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Abstract. Physics-informed neural networks (PINNs) are a powerful class of numerical solvers
for partial differential equations, employing deep neural networks with successful applications across
a diverse set of problems. However, their effectiveness is somewhat diminished when addressing issues
involving singularities, such as point sources or geometric irregularities, where the approximations
they provide often suffer from reduced accuracy due to the limited regularity of the exact solution. In
this work, we investigate PINNs for solving Poisson equations in polygonal domains with geometric
singularities and mixed boundary conditions. We propose a novel singularity enriched PINN, by
explicitly incorporating the singularity behavior of the analytic solution, e.g., corner singularity,
mixed boundary condition, and edge singularities, into the ansatz space, and present a convergence
analysis of the scheme. We present extensive numerical simulations in two and three dimensions to
illustrate the efficiency of the method, and also a comparative study with several existing neural
network based approaches.
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1. Introduction. Partial differential equations (PDEs) represent a broad class
of mathematical models that occupy a vital role in physics, science, and engineering.
Many traditional PDE solvers have been developed, e.g., the finite difference method,
the finite element method, and the finite volume method. They have been maturely
developed over past decades, and efficient implementations and mathematical guar-
antees are also available. In the last few years, motivated by the great successes in
diverse areas (computer vision, speech recognition and natural language processing,
etc.), neural solvers for PDEs using deep neural networks (DNNs) have received much
attention [44]. The list of neural solvers includes physics informed neural networks
(PINNs) [56], the deep Ritz method (DRM) [65], the deep Galerkin method [60], the
weak adversarial network [67], and the deep least-squares method [12], to name a few.
Compared with traditional methods, neural PDE solvers have shown very promising
results in several direct and inverse problems [38, 23, 17].
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C370 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

In these neural solvers, one employs DNNs as ansatz functions to approximate the
solution to the PDE either in strong, weak, or Ritz forms. Existing approximation the-
ory of DNNs [31] indicates that the accuracy of DNN approximations depends crucially
on the Sobolev regularity of the solution (also suitable stability of the mathematical
formulation). Thus, these methods might be ineffective or even fail completely when
applied to problems with irregular solutions [63, 43], e.g., convection-dominated prob-
lems, transport problems, high-frequency wave propagation, problems with geometric
singularities (cracks/corner singularity), and singular sources. All of these settings
lead to either strong directional behavior, solution singularities, or highly oscillatory
behavior, which are challenging for standard DNNs to approximate effectively.

Thus, there is an imperative need to develop neural solvers for PDEs with non-
smooth solutions. Several recent efforts have been devoted to addressing the issue, in-
cluding self-adaptive PINN (SAPINN) [33], failure-informed PINN (FIPINN) [27, 28],
and singularity splitting DRM (SSDRM) [32]. SAPINN extends the PINN by splitting
out the regions with singularities and then setting different weights to compensate the
effect of singular regions. FIPINN [28] is inspired by the classical adaptive FEM, us-
ing the PDE residual as the indicator to aid judicious selection of sampling points for
training. SSDRM [32] exploits analytic insights into the exact solution by approxi-
mating only the regular part using DNNs but extracting the singular part explicitly.
These methods have shown remarkable performance for problems with significant
singularities. One prime example is point sources, whose solutions involve localized
singularities that can be extracted using fundamental solutions. See section 2.3 for
further discussions about these methods.

In this work, we continue this line of research for Poisson problems on polygonal
domains, which involve geometric singularities, including corners and mixed boundary
conditions in the two-dimensional (2D) case and edges in the three-dimensional (3D)
case. This represents an important setting in practical applications that has received
enormous attention; see [30, 41, 42, 50] for the solution theory. We shall develop
a class of effective neural solvers for Poisson problems with geometric singularities
based on the idea of singularity enrichment, building on known analytic insights of
the problems, and we call the proposed method singularity enriched PINN (SEPINN).

1.1. Problem setting. First, we state the mathematical formulation of the
problem. Let \Omega \in \BbbR d (d = 2,3) be an open, bounded polygonal domain with a
boundary \partial \Omega , and let \Gamma D and \Gamma N be a partition of \partial \Omega such that \Gamma D \cup \Gamma N = \partial \Omega and
\Gamma D \cap \Gamma N = \emptyset , with a nonempty \Gamma D (i.e., Lebesgue measure | \Gamma D| \not = 0). Let n denote
the unit outward normal vector to \partial \Omega , and let \partial nu denote taking the outward normal
derivative. Given a source f \in L2(\Omega ), consider the following Poisson problem:\left\{     

 - \Delta u= f in \Omega ,

u= 0 on \Gamma D,

\partial nu= 0 on \Gamma N .

(1.1)

We focus on the zero boundary conditions, and nonzero ones can be transformed
to (1.1) using the trace theorem. Due to the existence of corners, cracks, or edges
in \Omega , the solution u of problem (1.1) typically exhibits singularities, even if f is
smooth. The presence of singularities in the solution u severely deteriorates the
accuracy of standard numerical methods for constructing approximations, including
neural solvers, and more specialized techniques are needed in order to achieve high
efficiency. Next we briefly review existing techniques for resolving the singularities.
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SINGULARITY ENRICHED PINNs C371

In the 2D case, there are several classes of traditional numerical solvers based on
FEM, including singularity representation based approaches [24, 61, 13], mesh grading
[57, 3, 2], generalized FEM [26] and adaptive FEM [29], etc. These methods require
different amounts of knowledge about the analytic solution. The methods in the first
class exploit a singular representation of the solution u as a linear combination of
singular and regular parts [30, 18] and can be further divided into four groups.

(i) The singular function method augments singular functions to both trial and
test spaces [24, 61]. However, the convergence of the coefficients (a.k.a. stress
intensity factors) sometimes is poor [22], which may lead to low accuracy.

(ii) The dual singular function method [10] employs the dual singular function to
extract the coefficients as a postprocessing strategy of FEM, which can also
achieve the theoretical rate in practical computation.

(iii) The singularity splitting method [13] splits the singular part from the solu-
tion u and approximates the smooth part with the Galerkin FEM, and enjoys
H1(\Omega ) and L2(\Omega ) error estimates. It can improve the accuracy of the ap-
proximation, and the stress intensity factor can also be obtained from the
extraction formula; cf. (3.6).

(iv) The singular complement method [4] is based on an orthogonal decomposition
of the solution u into a singular part and a regular part, by augmenting the
FEM trial space with specially designed singular functions.

For 3D problems with edges, the singular functions belong to an infinite dimen-
sional space and their coefficients are functions defined along edges [30]. Thus, their
computation involves approximating functions defined along edges, and there are rel-
atively few numerical methods, and numerical investigations are strikingly lacking.
The methods developed for the 2D case do not extend directly to the 3D case. In
fact, in several existing studies, numerical algorithms and error analysis have been
provided, but the methods are nontrivial to implement [55, 61]. For example, the
approach in [55] requires evaluating a few dozens of highly singular integrals at each
step, which may lead to serious numerical issues.

1.2. Our contributions. In this work, by building analytic knowledge of the
problem into numerical schemes, we construct a novel numerical method using PINN
to solve Poisson problems with geometric singularities. The key analytic insight is
that the solution u has a singular function representation as a linear combination of a
singular function S and a regular part w [18, 19, 30, 40]: u= S +w with w \in H2(\Omega ).
The singular function S is determined by the domain \Omega , truncation functions, and
their coefficients. Using this fact, we develop, analyze, and test SEPINN and make
the following contributions:

(i) develop a novel class of SEPINNs for corner singularities, mixed boundary
conditions, and edge singularity for the Poisson problem;

(ii) provide error bounds for the SEPINN approximation;
(iii) present numerical experiments for multiple scenarios, including 3D problems

with edge singularities and the eigenvalue problem on an L-shaped domain,
to illustrate the flexibility and accuracy of SEPINN. We also include a com-
parative study with existing approaches.

To the best of our knowledge, this is the first work systematically exploring the use
of singularity enrichment in a neural PDE solver.

The rest of the paper is organized as follows. In section 2 we recall preliminaries on
DNNs and its use in PINNs. Then we develop the SEPINN in section 3 for the 2D case
(corner singularity and mixed boundary conditions) and the 3D case (edge singularity)
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C372 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

separately. In section 4, we discuss the convergence analysis of SEPINN. In section 5,
we present numerical experiments to illustrate the performance of SEPINN, including
a comparative study with PINN and its variants, and give further discussions in
section 6.

2. Preliminaries.

2.1. Deep neural networks. We employ standard fully connected feedforward
DNNs, i.e., functions f\theta : \BbbR d \rightarrow \BbbR , with the DNN parameters \theta \in \BbbR N\theta (N\theta is the
dimensionality of the DNN parameters). Given a sequence of integers \{ n\ell \} L\ell =0, with
n0 = d and nL = 1, f\theta (x) is defined recursively by f (0) = x, f (\ell ) = \varrho (A\ell f

(\ell  - 1) + b\ell ),
\ell = 1,2, . . . ,L  - 1, f\theta (x) := f (L)(x) = ALf

(L - 1) + bL, where A\ell \in \BbbR n\ell \times n\ell  - 1 and
b\ell \in \BbbR n\ell , \ell = 1,2, . . . ,L, are the weight matrix and bias vector at the \ell th layer. The
nonlinear activation function \varrho : \BbbR \rightarrow \BbbR is applied componentwise to a vector. The
integer L is called the depth and W :=max\{ n\ell , \ell = 0,1, . . . ,L\} the width of the DNN.
The set of parameters \{ A\ell , b\ell \} L\ell =1 of the DNN is trainable and stacked into a big
vector \theta . f (0) is called the input layer; f (\ell ), \ell = 1,2, . . . ,L - 1, are called the hidden
layer; and f\theta (x) is the output layer.

There are many possible choices of \varrho . The most frequently used one in computer
vision is rectified linear unit (ReLU), \varrho (x) = max(x,0). However, it is not smooth
enough for PINN, since PINN requires thrice differentiability of \varrho : two spatial deriva-
tives in the loss, and another derivative in the DNN parameters \theta (for the optimizer).

For neural PDE solvers, the hyperbolic tangent \varrho (x) = ex - e - x

ex+e - x and logistic/ sigmoid

\varrho (x) = 1
1+e - x are often used [56, 17]. We employ the hyperbolic tangent. We denote

the collection of DNN functions of depth L, with N\theta nonzero parameters, and each
of the parameters bounded by B\theta , with the activation function \varrho by \scrN \varrho (L,N\theta ,B\theta ),
i.e., \scrN \varrho (L,N\theta ,B\theta ) = \{ w\theta : w\theta has a depth L, | \theta | 0 \leq N\theta , | \theta | \ell \infty \leq B\theta \} , where | \cdot | \ell 0 and
| \cdot | \ell \infty denote the number of nonzero entries in and the maximum norm of a vector,
respectively. We also use the notation \scrA to denote this collection of functions.

2.2. Physics informed neural networks. PINNs [56] represent one popular
neural solver based on the principle of PDE residual minimization. For problem (1.1),
the continuous loss \scrL (u) is given by

\scrL \bfitsigma (u) = \| \Delta u+ f\| 2L2(\Omega ) + \sigma d\| u\| 2L2(\Gamma D) + \sigma n\| \partial nu\| 2L2(\Gamma N ),(2.1)

where the tunable penalty weights \sigma d, \sigma n > 0 are to approximately enforce the bound-
ary conditions, and \bfitsigma = (\sigma d, \sigma n). We approximate the solution u by an element
u\theta \in \scrA , and then discretize relevant integrals using quadrature, e.g., the Monte Carlo
method. Let U(D) be the uniform distribution over a set D, and let | D| denote its
Lebesgue measure. Then we can rewrite the loss \scrL (u\theta ) as

\scrL \bfitsigma (u\theta ) =| \Omega | \BbbE U(\Omega )[(\Delta u\theta (X) + f(X))2] + \sigma d| \Gamma D| \BbbE U(\Gamma D)[(u\theta (Y ))2]

+ \sigma n| \Gamma N | \BbbE U(\Gamma N )[(\partial nu\theta (Z))
2],

where \BbbE \nu takes expectation with respect to a distribution \nu . Let the sampling points
\{ Xi\} Nr

i=1, \{ Yj\} 
Nd
j=1, and \{ Zk\} Nn

k=1 be identically and independently distributed (i.i.d.),

uniformly on \Omega , \Gamma D, and \Gamma N , respectively, i.e., \{ Xi\} Nr
i=1 \sim U(\Omega ), \{ Yj\} Nd

j=1 \sim U(\Gamma D),

and \{ Zk\} Nn

k=1 \sim U(\Gamma N ). Then the empirical loss \widehat \scrL \bfitsigma (u\theta ) is given by

\widehat \scrL \bfitsigma (u\theta )=
| \Omega | 
Nr

Nr\sum 
i=1

(\Delta u\theta (Xi)+f(Xi))
2+

\sigma d| \Gamma D| 
Nd

Nd\sum 
j=1

(u\theta (Yj))
2+

\sigma n| \Gamma N | 
Nn

Nn\sum 
k=1

(\partial nu\theta (Zk))
2.
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SINGULARITY ENRICHED PINNs C373

Note that the resulting optimization problem \widehat \scrL \bfitsigma (u\theta ) over \scrA is well posed due to the
box constraint on the DNN parameters \theta , i.e., | \theta | \ell \infty \leq R for suitable R, which induces
a compact set in \BbbR N\theta . Meanwhile, the empirical loss \widehat \scrL \bfitsigma (u\theta ) is continuous in \theta , when
\varrho is smooth. In the absence of the box constraint, the optimization problem might
not have a finite minimizer.

