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Abstract 23 

Long-distance water diversion projects significantly affect regions' water resource 24 

cycle and allocation. However, many unknowns still exist in water ecosystem 25 

functionality and energy flow in large-scale inter-basin water diversion projects. This 26 

study focused on the Gross Primary Production (GPP) in the Middle-Route of the 27 

South-to-North Water Diversion Project of China (MRSNWDPC), i.e., the world’s 28 

longest inter-basin water diversion project. The spatiotemporal distribution, driving 29 

factors, and pathways of GPP were comprehensively analyzed based on four years of 30 

high-frequency water quality monitoring and satellite re-analysis data from 11 national 31 

stations, coupling the Bayesian hierarchical models and multivariate statistical methods. 32 

The results showed that the daily average GPP in the main canal of the MRSNWDPC 33 

over the years was 2.650 g O2 m
2 d-1, with seasonal peak GPP occurring in summer and 34 

generally increasing with the distance along the canal. Five structural equation 35 

modeling (SEM) of GPP variations were built in the main canal, revealing the surface 36 

pressure (PS) and surface carbon dioxide concentrations (CO2) and pH value being the 37 

main driving factors. The surface pressure showed significant negative impacts on GPP 38 

changes in the canal, while the CO2 and pH showed different direction effects in 39 

different sections. The carbon equivalent GPPs in the MRSNWDPC is 0.828 g C m-2 d-40 

1, ranging from 0.600 – 1.028 g C m-2 d-1, close to the Yangtze River and the East Sea 41 

of China. Frequently, hydraulic regulation may impact ecosystem energy flow. This 42 

study could provide a scientific basis for a deeper understanding and analysis of the 43 

energy flow mechanisms in water ecosystems of mega inter-basin water diversion 44 
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projects. 45 

Keywords: Gross primary productivity; Inter-basin water diversion project; Aquatic 46 

ecosystem evaluation; Spatiotemporal dynamic analysis; Drivers path analysis. 47 

1 Introduction 48 

Aquatic metabolism is one of the most integrative measurements of aquatic 49 

ecosystem functioning and impairment and is highly sensitive to many anthropogenic 50 

and natural stressors at different levels of ecological organization (Bunn et al., 1999). 51 

Aquatic metabolism is also a crucial part of the global carbon cycle (Val et al., 2016), 52 

which is represented by the photosynthetic autotrophic carbon fixation process (i.e., 53 

gross primary productivity, GPP), which converts inorganic carbon into organic carbon 54 

and its dissipation process (i.e., ecosystem respiration, ER) (Battin et al., 2023; Shen et 55 

al., 2015). Among them, GPP is the most significant carbon flux and one of the primary 56 

energy inputs in aquatic ecosystems. It plays a vital role in maintaining the aquatic food 57 

web balance and the water body’s health. GPP plays a significant role in determining 58 

the minimum and maximum daily dissolved oxygen levels in riverine water bodies 59 

(Genzoli and Hall, 2016; Quinn and McFarlane, 1989) and provides complementary 60 

information about the ecosystem’s function as water quality only reflects the ecosystem 61 

structure (Sabater et al., 2000). Furthermore, GPP is sensitive to the impacts of 62 

disturbances or management actions on water bodies, and even minor variations of GPP 63 

can significantly affect the carbon balance of aquatic ecosystems (Palmer and Febria, 64 

2012). Therefore, GPP has the potential to become a novel and unique indicator for 65 

future engineering water quality regulation. Understanding and quantifying the 66 
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influencing factors and patterns of GPP is crucial for ecosystem carbon change 67 

monitoring and regulation, as well as policy formulation under the climate change 68 

background.  69 

Previous studies on GPP in aquatic ecosystems have mainly focused on natural 70 

water bodies such as rivers, lakes, estuaries, and oceans (Gao et al., 2023; Olson et al., 71 

2020; Spilling et al., 2019; Zhang and Ye, 2021). However, with the increasing demands 72 

for water allocation and utilization in human society, one of the most efficient hydro-73 

projects for water pressure mitigation, long-distance water diversion projects, have 74 

been widely built in recent years and have become a complex artificial water system 75 

with water-air interfaces, and achieved significant economic and social benefits (Duan 76 

et al., 2022; Rodriguez-Castillo et al., 2019; Woodford et al., 2013). Those projects are 77 

widely featured by concrete-lined canals, simple hydro-ecological structures, and 78 

frequent hydrodynamic condition variations, which are different from natural rivers’ 79 

seasonal variations in water level and flow velocity. Thus, gaining a systematic 80 

understanding of the variance mechanism of GPP in a long-distance water diversion 81 

canal is not only beneficial to mitigating the potential ecological risks but also provides 82 

insights into fundamental ecosystem functions, thereby facilitating the forecasting and 83 

regulation of ecosystem development. However, the metabolic rate of canal ecosystems 84 

is higher than natural water bodies under high water levels and significant flow rate 85 

regulations, and the environmental factors and processes affecting the ecosystem 86 

become more complex than natural water bodies (Aristi et al., 2014; Prichard and Scott, 87 

