion, that smoothly and graphically converges to a finite collection of

equators ∪L′
i=1Qi ∩ ∂Bn+1

1 (0), with finite multiplicity. Where each Qi is a distinct hyperplane

through the origin, which is contained in our cone C. As ∂Ui is connected for large i, we see that

in fact L′ = 1, and moreover (as Sn−1 is its own universal conver for n ≥ 3), conclude that this

convergence on ∂Bn+1
1 (0) must happen with multiplicity one. Thus, R−1

i ι(Ui) converges smoothly

and graphically on compact subsets on Rn+1 \ Bn+1
1 (0), to a hyperplane Q, with multiplicity one.

Therefore, the number of ends of Σ, given by the compact exhaustion {ι−1(Bn+1
Ri

(0))}, is finite and
equal to the integer

m =
∥V ∥(Bn+1

1 (0))

Hn(Bn
1 (0))

.

Moreover, by the monotonicity formula for stationary varifolds, the integer m is independent of

the sequence Ri → ∞. Thus, Σ has finitely many ends E1, . . . , Em, and therefore, each end Ei,

may be represented by an open set W i. By this we mean that there exists a compact set K, and

m disjoint open sets W 1, . . . ,Wm, such that,

Σ \K = ∪m
i=1W

i,

and given any compact exhaustion K1 ⊂ K2 ⊂ · · · , then if the representation of end Ei with

respect to this compact exhaustion is given by,

U i
1 ⊃ U i

2 ⊃ U i
3 ⊃ · · ·

then for large enough j, U i
j ⊂ W i. With a slight abuse of notation we will simply denote this set

W i by Ei, and when we refer to an end, we will in fact be referring to this open set.
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Finally, consider any other sequence R′
i → ∞, and our previously considered end E. Then, by the

foliation and maximum principle argument in Lemma 3 (cf. [16, Proposition 5.7] and [17, Claim

1 of Lemma 4.1]) implies that, after potentially taking subsequence and renumerating (R′
i)
−1ι(E),

will also converge smoothly with multiplicity one, on compact subsets of Rn+1 \ {0}, to the same

plane Q.

Thus, applying the same argument as in Remark 28, we see that the ends of Σ, E1, . . . , Em, are

given as the graphs of a smooth function. By this we mean, for any end Ei, there exists a rotation

ri about the origin, a compact subset Bi ⊂ Rn, and a smooth function

ui : Rn \Bi → R,

such that,

ri(ι(E
i)) = {(x, ui(x)) : x ∈ Rn \Bi}.

Moreover, for each η > 0, there exists a compact set Bη
i (⊃ Bi), such that |∇ui| < η, on Rn \Bη

i .

3.1.2 Stability Operator, Index and Nullity

We continue the discussion on the stability operator, index and nullity from Section 1.1. In

Section 1.1 we discussed how one may look to study minimal and CMC hypersurfaces by studying

the vector valued stability operator on Γ(TM⊥), and if the hypersurface is embedded and two-

sided, instead of studying this vector valued operator, we may alternatively study a scalar valued

operator on appropriate function spaces on our hypersurface. We now look to define appropriate

function spaces on connected covers of our hypersurfaces to allow us to extend this to one-sided

and quasi-embedded hypersurfaces.

Consider a properly embedded, closed, minimal hypersurface M ⊂ N . We define o(M) to be the

two-sided double cover of M ,

o(M) := {(x, ν) : x ∈M, ν ∈ T⊥
x M, and |ν| = 1},

and co(M) to be a connected component of o(M). Note that ifM is two-sided inN , then we identify

co(M) withM , and ifM is one-sided in N , then co(M) = o(M). We define the obvious continuous

projections, ι : o(M) →M , and ν : o(M) → T⊥M , and note that z = (ι(z), ν(z)) ∈ o(M).

For the case of M ⊂ N being a quasi-embedded H-CMC hypersurface we define,

co(M) := {(x, ν) : x ∈M, ν ∈ T⊥
x M, |ν| = 1,

and points in direction of the mean curvature vector}.
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Thus at non-embedded point x ∈M we have (x, ν), and (x,−ν) ∈ co(M).

For X ∈ Γ(TM⊥) we define a function fX ∈ C∞(co(M)) by,

fX(z) = g(X(ι(z)), ν(z)).

and note that if z1, z2 ∈ co(M) such that z1 ̸= z2 but ι(z1) = ι(z2), then fX(z2) = −fX(z1). Thus,

fX ∈ C∞(co(M))− := {f ∈ C∞(co(M)) : if (x, ν) and (x,−ν) are both in co(M),

then f((x,−ν)) = −f((x, ν))}.

Moreover, by a standard extension argument, for each f ∈ C∞(co(M))−, there exists an Xf ∈
Γ(TM⊥) such that

f(z) = g(Xf (ι(z)), ν(z)).

Elements of the function space C∞(co(M))− should be thought of as ‘ambient variations ’.

Thus, instead of considering the vector valued stability operator on Γ(TM⊥), it is equivalent to

consider the scalar valued stability operator,

Lf = ∆f + (|AM |2 ◦ ι+RicN (ν, ν))f,

on the function space C∞(co(M))−. We associate to L the bilinear form,

BL[f, h] :=

∫
co(M)

∇f · ∇h− (|AM |2 ◦ ι+RicN (ν, ν)) f h,

for f, h ∈ C∞(co(M))−, which we may extend to the space,

W 1,2(co(M))− = C∞(co(M))−
∥·∥W1,2 (co(M))

For M being a properly embedded, one-sided hypersurface we have that co(M) = o(M), and

W 1,2(co(M))− = {f ∈ W 1,2(co(M)) : for a.e. (x, ν) ∈ co(M), f((x, ν)) = −f((x,−ν))}.

For M being a properly embedded, two-sided hypersurface we may simply identify co(M) with

M , and W 1,2(co(M))− with W 1,2(M). Then, for M properly embedded, it may be shown (an

argument is contained in the proof of Proposition 14 and Remark 33), that

ind (M) + nul (M) = sup{dimΠ: Π ⊂ W 1,2(co(M))− is a linear space,

on whichBL is negative semi-definite}.
(3.4)
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As RicN is bilinear, the function x 7→ RicN(ν, ν)(x), for ν ∈ T⊥
x M , |ν| = 1, is a well defined

function on M , even if M is one-sided. Thus we may consider the operator L, and its associated

bilinear form BL, on the function space W 1,2(M), and its index and nullity on this function space.

We define this as the analytic index (anl-ind (M)) and analytic nullity (anl-nul (M)) of M . Note

that if M is two-sided and embedded then these two notions of index and nullity will coincide. We

also similarly refer to the analytic index and analytic nullity of co(M), and refer to elements of

the function space W 1,2(co(M)) as ‘analytic variations ’.

It is also worth noting that forH-CMC quasi-embedded hypersurfaces (H ̸= 0), the mean curvature

vector gives a global choice of unit normal, and thus such immersions are two-sided. Moreover, as

seen from above, we can still define the stability operator on M even if the hypersurface does not

arise as the boundary of an open set. Thus we do not need M to arise as the boundary of a set to

define its index and nullity (as was the motivation in Section 1.1).

3.1.3 Lorentz Spaces

Let (M, g) be a Riemannian manifold and µ be the volume measure associated to g. For a µ-

measureable function f : M → R, we define the function

αf (s) := µ({x ∈M : |f(x)| > s}).

We may then define the decreasing rearrangement f ∗, of f by,

f ∗(t) :=

inf{s > 0: αf (s) ≤ t}, t > 0,

ess sup |f |, t = 0.

For p ∈ [1,∞), and q ∈ [1,∞], and a µ-measureable function f on M , we define,

∥f∥(p,q) :=


(∫∞

0
tq/pf ∗(t)q dt

t

)1/q
, 1 ≤ q <∞,

supt>0 t
1/pf ∗(t), q = ∞.

The Lorentz space L(p, q)(M, g) is then defined to be the space of µ-measureable functions f

such that ∥f∥(p,q) < +∞. It is worth noting that ∥ · ∥(p,q) is not a norm on L(p, q)(M, g) as it

does not generally satisfy the triangle inequality. However it is possible to define an appropriate

norm, ∥ · ∥p,q (see [18, Definition 2.10]), on the space L(p, q)(M, g), so that the normed space

(L(p, q)(M, g), ∥ · ∥p,q) is a Banach Space [18, Theorem 2.19]. Moreover, for 1 < p < ∞, and

1 ≤ q ≤ ∞, we have the following equivalence ([18, Proposition 2.14]),

∥ · ∥(p,q) ≤ ∥ · ∥p,q ≤
p

p− 1
∥ · ∥(p,q). (3.5)
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Proposition 8. (Hölder–Lorentz inequality, [18, Theorem 2.9]) Take p1, p2 ∈ (1,∞) and q1, q2 ∈
[1,∞] such that 1/p1+1/p2 = 1/q1+1/q2 = 1. Then for f ∈ L(p1, q1)(M, g) and h ∈ L(p2, q2)(M, g),

we have, ∫
M

|f h| dµ ≤ ∥f∥(p1,q1) ∥h∥(p2,q2).

The following fact can be easily derived from the definition of ∥ · ∥(p,q).

Proposition 9. Take 1 < p < +∞, 1 ≤ q ≤ ∞, and γ > 0, then for f ∈ L(p, q)(M, g), we have,

∥|f |γ∥( p
γ
, q
γ
) = ∥f∥γ(p,q).

The following Lorentz–Sobolev inequality on Rn is crucial in Section 3.2.4. For a proof see [3,

Appendix]

Proposition 10. (Lorentz–Sobolev inequality on Rn) Take 1 < p < n, and p∗ = np/(n− p), then

there exists a constant C = C(n, p) such that for all u ∈ C∞
c (Rn),

∥u∥(p∗,p) ≤ C∥∇u∥Lp .

By standard covering and partitions of unity arguments, from Proposition 10 we may also obtain

a Lorentz–Sobolev inequality on a bounded subset of a Riemannian manifold.

Proposition 11. (Lorentz–Sobolev inequality on manifolds) Let (M, g) be a complete Riemannian

manifold of dimension n. Take 1 < p < n, p∗ = np/(n − p), and an open, bounded set Ω ⊂ M .

Then there exists a constant C = C(Ω, g, n, p) < +∞, such that for all u ∈ C∞
c (Ω),

∥u∥(p∗,p) ≤ C∥u∥W 1,p(M).

Remark 30. We may extend the inequalties in Propositions 10 and 11 to u ∈ W 1,p(Rn) andW 1,p
0 (Ω)

respectively, by using a standard density argument, the fact (L(p, q)(M, g), ∥ · ∥p,q) is a Banach

space, and the equivalence in (3.5).

Proposition 12. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3, with ω ∈
L(n/2,∞)(M, g). Then for any f1, f2 ∈ W 1,2(M), we have that there exists a C = C(M, g) <∞,

such that, ∣∣∣∣∫
M

f1f2ω

∣∣∣∣ ≤ C∥ω∥(n/2,∞)∥f1∥W 1,2(M)∥f2∥W 1,2(M).
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Proof. Using Propositions 8, 9 and 11,∣∣∣∣∫
M

f1f2ω

∣∣∣∣ ≤
(∫

M

|ω| f 2
1

)1/2 (∫
M

|ω| f 2
2

)1/2

,

≤ ∥ω∥(n/2,∞) ∥f 2
1∥

1/2
(2∗/2,1) ∥f

2
2∥

1/2
(2∗/2,1),

≤ ∥ω∥(n/2,∞) ∥f1∥(2∗,2) ∥f2∥(2∗,2),

≤ C∥ω∥(n/2,∞) ∥f1∥W 1,2(M) ∥f2∥W 1,2(M).

3.2 Weighted Eigenfunctions

We proceed with the proof of Theorem 8, taking a sequence Mk → (M∞,Σ
1, . . . ,ΣJ) as in Def-

inition 5. We assume that for each k ∈ Z≥1, Mk is a single connected component. Thus for the

case of minimal hypersurfaces, l = 1. The general statement is proven by applying the argument

to each individual connected component of Mk.

We also note that the reader may find it easier to follow the rest of this chapter by only considering

the case where each Mk, and M∞, are two-sided minimal hypersurfaces. By doing so much of the

notation introduced in Section 3.1.2 can be ignored, and we can just considerMk instead of co(Mk),

and W 1,2(Mk) instead of W 1,2(co(Mk))
−.

3.2.1 The Weight

Take, R ≥ 4, and δ > 0, such that for large enough k, and all j = 1, . . . , J ,

4Rrjk < δ < min

{
inj(N)

8
, min
y1, y2∈I, y1 ̸=y2

distNg (y1, y2)

8

}
.