The loss \widehat \scrL \bfitsigma (u\theta ) is minimized with respect to the DNN parameters \theta . This is often
achieved by gradient type algorithms, e.g., Adam [39] or limited memory BFGS [11],
which return an approximate minimizer \theta \ast . The DNN approximation to the PDE
solution u is given by u\theta \ast . Note that the major computational effort, e.g., gradient of\widehat \scrL \bfitsigma (u\theta ) with respect to the DNN parameters \theta and the DNN u\theta (x) with respect to the
input x, can both be computed efficiently via automatic differentiation [7], which is
available in many software platforms, e.g., PyTorch or Tensorflow. Thus, the method
is very flexible and easy to implement and is applicable to a wide range of direct and
inverse problems for PDEs [38].

The population loss \scrL \bfitsigma (u\theta ) and empirical loss \widehat \scrL \bfitsigma (u\theta ) have different minimizers,
due to the presence of quadrature errors. The analysis of these errors is known
as generalization error analysis in statistical learning theory [1]. The theoretical
analysis of PINNs has been investigated in several works under different settings
[58, 34, 51, 48, 21, 20]. Important issues addressed in these works include the exis-
tence of a neural network such that the population/empirical loss is small, connection
between the error of the approximate solution with the population loss (via suitable
stability of the formulation), and the gap between the population loss and training
loss. These roughly correspond to approximation theory of DNNs in Sobolev spaces,
coercivity of the formulation, and (Monte Carlo) quadrature error. These mathemat-
ical theories require that the solutions to the problems be smooth, e.g., C2(\Omega ), in
order to achieve consistency [58] and even stronger regularity for convergence rates
[34]. Such conditions unfortunately cannot be met for problem (1.1), due to the inher-
ently limited solution regularity. Thus, it is not a priori clear that one can successfully
apply PINNs to problem (1.1). This is also confirmed by the numerical experiments
in section 5. In practice, despite the ease of implementation, the standard PINN may
fail to converge [43, 63]. Indeed, there are several failure modes, including the curse of
dimensionality, low regularity, discontinuities, etc. The concerned class of problems
involves solution singularity, which represents one typical failure mode of PINN. In
this work, we shall develop an effective strategy to overcome the challenge.

2.3. Two existing methods. Now we describe two PINN approaches to ad-
dress the singularity, i.e., SAPINN and FIPINN, for the Dirichlet problem of the
Laplace equation with a singular source f with singularities located within a subdo-
main \Omega s \subset \Omega .

In SAPINN [33], one treats the PDE residuals in the regions \Omega s and \Omega \setminus \Omega s

separately and further splits the loss into

L(u\theta ) = \lambda sLs(u\theta ) + \lambda rLr(u\theta ) + \lambda bLb(u\theta )

with Ls(u\theta ) = \| \Delta u\theta +f\| 2L2(\Omega s)
, Lr(u\theta ) = \| \Delta u\theta +f\| 2L2(\Omega \setminus \Omega s)

and Lb(u\theta ) = \| u\theta \| 2L2(\partial \Omega ),
and \lambda i, i \in \{ r, s, b\} , being positive weights. The partition of \Omega into \Omega s and \Omega \subset \Omega s

and using different penalty parameters allow better compensation for the singular
behavior of u in the subdomain \Omega s, in a manner similar to weighted Sobolev spaces.
The experimental results in [33] indicate that the method can improve the accuracy
of the approximation, but the increase in the number of hyperparameters (i.e., \lambda is)
also complicates the optimization process, due to the need for self-adaptation during
training, which in turn makes the overall training lengthier.
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C374 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

FIPINN [28] employs adaptive sampling. Let \scrQ (x) : \Omega \rightarrow [0,\infty ) be a performance
function, e.g., the PDE residual r(x;\theta ) = (\Delta u\theta (x) + f(x))2 and its spatial gradient
\nabla xr(x;\theta ), and let \Omega \scrF := \{ x : \scrQ (x) > \epsilon r\} be the failure region (with tolerance \epsilon r).
Then over \Omega \scrF , one can define the failure probability P\scrF =

\int 
\Omega \scrF 

\omega (x)dx, where \omega (x)
is the prior distribution of the sampling point x. The failure probability P\scrF may
serve as an error indicator for training set refinement, similar to the classical adaptive
FEM. Using P\scrF , new candidate collocation points can be generated to form the loss
in the hope of enhancing PINN's performance after retraining (simultaneously for
estimating P\scrF ). In [28], a truncated Gaussian is taken for importance sampling in
order to approximatively determine P\scrF and to produce new training points. These
steps are looped until a suitable stopping criterion is met.

Note that to compensate the impact of solution singularity, SAPINN and FIPINN
follow different strategies: SAPINN adaptively updates the weights assigned to the
losses in the subdomains, whereas FIPINN employs the residual as an a posteriori
error estimator to adaptively generate sampling points in the empirical distribution.

3. Singularity enriched PINN. Now we develop a class of SEPINN for solv-
ing Poisson problems with geometric singularities, including 2D problems with mixed
boundary conditions or on polygonal domains, and 3D problems with edge singu-
larity. The key is the singular function representation. We discuss the 2D case in
section 3.1 and the more involved 3D case in section 3.2. The approach applies also
to the modified Helmholtz equation, which we describe in the supplementary material
(M160119 SuppMat.pdf [local/web 399KB]).

3.1. Two-dimensional problem.

3.1.1. Singular function representation. First we develop a singular func-
tion representation in the 2D case. We determine the analytic structure of the solution
u of problem (1.1) using the Fourier method. Consider a vertex \bfitv j of the polygonal
domain \Omega with an interior angle \omega j . We denote by (rj , \theta j) the local polar coordinate
of the vertex \bfitv j so that the interior angle \omega j is spanned counterclockwise by two rays
\theta j = 0 and \theta j = \omega j . Then consider the local behavior of u near the vertex \bfitv j , or in
the sector Gj = \{ (rj , \theta j) : 0 < rj < Rj ,0 < \theta j < \omega j\} . Let the edge overlapping with
\theta j = 0 be \Gamma j1 and that with \theta j = \omega j be \Gamma j2 ; cf. Figure 1(a) for a sketch. We employ
the system of orthogonal and complete set of basis functions \{ \phi j,k\} \infty k=1 in L2(0, \omega j) in

D3)b(D2)a(

Fig. 1. A sketch of the local domain Gj in two and three dimensions. In the 3D case, Gj,0 is
defined by Gj,0 = \{ (xj , yj)\in \Omega 0 : 0< rj <Rj ,0< \theta j <\omega j\} .
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Table 1
Orthogonal basis functions \phi j,k (dropping subscript j), k \in \BbbN , associated with the vertex \bfitv j in

local polar coordinates, depending on the boundary conditions on \Gamma j1 and \Gamma j2 .

\Gamma j2\setminus \Gamma j1 Dirichlet Neumann

Dirichlet \phi k(\theta ) = sin\lambda k\theta , \lambda k = k\pi 
\omega 

\phi k(\theta ) = sin\lambda k\theta , \lambda k = (k - 1
2
) \pi 
\omega 

Neumann \phi k(\theta ) = cos\lambda k\theta , \lambda k = (k - 1
2
) \pi 
\omega 

\phi k(\theta ) = cos\lambda k\theta , \lambda k = (k - 1) \pi 
\omega 

Table 1, where \lambda j,k are the eigenvalues. More precisely, the pairs (\phi j,k, \lambda j,k) k =
1, . . . ,\infty , are associated with the following Sturm--Liouville problem on the interval
(0, \omega j):

 - \phi \prime \prime j,k = \lambda j,k\phi j,k in (0, \omega j),

with suitable zero Dirichlet/Neumann boundary conditions, according to the bound-
ary conditions (b.c.) on the edges \Gamma j1 and \Gamma j2 [54]. In the table, we have dropped the
subscript j for notational simplicity. We denote the representation of u in the local
polar coordinate by \widetilde u(rj , \theta j), i.e., \~u(rj , \theta j) = u(rj cos\theta j , rj sin\theta j).

To study the behavior of the solution u in the sector Gj , we assume \widetilde u(Rj , \theta j) = 0
and | \widetilde u(0, \theta j)| <\infty . Since u and f belong to L2(Gj), they can be represented in Fourier
series with respect to \{ \phi j,k\} \infty k=1:

u(x, y) = \widetilde u(rj , \theta j) = \infty \sum 
k=1

uk(rj)\phi j,k(\theta j) in Gj ,(3.1)

f(x, y) = \widetilde f(rj , \theta j) = \infty \sum 
k=1

fk(rj)\phi j,k(\theta j) in Gj(3.2)

with uk(rj) and fk(rj) given respectively by uk(rj) =
2
\omega j

\int \omega j

0
\widetilde u(rj , \theta j)\phi j,k(\theta j)d\theta j and

fk(rj) =
2
\omega j

\int \omega j

0
\widetilde f(rj , \theta j)\phi j,k(\theta j)d\theta j . Substituting (3.1) and (3.2) into (1.1) gives the

following two-point boundary value problem for each vertex \bfitv j :\Biggl\{ 
 - u\prime \prime j,k  - r - 1u\prime j,k + \lambda 2j,kr

 - 2uj,k = fk, 0< r <Rj ,

| uj,k(r)| r=0 <\infty , uj,k(r)| r=Rj
= 0.

Solving the ODE yields directly the closed-form expression

uk(rj) = c(rj)r
\lambda j,k

j +
r
 - \lambda j,k

j

2\lambda j,k

\int rj

0

fk(\tau )\tau 
1+\lambda j,kd\tau 

with the factor c(rj) given by [54, (2.10)]

c(rj) =
1

2\lambda j,k

\int Rj

rj

fk(\tau )\tau 
1 - \lambda j,kd\tau  - 1

2\lambda j,kR
2\lambda j,k

j

\int Rj

0

fk(\tau )\tau 
1+\lambda j,kd\tau .

Since the factor c(rj) in front of r
\lambda j,k

j is generally nonzero, and r
\lambda j,k

j /\in H2(Gj) for
\lambda j,k < 1, there exist singular terms in the representation (3.1). This shows the limited
regularity of the solution u, which is the culprit of low efficiency of standard numerical
schemes.

Next we list all singularity points and corresponding singular functions. Let \bfitv j ,
j = 1,2, . . . ,M , be the vertices of \Omega whose interior angles \omega j , j = 1,2, . . . ,M , satisfy
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C376 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

Table 2
Singularity functions sj,i (suppressing the subscript j), depending on the boundary condition.

The tuple (rj , \theta j) refers to the local polar coordinate of the vertex \bfitv j , and \BbbI j is an index set for
leading singularities associated with \bfitv j .