We first define our weight, on co(Mk), about the point scale sequence {(pjk, r
j
k)}k∈N,

ωj
k,δ,R(x) :=

max{δ−2, distNg (ι(x), p
j
k)

−2}, ιk(x) ∈Mk \BN
Rrjk

(pjk),

(Rrjk)
−2, ι(x) ∈ BRrjk

(pjk) ∩Mk,

We consider the weight,

ωk,δ,R(x) := max
j=1,...J

ωj
k,δ,R(x).

We also define ωδ ∈ W 1,∞
loc (co(M∞) \ ι−1

∞ (I)) ∩ L(n/2,∞)(co(M∞)), by

ωδ(x) := max{δ−2, distNg (ι∞(x), I)−2}.
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The fact that ωδ ∈ L(n/2,∞)(co(M∞)) will follow from a similar calculation to that in Claim 6.

Recall the stability operator on co(Mk),

Lk := ∆ + |Ak|2 +Rk,

where Ak(x) = AMk
(ιk(x)), and Rk(x) = RicN(νk(x), νk(x))(ιk(x)), and the associated bilinear

form, Bk, acting on W 1,2(co(Mk)),

Bk[φ, ψ] :=

∫
Mk

∇kφ · ∇kψ − (|Ak|2 +Rk)φψ.

We define the unweighted eigenspace for an eigenvalue λ of Lk by

E(λ;Lk,W
1,2(co(Mk))

−) := {f ∈ W 1,2(co(Mk))
− : Bk[f, ψ] = λ

∫
Mk

f ψ,

for all ψ ∈ W 1,2(co(Mk))
−},

(3.6)

and the weighted eigenspace for a weighted eignevalue λ of Lk by,

Eωk,δ,R
(λ;Lk,W

1,2(co(Mk))
−) := {f ∈ W 1,2(co(Mk))

− : Bk[f, ψ] = λ

∫
Mk

f ψ ωk,δ,R,

for all ψ ∈ W 1,2(co(Mk))
−}.

(3.7)

Identical definitions hold for E(λ;L∞,W
1,2(co(M∞)) and Eωδ

(λ;L∞,W
1,2(co(M∞))). Recall that

when we refer to function space W 1,2(co(M))− we are considering ‘ambient variations’, and when

we consider the function space W 1,2(co(M)) we are considering ‘analytic variations’. In general,

for λ ∈ R, a Riemannian manifold (M, g), with a second order, linear, elliptic operator L, with

associated bilinear form BL, and ω : M → R, we define the function space,

Eω(λ;L,A,B) := {f ∈ A : BL[f, φ] = λ

∫
M

f φω, for all φ ∈ B},

where A, and B are some function spaces on M . If A = B, we write Eω(λ;L,A), and if ω ≡ c, for

some constant c, we write, Ec(λ;L,A,B) = E(cλ;L,A,B).

Lemma 4. There exists a C = C(N, g,M∞,Σ
1, . . . ,ΣJ , δ, R) < +∞ such that for all k,

|Ak|2 + |Rk|
ωk,δ,R

≤ C. (3.8)

Proof. We assume the statement does not hold and prove by contradiction. After potentially

choosing a subsequence and renumerating we have that there exists a sequence of points xk ∈
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co(Mk), such that

ω−1
k,δ,R(|Ak|2 + |Rk|)(xk) → ∞.

Note that there exists a C = C(N, g), such that |Rk| ≤ C, for all k, thus,

ω−1
k,δ,R(|Ak|2 + C)(xk) → ∞.

Again potentially after taking a subsequence and renumerating we may assume that ιk(xk) → y ∈
M∞.

If y ∈M∞ \ I, then for large enough k,

ωk,δ,R ≥ (2 distNg (y, I))−2,

which implies that,

(2distNg (y, I))2(|Ak|2(xk) + C) → ∞.

Thus, |Ak|2(xk) → ∞, which contradicts the smooth convergence away from I.

We have that y ∈ I, and thus ω−1
k,δ,R(xk) → 0, thus from here we just consider the term ω−1

k,δ,R(xk)|Ak|2(xk).
There exists an i = 1, . . . , J , such that after potentially taking a subsequence and renumerating

ωk,δ,R(xk) = ωi
k,δ,R(xk).

We split into different cases.

Case 1: There exists a j = 1, . . . , J , an S < +∞, and a subsequence we can renumerate along to

get that ιk(xk) ∈ ΣS,j
k for all k.

Then we have,

ω−1
k,δ,R(xk) = (ωi

k,δ,R(xk))
−1 ≤ (ωj

k,δ,R(xk))
−1 ≤ max{S,R}2(rjk)

2.

By the smooth convergence,

ω−1
k,δ,R(xk)|Ak|2(xk) ≤ 2max{S,R}2 max

BS(0)∩Σj
|AΣj |2,

which clearly contradicts the assumption that ω−1
k,δ,R(xk)|Ak|2(xk) → ∞.

Case 2: There are sequences δk → 0, and Rk → ∞, such that, for all k ∈ N,

ιk(xk) ∈Mk ∩BN
δk
(y) \ ∪L

j=1Σ
j,Rk

k .
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There exists a j = 1, . . . , J , such that after potentially picking a subsequence and renumerating,

dk(xk) = distNg (ιk(xk), p
j
k).

We have,

ω−1
k,δ,R(xk) ≤ (ωj

k,δ,R(xk))
−1.

Case 2.1: Potentially after picking a subsequence and renumerating,

ωj
k,δ,R(xk) = distNg (ιk(xk), p

j
k)

−2.

Then,

ω−1
k,δ,R(xk)|Ak|2(xk) ≤ d2k(xk)|Ak|2(xk).

By Point 3 of Definition 5 and Proposition 7, we have that the right hand side converges to 0.

This clearly contradicts assumption that ω−1
k,δ,R(xk)|Ak|2(xk) → ∞.

Case 2.2: We have that,

ωj
k,δ,R(xk) = R2(rjk)

2.

We claim there exists an S > 0, such that for large enough k,

distNg (ιk(xk), p
j
k)

rjk
≥ S, (3.9)

Assuming (3.9), we have

ω−1
k,δ,R(xk)|Ak|2(xk) ≤

2R2

S2
d2k(xk)|Ak|2(xk),

which converges to zero by Point 3 of Definition 5 and Proposition 7, again contradicting our

assumption.

We now prove (3.9) by contradiction. If (3.9) does not hold then after potentially taking a subse-

quence and renumerating,
distNg (ιk(xk), p

j
k)

rjk
→ 0.

Repeating arguments similar to those in Lemma 2, we may conclude that the connected component

of
1

rjk
exp−1

pjk
(Mk ∩Brjk

(pjk)) ⊂ Bn+1
1 (0),

through (rjk)
−1 exp−1

pjk
(ιk(xk)) must converge to a plane Π, through the origin, with convergence

as described in Lemma 2. As Σj is a non-trivial, minimal, embedded hypersurface through the
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origin, by the one sided maximum principle, this plane cannot lie on one side of Σj. However, by

the smooth convergence away from finitely many points, this contradicts the embeddedness along

the sequence.

Claim 6. We have that there exists a C = C(N, g,M∞,m, δ, J)(= C(N, g,M∞,m1, . . . ,ma, H, δ, J)) <

+∞ such that for large enough k ∈ Z≥1, and R ≥ 1,

∥ωk,δ,R∥(n/2,∞) ≤ C.

Proof. For a j = 1, . . . , J , consider f = ωj
k,δ,R. We have,

αf (s) =


Hn(co(Mk)), s ∈ [0, δ−2),

Hn(ι−1
k (BN

1/
√
s
(pjk)) ∩ co(Mk)), δ−2 ≤ s < (Rrjk)

−2,

0, s ≥ (Rrjk)
−2.

We may choose k large enough such that supk Hn(Mk) ≤ mHn(M∞) + 1. Then, by the mono-

tonicity formula ([54, Theorem 17.7]), we have that there exists a uniform C = C(N, g,m,M∞)(=

C(N, g,M∞,m1, . . . ,ma, H)) < +∞, such that for r ∈ (0, inj(N)/2),

Hn(co(Mk) ∩ ι−1
k (BN

r (pjk))) ≤ Crn

Then, 

f ∗(t) = 0, t ≥ Hn(co(Mk)),

f ∗(t) = δ−2, Hn(co(Mk) ∩ ι−1
k (BN

δ (pjk))) ≤ t < Hn(co(Mk)),

f ∗(t) ≤ (C/t)2/n, Hn(co(Mk) ∩ ι−1
k (BN

Rrjk
(pjk))) ≤ t ≤ Hn(co(Mk) ∩ ι−1

k (BN
δ (pjk))),

f ∗(t) = (Rrjk)
−2, 0 ≤ t ≤ Hn(co(Mk) ∩ ι−1

k (BN
Rrjk

(pjk))).

Thus,

∥f∥(n/2,∞) = sup
t>0

t2/nf ∗(t) ≤ C,

for C = C(N, g,m,M∞, δ)(= C(N, g,M∞,m1, . . . ,ma, H, δ)) < +∞. This in turn implies,

∥ωk,δ,R∥(n/2,∞) ≤
(

n

n− 2

) J∑
j=1

∥ωj
k,δ,R∥(n/2,∞) ≤ C,

for C = C(N, g,m,M∞, δ, J)(= C(N, g,M∞,m1, . . . ,ma, H, δ, J)) < +∞. The n/(n− 2) factor is

coming from (3.5).
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Remark 31. This choice of weight ωk,δ,R fails to work for the case of n = 2. In [23] (in which n = 2)

the choice of weight is subtle, and relies on improved estimates on the neck region of the bubbles.

We were unable to derive appropriate corresponding estimates on the neck regions in the setting

of this chapter.

3.2.2 Convergence on the Base

Consider a sequence of functions {fk}k∈N, fk ∈ W 1,2(co(Mk))
−, which satisfy the following weighted

eigenvalue problem,∫
co(Mk)

∇fk · ∇φ− (|Ak|2 +Rk) fk φ = λk

∫
co(Mk)

fk φωk,δ,R, (3.10)

for all φ ∈ W 1,2(co(Mk))
−, with λk ≤ 0, for all k. We take∫

co(Mk)

f 2
k ωk,δ,R = 1,

and by Lemma 4, ∫
co(Mk)

|∇fk|2 ≤
∫
co(Mk)

(|Ak|2 + |Rk|)f 2
k ,

≤ C

∫
co(Mk)

f 2
k ωk,δ,R,

= C.

Furthermore,

δ−2∥fk∥2L2(co(Mk))
≤
∫
co(Mk)

f 2
k ωk,δ,R = 1.

Thus, for all k ∈ N.,

∥fk∥W 1,2(co(Mk)) ≤ C = C(N, g, δ, R,m,M∞,Σ
1, . . . ,ΣJ) < +∞.

Using Lemma 4 we may also obtain a lower bound on the negative eigenvalues,

λk = λk

∫
co(Mk)

f 2
k ωk,δ,R =

∫
co(Mk)

|∇fk|2 − (|Ak|2 +Rk)f
2
k ≥ −C

∫
co(Mk)

f 2
k ωk,δ,R = −C. (3.11)

Thus, after potentially taking a subsequence and renumerating, we may assume that λk → λ∞ ≤ 0.
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We define the map,

F : co(M∞)× R → N,

(x, t) 7→ expι∞(x)(tν∞(x)).

Note, as M∞ is smooth, and properly embedded, ([37, Proposition 4.2]) there exists a τ =

τ(N,M∞, g) > 0, such that,

F : co(M∞)× (−τ, τ) → F (co(M∞)× (−τ, τ)) ⊂ N,

is a smooth, local diffeomorphism. We define the metric g̃ = F ∗g, on co(M∞) × (−τ, τ), and
assume that for all k ∈ N, Mk ⊂ F (co(M∞)× (−τ, τ)).

First we consider the case of minimal hypersurfaces. As M∞ is properly embedded, and N is

compact, we may take τ > 0, such that, F−1(M∞) = co(M∞) × {0}. For r > 0, define the open

set Ωr ⊂ co(M∞), by,

Ωr := ι−1
∞

(
M∞ \

⋃
y∈I

BN
r (y)

)
⊂ co(M∞).

We define, M r
k :=Mk ∩F (Ωr × (−τ, τ)), and M̃ r

k = F−1(M r
k )∩ (Ωr × (−τ, τ)). By the convergence

described in Definition 5 (and Remark 27), along with the the fact that co(M∞) is two-sided in

co(M∞)× (−τ, τ), and θ|M∞ ≡ m, for large enough k, there exists m smooth functions,

ui,rk : Ωr → (−τ, τ),

such that, u1,rk < u2,rk < · · · < um,r
k , and

M̃ r
k =

m⋃
i=1

{(x, ui,rk (x)) : x ∈ Ωr} ⊂ Ωr × (−τ, τ).