\Gamma j2\setminus \Gamma j1 Dirichlet Neumann

Dirichlet s1(r, \theta j) = r
\pi 
\omega sin \pi \theta 

\omega 
, s 1

2
(r, \theta ) = r

\pi 
2\omega cos \pi \theta 

2\omega 
, \BbbI =

\bigl\{ 
1
2

\bigr\} 
, if

\pi 
2
<\omega j \leq 3\pi 

2

\BbbI = \{ 1\} s 1
2
(r, \theta ) = r

\pi 
2\omega cos \pi \theta 

2\omega 
and

s 3
2
(r, \theta ) = r

3\pi 
2\omega cos 3\pi \theta 

2\omega 
\BbbI =

\bigl\{ 
1
2
, 3
2

\bigr\} 
if

3\pi 
2

<\omega \leq 2\pi 

Neumann s 1
2
(r, \theta ) = r

\pi 
2\omega sin \pi \theta 

2\omega 
, \BbbI =

\bigl\{ 
1
2

\bigr\} 
, if

\pi 
2
<\omega \leq 3\pi 

2

s1(r, \theta j) = r
\pi 
\omega cos \pi \theta 

\omega 
,

s 1
2
(r, \theta ) = r

\pi 
2\omega sin \pi \theta 

2\omega 
and

s 3
2
(r, \theta ) = r

3\pi 
2\omega sin 3\pi \theta 

2\omega 
\BbbI =

\bigl\{ 
1
2
, 3
2

\bigr\} 
, if

3\pi 
2

<\omega \leq 2\pi 

\BbbI = \{ 1\} 

\Biggl\{ 
\pi < \omega j < 2\pi , b.c. doesn't change its type,

\pi /2<\omega j < 2\pi , b.c. changes its type.
(3.3)

Table 2 gives the index set \BbbI j and the associated singularity functions [14, p. 2637].
Note that sj,1 \in H1+ \pi 

\omega  - \epsilon (\Omega ), sj, 12 \in H
1+ \pi 

2\omega  - \epsilon (\Omega ), and sj, 32 \in H
1+ 3\pi 

2\omega  - \epsilon (\Omega ) for small
\epsilon > 0. Upon letting

\omega \ast = max
1\leq j\leq M

\^\omega j with \^\omega j =

\Biggl\{ 
\omega j , b.c. doesn't change its type at \bfitv j ,

2\omega i, b.c. changes its type at \bfitv j ,

the solution u belongs to H1+ \pi 
\omega \ast  - \epsilon (\Omega ), just falling short of H1+ \pi 

\omega \ast (\Omega ). If \omega \ast > \pi , u
fails to belong to H2(\Omega ). Hence, it is imperative to develop techniques to resolve such
singularities.

We employ a smooth cutoff function \eta \rho , defined for \rho \in (0,2] by [13, 15]

\eta \rho (rj) =

\left\{             
1, 0< rj <

\rho R

2
,

15

16

\Biggl( 
8

15
 - 
\biggl( 
4rj
\rho R
 - 3

\biggr) 
+

2

3

\biggl( 
4rj
\rho R
 - 3

\biggr) 3

 - 1

5

\biggl( 
4rj
\rho R
 - 3

\biggr) 5
\Biggr) 
,

\rho R

2
\leq rj <\rho R,

0, rj \geq \rho R,

(3.4)

where R \in \BbbR + is a fixed number so that \eta \rho vanishes identically on \partial \Omega . In practice, we
take R to be small enough so that when i \not = j, the support of \eta \rho (ri) does not intersect
with that of \eta \rho (rj). By construction, we have \eta \rho \in C2([0,\infty )). This choice of \eta \rho (rj)
preserves the zero boundary condition and also enjoys good regularity (and thus does
not introduce extra singularities). In practice, any choice satisfying these desirable
properties is valid. Then the solution u of problem (1.1) has the singular function
representation [5, 18, 45]

u=w+

M\sum 
j=1

\sum 
i\in \BbbI j

\gamma j,i\eta \rho j
(rj)sj,i(rj , \theta j) with w \in H2(\Omega )\cap H1

0 (\Omega ),(3.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

5/
24

 to
 1

93
.6

0.
23

8.
99

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



SINGULARITY ENRICHED PINNs C377

where the scalars \gamma j,i \in \BbbR are known as stress intensity factors and given by the
following extraction formulas [30, Lemma 8.4.3.1]:

\gamma j,i =
1

i\pi 

\biggl( \int 
\Omega 

f\eta \rho j
sj, - idx+

\int 
\Omega 

u\Delta (\eta \rho j
sj, - i)dx

\biggr) 
,(3.6)

where sj, - i denotes dual singular functions of sj,i. Specifically, if sj,i(rj , \theta j) = r
i\pi 
\omega j

j

sin
i\pi \theta j
\omega j

, the dual function sj, - i is given by sj, - i(rj , \theta j) = r
 - i\pi 

\omega j

j sin
i\pi \theta j
\omega j

[14, p. 2639].

Moreover, the following regularity estimate on the regular part w holds [14, 30]:

\| w\| H2(\Omega ) +

M\sum 
j=1

\sum 
i\in \BbbI j

| \gamma j,i| \leq c\| f\| L2(\Omega ).(3.7)

3.1.2. Singularity enriched physics-informed neural network. Now we
propose SEPINN for problem (1.1), inspired by the representation (3.5). The idea of
singularity enrichment/splitting has been widely used in the context of the FEM (see
the introduction for details), and also in SSDRM [32], which splits out explicitly the
singular part due to point/line sources. We discuss only the case with one singular
function in \Omega satisfying the condition (3.3). The case of multiple singularities can be
handled similarly. With S = \gamma \eta \rho s, the regular part w satisfies\left\{     

 - \Delta w= f + \gamma \Delta (\eta \rho s) in \Omega ,

w= 0 on \Gamma D,

\partial nw= 0 on \Gamma N ,

(3.8)

where \gamma \in \BbbR is unknown. Since w \in H2(\Omega ), it can be well approximated using PINN.
The parameter \gamma can be either learned together with w or extracted from w via (3.6).

Based on the principle of PDE residual minimization, the solution w\ast of (3.8) and
the exact parameter \gamma \ast in (3.5) is a global minimizer of the following loss:

\scrL \bfitsigma (w,\gamma ) = \| \Delta w+ f + \gamma \Delta (\eta \rho s)\| 2L2(\Omega ) + \sigma d\| w\| 2L2(\Gamma D) + \sigma n \| \partial nw\| 2L2(\Gamma N ) ,(3.9)

where the penalty weights \bfitsigma = (\sigma d, \sigma n) \in \BbbR 2
+ are tunable. Following section 2.2, we

employ a DNN w\theta \in \scrA to approximate w\ast \in H2(\Omega ), and we treat the parameter \gamma as
a trainable parameter and learn it along with the DNN parameters \theta . This leads to
an empirical loss,

\widehat \scrL \bfitsigma (w\theta , \gamma ) =
| \Omega | 
Nr

Nr\sum 
i=1

(\Delta w\theta (Xi) + f(Xi) + \gamma \Delta (\eta \rho s)(Xi))
2

+ \sigma d
| \Gamma D| 
Nd

Nd\sum 
j=1

w2
\theta (Yj) + \sigma n

| \Gamma N | 
Nn

Nn\sum 
k=1

(\partial nw\theta (Zk))
2
,

(3.10)

with i.i.d. sampling points \{ Xi\} Nr
i=1 \sim U(\Omega ), \{ Yj\} Nd

j=1 \sim U(\Gamma D), and \{ Zk\} Nn

k=1 \sim U(\Gamma N ).

Let (\widehat \theta \ast ,\widehat \gamma \ast ) be a minimizer of the empirical loss \widehat L(w\theta , \gamma ). Then w\widehat \theta \ast \in \scrA is the DNN
approximation of the regular part w\ast , and the approximation \^u to u is given by
\^u=w\^\theta \ast + \^\gamma \ast \eta \rho s.

Now we discuss the training of the loss \widehat \scrL \bfitsigma (w\theta , \gamma ). One can minimize \widehat \scrL \bfitsigma (w\theta , \gamma )
directly with respect to \theta and \gamma , which works reasonably. However, the DNN approx-
imation \widehat u tends to have larger errors on the boundary \partial \Omega than in the domain \Omega , but
the estimated \widehat \gamma \ast is often accurate. Thus we adopt a two-stage training procedure.
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C378 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

Algorithm 3.1. SEPINN for 2D problems.

1: Set \bfitsigma (1), and obtain the minimizer (\widehat \theta \ast ,\widehat \gamma \ast ) of the loss \widehat \scrL \bfitsigma (1)(w\theta , \gamma ).

2: Set k= 1, \widehat \theta \ast 0 = \widehat \theta \ast , and increasing factor q > 1.
3: while Stopping condition not met do

4: Find a minimizer \widehat \theta \ast k of the loss \widehat \scrL \bfitsigma (k)(w\theta ,\widehat \gamma \ast ) (initialized to \widehat \theta \ast k - 1).

5: Update \bfitsigma by \bfitsigma (k+1) = q\bfitsigma (k), and k\leftarrow k+ 1.
6: Output the SEPINN approximation \widehat u=w\widehat \theta \ast 

k - 1
+ \widehat \gamma \ast \eta s.

(i) At Stage 1, minimize the loss \widehat \scrL \bfitsigma (w\theta , \gamma ) for a fixed \bfitsigma , and obtain the mini-
mizer (\widehat \theta \ast ,\widehat \gamma \ast ).

(ii) At Stage 2, fix \gamma in \widehat \scrL \bfitsigma (w\theta , \gamma ) at \widehat \gamma \ast , and learn \theta via a path-following (PF)
strategy [47, 32].

The estimate \widehat \gamma \ast depends on the choice of \bfitsigma , but numerically it does not vary much
with the choice. Moreover, the optimal \widehat \gamma \ast may vanish, i.e., the solution u is smooth.

Now we describe a PF strategy to update \bfitsigma . We start with small values \bfitsigma (1) =\bfitsigma .
After each loop (i.e., finding one minimizer \widehat \theta \ast k), we update \bfitsigma geometrically: \bfitsigma (k+1) =

q\bfitsigma (k) with q > 1. By updating \bfitsigma (k), the minimizer \widehat \theta \ast k of the loss \widehat \scrL \bfitsigma (k)(w\theta ,\widehat \gamma \ast )
also approaches that of problem (3.9), and the PF strategy enforces the boundary
conditions progressively, which is beneficial to obtain good approximations, since when
\bfitsigma is large, the optimization problem is known to be numerically stiff. Note that
the minimizer \widehat \theta \ast k+1 of the \bfitsigma (k+1)-problem (i.e., minimizing \widehat \scrL \bfitsigma (k+1)(w\theta ,\widehat \gamma \ast )) can be

initialized to \widehat \theta \ast k of the \bfitsigma (k)-problem to warm start the training process. Hence, for
each fixed \bfitsigma (k) (except \bfitsigma (1)), the initial parameter configuration is close to the optimal
one, and the training only requires a few iterations to reach convergence. The overall
procedure is shown in Algorithm 3.1 for 2D problems with corner singularities and/or
mixed boundary conditions. The stopping condition at line 3 of the algorithm reads:
the iteration terminates whenever the maximum parameter vector \bfitsigma \ast is reached or
the validating error falls below a certain threshold.

PINN exhibits the so-called frequency principle during the training: the low-
frequency components are learned at a faster rate than the high-frequency ones [63].
In this vein, SEPINN harnesses this fact: by extracting the singular part, the regular
part is smoother and thus by the frequency bias is easier to learn.

Remark 3.1. In this work we have focused on enforcing boundary conditions with
the penalty method, due to its ease of implementation. Yet the penalty approach
incurs the consistency error and restricts the norm in which the error can be bounded.
In practice one may also enforce the boundary conditions exactly using (approximate)
distance functions for domains with simple geometry [62]. However, the construction
of distance functions for a general polygonal domain is fairly complicated, and thus
we do not pursue the idea in this work.

3.2. Three-dimensional problem. Now we develop SEPINN for the 3D Pois-
son problem with edge singularities.

3.2.1. Singular function representation. There are several different types
of geometric singularities in the 3D case, and each case has to be dealt with sep-
arately [19]. We only study edge singularities, which cause strong solution singu-
larities. Indeed, the H2(\Omega )-regularity of the solution u of problem (1.1) is not af-
fected by the presence of conic points [40, 30, 42]. Now we state the precise setting.
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SINGULARITY ENRICHED PINNs C379

Table 3
The orthogonal basis \{ Zj,n(z)\} \infty n=0 of L2(0, l), for the jth wedge, with different boundary con-

ditions on the surfaces \Gamma z1 and \Gamma z2 .

\Gamma z2\setminus \Gamma z1 Dirichlet Neumann

Dirichlet Zj,n(z) = sin(\xi j,nz),
\xi j,n = n\pi 

l
, n\in \BbbN \cup \{ 0\} 

Zj,0(z) = 0, Zj,n(z) = cos(\xi j,nz),
\xi j,n = (n - 1

2
)\pi 
l
, n\in \BbbN 

Neumann Zj,0(z) = 0, Zj,n(z) = sin(\xi j,nz),
\xi j,n = (n - 1

2
)\pi 
l
, n\in \BbbN 

Zj,n(z) = cos(\xi j,nz),
\xi j,n = n\pi 

l
, n\in \BbbN \cup \{ 0\} 

Let \Omega 0 \subset \BbbR 2 be a polygonal domain as in section 3.1, and \Omega =\Omega 0\times (0, l). Like before,
let \bfitv j , j = 1,2, . . . ,M , be the vertices of \Omega 0 whose interior angles \omega j , j = 1,2, . . . ,M,
satisfy (3.3), and let \Gamma z1 = \Omega 0 \times \{ 0\} and \Gamma z2 = \Omega 0 \times \{ l\} . We employ a complete
orthogonal system \{ Zj,n\} \infty n=0 of L2(0, l), given in Table 3.

Now we assume that near each edge \bfitv j \times (0, l), the domain \Omega coincides with a
3D wedge Gj = \{ (xj , yj , z) \in \Omega : 0< rj <Rj ,0< \theta j < \omega j ,0< z < l\} , where (rj , \theta j) are
local polar coordinates (of the local Cartesian coordinates (xj , yj)); cf. Figure 1(b)
for a sketch. The functions u \in L2(\Omega ) and f \in L2(\Omega ) from problem (1.1) can then
be represented by the following convergent Fourier series in the 3D wedge Gj (by
suppressing the subscript j):

u(x, y, z) =
1

2
u0(x, y)Z0(z) +

\infty \sum 
n=1

un(x, y)Zn(z),(3.11)

f(x, y, z) =
1

2
f0(x, y)Z0(z) +

\infty \sum 
n=1

fn(x, y)Zn(z),(3.12)

where \{ un\} n\in \BbbN and \{ fn\} n\in \BbbN are defined on the 2D domain \Omega 0 by

un(x, y) =
2

l

\int l

0

u(x, y, z)Zn(z)dz and fn(x, y) =
2

l

\int l

0

f(x, y, z)Zn(z)dz.

Substituting (3.11) and (3.12) into (1.1) gives countably many 2D elliptic problems:\left\{     
 - \Delta un + \xi 2j,nun = fn in \Omega 0,

un = 0 on \Gamma D,

\partial nun = 0 on \Gamma N .

(3.13)

Then problem (1.1) can be analyzed via the 2D problems. Below we describe the
edge behavior of the weak solution u \in H1(\Omega ) [55, Theorem 2.1]. The next theorem
gives a crucial decomposition of u \in H1+ \pi 

\omega \ast  - \epsilon for every \epsilon > 0. The functions \Psi j,i are
the so-called edge flux intensity functions.

Theorem 3.1. For any fixed f \in L2(\Omega ), let u\in H1(\Omega ) be the unique weak solution
to problem (1.1). Then there exist unique functions \Psi j,i \in H1 - \lambda j,i(0, l) of the variable
z such that u can be split into a sum of a regular part w \in H2(\Omega ) and a singular part
S with the following properties:

u=w+ S, S =

M\sum 
j=1

\sum 
i\in \BbbI j

Sj,i(xj , yj , z),(3.14a)

Sj,i(xj , yj , z) = (Tj(rj , z) \ast \Psi j,i(z))\eta \rho j
(rj)sj,i(rj , \theta j),(3.14b)
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C380 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

where the functions Tj are fixed Poisson's kernels, and the symbol \ast denotes the convo-
lution in z \in (0, l). Moreover, there exists a constant C > 0 independent of f \in L2(\Omega )
such that \| w\| H2(\Omega ) \leq C\| f\| L2(\Omega ).

The explicit form of the function Tj(rj , z) \ast \Psi j,i(z) and the formula for the coef-
ficients \gamma j,i,n are given below [55, Theorem 2.2], [54, pp. 179--182].

Theorem 3.2. The coefficients \Phi j,i(xj , yj , z) = Tj(rj , z) \ast \Psi j,i(z) of the singu-
larities in (3.14b) can be represented by Fourier series in z and with respect to the
orthogonal system \{ Zn(z)\} \infty n=0:

Tj(rj , z) =
1

2
Z0(z) +

\infty \sum 
n=1

e - \xi j,nrjZn(z),

\Psi j,i(z) =
1

2
\gamma j,i,0Z0(z) +

\infty \sum 
n=1

\gamma j,i,nZn(z),

\Phi j,i(xj , yj , z) =
1

2
\gamma j,i,0Z0(z) +

\infty \sum 
n=1

\gamma j,i,ne
 - \xi j,nrjZn(z),(3.15)

where \gamma j,i,n are given by \gamma j,i,n = 2
l\omega j\lambda j,i

\int 
Gj
f\ast j e

\xi j,nrjsj, - k(rj , \theta j)Zn(z)dxdydz, and

f\ast j = f\eta \rho j
 - u(

\partial 2\eta \rho j

\partial r2j
+ (2\xi j,n + 1

rj
)
\partial \eta \rho j

\partial rj
+ (2\xi 2j,n +

\xi j,n
rj

)\eta \rho j
)  - 2 \partial u

\partial rj
(
\partial \eta \rho j

\partial rj
+ \xi j,n\eta \rho j

).

Moreover there exists a constant C > 0 independent of f such that

| \gamma j,i,0| 2 +
\infty \sum 

n=1

\xi 
2(1 - \lambda j,i)
j,n | \gamma j,i,n| 2 \leq C\| f\| L2(Gj).(3.16)

Note that the formula for \gamma j,i,n involves a singular integral and is numerically
inconvenient to evaluate. We discuss the case of only one edge with one singular
function below. Then the solution u can be split into

u=w+\Phi \eta \rho s.(3.17)

Since the functions \Phi \eta \rho s and \partial n(\Phi \eta \rho s) vanish on \Gamma D and \Gamma N , respectively, w solves\left\{     
 - \Delta w= f +\Delta (\Phi \eta \rho s) in \Omega ,

w= 0 on \Gamma D,

\partial nw= 0 on \Gamma N .

(3.18)

This forms the basis of SEPINN for 3D problems with edge singularities. Below
we describe two strategies for constructing SEPINN approximations, i.e., SEPINN-
C based on a cutoff approximation of the infinite series and SEPINN-N based on
multiple DNN approximations.

3.2.2. SEPINN--cutoff approximation. The expansion (3.15) of \Phi in (3.18)
involves infinitely many unknown scalar coefficients \{ \gamma j,i,n\} \infty n=0. In practice, it is
infeasible to learn all of them. However, since the series is convergent, we may truncate
it to a finite number of terms: the edge flux intensity function \Phi j,i(xj , yj , z) from (3.15)
is approximated by the truncation

\Phi N
j,i(xj , yj , z) =

1

2
\gamma j,i,0Z0(z) +

N\sum 
n=1

\gamma j,i,ne
 - \xi j,nrjZn(z) with N \in \BbbN .(3.19)
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SINGULARITY ENRICHED PINNs C381

The approximate singular function SN
j,i is given by

SN
j,i(xj , yj , z) =\Phi N

j,i(xj , yj , z)\eta \rho j
(rj)sj,i(rj , \theta j).(3.20)

In view of the splitting (3.14a) and truncation (3.20), the approximate regular part
w satisfies with \~f = f + \gamma 0\Delta (\eta \rho s) +

\sum N
n=1 \gamma n\Delta (e - \xi nrZn(z)\eta \rho s),\left\{     

 - \Delta w= \~f in \Omega ,

w= 0 on \Gamma D,

\partial nw= 0 on \Gamma N ,

(3.21)

with \gamma i, i = 0,1, . . . ,N , being N + 1 unknown parameters. Let wN be the solution
of (3.21) and w\ast the solution of (3.18). The next result shows that when N is large
enough, the error wN  - w\ast can be made small, as is the error between uN and u\ast ,
which underpins the truncation method.

Theorem 3.3. Let wN be the solution of (3.21) and SN be the truncated singular
function. Let uN =wN + SN and let u\ast be the solution of (1.1). Then there holds

\| uN  - u\ast \| 1H(\Omega )\leq CN - 1\| f\| L2(G).(3.22)

Proof. By [55, Lemma 3.3], there exists a constant C > 0 independent of f such
that

\| SN  - S\ast \| H1(G) \leq CN - 1\| f\| L2(G).(3.23)

Since wN solves (3.21) and w\ast solves (3.18), w\ast  - wN satisfies problem (1.1) with the
source fN =

\sum \infty 
n=N+1 \gamma n\Delta (e - \xi nrZn(z)\eta \rho s). By elliptic regularity theory, we have

\| w\ast  - wN\| H1(\Omega ) \leq C\| fN\| H - 1
\Gamma D

(\Omega ) \leq C\| \Delta (SN  - S\ast )\| H - 1
\Gamma D

(\Omega ),(3.24)

where the notation H - 1
\Gamma D

(\Omega ) denotes the dual space of H1
\Gamma D

(\Omega ) = \{ v \in H1(\Omega ) : v =
0 on \Gamma D\} . Upon integration by parts, we get

\| \Delta (SN  - S\ast )\| H - 1
\Gamma D

(\Omega ) = sup
v\in H1

\Gamma D
(\Omega ),\| v\| H1(\Omega )\leq 1

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\Delta (SN  - S\ast )vdx

\bigm| \bigm| \bigm| \bigm| 
= sup

v\in H1
\Gamma D

(\Omega ),\| v\| H1(\Omega )\leq 1

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\nabla (SN  - S\ast ) \cdot \nabla vdx
\bigm| \bigm| \bigm| \bigm| \leq \| SN - S\ast \| H1(\Omega )

= \| SN  - S\ast \| H1(G).

Combining this estimate with (3.23) yields the desired assertion.

Following section 2.2, we approximate wN by an element w\theta \in \scrA . Like in the 2D
case, we view the parameters \bfitgamma N := (\gamma 0, . . . , \gamma N ) as trainable parameters and learn
them along with DNN parameters \theta . Thus, we employ the empirical loss

\widehat \scrL \bfitsigma (w\theta ;\bfitgamma N )=
| \Omega | 
Nr

Nr\sum 
i=1

(\Delta w\theta (Xi)+\~f(Xi))
2+\sigma d

| \Gamma D| 
Nd

Nd\sum 
j=1

w2
\theta (Yj)+\sigma n

| \Gamma N | 
Nn

Nn\sum 
k=1

(\partial nw\theta (Zk))
2

with i.i.d. sampling points \{ Xi\} Nr
i=1 \sim U(\Omega ), \{ Yj\} Nd

j=1 \sim U(\Gamma D), and \{ Zk\} Nn

k=1 \sim U(\Gamma N ).

The empirical loss \widehat \scrL \bfitsigma (w\theta ;\bfitgamma N ) can be minimized using the two-stage procedure as in
the 2D case.
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C382 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

3.2.3. SEPINN---neural networks approximation. There is actually a di-
rect way to resolve the singular part S, i.e., using a DNN to approximate \Phi in (3.14a).
We term the resulting method SEPINN-N. This strategy eliminates the necessity of
explicitly knowing the expansion basis and relieves us from lengthy derivations. Thus,
compared with SEPINN-C, it is more direct and simpler to implement. The downside
is an increase in the number of parameters that need to be learned. Specifically, let
\scrB be a DNN function class with a fixed architecture (possibly different from \scrA ) and
\zeta its parameterization. Then a DNN \Phi \zeta \in \scrB is employed to approximate \Phi in (3.17),
where the DNN parameters \zeta are also learned. The splitting is then given by

u=w+\Phi \zeta \eta \rho s.(3.25)

Since we cannot guarantee \Phi \zeta = 0 on \Gamma D or \partial n\Phi \zeta = 0 on \Gamma N , the boundary conditions
of w have to be modified accordingly (noting \partial n(\eta \rho s) = 0):\left\{     

 - \Delta w= f +\Delta (\Phi \zeta \eta \rho s) in \Omega ,

w= - \Phi \zeta \eta \rho s on \Gamma D,

\partial nw= - \partial n(\Phi \zeta )\eta \rho s on \Gamma N .

(3.26)

Like before, we can obtain the empirical loss

\widehat \scrL \bfitsigma (w\theta ;\Phi \zeta ) =
| \Omega | 
Nr

Nr\sum 
i=1

(\Delta w\theta (Xi) + f(Xi) +\Delta (\Phi \zeta \eta \rho s)(Xi))
2

+ \sigma d
| \Gamma D| 
Nd

Nd\sum 
j=1

(w\theta (Yj) +\Phi \zeta \eta \rho s(Yj))
2 + \sigma n

| \Gamma N | 
Nn

Nn\sum 
k=1

(\partial nw\theta (Zk)

+\partial n(\Phi \zeta )\eta \rho s(Zk))
2

(3.27)

with i.i.d. sampling points \{ Xi\} Nr
i=1 \sim U(\Omega ), \{ Yj\} Nd

j=1 \sim U(\Gamma D), and \{ Zk\} Nn

k=1 \sim U(\Gamma N ).
The implementation of SEPINN-N is direct, since both DNNs w\theta and \Psi \zeta are learned,
and the resulting optimization problem can be minimized directly.