We also note that ui,rk → 0 in C l(Ωr) for all l ∈ N, and for 0 < r < s, ui,rk = ui,sk on Ωs ⊂ Ωr.

Moreover, we define the metric gk = ι∗k(g|Mk
) on co(Mk), and the metric g∞ = ι∗∞(g|M∞) on co(M∞).

First we consider the case in which Mk is one-sided. For each connected component of M̃ r
k ,

M̃ i,r
k := {(x, ui,rk (x)) : x ∈ Ωr},

we denote the νi,rk to be the choice of unit normal to M̃ i,r
k (with respect to g̃) which points in the

positive τ direction. Through this choice of unit normal we identify Ωr as a subset of co(Mk), by
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the map (which is a diffeomorphism onto its image)

F i,r
k : Ωr → co(Mk),

x 7→ (F (x, ui,rk (x)), dF (νi,rk )),
(3.12)

and define,

f̃ i,r
k (x) = (fk ◦ F i,r

k )(x).

We do note that f̃ i,r
k depends on the choice of unit normal to M̃ i,r

k that we pick, however as

fk ∈ W 1,2(co(Mk))
−, this choice is only up to a sign.

For the case of Mk being two-sided, we simply define,

F i,r
k : Ωr → co(Mk) =Mk,

x 7→ F (x, ui,rk (x)),

and define,

f̃ i,r
k (x) = (fk ◦ F i,r

k )(x).

For the case of H-CMC hypersurfaces, we have that

co(M∞) = ⊔a
i=1co(M

i
∞),

where each M i
∞ is a distinct, closed, quasi-embedded H-CMC hypersurface such that co(M i

∞) is

connected. We have that θi = mi ∈ Z, and we denote, Ωi
r/2 ⊂ co(M i

∞) as before. Then similarly

to before, for each i = 1, . . . , a, and large enough k, there exists mi smooth graphs (j = 1, . . . ,mi),

uj,i,rk : Ωi
r/2 → (−τ, τ),

such that, u1,i,rk < u2,i,rk < · · · < umi,i,r
k , uj,i,rk → 0 in C l(Ωi

r) for all l ∈ Z≥1, and, for large enough k,

Mk \
⋃
y∈I

BN
r (y) ⊂

a⋃
i=1

mi⋃
j=1

{F (x, uj,i,r/2k (x)) : x ∈ Ωi
r/2}.

Define M̃ j,i,r
k = {(x, uj,i,rk (x)) : x ∈ Ωi

r}, and as before we identify this as a subset of co(Mk), and

similarly define the map F j,i,r
k , and the function f̃ j,i,r

k ∈ W 1,2(Ωi
r).

For ease of notation we just consider the case of minimal hypersurfaces. For an open set Ω ⊂⊂
co(M∞) \ ι−1

∞ (I), we may take r > 0, such that Ω ⊂⊂ Ωr, and then define, for large enough k,

f̃ i
k(x) = f̃ i,r

k (x), x ∈ Ω.
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Note that this definition is independent of the choice of 0 < r < r0, for Ω ⊂ Ωr0 . When dealing

with a fixed open set Ω ⊂⊂ co(M∞) \ ι−1
∞ (I), for appropriate choices of r, we drop the superscript

r in the notation of the maps F i,r
k , and functions ui,rk . Then, choosing k large enough (so that

∥uik∥C1(Ωr) is small enough), we have that,

∥f̃ i
k∥W 1,2(Ω,g∞) ≤ 2∥fk∥W 1,2(co(Mk,gk)) ≤ C.

and thus for each i = 1, . . . ,m, there exists an f̃ i
∞ ∈ W 1,2

loc (co(M∞) \ ι−1
∞ (I)), such that, after

potentially picking a subsequence and renumerating,f̃ i
k ⇀ f̃ i

∞, W 1,2
loc (co(M∞) \ ι−1

∞ (I)),

f̃ i
k → f̃ i

∞, L2
loc(co(M∞) \ ι−1

∞ (I)),
(3.13)

Note that by lower semicontinuity of theW 1,2 norm for (3.13), for all open Ω ⊂ co(M∞)\ι−1
∞ (I), we

have a uniform bound ∥f̃ i
∞∥W 1,2(Ω) ≤ C. Multiplying f̃ i

∞, and |∇f̃ i
∞|, by sequences of appropriately

chosen characteristic functions on co(M∞), we may apply monotone convergence theorem to deduce

that f̃ i
∞, and |∇f̃ i

∞|, lie in L2(co(M∞)). Then by a standard point removal argument (similar to

that in Proposition 13) we may show that ∇f̃ i
∞ extends to be the distributional gradient of f̃ i

∞,

on co(M∞). Thus, f̃ i
∞ ∈ W 1,2(co(M∞)). Moreover, we have that∫

co(M∞)

(f̃ i
∞)2 (ωδ ◦ ι∞) ≤ 1,

For i = 1, . . . ,m, and large enough k, we define the metric, g̃ik := (F i
k)

∗gk, and its associated

gradient ∇̃i
k, on Ω. Let J i

k denote the Jacobian of the map F i
k with respect to the metric g∞ on Ω.

For a point x0 ∈ Ω, we may choose s > 0, small enough so that B
co(M∞)
s (x0) ⊂⊂ Ω,

F (Bco(M∞)
s (x0)× (−τ, τ)) ⊂ BN

inj (N)/2(ι(x0)).

Consider φ ∈ C∞
c (B

co(M∞)
s (x0)), and for each i = 1, . . . ,m and x ∈ B

co(M∞)
s (x0), we define the

function

φi
k(F

i
k(x)) = φ(x),

on C∞
c (F i

k(B
co(M∞)
s (x0))) ⊂ C∞(co(Mk)). As each Mk is properly embedded, by [19, Lemma C.1]

(cf. [49]),

{ιk(F i
k(x)) : x ∈ Bco(M∞)

s (x0)} ⊂Mk ∩BN
inj (N)/2(ι(x0))

is two-sided, and thus we can extend φi
k to a vector field on N , and thus to a function in
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C∞(co(Mk))
−. Thus we may plug φi

k into (3.10) and obtain,∫
Ω

gik(∇̃i
kf̃

i
k, ∇̃i

kφ)J
i
k = λk

∫
Ω

f̃ i
k φ (ωk,δ,R ◦ F i

k) J
i
k +

∫
Ω

((|Ak|2 +Rk) ◦ F i
k) f̃

i
k φJ

i
k.

Hence, by (3.13), convergence of ωk,δ,R ◦ F i
k → ωδ ◦ ι∞, in W 1,∞(Ω), and smooth convergence of,

F i
k → id, on Ω, we have that,∫

co(M∞)

∇f̃ i
∞ · ∇φ− ((|A∞|2 +R∞) ◦ ι∞) f̃ i

∞ φ = λ∞

∫
co(M∞)

f̃ i
∞ φ (ωδ ◦ ι∞), (3.14)

holds for all φ ∈ C∞
c (B

co(M∞)
s (x0)). Thus by standard regularity theory for linear elliptic PDEs we

have that f̃ i
∞ ∈ W 2,2(Ω) and ∆f̃ i

∞ + ((|A∞|2 +R∞) ◦ ι∞) f̃ i
∞ + λ∞f̃

i
∞ (ωδ ◦ ι∞) = 0 a.e. on Ω. This

then implies that (3.14) holds for all φ ∈ C∞
c (co(M∞) \ ι−1

∞ (I)).

Proposition 13. Let (M, g) be a compact, n-dimensional, Riemannian manifold, with n ≥ 3.

Consider V ∈ L∞(M), and ω ∈ L(n/2,∞)(M). Suppose that we have u ∈ W 1,2(M), and a finite

set of points J ⊂M , such that, for all φ ∈ C∞
c (M \ J ),∫

M

∇u · ∇φ− V uφ− ωuφ = 0, (3.15)

then in fact (3.15) holds for all φ ∈ W 1,2(M).

Proof. AsM is compact there exists an r0 = r0(M, g) > 0, such that for all r ∈ (0, r0], and x ∈M ,

Hn(BM
r (x)) ≤ (ωn + 1)rn,

where ωn = Hn(Bn
1 (0)). Now, consider a smooth function on R with the following properties,

χ(t) = 1, t ≤ 1,

χ(t) = 0, t ≥ 2,

−3 ≤ χ′(t) ≤ 0.

Then for any positive ε < min{inj(M)/4,miny1,y2∈J dist(y1, y2)/4, r0/4}, we define the following

smooth function on M ,

χε(x) = χ

(
dJ (x)

ε

)
,

where we define,

dJ (x) = distg(x,J ).

We note that, ∫
|∇χε|2 ≤ 9(ωn + 1)εn−2.
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Take φ ∈ C∞(M), and we define,

φ1,ε := (1− χε)φ,

φ2,ε := χεφ.

Then, φ = φ1,ε + φ2,ε, and φ1,ε ∈ C∞
c (M \ J ), which implies that,∫

M

∇u · ∇φ− V uφ− ωuφ =

∫
M

∇u · ∇φ2,ε − V uφ2,ε − ωuφ2,ε.

We have,

∥φ2,ε∥2W 1,2(M) =

∫
M

|φ∇χε + χε ∇φ|2 + χ2
ε φ

2,

≤ 2

∫
M

φ2|∇χε|2 + 2

∫
M

χ2
ε|∇φ|2 +

∫
M

χ2
ε φ

2,

≤ ∥φ∥2C1(M)(ωn + 1)(18 + 3ε2)εn−2

Thus, by the above and Proposition 12,∣∣∣∣∫
M

∇u · ∇φ− V uφ− ωuφ

∣∣∣∣
=

∣∣∣∣∫
M

∇u · ∇φ2,ε − V uφ2,ε − ωuφ2,ε

∣∣∣∣
≤ C∥φ∥C1(M)∥u∥W 1,2(M)(1 + ∥V ∥L∞(M) + ∥ω∥(n/2,∞)(M))

(
(ωn + 1)(18 + 3ε2)εn−2

)1/2
,

with C = C(M, g) < +∞. Therefore, letting ε → 0, we conclude that (3.15) holds for all

φ ∈ C∞
c (M).

The fact that (3.15) holds for all φ ∈ W 1,2(M), follows from a standard density argument, with

one small subtlety in that if φk → φ in W 1,2(M), then by Proposition 12,∣∣∣∣∫
M

u (φ− φk)ω

∣∣∣∣ ≤ C∥ω∥(n/2,∞)∥u∥W 1,2(M)∥φ− φk∥W 1,2(M) → 0.

By Proposition 13 we have that (3.14) holds for all φ ∈ W 1,2(co(M∞)). Thus,

f̃ i
∞ ∈ Eωδ

(λ∞;L∞,W
1,2(co(M∞))).

It is worth noting that we could have f̃ i
∞ = 0.
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3.2.3 Convergence on the Bubble

For S > 0 fixed, and i ∈ {1, . . . , J}, consider the bubble Σi,S
k , and its associated point-scale

sequence, {(pik, rik)}k∈N. Let {∂1, . . . , ∂n+1} be an orthonormal basis for TpikN , with respect to the

metric g, and define the map,

Gi
k : Rn+1 = span{∂1, . . . , ∂n+1} → N,

x 7→ exppik
(rikx),

then on Bn+1
2S (0), for large enough k we define the metric, g̃k = (rik)

−2(Gi
k)

∗g, and we have that,

(g̃k)α,β(x) := gα,β(r
i
kx) → δα,β,

and for our bubble,

Σ̃i,2S
k :=

1

rik
exp−1

pik
(Σi,S

k ∩BN
2Srik

(pik)) → Σi ∩Bn+1
2S (0) =: Σi,2S,

smoothly. As Σi is two-sided there is a choice of unit normal ν, and a τ > 0, such that the map,

F : Σi,S × (−τ, τ) → Rn+1,

(x, t) 7→ x+ tν(x),

is a diffeomorphism onto its image. Then for large enough k, there exists a smooth function,

vi,Sk : Σi,S → (−τ, τ),

such that,

Σ̃i,2S
k ∩ F (Σi,S × (−τ, τ)) = {F (x, vi,Sk (x)) : x ∈ Σi,S}.

As before, for large enough k, define the smooth map,

F i,S
k : Σi,S → Rn+1,

x 7→ F (x, vi,Sk (x)).

From ν, we get a choice of unit normal νik (which points in the dF (∂t) direction), to Σ̃
i,2S
k ∩F (Σi,S×

(−τ, τ)), with respect to g̃k.

If Mk is one-sided, then we define the following functions on Σi,S (recalling our functions fk from

Section 3.2.2),

f̃ i,S
k (x) := (rik)

n/2−1fk((G
i
k ◦ F i

k)(x), (r
i
k)

−1dGi
k(ν

i
k(F

i
k(x))))
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and,

ωΣi,R,S
k (x) := (rik)

2ωk,δ,R((G
i
k ◦ F i

k)(x), (r
i
k)

−1dGi
k(ν

i
k(F

i
k(x)))).