4. Error analysis. Now we discuss the error analysis of SEPINN developed
in section 3, following the strategies established in the recent works [34, 48, 32], in
order to provide theoretical guarantee of SEPINN. We only analyze the 2D problem
in section 3.1. Let u\ast = w\ast + \gamma \ast \eta \rho s be the exact solution to problem (1.1), in which
case (w\ast , \gamma \ast ) is also a global minimizer of the loss \scrL \bfitsigma (w,\gamma ) (with a zero loss value).
Moreover, we assume that w\ast \in H3(\Omega ) and | \gamma \ast | \leq B\gamma ; cf. (3.7). The H

3(\Omega ) regularity
of the smooth part w\ast is needed for controlling the error of approximating w in the
H2(\Omega ) norm using DNNs. If the assumption does not hold, we can split out additional
singular functions; see the argument in section 3.1.1. Several preliminary results used
in the analysis are given in the appendix.

The following approximation property holds [31, Proposition 4.8]. The notation
(s= 2) equals to 1 if s= 2 and zero otherwise.

Lemma 4.1. Let s \in \BbbN \cup \{ 0\} and p \in [1,\infty ] be fixed, and v \in W k,p(\Omega ) with k \geq 
s+ 1. Then for any tolerance \epsilon > 0, there exists at least one v\theta of depth \scrO 

\bigl( 
log(d+

k)
\bigr) 
, with | \theta | \ell 0 bounded by \scrO 

\bigl( 
\epsilon  - 

d
k - s - \mu (s=2)

\bigr) 
and | \theta | \ell \infty by \scrO (\epsilon  - 2 - 2(d/p+d+s+\mu (s=2))+d/p+d

k - s - \mu (s=2) ),
where \mu > 0 is arbitrarily small, such that

\| v - v\theta \| W s,p(\Omega ) \leq \epsilon .
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SINGULARITY ENRICHED PINNs C383

For \epsilon > 0, with d= 2, k= 3, and s= 2, by Lemma 4.1, there exists a DNN

v\theta \in \scrN \varrho (C,C\epsilon 
 - 2

1 - \mu ,C\epsilon  - 2 - 16+2\mu 
1 - \mu ) =:\scrW \epsilon (4.1)

such that \| w\ast  - v\theta \| H2(\Omega ) \leq \epsilon . Also let I\gamma = [ - B\gamma ,B\gamma ]. Let ( \widehat w\theta ,\widehat \gamma ) be a minimizer of\widehat \scrL \bfitsigma (w\theta , \gamma ) (cf. (3.10)) over \scrW \epsilon \times I\gamma , and set \widehat u= \widehat w\theta + \widehat \gamma \eta \rho s. The next lemma gives a
decomposition of the error \| u\ast  - \widehat u\| L2(\Omega ).

Lemma 4.2. For any \epsilon > 0, let ( \widehat w\theta ,\widehat \gamma ) \in \scrW \epsilon \times I\gamma be a minimizer to the loss\widehat \scrL \bfitsigma (w\theta , \gamma ). Then there holds

\| u\ast  - \widehat u\| 2L2(\Omega ) \leq cmin(\sigma d, \sigma n)
 - 1\scrL \bfitsigma ( \widehat w\theta ,\widehat \gamma )

\leq cmin(\sigma d, \sigma n)
 - 1
\Bigl( 
(1 + \sigma d + \sigma n)\epsilon 

2 + sup
(w\theta ,\gamma )\in \scrW \epsilon \times I\gamma 

| \scrL \bfitsigma (w\theta , \gamma ) - \widehat \scrL \bfitsigma (w\theta , \gamma )| 
\Bigr) 
,

where the constant c is independent of \bfitsigma .

Proof. For any (w\theta , \gamma )\in \scrW \epsilon \times I\gamma , let u=w\theta +\gamma \eta \rho s, and denote the corresponding
overall error by e= u\ast  - u. By the trace theorem, we have

\scrL \bfitsigma (w\theta , \gamma ) = \| \Delta e\| 2L2(\Omega ) + \sigma d\| e\| 2L2(\Gamma D) + \sigma n\| \partial ne\| 2L2(\Gamma N ) \leq c(1 + \sigma d + \sigma n)\| e\| 2H2(\Omega ).

To treat the nonzero boundary conditions of w\theta , we define the extension \zeta by\left\{     
 - \Delta \zeta = 0 in \Omega ,

\zeta =w\theta on \Gamma D,

\partial n\zeta = \partial nw\theta on \Gamma N .

Then the following elliptic regularity estimate holds [9, Theorem 4.2, p. 870]:

\| \zeta \| L2(\Omega ) \leq c
\bigl( 
\| w\theta \| L2(\Gamma D) + \| \partial nw\theta \| L2(\Gamma N )

\bigr) 
.(4.2)

This estimate bounds the consistency error due to the boundary penalty. Let \~e= e+\zeta .
Then it satisfies \left\{     

 - \Delta \~e= - \Delta e in \Omega ,

\~e= 0 on \Gamma D,

\partial n\~e= 0 on \Gamma N .

Since \Delta e\in L2(\Omega ), the Poincar\'e inequality and the standard energy argument imply

\| \~e\| L2(\Omega ) \leq c\| \nabla \~e\| L2(\Omega ) \leq c\| \Delta e\| L2(\Omega ).

This, the stability estimate (4.2) and the triangle inequality lead to

\| e\| 2L2(\Omega ) \leq c
\bigl( 
\| \~e\| 2L2(\Omega ) + \| \zeta \| 

2
L2(\Omega )

\bigr) 
\leq cmin(\sigma d, \sigma n)

 - 1\scrL \bfitsigma (w\theta , \gamma ).

This proves the first inequality of the lemma. Next, by Lemma 4.1 and the assumption
w\ast \in H3(\Omega ), there exists w\=\theta \in \scrW \epsilon such that \| w\=\theta  - w\ast \| H2(\Omega ) \leq \epsilon . Let \=u=w\=\theta + \gamma \ast \eta \rho s.
Then we derive

\scrL \bfitsigma (w\=\theta , \gamma 
\ast ) = \| \Delta (w\=\theta  - w\ast )\| 2L2(\Omega ) + \sigma d\| w\=\theta  - w\ast \| 2L2(\Gamma D) + \sigma n\| \partial n(w\=\theta  - w\ast )\| 2L2(\Gamma N )

\leq c(1 + \sigma d + \sigma n)\| w\=\theta  - w\ast \| 2H2(\Omega ) \leq c(1 + \sigma d + \sigma n)\epsilon 
2.
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C384 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

Thus by the minimizing property of ( \widehat w\theta ,\widehat \gamma ), we arrive at

\scrL \bfitsigma ( \widehat w\theta ,\widehat \gamma )\leq \bigm| \bigm| \scrL \bfitsigma ( \widehat w\theta ,\widehat \gamma ) - \widehat \scrL \bfitsigma ( \widehat w\theta ,\widehat \gamma )\bigm| \bigm| + \bigm| \bigm| \widehat \scrL \bfitsigma (w\=\theta , \gamma 
\ast ) - \scrL \bfitsigma (w\=\theta ;\gamma 

\ast )
\bigm| \bigm| +\scrL \bfitsigma (w\=\theta , \gamma 

\ast )

\leq 2 sup
(w\theta ,\gamma )\in \scrW \epsilon \times I\gamma 

| \scrL \bfitsigma (w\theta , \gamma ) - \widehat \scrL \bfitsigma (w\theta , \gamma )| + c(1 + \sigma d + \sigma n)\epsilon 
2.

This completes the proof of the lemma.

Remark 4.1. The error estimate in Lemma 4.2 is given in terms of the L2(\Omega ) norm.
This is due to the use of the penalty method for treating the zero Dirichlet boundary
condition; cf. (4.2). This is a form of the consistency error, and it essentially prevents
one from obtaining error estimates in the H1(\Omega ) norm. The estimate indicates that
one should take the parameter \bfitsigma sufficiently large in order to have small consistency
errors. See also the works [35, 53, 32] for detailed discussions on the consistency error
due to penalization for the Dirichlet boundary condition in the context of the DRM.

Next, we bound the error \scrE stat = sup(w\theta ,\gamma )\in \scrW \epsilon \times I\gamma | \scrL \bfitsigma (w\theta , \gamma ) - \widehat \scrL \bfitsigma (w\theta , \gamma )| , which
arises from approximating the integrals by Monte Carlo. By the triangle inequality,
we have the splitting

\scrE stat \leq sup
(w\theta ,\gamma )\in \scrW \epsilon \times I\gamma 

| \Omega | 

\bigm| \bigm| \bigm| \bigm| \bigm| 1

Nr

Nr\sum 
i=1

hr(Xi;w\theta , \gamma ) - \BbbE X(hr(X;w\theta , \gamma ))

\bigm| \bigm| \bigm| \bigm| \bigm| 
+ sup

w\theta \in \scrW \epsilon 

\sigma d| \Gamma D| 
\bigm| \bigm| \bigm| \bigm| 1

Nd

Nd\sum 
j=1

hd(Yj ;w\theta ) - \BbbE Y (hd(Y ;w\theta ))

\bigm| \bigm| \bigm| \bigm| 
+ sup

w\theta \in \scrW \epsilon 

\sigma n| \Gamma N | 

\bigm| \bigm| \bigm| \bigm| \bigm| 1

Nn

Nn\sum 
k=1

hn(Zk;w\theta ) - \BbbE Y (hn(Z;w\theta ))

\bigm| \bigm| \bigm| \bigm| \bigm| 
(4.3)

with hr(x;w\theta , \gamma ) = (\Delta w\theta + f + \gamma \Delta (\eta \rho s))
2(x) for x \in \Omega , hd(y;w\theta ) = | w\theta (y)| 2 for

y \in \Gamma D, and hn(z;w\theta ) = | \partial nw\theta (z)| 2 for z \in \Gamma N . Thus, we define the following three
function classes: \scrH r = \{ hr(w\theta , \gamma ) : w\theta \in \scrW \epsilon , \gamma \in I\gamma \} , \scrH d = \{ hd(w\theta ) : w\theta \in \scrW \epsilon \} , and
\scrH n = \{ hn(w\theta ) :w\theta \in \scrW \epsilon \} .

To bound the error components in the decomposition (4.3), we employ Rademacher
complexity of the DNN function classes \scrH r, \scrH d, and \scrH n, which is then bounded us-
ing Dudley's formula in Lemma A.6 and Lipschitz continuity of the functions in these
DNN function classes in Lemma A.4. These technical details are given in the appen-
dix. Then we can state the following bound on the quadrature error.

Lemma 4.3. For any small \tau , with probability at least 1 - 3\tau , there holds

sup
(w\theta ,\gamma )\in \scrW \epsilon \times I\gamma 

| \scrL \bfitsigma (w\theta , \gamma ) - \widehat \scrL \bfitsigma (w\theta , \gamma )| \leq c(er + \sigma ded + \sigma nen)

with c= c(\| f\| L\infty (\Omega ),\| \Delta (\eta \rho s)\| L\infty (\Omega )), and er, ed, and en defined by

er \leq c
L2B4L

\theta N4L - 4
\theta 

\bigl( 
N

1
2

\theta 

\bigl( 
log

1
2 B\theta + log

1
2 N\theta + log

1
2 Nr) + log

1
2 1

\tau 

\bigr) 
\surd 
Nr

,

ed \leq c
B2

\theta N
2
\theta 

\bigl( 
N

1
2

\theta (log
1
2 B\theta + log

1
2 N\theta + log

1
2 Nd) + log

1
2 1

\tau 

\bigr) 
\surd 
Nd

,

en \leq c
B2L

\theta N2L - 2
\theta 

\bigl( 
N

1
2

\theta (log
1
2 B\theta + log

1
2 N\theta + log

1
2 Nn) + log

1
2 1

\tau 

\bigr) 
\surd 
Nn

.
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SINGULARITY ENRICHED PINNs C385

Proof. Fix m \in \BbbN , B\theta \in [1,\infty ), \epsilon \in (0,1), and \BbbB B\theta 
:= \{ x \in \BbbR m : | x| \ell \infty \leq B\theta \} .

Then by [16, Proposition 5], log\scrC (\BbbB B\theta 
, | \cdot | \ell \infty , \epsilon ) \leq m log(4B\theta \epsilon 

 - 1). The Lipschitz
continuity estimates in Lemmas A.3 and A.4 imply

log\scrC (\scrH r,\| \cdot \| L\infty (\Omega ), \epsilon )\leq log\scrC (\Theta \times I\gamma ,max(| \cdot | \ell \infty , | \cdot | ),\Lambda  - 1
r \epsilon )\leq cN\theta log(4B\theta \Lambda r\epsilon 

 - 1)

with \Lambda r = cN\theta L
3W 5L - 5B5L - 3

\theta . By Lemma A.4, we have M\scrH r = cL2W 4L - 4B4L
\theta .

Then setting s= n - 
1
2 in Lemma A.6 and using the facts 1\leq B\theta , 1\leq L, and 1\leq W \leq 

N\theta , 1\leq L\leq c log 5 (for d= 2 and k= 3) (cf. Lemma 4.1) lead to

Rn(\scrH r)\leq 4n - 
1
2 + 12n - 

1
2

\int M\scrH r

n - 1
2

\bigl( 
cN\theta log(4B\theta \Lambda r\epsilon 

 - 1)
\bigr) 1

2 d\epsilon 

\leq 4n - 1
2 + 12n - 

1
2M\scrH r

\bigl( 
cN\theta log(4B\theta \Lambda rn

1
2 )
\bigr) 1

2

\leq 4n - 1
2 + cn - 

1
2W 4L - 4B4L

\theta N
1
2

\theta 

\bigl( 
log

1
2 B\theta + log

1
2 \Lambda r + log

1
2 n
\bigr) 

\leq cn - 1
2B4L

\theta N
4L - 7

2

\theta 

\bigl( 
log

1
2 B\theta + log

1
2 N\theta + log

1
2 n
\bigr) 
.

Similarly, repeating the preceding argument leads to

Rn(\scrH d)\leq cn - 
1
2B2

\theta N
5
2

\theta (log
1
2 B\theta + log

1
2 N\theta + log

1
2 n),

Rn(\scrH n)\leq cn - 
1
2B2L

\theta N
2L - 3

2

\theta (log
1
2 B\theta + log

1
2 N\theta + log

1
2 n).

Finally, the desired result follows from Lemma A.2.

Then combining Lemma 4.2 with Lemma 4.3 yields the following error estimate.
Thus, by choosing the numbers Nr, Nd, and Nn of sampling points sufficiently large,
the L2(\Omega ) error of the SEPINN approximation can be made about O(\epsilon 2).

Theorem 4.4. Fix a tolerance \epsilon > 0, and let ( \widehat w\theta ,\widehat \gamma ) \in \scrW \epsilon \times I\gamma be a minimizer

to the empirical loss \widehat \scrL \bfitsigma (w\theta , \gamma ) in (3.10). Then for any small \tau , with the statistical
errors er, ed, and en from Lemma 4.3, we have with probability at least 1 - 3\tau , the
following error estimate holds:

\| u\ast  - \widehat u\| 2L2(\Omega ) \leq cmin(\sigma d, \sigma n)
 - 1
\bigl( 
(1 + \sigma d + \sigma n)\epsilon 

2 + er + \sigma ded + \sigma nen
\bigr) 
,

where the constant c is independent of \bfitsigma .

Remark 4.2. According to Theorem 4.4, the parameter \bfitsigma has to be tuned carefully
in order to optimally achieve the error: a too small \bfitsigma incurs large consistency errors,
while a too large \bfitsigma incurs big statistical errors (on approximating the integrals on the
boundary).

5. Numerical experiments. Now we present numerical examples to illustrate
SEPINN and compare it with several existing PINN type solvers. Note that our main
goal is to illustrate the improved approximation accuracy by singularity enrichment,
instead of verifying the convergence rate. Indeed, even for the standard PINN (or any
other neural solvers), numerically verifying the theoretical rate remains a daunting
challenge [59]. In the training, Nr = 10,000 points in the domain \Omega and Nb = 800
points on the boundary \partial \Omega are selected uniformly at random to form the empirical
loss \widehat \scrL \bfitsigma , unless otherwise specified. In the PF strategy, we take an increasing factor
q = 1.5. All numerical experiments were conducted on a personal laptop (Windows
10, with RAM 8.0 GB, Intel Core i7-10510U CPU, 2.3 GHz), with Python 3.9.7,
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C386 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

with PyTorch. The gradient of the DNN output w\theta (x) with respect to the input x
(i.e., spatial derivative) and that of the loss \widehat \scrL \bfitsigma to \theta are computed via automatic
differentiation [7] using torch.autograd.

For SEPINN and SEPINN-C (based on cutoff), we minimize the loss \widehat \scrL \bfitsigma in two
stages: first determine the coefficients \bfitgamma N , and then reduce the boundary error and
refine the DNN approximation w\theta (of the regular part w) by the PF strategy. We
use different optimizers at these two stages. First, we minimize the loss \widehat \scrL \bfitsigma (w\theta ,\bfitgamma )
in both \theta and \bfitgamma using Adam [39] (from the SciPy library), with the default setting
(tolerance: 1.0e-8; no box constraint; maximum iteration number: 1000); then, we
minimize \widehat \scrL \bfitsigma (w\theta , \widehat \bfitgamma \ast ) (fixing \bfitgamma at \widehat \bfitgamma \ast fixed) using limited memory BFGS (L-BFGS)
[11], with the default setting (tolerance: 1.0e-9; no box constraint; maximum iteration
number: 2500). For SEPINN-N, we employ only L-BFGS [11]. We have employed
different optimizers for SEPINN-C and SEPINN-N: in SEPINN-C, the influence of the
DNN parameters \theta and stress intensity factors \bfitgamma on the loss \widehat \scrL \bfitsigma (w\theta ,\bfitgamma ) differ markedly,
and one may use different learning rates for them to compensate the influences. Once
the parameter \bfitgamma is fixed, the loss \widehat \scrL \bfitsigma (w\theta ,\bfitgamma ) can be efficiently minimized via L-BFGS.
To measure the accuracy of an approximation \^w of w\ast , we use the relative L2(\Omega )-
error e = \| w\ast  - \^w\| L2(\Omega )/\| w\ast \| L2(\Omega ), with the error computed using sampling points
in the domain \Omega . The stopping condition of the PF strategy is set to e < 1.00e-3 and
\sigma 
(k)
d , \sigma 

(k)
n \leq \sigma \ast , for some fixed \sigma \ast > 0. The first condition ensures that \^w can achieve

the desired accuracy and the second condition terminates the iteration after a finite
number of loops. The detailed hyperparameter setting of the PF strategy is listed
in Table 4. Throughout the training the box constraint on the DNN parameter is
not imposed, since numerically it is observed that the DNN parameters stay bounded
during the entire training process. The Python code for reproducing the numeri-
cal experiments will be made available at https://github.com/hhjc-web/SEPINN.git.
The zip file of the complete set of codes is available in the supplementary material
(M160119 SuppMat.pdf [local/web 399KB]).

First, we showcase the approach on an L-shaped domain [15, Example 5.2].

Example 5.1. The domain \Omega = ( - 1,1)2\setminus ([0,1)\times ( - 1,0]). Set \rho = 1 and R= 1
2 in

(3.4), the source

f =

\Biggl\{ 
sin(2\pi x)

\bigl[ 
2\pi 2

\bigl( 
y2 + 2y

\bigr) \bigl( 
y2  - 1

\bigr) 
 - 
\bigl( 
6y2 + 6y - 1

\bigr) \bigr] 
 - \Delta (\eta \rho s) ,  - 1\leq y\leq 0,

sin(2\pi x)
\bigl[ 
2\pi 2

\bigl( 
 - y2 + 2y

\bigr) \bigl( 
y2  - 1

\bigr) 
 - 
\bigl( 
 - 6y2 + 6y+ 1

\bigr) \bigr] 
 - \Delta (\eta \rho s) , 0\leq y\leq 1,

Table 4
The hyperparameters for the PF strategy for SEPINN (2D) and SEPINN-C and SEPINN-N

(3D) for the examples. The notation \widehat \gamma \ast denotes the estimated stress intensity factor, and e the
prediction error.

Example \sigma \ast \bfitsigma (1) \bfitsigma (K) \widehat \gamma \ast Epoch Time(s) e

5.1 1200 100 1139.1 1.0001 13.4k 690 1.84e-3

5.2 800

\biggl( 
100
100

\biggr) \biggl( 
759.4
759.4

\biggr) 
1.0033 3.7k 109 4.62e-3

5.3 (SE-C) 4000 400 3037.5 Table 5 8.3k 4161 5.04e-2

5.3 (SE-N) 5000 400 4556.3 -- -- 13.2k 2095 3.80e-2

5.4 (SE-C) 1000

\biggl( 
100

100

\biggr) \biggl( 
759.4

759.4

\biggr) 
Fig. 8 10.4k 10071 2.08e-2

5.4 (SE-N) 4000

\biggl( 
100
400

\biggr) \biggl( 
759.4
3037.5

\biggr) 
-- -- 21.2k 6493 3.83e-2

5.5 600 50 569.5 Table 7 15.8k 1396 -- --
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SINGULARITY ENRICHED PINNs C387

with the singular function s= r
2
3 sin( 2\theta 3 ), and \Gamma D = \partial \Omega . The exact solution u of the

problem is given by u=w+ \eta \rho s, with the regular part w given by

w=

\Biggl\{ 
sin(2\pi x)

\bigl( 
1
2y

2 + y
\bigr) \bigl( 
y2  - 1

\bigr) 
,  - 1\leq y\leq 0,

sin(2\pi x)
\bigl( 
 - 1

2y
2 + y

\bigr) \bigl( 
y2  - 1

\bigr) 
, 0\leq y\leq 1.

(5.1)

In this example, the regular part w belongs to H2(\Omega ) but not to H3(\Omega ), and
u lies in H1(\Omega ) but not in H2(\Omega ). In SEPINN, we employ a 2-20-20-20-1 DNN (3
hidden layers, each having 20 neurons). The first stage of the PF strategy gives an
estimate \widehat \gamma \ast = 1.0001, and the final prediction error e after the second stage is 1.84e-3.
Figure 2 shows that the pointwise error of the SEPINN approximation is small and
the accuracy around the singularity at the reentrant corner is excellent. In contrast,
applying PINN and DRM directly fails to yield satisfactory results near the reentrant
corner because of the presence of the singular term r

2
3 sin 2

3\theta , consistent with the
approximation theory of DNNs to singular functions [31]. DRM shows larger errors
over the whole domain, not just in the vicinity of the corner. By adaptively adjusting
the empirical loss, SAPINN and FIPINN can yield more accurate approximations than
PINN, but the error around the singularity is still large. Numerically, FIPINN can
adaptively add sampling points near the corner but does not give high concentration,
which limits the accuracy of the final DNN approximation. For all the methods, the
largest error occurs near the boundary \partial \Omega .

To give further insights into the methods, we show in Figure 3 the training dy-
namics of the empirical loss \widehat \scrL and relative error e, where i denotes the total iteration
index along with the PF loops. In Figure 3, we have omitted the loss curve for DRM,
since its value is negative. For all methods, the loss \widehat \scrL and error e both decay steadily
as the iteration proceeds, indicating stable convergence of the optimizer, but SEPINN
enjoys the fastest decay and smallest error e, due to the improved regularity of w\ast .
The final error e saturates at around 10 - 3 for SEPINN and 10 - 2 for PINN, SAPINN,
and FIPINN, but only 10 - 1 for DRM. Indeed the accuracy of neural PDE solvers
tends to stagnate at a level of 10 - 2 \sim 10 - 3 [56, 65, 67, 17].

We next investigate a mixed boundary value problem [14, Example 1].

Example 5.2. The domain \Omega is the unit square \Omega = (0,1)2, \Gamma N = \{ (x,0) :
x \in (0, 12 )\} , and \Gamma D = \partial \Omega \setminus \Gamma N . The singular function s = r

1
2 sin \theta 

2 in the local
polar coordinate (r, \theta ) at ( 12 ,0). Set \rho = 1 and R = 1

4 in (3.4), the source f =
 - sin(\pi x)( - \pi 2y2(y - 1)+6y - 2) - \Delta (\eta \rho s). The exact solution u= sin(\pi x)y2(y - 1)+\eta \rho s,
with the regular part w= sin(\pi x)y2(y - 1) and stress intensity factor \gamma = 1.

exact SEPINN SAPINN FIPINN PINN DRM

Fig. 2. The numerical approximations for Example 5.1 by SEPINN, SAPINN, FIPINN, PINN,
and DRM. From top to bottom: DNN approximation and pointwise error.
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C388 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

(a) L̂ vs i (b) e vs i

Fig. 3. Training dynamics for SEPINN and benchmark methods: (a) the decay of the empirical

loss \widehat \scrL versus the iteration index i (counted along the PF trajectory) and (b) the error e versus i.

exact SEPINN SAPINN FIPINN PINN DRM

Fig. 4. The numerical approximations of Example 5.2 by the proposed SEPINN (error: 4.62e-
3), SAPINN (error: 4.40e-2), FIPINN (error: 3.65e-2), PINN (error: 7.33e-2), and DRM (error:
1.86e-1). From top to bottom: DNN approximation and pointwise error.