We note that while f̃ i,S
k depends on our choice of unit normal ν to Σi, this dependence is only up

to a choice in sign.

If Mk is two sided, the we define the following functions on Σi,S,

f̃ i,S
k (x) := (rik)

n/2−1fk((G
i
k ◦ F i

k)(x))

and,

ωΣi,R,S
k (x) := (rik)

2ωk,δ,R((G
i
k ◦ F i

k)(x)).

For each j = 1, . . . , J , such that distNg (p
j
k, p

i
k) → 0, we denote,

qjk = (rik)
−1 exp−1

pik
(pjk),

and, after potentially taking a subsequence and renumerating, either |qjk| → ∞, or there exists a

qj ∈ Rn+1, such that qjk → qj. If qjk → qj, then there exists αj ∈ [0,∞], such that

rjk
rik

→ αj.

If αj = +∞, we may rescale about pjk at rate rjk, and use Lemma 1 on the component passing

through the rescaled point of pjk to deduce a contradiction in a similar way in which we proved

(3.9). Thus αj ∈ [0,+∞).

For each such j we define the following functions on Rn+1. For the case αj ̸= 0,

ωi,j,R(x) =

|x− qj|−2, x ̸∈ Bn+1
Rαj

(qj),

(Rαj)
−2, x ∈ Bn+1

Rαj
(qj),

and for αj = 0,

ωi,j,R(x) = |x− qj|−2.

For all other such j = 1, . . . , J , j ̸= i, we simply set ωi,j,R = 0. For j = i we set,

ωi,i,R(x) =

|x|−2, x ̸∈ Bn+1
R (0),

R−2, x ∈ Bn+1
R (0).

If αj = 0, then we have that qj ̸∈ Σi, again using Lemma 1 and a similar contradiction argument

to that used to show (3.9).
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We now define the following function on Σi,

ωΣi,R(x) = max
j=1,...,L

ωi,j,R(x), (3.16)

and note that, ωΣi,R ∈ W 1,∞(Σi), and ωΣi,R,S
k → ωΣi,R in W 1,∞(Σi,S). We have, for large k,∫

Σi,S

(f̃ i,S
k )2ωΣi,R,S

k ≤ 2

∫
co(Mk)

f 2
kωk,δ,R = 2,

implying that, for large enough k,∫
Σi,S

(f̃ i,S
k )2 ≤ 1

minΣi,S ωΣi,R

∫
Σi,S

(f̃ i,S
k )2ωΣi,S

k,R ≤ C(S,R,Σ1, . . . ,ΣJ) < +∞.

Moreover, ∫
Σi,S

|∇f̃ i,S
k |2 ≤ 2

∫
co(Mk)

|∇fk|2 ≤ C(N, g, δ, R,M∞,Σ
1, . . . ,ΣJ) < +∞.

Similar to previous, for 0 < S1 < S2 < +∞, and large enough k, we have that f̃ i,S1

k = f̃ i,S2

k on

Σi,S1 . Thus, for any open, bounded set Ω ⊂ Σi, we may take any S > 0 such that Ω ⊂ Σi,S, then

for large enough k, the function f̃ i
k = f̃ i,S

k is well defined on Ω, with,∫
Ω

(f̃ i
k)

2 ≤ C(Ω, R,M∞,Σ
1, . . . ,ΣJ),

and, ∫
Ω

|∇f̃ i
k|2 ≤ C(N, g, δ, R,M∞,Σ

1, . . . ,ΣJ).

We may conclude that there exists an f̃ i
∞ ∈ W 1,2

loc (Σ
i),f̃ i

k → f̃ i
∞, L2

loc(Σ
i),

f̃ i
k ⇀ f̃ i

∞, W 1,2
loc (Σ

i),

and, we have ∫
Σi

|∇f̃ i
∞|2 < +∞,

and, ∫
Σi

(f̃ i
∞)2ωΣi,R ≤ 1.

Thus,

f̃ i
∞ ∈ W 1,2

ωΣi,R
(Σi) :=

{
f ∈ W 1,2

loc (Σ
i) :

∫
Σi

|∇f |2 < +∞,

∫
Σi

ωΣi,Rf 2 < +∞
}
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Similar to before, and the fact that our metric on Bn+1
S (0) converges to the standard Euclidean

one, we deduce that for all φ ∈ C∞
c (Σi),∫

Σi

∇f̃ i
∞ · ∇φ− |AΣi |2 f̃ i

∞ φ− λ∞ ωΣi,R f̃ i
∞ φ = 0. (3.17)

As Σi has finite index and Euclidean volume growth at infinity, we may deduce that there exists an

S > 0, such that Σi \ Bn+1
S (0) is stable [26, Proposition 1]. Thus, noting that Σi is embedded, by

[51, Theorem 3] (alternatively, [52, Theorem 3] for 2 ≤ n ≤ 5, and [10, Theorem 2] for 2 ≤ n ≤ 6),

for all x ∈ Σi \Bn+1
2S (0), we have that there exists a C = C(Σi) < +∞, such that,

|AΣi |2(x) ≤ C

(|x| − S)2
≤ C

|x|2
. (3.18)

Moreover, we may choose S large enough so that, |x|−2 ≤ 2ωΣi,R on Σi \ Bn+1
S (0). Thus, for

x ∈ Σi \Bn+1
2S (0),

|AΣi|2(x) ≤ CωΣi,R.

Thus by Hölder’s inequality we have, for φ ∈ L2(Σi),∣∣∣∣∫
Σi

|AΣi |2 f̃ i
∞ φ+ ωΣi,R f̃ i

∞ φ

∣∣∣∣ ≤ C∥ωΣi,R∥1/2
L∞(Σi)

∥φ∥L2(Σi).

This allows us to apply a standard density argument to deduce that (3.17) holds for all φ ∈
W 1,2(Σi). Thus we have that

f̃ i
∞ ∈ EωΣi,R(λ∞;LΣi ,W 1,2

ωΣi,R
(Σi),W 1,2(Σi)).

Again it is worth noting that we could have f̃ i
∞ = 0.

Remark 32. We may also deduce f̃∞ ∈ L2∗(Σ̃), for 2∗ = 2n/(n − 2). Indeed, take S > R, large

enough so that |x|−2 ≤ 2ωΣi

R , and define a function χS on Σi (see Proposition 15), with the following

properties 
χS(x) = 1, x ∈ Σi,S,

χS(x) = 0, x ∈ Σi,2S,

|∇χS| ≤ 3/S.

We plug the function χS f̃∞ into the Michael–Simon–Sobolev inequality ([40, Theorem 2.1]) on Σi
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(noting that Σi is an embedded, minimal hypersurface in Rn+1),(∫
Σi,S

|f̃∞|2∗
)1/2∗

≤
(∫

Σi

|χS f̃∞|2∗
)1/2∗

,

≤ C(n)

(∫
Σi

|∇f̃∞|2 |χS|2 + 2|∇f̃∞| |χS| |f̃∞| |∇χS|

+|f̃∞|2 |∇χS|2
)1/2

,

≤ C

(∫
Σi

|∇f̃∞|2 +
∫
Σi

ωΣi,Rf̃ 2
∞

)1/2

.

The bound is independent of S, and thus we may deduce that f̃∞ ∈ L2∗(Σi).

3.2.4 Strict Stability of the Neck

For a Riemannian manifold (M, g), we define W 1,2
0 (M, g) to be the closure of C1

c (M), with respect

to the standard norm on W 1,2(M, g).

Lemma 5. For n ≥ 3, consider the cylinder (A× R, g), where A ⊂ Rn is a non-empty, open set,

and g is a smooth Riemannian metric, such that there exists a constant K ∈ [1,∞) such that for

x ∈ A× R, and X ∈ Rn+1,

1

K
⟨X, X ⟩ ≤ gx(X,X) ≤ K⟨X , X ⟩, (3.19)

where ⟨ · , · ⟩ is the standard metric on Rn. Now suppose we have a smooth function

u : A→ (−T, T ),

such that ∥∇Rn
u∥L∞(A) ≤ 1/2 (∇Rn

denotes the gradient on Rn with respect to the standard Eu-

clidean metric), and denote M := graph (u) ⊂ A × (−2T, 2T ). For fixed W ∈ (0,∞) suppose

we have functions, ω ∈ L(n/2,∞)(M, g), and V ∈ L∞(M), such that ∥ω∥L(n/2,∞)(M,g) ≤ W , and

ess inf ω > 0. Then, there exists an ε = ε(n,K,W ) > 0, and C = C(n,K) ∈ (0,+∞) such that if

|V | ≤ εω on M , then

0 <
1

CW
≤ inf

{∫
M

|∇f |2 − V f 2 : f ∈ W 1,2
0 (M),

∫
M

f 2ω = 1

}
.

Proof. First, we recall that positive-definite real symmetric matrices are always diagonalisable with

positive eigenvalues, thus (3.19) implies that,

K−(n+1)/2 ≤
√

|g| ≤ K(n+1)/2.
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We define the following map, F (x) := (x, u(x)), and the metric g̃ = F ∗g on A. For x ∈ A, and

X ∈ Rn, we have,

g̃x(X,X) = g(x,u(x))(dFx(X), dFx(X)),

= g(x,u(x))(X + dux(X)∂n+1, X + dux(X)∂n+1),

= g(x,u(x))(X,X) + 2dux(X)g(x,u(x))(X, ∂n+1) + dux(X)2g(x,u(x))(∂n+1, ∂n+1),

≤ K⟨X,X⟩+ 2K∥∇Rn

u∥L∞(A)⟨X,X⟩+K∥∇Rn

u∥2L∞(A)⟨X,X⟩,

= C⟨X,X⟩,

with C = C(n,K), which from here on may be rechosen at each step. Thus, for x ∈ A, and

f ∈ C1(M),

|∇Rn

(f ◦ F )(x)| = sup
⟨X,X⟩≤1

|d(f ◦ F )(x)(X)|,

≤ sup
g̃x(X,X)≤C

|d(f ◦ F )(x)(X)|,

≤ C|∇g̃(f ◦ F )|(x).

Moreover, if we consider the metric on A, g1 = F ∗⟨·, ·⟩, then g1(X,X) ≤ Kg̃(X,X) ≤ C⟨X,X⟩,
and thus

1 ≤ 1 + |∇Rn

u(x)|2 = |g1| ≤ Kn|g̃| ≤ C.

Now, take an f ∈ C1
c (M), that satisfies, ∫

M

f 2 ω dµ = 1,

where µ denotes the volume measure of (M, g). We have, by the above, and applying Propositions
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8, 9 and 10, for large enough k (see [62, Theorem 1.1] for a similar computation)

1 =

∫
A

(f ◦ F )2 (ω ◦ F )
√

|g̃| dx,

≤ C

∫
A

(f ◦ F )2 (ω ◦ F ) dx,

≤ C∥ω ◦ F∥(n/2,∞)(A,⟨ · , · ⟩)∥f ◦ F∥2(2∗,2)(A,⟨ · , · ⟩),

≤ C∥ω ◦ F∥(n/2,∞)(A,⟨ · , · ⟩)

∫
A

|∇Rn

(f ◦ F )|2 dx,

≤ C∥ω ◦ F∥(n/2,∞)(A,⟨ · , · ⟩)

∫
M

|∇f |2 − V f 2 dµ

+C∥ω ◦ F∥(n/2,∞)(A,⟨ · , · ⟩)

∫
M

V f 2 dµ,

≤ C∥ω ◦ F∥(n/2,∞)(A,⟨ · , · ⟩)

(
ε+

∫
M

|∇f |2 − V f 2 dµ

)
,

were again we are potentially rechoosing C = C(n,K) at each line. Moreover,

∥ω ◦ F∥(n/2,∞)(A,⟨ · , · ⟩) ≤ K∥ω∥(n/2,∞)(M,g) ≤ KW,

and thus, again rechoosing C = C(n,K), and choosing ε = (2CW )−1,∫
M

|∇f |2 − V f 2 ≥ 1

2CW
> 0,

for all f ∈ C1
c (M).