This problem has a geometric singularity at the point ( 12 ,0), where the boundary
condition changes from Dirichlet to Neumann with an interior angle \omega = \pi . We employ
a 2-10-10-10-1 DNN (with 3 hidden layers, each having 10 neurons). The first stage
of the PF strategy gives an estimate \widehat \gamma \ast = 1.0033, and the prediction error e after the
second stage is 4.62e-3. The singularity at the crack point is accurately resolved by
SEPINN; cf. Figure 4, which shows also the approximations by DRM and other PINN
techniques. The overall solution accuracy is very similar to Example 5.1, and SEPINN
achieves the smallest error. SAPINN and FIPINN improve the standard PINN, but
still suffer from large errors near the singularity. Like before, the maximum error
occurs near the boundary \partial \Omega , especially near the singularity point.

In addition, we have experimented with different architectures (depth, width) of
the neural networks for the example. The training dynamics of the loss \widehat \scrL and the rel-
ative error e with four different neural networks are shown in Figure 5. The loss \widehat \scrL for
the 2-20-20-20-20-20-1 network cannot stabilize at a lower level than the 2-20-20-20-1
network. Thus, increasing the size of the neural network or the number of sampling
points alone does not necessarily lead to a smaller error for the approximation, as
observed earlier in [36]. It remains to develop practical guidelines to select suitable
architecture balancing good accuracy and computational expense.
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SINGULARITY ENRICHED PINNs C389

(a) L vs i (b) e vs i

Fig. 5. The training dynamics for Example 5.2 with four different neural networks: (a) the loss
L versus the iteration index i and (b) the error e versus the iteration index i.

(a) exact (b) SEPINN-C (c) error, SEPINN-C (d) SEPINN-N (e) error, SEPINN-N

Fig. 6. The SEPINN-C and SEPINN-N approximations for Example 5.3, slices at z = 1
2
(top)

and z = 1
4
(bottom).

The next example is a 3D Poisson equation adapted from [55, Example 1].

Example 5.3. Let \Omega 0 = ( - 1,1)2\setminus ([0,1)\times ( - 1,0]), and the domain \Omega = \Omega 0 \times 
( - 1,1). Define \Phi (r, z) =  - 2arctan e - \pi r sin\pi z

1+e - \pi r cos\pi z = 2
\sum \infty 

n=1
( - 1)ne - n\pi r sinn\pi z

n , and set

\rho = 1 and R= 1
2 in (3.4), the source f = 6x(y - y3)(1 - z2)+6y(x - x3)(1 - z2)+2(y - 

y3)(x - x3) - \Delta (\Phi \eta \rho s), with the singular function s= r
2
3 sin( 2\theta 3 ), and a zero Dirichlet

boundary condition. The exact solution u is given by u= (x - x3)(y - y3)(1 - z2)+\Phi \eta \rho s.

The coefficients \gamma \ast n are given by \gamma \ast 0 = 0 and \gamma \ast n = ( - 1)n 2
n for n\in \BbbN . In SEPINN-C

(cutoff), we take a truncation level N = 20 to approximate the first N +1 coefficients
in the series for \Phi (r, z) and a 3-10-10-10-1 DNN to approximate w. In the first stage,
we employ a learning rate 1.0e-3 for the DNN parameters \theta and 8.0e-3 for coefficients
\bfitgamma N , and the prediction error e after the second stage is 5.04e-2. We present the slices
at z = 1

2 and z = 1
4 in Figure 6. The true and estimated values of \bfitgamma n are given in

Table 5: the first few terms of the expansion are well approximated, but as the index
n gets larger, the approximations of \widehat \gamma \ast n become less accurate. However, the precise
mechanism for the observation remains unclear. To offer insights, in Table 6, we show
the relative errors e of \^w, eS of the singular part \widehat S = \widehat \gamma 0\eta \rho s+\sum N

n=1\widehat \gamma ne - \xi nrZn(z)\eta \rho s,

and eu of the approximation \^u= \^w+ \widehat S, defined by eu = \| u\ast  - \^u\| L2(\Omega )/\| u\ast \| L2(\Omega ), and
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C390 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

Table 5
The estimated values of the parameters \gamma n for Example 5.3, with five significant digits.

\gamma 0 \gamma 1 \gamma 2 \gamma 3 \gamma 4 \gamma 5 \gamma 6

exact 0.000e0 -2.000e0 1.000e0 -6.667e-1 5.000e-1 -4.000e-1 3.333e-1

predicted -7.793e-5 -2.000e0 1.006e0 -6.578e-1 5.135e-1 -4.238e-1 3.271e-1

\gamma 7 \gamma 8 \gamma 9 \gamma 10 \gamma 11 \gamma 12 \gamma 13

exact -2.857e-1 2.500e-1 -2.222e-1 2.000e-1 -1.818e-1 1.667e-1 -1.538e-1

predicted -3.612e-1 2.410e-1 -2.384e-1 2.724e-1 -1.855e-1 3.700e-1 -1.045e-2

\gamma 14 \gamma 15 \gamma 16 \gamma 17 \gamma 18 \gamma 19 \gamma 20

exact 1.429e-1 -1.333e-1 1.250e-1 -1.176e-1 1.111e-1 -1.053e-1 1.000e-1

predicted 2.761e-1 -2.082e-1 2.867e-1 1.239e-3 1.961e-1 7.774e-2 4.955e-1

Table 6
Convergence of the SEPINN-C approximation with respect to the truncation level N for

Example 5.3.

N 5 10 15 20

eabs 1.76 0.797 1.42 0.937

e 7.14e-2 3.23e-2 5.77e-2 3.80e-2

eu,abs 1.78 0.835 1.44 0.951

eu 5.12e-2 2.40e-2 4.17e-2 2.73e-2

eS,abs 0.625 0.271 0.245 0.146

eS 2.55e-2 1.11e-2 1.00e-2 5.95e-3

likewise for eS . The absolute errors are also given in order to give the full picture.
Note that e and eu exhibit very similar behavior, and both tend to stagnate, which
is expected due to the slow decay of the coefficients \gamma \ast n. The error eS decays steadily
as N increases. Thus, the nonsteady convergence of eu is due to the approximation
of w, which might be due to the optimization error during the training.

Next we present the SEPINN-N approximation. We use two 4-layer DNNs, both
of 3-10-10-10-1, for w and \Phi . The PF strategy is run with a maximum 2500 iter-
ations for each fixed \bfitsigma , and the final prediction error e is 3.80e-2. The maximum
error of the SEPINN-N approximation is slightly smaller, and both can give excellent
approximations.

Figure 7 compares the training dynamics for SEPINN-C and SEPINN-N. Fig-
ure 7(a) shows the convergence for the first few flux intensity factors \bfitgamma , all initialized to
1, which are far from the optimal values. Nonetheless, the algorithm converges to the
optimal one steadily. Within a few hundred iterations, the iterates approximate the
exact one well. To accurately approximate w, more iterations are needed. Figure 7(b)
shows the training dynamics for the DNN \Phi \zeta , where e\Phi = \| \Phi \ast  - \Phi \zeta \| L2(G)/\| \Phi \ast \| L2(G)

(G is the support of the cutoff function \eta \rho and \Phi \ast is the exact one). We study the
L2(G) error instead of the L2(\Omega ) error, since \eta \rho localizes its influence to G. The error
e\Phi eventually decreases to 10 - 2. The entire training process of the two methods is
similar; cf. Figures 7(c) and (d). SEPINN-N takes more iterations than SEPINN-C,
but SEPINN-C training takes longer: SEPINN-C requires evaluating the coefficient
\gamma n, which incurs taking the Laplacian of singular terms, whereas in SEPINN-N, all
parameters are trained together.
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SINGULARITY ENRICHED PINNs C391

(a) γ vs i (b) eΦ vs i

(c) L̂ vs i (d) e vs i

Fig. 7. The training dynamics of SEPINN-C and SEPINN-N: (a) the variation of first few
coefficients versus interation index i, (b) the error e\Phi versus iteration index i, (c) the decay of the

loss \widehat \scrL versus iteration index i, (d) the error e versus iteration index i.

The next example involves a combination of four singularities.

Example 5.4. Let the domain \Omega = ( - \pi ,\pi )3, \Gamma D = \{ (x, - \pi , z) : x \in ( - \pi ,0), z \in 
( - \pi ,\pi )\} \cup \{ ( - \pi , y, z) : y \in ( - \pi ,0), z \in ( - \pi ,\pi )\} \cup \{ (x,\pi , z) : x \in (0, \pi ), z \in ( - \pi ,\pi )\} \cup 
\{ (\pi , y, z) : y \in (0, \pi ), z \in ( - \pi ,\pi )\} , and \Gamma D = \partial \Omega \setminus \Gamma N . Let the vertices \bfitv 1 : (0, - \pi ),
\bfitv 2 : (\pi ,0), \bfitv 3 : (0, \pi ), and \bfitv 4 : ( - \pi ,0). This problem has four geometric singularities
at boundary edges \bfitv j \times ( - \pi ,\pi ), where the type of the boundary condition changes
from Dirichlet to Neumann with interior angles \omega j = \pi , j = 1,2,3,4. Set \Phi j(rj , z) =
r  - ln(2 cosh rj  - 2cosz) =

\sum \infty 
n=1

2
ne

 - nrj cosnz, j = 1,2,3,4, and set \rho j = 1 and

R = 1
2 in (3.4), the source f = (( 4

\pi 2  - 12x2

\pi 4 )(1  - y2

\pi 2 )
2 + ( 4

\pi 2  - 12y2

\pi 4 )(1  - x2

\pi 2 )
2 + (1  - 

x2

\pi 2 )
2(1  - y2

\pi 2 )
2) cosz  - 

\sum 4
j=1\Delta (\Phi j\eta \rho j

sj) with the singular functions sj = r
1
2
j cos(

\theta j
2 )

for j = 1,3 and sj = r
1
2
j sin(

\theta j
2 ) for j = 2,4. The exact solution u is given by u =

(1 - x2

\pi 2 )
2(1 - y2

\pi 2 )
2 cosz +

\sum 4
j=1\Phi j\eta \rho j

sj .

This example requires learning more parameters regardless of the method: for
SEPINN-C, we have to expand four singular functions and learn their coefficients,
whereas for SEPINN-N, we employ five networks to approximate w and \Phi \zeta ,j (j =
1,2,3,4). We take the number of sampling points Nd = 800 and Nn = 1200 on the
boundaries \Gamma D and \Gamma N , respectively, and Nr = 10000 in the domain \Omega .

First we present the SEPINN-C approximation. Note that \gamma \ast 0 = 0 and \gamma \ast n = 2
n

for n \in \BbbN . In SEPINN-C, we take a truncation level N = 15 for all four singularities.
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In the first stage, we take a learning rate 2.0e-3 for \theta and for coefficients r1 = r3 =
1.1e-2, r2 = r4 = 7.0e-3. The final prediction error e is 2.08e-2, and the estimated
coefficients \widehat \bfitgamma \ast are shown in Figure 8. The first few coefficients are well approximated,
but the high-order ones are less accurate.

Next we show the SEPINN-N approximation, obtained with five 4-layer 3-10-
10-10-1 DNNs to approximate w and \Phi \zeta ,j (j = 1,2,3,4) separately. The training
process suffers from the following problem: using only L-BFGS tends to be trapped
into a local minimum of the loss \widehat \scrL \bfitsigma , which persists even after adjusting extensively
the hyperparameters. Therefore, we first train the DNNs with Adam (learning rate
r = 4.0e-3) for 1000 iterations and then switch to L-BFGS (learning rate r = 0.2) for
a maximum 4000 iterations. This training strategy greatly improves the accuracy.
The prediction error e after the second stage is 3.83e-2. The approximation is fairly
accurate but slightly less accurate than that by SEPINN-C in Figure 9 in both L\infty (\Omega )
and L2(\Omega ) norms.

Last, we illustrate SEPINN on the Laplacian eigenvalue problem.

Example 5.5. Let \Omega = ( - 1,1)2\setminus ([0,1)\times ( - 1,0]). Consider the following Dirichlet
Laplace eigenvalue problem:  - \Delta u = \mu u, in \Omega and u = 0 on \partial \Omega , where \mu > 0 is the
eigenvalue and u \not \equiv 0 is the corresponding eigenfunction.

0 5 10 15

n

-0.5

0

0.5

1

1.5

2

*

1,n

2,n

3,n

4,n

Fig. 8. The comparison between true and estimated values of the parameters \gamma j,n for Example 5.4.

(a) exact (b) SEPINN-C (c) error, SEPINN-C (d) SEPINN-N (e) error, SEPINN-N

Fig. 9. The SEPINN-C and SEPINN-N approximations for Example 5.4, slices at z = \pi 
2

(top)
and z = \pi (bottom).
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Table 7
The estimated eigenvalues by PINN and SEPINN for Example 5.5.

Eigenvalue Reference [25] SEPINN Stress intensity factor PINN

\mu 1 9.6397 9.6226 \gamma 1 = 1.82e-2 10.4840

\mu 2 15.1973 15.2100 \gamma 2 = 8.71e-3 15.0462

The eigenvalue problem on an L-shaped domain has been studied extensively
[25, 46, 66]. The eigenfunctions may have singularity around the reentrant corner,
but the analytic forms appear unavailable: the first eigenfunction u1 has a leading
singular term r

2
3 sin( 23\theta ), the second one u2 has r

4
3 sin( 43\theta ) [25], and the third u3 is

analytic, given by u3(x1, x2) = sin(\pi x1) sin(\pi x2). We compute the first two leading
eigenpairs (\mu 1, u1) and (\mu 2, u2). The preceding discussions indicate u1 \in H1(\Omega ) and
u2 \in H2(\Omega ), and we split the leading singularity from both functions in order to benefit
from SEPINN, i.e., ui =wi + \gamma i\eta \rho s, with s= r

2
3 sin( 2\theta 3 ) and wi is approximated by a

DNN. Following the ideas in [8] and SEPINN, we employ the loss

\scrL \bfitsigma (w1,w2;\gamma 1, \gamma 2) =

2\sum 
i=1

\bigl( 
\| \Delta (wi + \gamma i\eta \rho s) +\psi (ui)(wi + \gamma i\eta \rho s)\| 2L2(\Omega ) + \sigma 1\| wi\| 2L2(\partial \Omega )

+ \alpha 
\bigm| \bigm| \| wi + \gamma i\eta \rho s\| 2L2(\Omega )  - 1

\bigm| \bigm| + \nu i\psi (ui)
\bigr) 

+ \beta 
\bigm| \bigm| (w1 + \gamma 1\eta \rho s,w2 + \gamma 2\eta \rho s)L2(\Omega )

\bigm| \bigm| ,
where \alpha , \nu i(i= 1,2) and \beta are hyperparameters and \psi (ui) is the Rayleigh quotient,

\psi (ui) = \| \nabla ui\| 2L2(\Omega )/\| ui\| 
2
L2(\Omega ), i= 1,2,(5.2)

which estimates the eigenvalue \mu i using the eigenfunction ui, by Rayleigh's principle.
We employ an alternating iteration method: we first approximate the eigenfunction
ui by minimizing the loss \scrL \sigma and then update the eigenvalue \mu i by (5.2), which is
then substituted back into \scrL \sigma . These two steps are repeated until convergence.

In SEPINN, we employ two 2-10-10-10-10-10-10-1 DNNs to approximate the reg-
ular parts w1 and w2, and take \alpha = 100, \beta = 135, \nu 1 = 0.02, and \nu 2 = 0.01 and
determine the parameter \sigma d by the PF strategy. We use Adam with a learning rate
2e-3 for all DNN parameters and \bfitgamma . Table 7 shows that singularity enrichment helps
solve the eigenvalue problem. Indeed, we can approximate u1 better and get more
accurate eigenvalue estimates. Note that during the training process of the standard
PINN, the DNN approximation actually directly approaches u2 and cannot capture
u1, since it cannot be resolved accurately. Even with a larger penalty \nu 1 for the first
eigenvalue, this does not improve the accuracy, while u2 can be approximated well
due to the better regularity of u2, i.e., u2 \in H2(\Omega ).

6. Conclusions. In this work, we have developed a family of novel neural solvers
for second-order elliptic boundary value problems with geometric singularities, e.g.,
corner singularity and mixed boundary conditions in the 2D case, and edge singu-
larities in the 3D case. The basic idea is to enrich the ansatz space spanned by
deep neural networks, by incorporating suitable singular functions. These singular
functions are designed to capture leading singularities of the exact solution. In so
doing, we can obtain more accurate approximations. We discuss several variants of
the method, depending on the specific scenarios, and discuss the extensions to the
eigenvalue problem. Additionally, we provide preliminary theoretical guarantees of
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the approach. Numerical experiments indicate that the approach is indeed highly
effective and flexible and works for a broad range of problem settings.

There are several directions for further research. First, one interesting question
is to extend the approach to more general singularities, e.g., conic singularities, sin-
gularities along curved edges, rotating solids \Omega = \Omega 0 \times (0, l) (with \Omega 0 depending on
the height), and higher-dimensional cases, as well as more complex problems, e.g., the
Maxwell system and the linear elasticity system. The key is to identify the singularity
functions. Note that in principle, the singularity functions can be approximate, e.g.,
computed using FEM. Second, it is of importance to study more closely the optimiza-
tion aspects of the approach. It is already challenging for standard neural solvers
[43, 63], and the issue appears even more delicate for SEPINN, as indicated by the
numerical experiments. Third, it is of much interest to design techniques that allow
imposing the boundary conditions exactly, which would facilitate deriving stronger
and better estimates.

Appendix A. Technical preliminaries. In this appendix, we collect several
preliminary results that are used in the error analysis of the proposed SEPINN. The
Rademacher complexity [1, 6] measures the complexity of a collection of functions by
the correlation between function values with Rademacher random variables, i.e., with
probability P (\omega = 1) = P (\omega = - 1) = 1

2 .

Definition A.1. Let \scrF be a real-valued function class defined on the domain
D and let \xi = \{ \xi j\} nj=1 be i.i.d. samples from the distribution \scrU (D). Then the
Rademacher complexity Rn(\scrF ) of \scrF is defined by

Rn(\scrF ) =\BbbE \xi ,\omega 

\biggl[ 
sup
f\in \scrF 

n - 1

\bigm| \bigm| \bigm| \bigm| n\sum 
j=1

\omega jf(\xi j)

\bigm| \bigm| \bigm| \bigm| \biggr] ,
where \omega = \{ \omega j\} nj=1 are i.i.d. Rademacher random variables.

Then we have the following PAC-type generalization bound [52, Theorem 3.1].

Lemma A.2. Let X1, . . . ,Xn be a set of i.i.d. random variables, and let \scrF be a
function class defined on D such that supf\in \scrF \| f\| L\infty (D) \leq M\scrF < \infty . Then for any
\tau \in (0,1), with probability at least 1 - \tau ,

sup
f\in \scrF 

\bigm| \bigm| \bigm| \bigm| n - 1
n\sum 

j=1

f(Xj) - \BbbE [f(X)]

\bigm| \bigm| \bigm| \bigm| \leq 2Rn(\scrF ) + 2M\scrF 

\sqrt{} 
log 1

\tau 

2n
.

To apply Lemma A.2, we bound Rademacher complexities of the function classes
\scrH r, \scrH d, and \scrH n. This follows from Dudley's formula in Lemma A.6. The next lemma
gives useful boundedness and Lipschitz continuity of the DNN function class in terms
of \theta ; see [36, Lemma 3.4 and Remark 3.3] and [37, Lemma 5.3]. The estimates also hold
when L\infty (\Omega ) is replaced with L\infty (\Gamma D) or L\infty (\Gamma N ). The notation L\infty (\Omega ;\BbbR d) denotes
the L\infty (\Omega ) norm for \BbbR d-valued functions. Note that \| v\theta \| L\infty (\Omega ) is independent of the
depth L since the activation function \varrho satistifies \| \varrho \| L\infty (\BbbR ) \leq 1.

Lemma A.3. Let L, W , and B\theta be the depth, width, and maximum weight bound
of a DNN function class \scrW with N\theta nonzero weights. Then for any v\theta \in \scrW , the
following estimates hold:

(i) \| v\theta \| L\infty (\Omega ) \leq WB\theta , \| v\theta  - v\~\theta \| L\infty (\Omega ) \leq 2LWLBL - 1
\theta | \theta  - \~\theta | \ell \infty ;

(ii) \| \nabla v\theta \| L\infty (\Omega ;\BbbR d) \leq 
\surd 
2WL - 1BL

\theta , \| \nabla (v\theta  - v\~\theta )\| L\infty (\Omega ;\BbbR d) \leq 
\surd 
2L2W 2L - 2B2L - 2

\theta | \theta  - 
\~\theta | \ell \infty ;

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

5/
24

 to
 1

93
.6

0.
23

8.
99

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



SINGULARITY ENRICHED PINNs C395

(iii) \| \Delta v\theta \| L\infty (\Omega ) \leq 2LW 2L - 2B2L
\theta , \| \Delta (v\theta  - v\~\theta )\| L\infty (\Omega ) \leq 8N\theta L

2W 3L - 3B3L - 3
\theta | \theta  - 

\~\theta | \ell \infty .

Lemma A.3 implies the uniform boundedness and Lipschitz continuity of functions
in \scrH r, \scrH d, and \scrH n.

Lemma A.4. There exists a constant c depending on \| f\| L\infty (\Omega ), \| \Delta (\eta \rho s)\| L\infty (\Omega ),
and B\gamma such that

\| h(w\theta , \gamma )\| L\infty (\Omega ) \leq cL2W 4L - 4B4L
\theta \forall h\in \scrH r,

\| h(w\theta )\| L\infty (\Gamma D) \leq cW 2B2
\theta \forall h\in \scrH d,

\| h(w\theta )\| L\infty (\Gamma N ) \leq cW 2L - 2B2L
\theta \forall h\in \scrH n.

Moreover, the following Lipschitz continuity estimates hold:

\| h(w\theta , \gamma ) - \~h(w\~\theta , )\| L\infty (\Omega ) \leq cN\theta L
3W 5L - 5B5L - 3

\theta (| \theta  - \~\theta | \ell \infty + | \gamma  - \~\gamma | ) \forall h,\~h\in \scrH r,

\| h(w\theta ) - h(w\~\theta )\| L\infty (\Gamma D) \leq cLWL+1BL
\theta | \theta  - \~\theta | \ell \infty \forall h,\~h\in \scrH d,

\| h(w\theta ) - \~h(w\~\theta )\| L\infty (\Gamma N ) \leq cL2W 3L - 3B3L - 2
\theta | \theta  - \~\theta | \ell \infty \forall h,\~h\in \scrH n.

Proof. All the estimates are direct from Lemma A.3.

Next, we state Dudley's lemma [49, Theorem 9], [64, Theorem 1.19], which bounds
Rademacher complexities using covering number.

Definition A.5. Let (\scrM ,m) be a metric space of real valued functions, and
\scrG \subset \scrM . A set \{ xi\} ni=1 \subset \scrG is called an \epsilon -cover of \scrG if for any x \in \scrG , there exists an
element xi \in \{ xi\} ni=1 such that m(x,xi)\leq \epsilon . The \epsilon -covering number \scrC (\scrG ,m, \epsilon ) is the
minimum cardinality among all \epsilon -covers of \scrG with respect to m.

Lemma A.6. Let M\scrF := supf\in \scrF \| f\| L\infty (\Omega ), and let \scrC (\scrF ,\| \cdot \| L\infty (\Omega ), \epsilon ) be the cov-
ering number of \scrF . Then the Rademacher complexity Rn(\scrF ) is bounded by

Rn(\scrF )\leq inf
0<s<M\scrF 

\biggl( 
4s + 12n - 

1
2

\int M\scrF 

s

\bigl( 
log\scrC (\scrF ,\| \cdot \| L\infty (\Omega ), \epsilon )

\bigr) 1
2 d\epsilon 

\biggr) 
.
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the ``SIAM Reproducibility Badge: Code and data available"" as a recognition that
the authors have followed reproducibility principles valued by SISC and the scientific
computing community. Code and data that allow readers to reproduce the results
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