Now the Lemma may be concluded by a standard density argument. We point out one small

subtlety in this density argument (similar to the end of Proposition 13), in that we need to make

use of the following Lorentz–Sobolev inequality on (M, g),

∥f∥(2∗,2)(M,g) ≤ C∥f ◦ F∥(2∗,2)(A,⟨·,·⟩),

≤ C∥∇Rn

(f ◦ F )∥L2(A,⟨·,·⟩),

≤ C∥∇f∥L2(M,g),

for f ∈ W 1,2
0 (M, g), with C = C(n,K). The reason for this being that if we have fk → f in

W 1,2
0 (M, g), then we may deduce that∣∣∣∣∫

M

f 2ω dµ−
∫
M

f 2
kω dµ

∣∣∣∣ ≤ ∥ω∥(n/2,∞)(M,g)∥f − fk∥(2∗,2)(M,g)∥f + fk∥(2∗,2)(M,g),

≤ C∥ω∥(n/2,∞)(M,g)∥∇f∥L2(M,g)∥∇f −∇fk∥L2(M,g),

→ 0.
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As previously, for ease of notation we only consider the case of minimal hypersurfaces, however

the argument for H-CMC hypersurfaces is identical.

In Sections 3.2.2 and 3.2.3 we showed that if we have a sequence,

fk ∈ Eωk,δ,R
(λk;Lk,W

1,2(co(Mk))
−),

with λk ≤ 0, and ∫
co(Mk)

f 2
k ωk,δ,R = 1,

for all k, then after potentially taking a subsequence and renumerating we have that λk → λ∞ ≤ 0,

and,

fk → ((f 1
∞, . . . , f

m
∞), fΣ1

∞ , . . . , fΣJ

∞ ),

where, for i = 1, . . . ,m, f i
∞ ∈ W 1,2(co(M∞)), and for j = 1, . . . , J , fΣj

∞ ∈ W 1,2

ωΣj ,R
(Σj) ⊂ L2∗(Σj).

By this convergence we mean, for i = 1, . . . ,m (recalling notation from Section 3.2.2), f̃ i
k = (fk◦F i

k),f̃ i
k ⇀ f i

∞, W 1,2
loc (co(M∞) \ ι−1

∞ (I))),

f̃ i
k → f i

∞, L2
loc(co(M∞) \ ι−1

∞ (I))),
(3.20)

and for j = 1, . . . , J , setting f̃Σj

k = f̃ j
k (this time f̃ j

k as defined in Section 3.2.3),f̃Σj

k ⇀ fΣj

∞ , W 1,2
loc (Σ

j),

f̃Σj

k → fΣj

∞ , L2
loc(Σ

j).
(3.21)

Furthermore, we are able to deduce that for i = 1, . . . ,m,

f i
∞ ∈ Eωδ

(λ∞;L∞,W
1,2(co(M∞))),

and j = 1, . . . , J ,

fΣj

∞ ∈ EωΣj ,R(λ∞;LΣj ,W 1,2

ωΣj ,R
(Σj),W 1,2(Σj)).

Claim 7. If {f1,k, . . . , fb,k}, is an orthonormal collection, with respect to the ωk,δ,R-weighted L2

norm, of ωk,δ,R-weighted eigenfunctions, with non-positive eigenvalues, and
∑

i=1 a
2
i = 1, then,

hk :=
b∑

i=1

aifi,k →
b∑

i=1

ai((f
1
i,∞, . . . , f

m
i,∞), fΣ1

i,∞, . . . , f
ΣJ

i,∞) ̸= ((0, . . . , 0), 0, . . . , 0).

Proof. This claim is proven by a contradiction argument similar to that in [23, Claim 1 of Lemma

IV.6].
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By Remark 28, for all η ∈ (0, 1/2], τ ∈ (0, 1), and y ∈ I, there exists an r0 ∈ (0, δ/4), and

R0 ∈ (4R,∞), such that, taking geodesic normal coordinates about y ∈ N , such that TyM∞ =

{xn+1 = 0}, for large enough k, if we denote Ck to be a connected component of

exp−1
y (Mk ∩BN

r0
(y) \ ∪J

j=1Σ
j,R0

k ) ⊂ Rn+1,

then there exists a non-empty open set A(Ck) ⊂ {xn+1 = 0}, and a smooth function,

uk : A(Ck) → (−τ, τ),

such that, Ck = graph (uk), and ∥∇Rn
uk∥L∞ ≤ η. Moreover, for each ε > 0, we may make further

choices of r0 and R0, such that for large enough k, on each Ck, if we denote Vk = (|Ak|2+Rk)|Ck
∈

L∞(Ck), and ωk = (ωk,δ,R)|Ck
∈ L(n/2,∞)(Ck, g) ∩ L∞(Ck), then

∥ωk∥L(n/2,∞)(Ck,g) ≤ W, and |Vk| ≤ εωk,

withW = W (N, g,M∞,m, δ, J) < +∞ (coming from Claim 6). Thus, fixing ε = ε(N, g,M∞,m, δ, J) >

0 small enough, by Lemma 5, for large enough k

inf

{∫
Ck

|∇f |2 − Vkf
2 : f ∈ W 1,2

0 (Ck),

∫
Ck

f 2ωk = 1

}
≥ γ > 0, (3.22)

with γ = γ(N, g,M∞,m, δ, J) > 0. Now assuming Claim 7 does not hold, we will provide a

contradiction to (3.22), on at least one connected component Ck of Mk ∩ (∪y∈IB
N
r0
(y) \∪J

j=1Σ
j,R0

k ).

Note that there is a uniform bound, m|I| < +∞, on the number of such connected components.

Consider the following smooth cutoff,

χ ∈ C∞(R; [0, 1]),

χ(t) = 1, t ∈ (−∞, 1],

χ(t) = 0, t ∈ [2,∞),

−3 ≤ χ′(t) ≤ 0,

and the following distance functions defined on co(Mk),

dk(x) = distNg (ιk(x), I),

and for j = 1, . . . , J ,

djk(x) = distNg (ιk(x), p
j
k).
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We then define the following function

Hk(x) =


0, x ∈ co(Mk) \ ∪y∈Iι

−1
k (BN

r0
(y)),

χ(2r−1
0 dk(x))hk, x ∈ ι−1

k (∪y∈IB
N
r0
(y) \ ∪J

j=1Σ
j,2R0

k ),

hk(1− χ((R0r
j
k)

−1djk(x))), x ∈ ι−1
k (Σj,2R0

k ), j = 1, . . . , J.

We compute the gradient of Hk. For x ∈ co(Mk)\∪y∈Iι
−1
k (BN

r0
(y)), or x ∈ ι−1

k (Σj,R0

k ), j = 1, . . . , J ,

we have, ∇Hk = 0. For x ∈ co(Mk) ∩ ι−1
k (BN

r0
(y) \ ∪J

j=1Σ
j,2R0

k ), we have,

∇Hk(x) = ∇hk(x)χ(2r−1
0 dk(x)) + hk(x)2r

−1
0 χ′(2r−1

0 dk(x))∇dk(x).

Finally, for x ∈ ι−1
k (Σj,2R0

k \ Σj,R0

k ), j = 1, . . . , J , we have,

∇Hk(x) = ∇hk(x)(1− χ((Rrjk)
−1djk(x)))− hk(x)(R0r

j
k)

−1χ′((R0r
j
k)

−1djk(x))∇d
j
k(x).

Noting that H2
k ≤ h2k, we have

|Bk(hk, hk)−Bk(Hk, Hk)| ≤
∣∣∣∣∫

co(Mk)

|∇hk|2 − |∇Hk|2
∣∣∣∣+ C

∫
co(Mk)

ωk,δ,R(h
2
k −H2

k), (3.23)

with C = C(N, g,M∞,m,Σ
1, . . . ,ΣJ , δ, R) < +∞. We split the first term on the right hand side

of (3.23) into separate domains,

∣∣∣∣∫
co(Mk)

|∇hk|2 − |∇Hk|2
∣∣∣∣ ≤ I + II +

∑
y∈I

IIIy +
J∑

j=1

(IV j + V j), (3.24)

where,

I =

∫
co(Mk)\∪y∈Iι

−1
k (BN

r0
(y))

|∇hk|2,

II ≤
∫
∪y∈Iι

−1
k (BN

r0
(y)\BN

r0/2
(y))

|∇hk|2 + 12r−1
0 |hk| |∇hk|+ 36r−2

0 h2k,

≤ C

∫
∪y∈Iι

−1
k (BN

r0
(y)\BN

r0/2
(y))

|∇hk|2 + r−2
0 h2k

For y ∈ I,

IIIy =

∣∣∣∣∣
∫
ι−1
k (BN

r0/2
(y)\(∪J

j=1Σ
j,2R0
k ))

|∇hk|2 − |∇Hk|2
∣∣∣∣∣ = 0,

and j = 1, . . . , J ,
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IV j ≤
∫
ι−1
k (Σ

j,2R0
k \Σj,R0

k )

|∇hk|2 + 6(R0r
j
k)

−1|hk| |∇hk|+ 9(R0r
j
k)

−2h2k,

≤ C

(∫
ι−1
k (Σ

j,2R0
k \Σj,R0

k )

|∇hk|2 + (R0r
j
k)

−2h2k

)

V j =

∫
ι−1
k (Σ

j,R0
k )

|∇hk|2.

Along our sequence we have (in a weak sense),

∆hk + (|Ak|2 +Rk)hk = −

(
b∑

i=1

aiλi,kfi,k

)
ωk,δ,R = −Pk ωk,δ,R,

and we may note that,

∥hk∥L2(co(Mk)) + ∥Pk∥L2(co(Mk)) ≤ C
b∑

i=1

∥fi,k∥L2(co(Mk)) ≤ C,

with C = C(N, g,M∞,m,Σ
1, . . . ,ΣJ , δ, R) < +∞. Recalling notation from Section 3.2.2, for each

l = 1, . . . ,m, we denote,

h̃lk :=
b∑

i=1

aif̃
l
i,k, and, P̃ l

k :=
b∑

i=1

aiλi,kf̃
l
i,k,

and then by standard interior estimates,

∥h̃lk∥W 2,2(Ωr0/4
) ≤ C̃(∥h̃lk∥L2(Ωr0/8

) + r−2
0 ∥P̃ l

k∥L2(Ωr0/8
)) ≤ C̃,

for C̃ = C̃(N, g,M∞,m,Σ
1, . . . ,ΣJ , δ, R, r0) < +∞. Thus, by our assumption that

hk → ((0, . . . , 0), 0 . . . , 0),

after potentially taking a subsequence and renumerating we have,h̃lk ⇀ 0, weaklyW 2,2(Ωr0/4),

h̃lk → 0, stronglyW 1,2(Ωr0/4).
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By identical arguments, for each j = 1, . . . , J denoting,

h̃Σ
j

k =
b∑

i=1

aif̃
Σj

i,k ,

we have that, after potentially taking a subsequence and renumerating,h̃Σ
j

k ⇀ 0, weaklyW 2,2(Σj,4R0),

h̃Σ
j

k → 0, stronglyW 1,2(Σj,4R0).

Therefore, we have that for all ζ > 0, and then large enough k,

∣∣∣∣∫
co(Mk)

|∇hk|2 − |∇Hk|2
∣∣∣∣ ≤ Ĉ

( m∑
l=1

∥h̃lk∥2W 1,2(Ωr0/4
) +

J∑
j=1

∥h̃Σj

k ∥2W 1,2(Σj,4R0 )

)
< ζ,

with Ĉ = Ĉ(N, g,M∞,m,Σ
1, . . . ,ΣJ , δ, R, r0, R0) < +∞. Similarly we have,

∫
co(Mk)

ωk,δ,R(h
2
k −H2

k) ≤ Ĉ

(
m∑
l=1

∥h̃k∥2L2(Ωr0/4
) +

J∑
j=1

∥h̃Σj

k ∥2L2(Σj,4R0 )

)
< ζ.

Thus, for large k, there exists a connected component,

Ck ⊂Mk ∩ (∪y∈IB
N
r0
(y) \ (∪J

j=1Σ
j,R0

k )),

such that, denoting H̃k = (Hk)|ι−1
k (Ck)

, we have that H̃k ∈ W 1,2
0 (ι−1

k (Ck)), and∫
ι−1
k (Ck)

H̃2
k ωk,δ,R ≥ 1− ζ

m|I|
,

Bk[H̃k, H̃k] < ζ.

Thus, choosing

ζ <
γ

2(2m|I|+ γ)
,

we derive a contradiction to (3.22) on Ck.

3.3 Equivalence of Weighted and Unweighted Eigenspaces

Proposition 14. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3, with V ∈
L∞(M), ω ∈ L(n/2,∞)(M, g), and ess inf ω > 0. Define the elliptic operator,

L := ∆ + V.
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Then,

span
{
∪λ≤0 E(λ;L,W 1,2(M))

}
= ⊕λ≤0 E(λ;L,W 1,2(M)), (3.25)

span
{
∪λ≤0 Eω(λ;L,W 1,2(M))

}
= ⊕λ≤0 Eω(λ;L,W 1,2(M)), (3.26)

and

dim
(
span

{
∪λ≤0 Eω(λ;L,W 1,2(M))

})
= dim

(
span

{
∪λ≤0 E(λ;L,W 1,2(M))

})
.

Proof. First we note by Proposition 12, and fact that ess inf ω > 0,

⟨f1, f2⟩ω :=

∫
M

f1 f2 ω,

is a well-defined inner product on W 1,2(M). Consider the bilinear form on f1, f2 ∈ W 1,2(M),

corresponding to our elliptic operator L,

BL[f1, f2] :=

∫
M

∇f1 · ∇f2 − V f1f2.

If fi ∈ Eω(λi;L,W 1,2(M)), for i = 1, 2, with λ1 ̸= λ2, we have,

λ1⟨f1, f2⟩ω = BL[f1, f2] = λ2⟨f1, f2⟩ω.

Thus, ⟨f1, f2⟩ω = 0, and so (3.26) follows. An identical argument will also conclude (3.25).

We now show that,

dim (⊕λ≤0 E(λ;L,W 1,2(M))) = sup{dimΠ: Π ≤ W 1,2(M), is a linear space such that, (BL)|Π ≤ 0}

= dim (⊕λ≤0 Eω(λ;L,W 1,2(M))).

Indeed, we begin by showing that,

dim (⊕λ≤0 Eω(λ;L,W 1,2(M))) ≤ sup{dimΠ: Π ≤ W 1,2(M),

is linear space such that, (BL)|Π ≤ 0}.
(3.27)

If the left-hand side is equal to 0 then the inequality is trivial. Thus, take b ∈ Z≥1, such that

b ≤ dim (⊕λ≤0 Eω(λ;L,W 1,2(M))),

then we have b, ω-weighted eigenvectors,

{f1, . . . , fb} ⊂ W 1,2(M),
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with respective non-positive eigenvalues {λ1, . . . , λb}. By the argument at the begining of the

proof, we may take the set {f1, . . . , fb}, to be orthonormal with respect to ⟨ · , · ⟩ω. Thus,

Π = span{f1, . . . , fb}, (3.28)

is a b-dimensional vector space, and for a1, . . . , ab ∈ R, we have,

BL

[∑
i

aifi,
∑
j

ajfj

]
=

∑
i,j

aiajλi⟨fi, fj⟩ω,

=
∑
i

λia
2
i ,

≤ 0.

Thus, (3.27) holds. Identical argument shows that same inequality holds for unweighted eigenspaces.

We look to show reverse inequality of (3.27). As we know that (3.27) holds, if the left-hand side

of (3.27) is unbounded, then equality holds trivially. Thus, we consider, b ∈ Z≥0,

b = dim (⊕λ≤0 E(λ;L,W 1,2(M))) <∞,

and prove reverse of (3.27) by contradiction. Indeed, assume that we have a linear subspace

Π̃ ≤ W 1,2(M), of dimension b+ 1, such that BL is non-positive on Π̃. Consider the b dimensional

linear subspace Π, identically defined as (3.28). Note that,

W 1,2(M) = Π⊕ Π⊥ω .

The projection map PΠ : Π̃ → Π, must have a non-trivial kernel, implying that there exists a

v ∈ Π̃ ∩ Π⊥ω , with ⟨v, v⟩ω = 1. Thus,

λ̃ = inf{BL[f, f ] : f ∈ Π⊥ω , ⟨f, f⟩ω = 1} ≤ 0.

Take f̃k ∈ Π⊥ω , ⟨f̃k, f̃k⟩ω = 1, such that

λ̃ = lim
k→∞

BL[f̃k, f̃k].

Thus, noting that ess inf ω > 0, and |V | < +∞, we may deduce a lower bound on

λ̃ ≥ −
∥V ∥L∞(M)

ess inf ω
,

and uniform W 1,2(M) bounds for {f̃k}, and conclude that there exists an f̃ ∈ W 1,2(M), such that
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after potentially taking a subsequence and renumerating,f̃k ⇀ f̃, inW 1,2(M),

f̃k → f̃ , in L2(M).

Denote,

h1 := PΠ(f̃),

h2 := f̃ − h1 ∈ Π⊥ω .

There exists a1, . . . , ab ∈ R, such that,

h1 =
b∑

i=1

aifi.

Then, as f̃k ∈ Π⊥ω ,

BL[f̃k, f̃ ] =
m∑
i=1

aiBL[f̃k, fi] +BL[f̃k, h2],

=
m∑
i=1

aiλi⟨f̃k, fi⟩ω +BL[f̃k, h2],

= BL[f̃k, h2].

Thus, by weak convergence,

BL[f̃ , f̃ ] = lim
k→∞

BL[f̃k, f̃ ],

= lim
k→∞

BL[f̃k, h2],

= BL[h1 + h2, h2],

=
m∑
i=1

aiλi⟨fi, h2⟩ω +BL[h2, h2],

= BL[h2, h2].

After potentially taking a further subsequence and renumerating so that, f̃k → f̃ pointwise a.e.,

by Fatou’s Lemma we have the following,

0 ≤ α = ⟨h2, h2⟩ω ≤ ⟨h2, h2⟩ω + ⟨h1, h1⟩ω = ⟨f̃ , f̃⟩ω ≤ lim inf
k→∞

⟨f̃k, f̃k⟩ω = 1,

and we reduce our argument to three cases.
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First consider, α = 0. Thus, h2 = 0, and by lower semicontinuity of the W 1,2(M)-norm under

weak convergence,

0 = BL[h2, h2] = BL[f̃ , f̃ ] ≤ lim
k→∞

BL[f̃k, f̃k] = λ̃ ≤ 0.

Therefore, λ̃ = 0, and recalling the function v ∈ Π̃ ∩ Π⊥ω , with ⟨v, v⟩ω = 1, we must have

BL[v, v] = inf{BL[f, f ] : f ∈ Π⊥ω , ⟨f, f⟩ω = 1} = 0.

Standard variational arguments then show that v ∈ Eω(0;L,W 1,2(M)), which contradicts the

definition b.

If α = 1, then,

BL[h2, h2] = inf{BL[f, f ] : f ∈ Π⊥ω , ⟨f, f⟩ω = 1} = λ̃.

Again, standard variational arguments then show that h2 ∈ Eω(λ̃;L,W 1,2(M)), which contradicts

the definition of b.

The final case is 0 < α < 1. Note that if BL[h2, h2] = 0, then we may apply a similar argument to

that in case α = 0. Therefore, we may assume that BL[h2, h2] < 0. Define,

h := α−1/2h2.

Thus,

BL[h, h] = α−1BL[h2, h2] < BL[h2, h2] ≤ λ̃.

However, as h ∈ Π⊥ω , and ⟨h, h⟩ω = 1, this is a contradiction.

Remark 33. For an embedded hypersurface M ⊂ N , the method of proof in Proposition 14 may

be applied to show that,

span
{
∪λ≤0 Eω(λ;L,W 1,2(co(M))−)

}
= ⊕λ≤0 Eω(λ;L,W 1,2(co(M))−),

and,

dim (⊕λ≤0 Eωk,δ,R
(λ;L,W 1,2(co(M))−)) = dim (⊕λ≤0 E(λ;L,W 1,2(co(M))−)).

When reapplying this method the two major things to note is that W 1,2(co(M))− is a linear space,

and that when applying Rellich–Kondrachov, we have that the limit will also lie W 1,2(co(M))−.

Let (M, g) be a complete but not necessarily compact Riemannian manifold. Recall the following

function space,

W 1,2
ω (M) := {f ∈ L1

loc(M) : |∇f | ∈ L2(M), and f 2ω ∈ L1(M)}.
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Proposition 15. Let Σ be a, connected, complete n-dimensional manifold, n ≥ 3, and ι : Σ →
Rn+1 be a two-sided, proper, minimal immersion, with finite total curvature,∫

Σ

|AΣ|n < +∞,

and Euclidean volume growth at infinity. Consider a function ω ∈ L∞(Σ), such that there exists

Λ ∈ [1,∞), and R ∈ (0,∞), such that ess inf ω > 0 on Σ ∩ ι−1(Bn+1
R (0)), and

1

Λ|ι(x)|2
≤ ω(x) ≤ Λ

|ι(x)|2
,

for x ∈ Σ \ ι−1(Bn+1
R (0)). Then

span {∪λ≤0 Eω(λ;LΣ,W
1,2
ω (Σ),W 1,2(Σ))} = ⊕λ≤0 Eω(λ;LΣ,W

1,2
ω (Σ),W 1,2(Σ)), (3.29)

and,

dim (⊕λ<0 Eω(λ;LΣ,W
1,2
ω (Σ),W 1,2(Σ))) = anl-ind (Σ)

:= lim
S→∞

anl-indι−1(Bn+1
S (0)) (Σ)

:= lim
S→∞

dim (⊕λ<0 E(λ;LΣ,W
1,2
0 (Σ ∩ ι−1(Bn+1

S (0))))

Remark 34. In the literature, for a two-sided, properly immersed minimal hypersurface Σ, the

analytic index (anl-ind (Σ)) and analytic nullity (anl-nul (Σ)), are just referred to as the index and

nullity of Σ. We choose to maintain the terms of analytic index and analytic nullity to keep the

notation and definitions consistent throughout the chapter.

Proof. Denote the stability operator on Σ by L = LΣ. As the immersion is proper, ess inf ω > 0,

on compact sets of Σ, and thus W 1,2
ω (Σ) ⊂ W 1,2

loc (Σ). Moreover, as Σ has finite total curvature, this

implies that,

lim
S→∞

∫
Σ∩ι−1(Bn+1

S (0))

|AΣ|n → 0.

Thus, by applying the curvature estimate of Proposition 7, we have that there exists an S0 > 0,

such that for x ∈ Σ \ ι−1(Bn+1
2S0

(0)),

|AΣ|2(x) ≤
1

(|ι(x)| − S0)2
≤ 4

|ι(x)|2
. (3.30)

Moreover, choosing S0 ≥ R, we have that for x ∈ Σ \ ι−1(Bn+1
2S0

(0)),

|AΣ|2(x) ≤ 4Λω.
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Thus, for f, h ∈ W 1,2
ω (Σ),∣∣∣∣∫

Σ

f hω

∣∣∣∣+ ∣∣∣∣∫
Σ

|AΣ|2 f h
∣∣∣∣ < (1 + 4Λ)

(∫
Σ

f 2 ω

)1/2(∫
Σ

h2 ω

)1/2

< +∞.

Therefore the quantities, BL[f, h], and ⟨f, h⟩ω, are finite and well defined for f, h ∈ W 1,2
ω (Σ). We

also note that for λ ∈ R, such that

dim (Eω(λ;LΣ,W
1,2
ω (Σ),W 1,2(Σ))) ̸= 0,

then, similar to (3.11) we may deduce λ ≥ −C, with C = C(Σ, ι, R) < +∞.

Recall the following function, 

χ ∈ C∞(R; [0, 1]),

χ(t) = 1, t ∈ (−∞, 1],

χ(t) = 0, t ∈ [2,∞),

−3 ≤ χ′(t) ≤ 0.

For large S > 0, we then define the following smooth function,

χS(x) = χ

(
|ι(x)|
S

)
.

For f ∈ W 1,2
ω (Σ), we define fS = fχS ∈ W 1,2

0 (Σ ∩ ι−1(Bn+1
2S (0))). Again using the estimate (3.30),

we may deduce that for f, h ∈ W 1,2
ω (Σ),

lim
S→∞

BL[f, hS] = BL[f, h],

lim
S→∞

⟨f, hS⟩ω = ⟨f, h⟩ω.

Thus if f ∈ (Eω(λ;L,W 1,2
ω (Σ),W 1,2(Σ))), then in fact, for all h ∈ W 1,2

ω (Σ), BL[f, h] = λ⟨f, h⟩ω.
This allows us to conclude (3.29) in an identical way to (3.26).

We now proceed similarly to Proposition 14. First recall that as Σ has finite total curvature and

Euclidean volume growth at infinity, its (analytic) index is finite [61, Section 3] (cf. [36]). Thus

we may pick an S0 > 0, such that

anl-indι−1(Bn+1
S0

(0)) (Σ) = anl-ind (Σ). (3.31)
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First we show that,

dim (⊕λ<0 Eω(λ;LΣ,W
1,2
ω (Σ),W 1,2(Σ))) ≤ anl-ind (Σ) = I. (3.32)

If the left hand side is equal to 0, then the inequality is trivial, thus assume we have b ∈ Z≥1, such

that,

b ≤ dim (⊕λ<0 Eω(λ;LΣ,W
1,2
ω (Σ),W 1,2(Σ))).

Therefore, as in Proposition 14, we may pick a set of eigenfunctions,

{f1, . . . , fb} ⊂ ⊕λ<0 Eω(λ;L,W 1,2
ω (Σ),W 1,2(Σ)),

which are orthonormal with respect to ⟨ ·, · ⟩ω. The inequality then follows noting that for large

enough S > S0,

span{(f1)S, . . . , (fb)S} ⊂ W 1,2
0 (Σ ∩Bn+1

2S (0)),

is a b-dimensional subspace on which BL is negative definite.

For the reverse of (3.32), we take I ≥ 1 (note that if I = 0 then (3.32) implies equality), and an

increasing sequence Sk → ∞. For large enough Sk, as Σ ∩ ι−1(Bn+1
Sk

(0)) is compact with smooth

boundary, by identical arguments to those contained in Proposition 14, there exists a sequences

λk1 ≤ · · · ≤ λkI < 0 and a set,

{fk
1 , . . . , f

k
I } ⊂ W 1,2

0 (Σ ∩ ι−1(Bn+1
Sk

(0))),

which is orthonormal with respect to ⟨ ·, · ⟩ω, such that for all φ ∈ W 1,2
0 (Σ ∩ ι−1(Bn+1

Sk
(0))),

BL[f
k
i , φ] = λki ⟨fk

i , φ⟩ω.

By standard theory (see [31, Lemma 3.7]), for each i = 1, . . . , I, λki ≥ λk+1
i . Then recalling our

uniform bound λki ≥ −C, for each i = 1, . . . , I, there exists a λ∞i ∈ (0,−C], such that λki → λ∞i .

By similar arguments contained in Section 3.2.3 and Claim 7, we may deduce that after potentially

taking a subsequence and renumerating, for each i = 1, . . . , I, there exists an f∞
i ∈ W 1,2

ω (Σ), such

that, fk
i ⇀ f∞

i , W 2,2
loc (Σ),

fk
i → f∞

i , W 1,2
loc (Σ),

and f∞
i ∈ Eω(λ∞i ;LΣ,W

1,2
ω (Σ),W 1,2(Σ)). We now look to show that

dim (span{f∞
1 , . . . , f

∞
I }) = I,
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which will complete the proof.

For a contradiction, assume not. Then there exists a1, . . . , aI ∈ R, with
∑
a2i = 1, such that,

h :=
I∑

i=1

ai f
∞
i = 0.

We then define,

hk :=
I∑

i=1

ai f
k
i ∈ W 1,2

0 (Σ ∩ ι−1(Bn+1
Sk

(0))),

and note that ⟨hk, hk⟩ω = 1 for all k, and hk → 0 in W 1,2
loc (Σ). By our choice of S0 (3.31), we have

that Σ \ ι−1(Bn+1
S0

(0)) is stable, however, χS0hk ∈ W 1,2
0 (Σ \ ι−1(Bn+1

S0
(0))), and for large enough k,

BL[χS0hk, χS0hk] < 0,

which clearly contradicts the stability of Σ \ ι−1(Bn+1
S0

(0)).

3.4 Proof of the Theorem

Again, for ease of notation we only write the proof of Theorem 8 for the case of minimal hyper-

surfaces, however the identical argument works for the case of H-CMC hypersurfaces.

We follow similar arguments to those in [23, Lemma IV.6] and [32, Theorem 1.2].

If lim supk→∞(ind(Mk) + nul(Mk)) = 0, then the conclusion of Theorem 8 is trivial. Suppose for

b ∈ Z≥1,

b ≤ lim sup
k→∞

(ind(Mk) + nul(Mk)) = lim sup
k→∞

(
dim (⊕λ≤0 Eωk,δ,R

(λ;Lk,W
1,2(co(Mk))

−))
)
,

where the equality comes from equivalence of considering the weighted and unweighted eigen-

value problems along our sequence (Proposition 14 and Remark 33). After potentially taking a

subsequence and renumerating we have that for each k, there exists a linear subspace,

Wk := span{fi,k}bi=1 ⊂ W 1,2(co(Mk))
−,

where, for each i = 1, . . . , b, there is a λi,k ≤ 0, such that,

fi,k ∈ Eωk,δ,R
(λi,k;Lk,W

1,2(co(Mk))
−),

and the set {fi,k}bi=1, is orthonormal with respect to the ωk,δ,R-weighted L
2 inner product, i.e. for
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i, j = 1, . . . , b, ∫
Mk

fi,k fj,k ωk,δ,R = δij.

We may assume this by the argument used to prove (3.26). Thus, as outlined in Section 3.2.4, for

each i = 1, . . . , b, after potentially taking a subsequence and renumerating,

fi,k → ((f 1
i,∞, . . . , f

m
i,∞), fΣ1

i,∞, . . . , f
ΣJ

i,∞) ∈ E∞

where we are defining,

E∞ :=
(
×m

j=1

(
⊕λ≤0Eωδ

(λ;L∞,W
1,2(co(M∞)))

))
×
(
×J

j=1

(
⊕λ≤0Eω

Σj ,R
(λ;LΣj , Ẇ 1,2

ω
Σj ,R

(Σj),W 1,2(Σj))
))

.

We define the linear map,

Πk : Wk → E∞,

fi,k 7→ ((f 1
i,∞, . . . , f

m
i,∞), fΣ1

i,∞, . . . , f
ΣJ

i,∞).

Thus W∞ := Πk(Wk) is a linear subspace of E∞.

Define the integer

co(m) = lim inf
r→0

lim inf
k→∞

|{connected components of Mk \ ∪y∈IB
N
r (y)}| ≤ m.

IfM∞ is two-sided, by the graphical convergence on sets, compactly contained away from the finite

collection of points I, we have that co(m) = m. If M∞ is one-sided, taking r small enough and k

large enough such that,

co(m) = |{connected components of Mk \ ∪y∈IB
N
r (y)}|,

we recall notation from Section 3.2.2, and we have

M r
k =

co(m)⋃
l=1

M l,r
k ,

where each M l,r
k is a connected hypersurface. Then, ∪m

j=1{(x, u
j,r
k (x)) : x ∈ Ωr} is a double cover

of M r
k with trivial normal bundle, implying that we identify (as in Section 3.2.2)

∪m
j=1{(x, u

j,r
k (x)) : x ∈ Ωr} = ∪co(m)

l=1 o(M l,r
k ).
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If there is an l ∈ {1, . . . , co(m)}, and j ̸= J ∈ {1, . . . ,m}, such that for all large enough k,

o(M l,r
k ) = {(x, uj,rk (x)) : x ∈ Ωr} ∪ {(x, uJ,rk (x)) : x ∈ Ωr},

then (depending on the choice of unit normal in Section 3.2.2), for each i = 1, . . . ,m, either

f j
i,∞((x, ν)) = −fJ

i,∞((x,−ν)), for all (x, ν) ∈ co(M∞) \ ι−1(I),

or,

f j
i,∞((x, ν)) = fJ

∞((x,−ν)), for all (x, ν) ∈ co(M∞) \ ι−1(I).

Thus we may define an injective map

P : W∞ → F∞,

where,

F∞ =
(
×co(m)

l=1

(
⊕λ≤0Eωδ

(λ;L∞,W
1,2(co(M∞)))

))
×
(
×L

j=1

(
⊕λ≤0EωΣj ,R(λ;LΣj ,W 1,2

ωΣj ,R
(Σ̃j),W 1,2(Σj))

))
Claim 8. Πk is injective

Proof. We prove by contradiction. Assume we have an hk,

hk =
b∑

i=1

aifi,k,

with
∑b

i=1 a
2
i = 1, and Πk(hk) = 0. This implies that for all k,∫

co(Mk)

h2k ωk,δ,R = 1,

and,

hk → ((0, . . . , 0), 0, . . . , 0),

which contradicts Claim 7.

Thus,

dimW∞ = dimWk = b,

which implies that, b ≤ dimF∞. We conclude Theorem 8 by combining the results in Section 3.3
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(Proposition 14 and Proposition 15), and noting that

Eω
Σj ,R

(0;LΣj ,W 1,2
ωΣi,R

(Σj),W 1,2(Σj)) = EωΣj ,R(0;LΣj ,W 1,2

ωΣj ,R
(Σj),W 1,2(Σj)).

for ωΣj ,R as defined in the statement of Theorem 8, and ωΣj ,R as defined in (3.16). Lastly, by

standard regularity theory for elliptic PDEs, we note that,

nulω
Σj ,R

(Σj) := dim
(
{ψ ∈ C∞(Σ) ∩W 1,2

ω
Σj ,R

(Σj) : LΣjψ = 0}
)
,

= dim
(
EωΣi,R(0;LΣi ,W 1,2

ωΣi,R
(Σj),W 1,2(Σj))

)
.

3.5 Finiteness of the Nullity

Proposition 16. Let Σ be a complete, connected, n-dimensional manifold, n ≥ 3, and

ι : Σ → Rn+1

be a proper, two-sided, minimal immersion, of finite total curvature∫
Σ

|AΣ|n < +∞,

and Euclidean volume growth at infinity

lim sup
R→∞

Hn(ι(Σ) ∩Bn+1
R (0))

Rn
< +∞.

Consider a function ω ∈ L∞(Σ), such that there exists an R > 0, and Λ ≥ 1, such that ess inf ω > 0

in ι−1(Bn+1
R (0)), and for x ∈ Σ \ ι−1(Bn+1

R (0)),

1

Λ|ι(x)|2
≤ ω ≤ Λ

|ι(x)|2
.

Then

anl-nulω(Σ) := dim {ψ ∈ W 1,2
ω (Σ) : LΣψ = 0} < +∞.

Proof. We assume the statement does not hold and prove by contradiction. There exists a set,

{ψ1, ψ2, . . .} ⊂ W 1,2
ω (Σ) ∩ C∞(Σ), such that for all k, l ∈ Z≥1,

∆ψk + |AΣ|2ψk = 0,

and, ∫
Σ

ψk ψl ω = δkl.
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Claim. For any δ > 0, there exists k, l ∈ Z≥1, k ̸= l, such that

∥ψk − ψl∥2W 1,2(Σ∩ι−1(Bn+1
2S (0)))

< δ.

Proof. (of Claim) Fix S > 0, for all k ∈ Z≥1,∫
Σ∩ι−1(Bn+1

3S (0))

ψ2
k ≤ C(S) < +∞.

By standard interior estimates for linear elliptic PDEs we have,

∥ψk∥W 2,2(Σ∩ι−1(Bn+1
2S (0)) ≤ C(S) < +∞.

Therefore, there exists a subsequence {ψk′} ⊂ {ψk}, and a function ψ∞ ∈ W 2,2(Σ ∩ ι−1(Bn+1
2S (0)))

such that, ψk′ ⇀ ψ∞, weakly inW 2,2(Σ ∩ ι−1(Bn+1
2S (0))),

ψk′ → ψ∞, strongly inW 1,2(Σ ∩ ι−1(Bn+1
2S (0))).

Thus this subsequence is Cauchy, so for any δ > 0, there exists l, k ∈ Z≥1, l ̸= k, such that

∥ψk − ψl∥2W 1,2(Σ∩ι−1(Bn+1
2S (0)))

< δ

For δ > 0 fixed we denote,

ψδ = ψl − ψk ∈ W 1,2
ω (Σ),

and note that, ∆ψδ + |AΣ|2ψδ = 0, and, ∫
Σ

ψ2
δ ω = 2.

Also, BΣ[ψδ, ψδ] = 0, which may be seen by following the argument at the begining of Proposition

15.

Recall from Remark 29, that Σ has finitely many ends (say m ∈ Z≥1), which, for large enough

S ≥ R, may be denoted by,

⊔m
i=1E

i = Σ \ ι−1(Bn+1
S (0)).

Moreover, each end Ei is graphical over some hyperplane minus a compact setBi (with the graphing

function having small gradient), and for each ε > 0, we may further choose S = S(Σ, ι, R,Λ, ε) <

+∞, such that,

|AΣ|2(x) ≤ εω,
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for x ∈ Σ \ ι−1(B
n+1

S (0)). We also remark that ω ∈ L(n/2,∞)(Σ) (this can be shown similarly to

Claim 6).

Fixing a choice of S = S(Σ, ι,Λ, R, ε) < +∞, for any ζ > 0, we may pick δ = δ(S, ζ) > 0, then

T = T (δ) > 4S, such that

∥ψδ∥W 1,2(Σ∩ι−1(Bn+1
2S (0))) < ζ, and, ∥∇ψδ∥L2(Σ\ι−1(Bn+1

T (0))) +

(∫
Σ\ι−1(Bn+1

T (0))

ψ2
δ ω

)1/2

< ζ.

Recalling definition of functions χS and χT from Proposition 15, we define

Ψδ = χT (1− χS)ψδ ∈ W 1,2
0 (ι−1(Bn+1

2T (0) \Bn+1
S (0))).

Performing similar computations to those in Claim 7 we deduce,

∫
Σ

(ψ2
δ −Ψ2

δ)ω ≤ C

(∫
Σ∩ι−1(Bn+1

2S (0))

ψ2
δ +

∫
Σ\ι−1(Bn+1

T (0))

ψ2
δ ω

)
< Cζ,

and,

|BL[ψδ, ψδ]−BL[Ψδ,Ψδ]| ≤ C

(
∥ψδ∥2W 1,2(Σ∩ι−1(Bn+1

2S (0)))

+∥∇ψδ∥2L2(Σ\ι−1(Bn+1
T (0))) +

∫
Σ\ι−1(Bn+1

T (0))

ψ2
δ ω

)
< Cζ,

with C = C(Σ, ι, ω, R) < +∞. Now, choosing small enough ε = ε(ω) > 0, large enough S =

S(Σ, ι,Λ, R, ε), then small enough ζ = ζ(Σ, ι, ω, R, ε) > 0, δ = δ(S, ζ) > 0, and large enough

T = T (δ) > 4S, Ψδ will derive a contradiction to Lemma 5 (in a similar fashion to Claim 7) on at

least one of the ends E1, . . . , Em.

Corollary 3 may then be concluded by noting that,

anl-nul (Σ) := dim {ψ ∈ W 1,2(Σ) : LΣψ = 0} ≤ dim {ψ ∈ W 1,2
ω (Σ) : LΣψ = 0} < +∞.

3.6 Jacobi Fields on the Higher Dimensional Catenoid

In this section we analyse Jacobi fields on the n-dimensional catenoid, n ≥ 3. First, we briefly

recall the definition of the n-dimensional catenoid for n ≥ 3 (as in [58, Section 2]). For h0 > 0,
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consider the following integral, for n ≥ 3,

s(h) =

∫ h

h0

dτ

(aτ 2(n−1) − 1)1/2
, (3.33)

with a = h
−2(n−1)
0 . Then the function s(h) is increasing and maps [h0,+∞) to [0, s∞), with

s∞ =

∫ ∞

h0

dτ

(aτ 2(n−1) − 1)1/2
<∞.

Thus, the inverse of s, h : [0, s∞) → [h0,+∞) is well defined, with h(0) = h0, and h
′(0) = 0. We

then smoothly extend h as an even function across (−s∞, s∞). Now, letting Sn−1 denote the unit

sphere in Rn, we define the catenoid, C, in Rn+1, n ≥ 3, by the embedding,

F : (−s∞, s∞)× Sn−1 → Rn+1,

(s, w) 7→ (h(s)w, s).

For a point y = F (s, w), the unit normal to C at y is given by,

ν(y) =
(w,−h′(s))
(1 + (h′)2)1/2

.

It was shown by Schoen [50, Theorem 3], up to rotations, tranlations and scalings, the catenoid C,
is the unique complete, non-flat minimal hypersurface in Rn+1, with two ends, which is regular at

infinity (for a definition of regular at infinity see [50, pp. 800]). Recall our weight, ωC,R, which is

given by

ωC,R(s, w) =

(h(s1)
2 + s21)

−1, s ∈ (−s1, s1),

(h(s)2 + s2)−1, s ∈ (−s∞, s1] ∪ [s1, s∞),

for s1 ∈ (0, s∞), given by R2 = h(s1)
2 + s21.

We now look at jacobi fields on C,

JFC := {f ∈ C∞(C) : ∆Cf + |AC|2f = 0}.

In particular we will focus on elements of JFC which are generated through rigid motions in Rn+1

(translations, scalings and rotations of C), and look to see which of them lie in W 1,2(C) and

W 1,2
ωC,R

(C).

We note that it is still an open question whether these Jacobi fields generated through rigid

motions account for all the Jacobi fields on C. For the case of n = 2, this is known to be true for

the Costa–Hoffman–Meeks minimal surfaces [43, Theorem 2 and Corollary 3].
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We will denote the Jacobi fields on C defined through rigid motions by RMJFC. Those arising

through translations are generated by the span of f1, . . . , fn+1, where

fi(y) := ⟨ν(y), ei⟩ =

⟨(w, 0), ei⟩ (1 + (h′)2)−1/2, i = 1, . . . , n,

−h′ (1 + (h′)2)−1/2, i = n+ 1.
(3.34)

The 1-dimensional subspace of RMJFC generated through scaling has a basis element given by,

fd(y) := ⟨ν(y), y⟩ = h− sh′

(1 + (h′)2)1/2
. (3.35)

The last group to consider are those generated through rotations. Rotations of Rn+1 about the

origin are given by the special orthogonal group,

SO(n+ 1) = {R ∈ GL(n+ 1): detR = 1, R−1 = RT},

where GL(n + 1) denotes the general linear group of all (n + 1) × (n + 1) real matrices. Then a

smooth rotation of Rn+1, is given by a smooth curve,

γ : [0, T ] → SO(n+ 1),

with γ(0) = Id (the identity). Then the Jacobi field on C generated by the 1-parameter family of

catenoids, γ(t)(C), is
fγ(y) = ⟨ν(y), γ′(0)y⟩,

where γ′(0) ∈ TIdSO(n+ 1). One may show that,

TIdSO(n+ 1) = {R ∈ GL(n+ 1): RT = −R}.

Taking R = (Rij)ij ∈ TIdSO(n+ 1), we have that,

Ry = R(hw, s),

=
n+1∑
i=1

(
n∑

j=1

hRijwj +Ri,n+1s

)
ei,

and,

⟨ν(y), γ′(0)y⟩ = (1+(h′)2)−1/2

(
h

n∑
i,j=1

Rijwiwj +
n∑

i=1

Ri,n+1swi − hh′
n∑

j=1

Rn+1,jwj −Rn+1,n+1h
′s

)
.
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As RT = −R, this implies, Rii = 0, and

n∑
i,j=1

Rijwi, wj = 0.

Thus, for y = F (s, w) we have

fγ(y) = (1 + (h′)2)−1/2

(
(s+ hh′)

n∑
i=1

Ri,n+1wi

)

We now look to see which elements of RMJFC lie in either W 1,2(C), or W 1,2
ωC,R

(C). The following

proposition tells us that to check if an element of JFC lies in W 1,2(C) (resp. W 1,2
ωC,R

(C)), we only

need to check if it lies in L2(C) (resp. L2
ωC,R

(C)).

Proposition 17. For n ≥ 3, let Σ be a complete n-dimensional manifold, and ι : Σ → Rn+1 be

a two-sided, proper, minimal immersion, with finite total curvature, and Euclidean volume growth

at infinity. Consider a positive continuous function ω ∈ L∞(Σ), such that there exists an R > 0,

Λ ≥ 1, such that for x ∈ Σ \ ι−1(Bn+1
R (0)),

1

Λ|ι(x)|2
≤ ω(x).

Then, for f ∈ C∞(Σ), with ∆Σf + |AΣ|2f = 0, if f ∈ L2
ω(Σ), then f ∈ W 1,2

ω (Σ).

In particular, if we set ω = 1, then if a Jacobi field of Σ lies in L2(Σ), then it in fact lies inW 1,2(Σ).

Proof. As previously discussed in Remark 29, the finite total curvature assumption, along with

the Euclidean volume growth at infinity implies that Σ has regular ends, and that there exists a

C < +∞, such that

|AΣ|2 ≤ Cω.

Now fix any S > R > 0, and recall the function χS from Proposition (15). Then we have that,∫
χ2
S|∇f |2 =

∫
|A|2χ2

Sf
2 −

∫
2(χS∇f) · (f∇χS),

≤ C

∫
f 2ω +

1

2

∫
χ2
S|∇f |2 + 2

∫
f 2|∇χS|2.

Thus, ∫
ι−1(Bn+1

S (0))

|∇f |2 ≤ (2C + 36Λ)

∫
f 2ω.

As the upper bound is finite and independent of S, we have that |∇f | ∈ L2(Σ).
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Consider the pull back of the Euclidean metric to (−s∞, s∞)× Sn−1 by F ,

g = (1 + (h′)2) ds2 + h2 gSn−1 ,

where gSn−1 is the standard round metric on Sn−1. We have,√
|g| = hn−1

√
1 + (h′)2.

We now compute the L2-norm of our elements of RMJFC.

Starting with the translations (3.34), for i = 1, . . . , n,∫
f 2
i =

∫ s∞

−s∞

∫
Sn−1

f 2
i

√
|g| dw ds,

=

(∫ s∞

−s∞

hn−1

(1 + (h′)2)1/2
ds

)(∫
Sn−1

wi dw

)
.

Differentiating (3.33), we have that

h′ = (ah2(n−1) − 1)1/2, (3.36)

which implies that, ∫
f 2
i =

2s∞
a1/2

∫
Sn−1

w2
i dw < +∞.

Thus by Proposition 17 we have that fi ∈ W 1,2(C) ⊂ W 1,2
ωC,R

(C). For fn+1, we have that

|fn+1|(s) → 1,

as |s| → s∞, implying that there exists an s1 ∈ (0, s∞), such that for (s, w) ∈ (−s∞,−s1) ∪
(s1, s∞)× Sn−1,

|fn+1|2(s, w) ≥
1

2
.

Thus, choosing s1 ≥ s0, we have that∫
C
f 2
n+1 ωC,R ≥

∫ s∞

s1

∫
Sn−1

(h2 + s2)−1
√

|g| dw ds = Hn−1(Sn−1)

∫ s∞

s1

hn−1
√
1 + (h′)2

h2 + s2
ds.

As h′ > 0 on the interval [s1, s∞), we can make the change of variables τ = h(s), (and recalling

(3.36)),∫ s∞

s1

hn−1
√
1 + (h′)2

h2 + s2
ds = a1/2

∫ ∞

h(s1)

τ 2(n−1)

(τ 2 + s(τ)2)h′
dτ = a1/2

∫ ∞

h(s1)

τ 2(n−1)

(τ 2 + s(τ)2)(aτ 2(n−1) − 1)1/2
dτ.

(3.37)
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Therefore, as n ≥ 3, and noting that s(τ) is a positive increasing function in τ , which is bounded

from above by s∞ < +∞, the integrand (which is positive)

τ 2(n−1)

(τ 2 + s(τ)2)(aτ 2(n−1) − 1)1/2
=

τn−3

(1 + s(τ)2τ−2)(a− τ−2(n−1))1/2

is bounded from below by a positive constant for large τ . Thus the integral in (3.37) is unbounded,

implying that fn+1 ̸∈ L2
ωC,R

(C), and thus fn+1 ̸∈ W 1,2
ωC,R

(C), and hence also not in W 1,2(C).

For the Jacobi field fd, generated by scaling, we have,

|fd| =
|h− sh′|

(1 + (h′)2)1/2
=

|h(h′)−1 − s|
((h′)−2 + 1)1/2

.

Thus as |s| → s∞, we have that |h′| → ∞, h→ ∞, and, recalling (3.36)

h

|h′|
=

h

(ah2(n−1) − 1)1/2
→ 0, (3.38)

which implies that |fd| → s∞. Thus, repeating the same arguments as above for fn+1, we see that

fd does not lie in W 1,2(C) or W 1,2
ωC,R

(C).

Finally we look at elements of RMJFC which are generated by rotations. Recall from above that

all such Jacobi fields are of the form

f(s, w) = (1 + (h′)2)−1/2

(
(s+ hh′)

n∑
i=1

Ri,n+1wi

)
.

If Ri,n+1 = 0 for all i = 1, . . . , n, we have that f = 0. Assuming that Ri,n+1 ̸= 0 for some

i = 1, . . . , n, then as,
n∑

i=1

Ri,n+1wi

is a smooth function on Sn−1, and is non-zero at,

wf =

(
n∑

i=1

R2
i,n+1

)−1

(R1,n+1, . . . , Rn,n+1) ∈ Sn−1,

we may conclude that there exists an α > 0, and set Uα ⊂ Sn−1 of positive Hn−1 measure, such

that ∣∣∣∣∣
n∑

i=1

Ri,n+1wi

∣∣∣∣∣ ≥ α.
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Thus for w ∈ Uα, we have that,

|f |2 ≥ α2 (s+ hh′)2

1 + (h′)2
= α2 (s(h

′)−1 + h)2

(h′)−2 + 1
,

implying that |f |2 becomes unbounded as |s| → s∞. Again repeating arguments above we deduce

that f does not lie in W 1,2(C), or W 1,2
ωC,R

(C).

Therefore, we have shown that the only non-trivial Jacobi fields on C, which are generated through

rigid motions and lie inW 1,2(C) orW 1,2
ωC,R

(C) are those spanned by the translations in the {xn+1 = 0}
hyperplane, i.e. Jacobi fields in span ({f1, . . . , fn}). This implies that,

n ≤ nul (C) ≤ nulωC,R(C).
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