2014). Furthermore, the GPP of small-medium streams and rivers is reasonably well 88 
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known (Hoellein et al., 2013; Yu et al., 2018), but estimates for large rivers or canals 89 

are much rarer. Therefore, it is unclear if and how GPP patterns change from small 90 

rivers to truly large and long canals, which we define as long canals as canal length is 91 

greater than 1000 km. The GPP regimes of such canals are virtually unknown.  92 

The primary determinants of GPP activity in rivers are light, temperature, and 93 

hydrologic disturbance, with nutrients and organic matter that may accelerate the GPP 94 

response to each of these factors (Appling et al., 2018b). These drivers vary naturally 95 

and can show strong annual and seasonal patterns (i.e., light, thermal, and hydrologic 96 

regimes), which greatly differ canal continuum. Additionally, these drivers respond to 97 

global changes in climate and greenhouse gas. Long-distance inter-basin water 98 

diversion projects experience diverse climates, geology, and high taxonomic diversity 99 

of organisms. For example, the water quality and hydrology conditions are significantly 100 

different upstream and downstream (Bernhardt et al., 2018). Furthermore, GPP is 101 

sensitive to multiple stressors, which act independently or in combination with other 102 

stressors, often presenting a complex interplay of controls (Heathwaite, 2010; Nong et 103 

al., 2020). Ultimately, these various changes in environmental controls modify the rates 104 

and timing of ecosystem metabolism with potentially detrimental consequences for 105 

water quality and biological communities. The patterns of ecological function changes 106 

in channels under artificial regulation remain unknown. Additionally, the same water 107 

body exhibits spatial heterogeneity under different regional conditions, influenced by 108 

geographical and natural environmental factors. This is a challenge faced when 109 

studying large-scale or medium-scale water bodies, and therefore, previous research 110 
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findings can only be cautiously referenced and cannot be directly applied. 111 

Understanding the GPP dynamic processes and their drivers in inter-basin water 112 

diversion projects is of importance to provide insights and guidance in setting artificial 113 

hydrologic regulations under the impacts of climate change. 114 

Considering the research gaps mentioned above, this study took the Middle Route 115 

of the South-to-North Water Diversion Project of China (MRSNWDPC), i.e., the 116 

longest inter-basin water diversion project in the world, as the study case. As a novel 117 

artificial water system which officially operated since 2014, the ecosystem of 118 

MRSNWDPC has yet to achieve the ecological balance. That is to say, the MRSNWDP 119 

is vulnerable to ecological anomalies and susceptible to external interference (von 120 

Schiller et al., 2017). Therefore, this presents a suitable and pressing case for 121 

investigating the mechanisms of GPP for the water management department. This 122 

research aims to investigate the spatiotemporal variability of GPP and its driving effect 123 

in long-distance water diversion projects. The estimation of GPPs was conducted with 124 

variants of single-station models based on an open-channel metabolism approach. The 125 

relationships between environmental factors and GPP inter and inner locations were 126 

explored using the random forest method. The structural equation model (SEM) was 127 

applied to analyze the driving factors and pathways of GPP variations. The main 128 

objectives of this study were: 1) to estimate the spatiotemporal variations of GPPs in 129 

long-distance inter-basin water diversion projects; 2) to identify key driving factors for 130 

GPP changes in the long-distance water diversion canal; 3) to understand the effect 131 

pathways of GPP variations. This study could contribute to a better understanding of 132 
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the ecosystem characteristics of such mega inter-basin water diversion projects, enrich 133 

and complete our understanding of GPP variability characteristics and regulation 134 

patterns under different hydrological regimes and geographical environmental features, 135 

provide scientific references for the functional and environmental assessments, and 136 

support the development of water quality management strategies. 137 

2 Material and methodology 138 

2.1 Study area and data collection 139 

The Middle Route of the South-to-North Water Diversion Project of China 140 

originates from the Danjiangkou Reservoir, China. It flows 1,276 km northward via an 141 

open canal crossing four provinces and municipalities to the Tuancheng Lake, Beijing, 142 

the capital of China. The main canal spans the subtropical and temperate monsoon 143 

climate zones, with the average yearly air temperature between 11.2 and 15.8 ℃ and 144 

the average annual rainfall ranging from 495.6 to 795.4 mm (from 1981 to 2022).  The 145 

MRSNWDPC has delivered over 60 billion m3 of fresh water to North China since 146 

December 2014, contributing as the major drinking water resource for more than 75% 147 

of the cities along the canal. The Construction and Administration Bureau of the 148 

MRSNWDPC has built 11 automatic water quality monitoring stations along the main 149 

canal based on the national environmental protection program to monitor the water 150 

quality regimes. The stations are Taocha (TC), Jianggou (JG), Liuwan (LW), 151 

Fuchengnan (FCN), Zhanghebei (ZHB), Nandaguo (NDG), Tianzhuang (TZ), 152 

Xiheishan (XHS), Fenzhuanghe (FZH), Zhongyishui (ZYS), and Huinanzhuang (HNZ), 153 

as shown in Fig. 1. Three canal sections, i.e., upstream, midstream, and downstream, 154 

was defined based on the distance between each station and the starting point of the 155 

canal. More details can be found in Table S1. 156 
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Fig. 1. Locations of the water quality monitoring stations along the main canal of the Middle 

Route of the South-to-North Water Diversion Project of China in this study (Note: TC to FCN are 

“upstream”, ZHB to TZ are “midstream”, and XHS to HNZ are “downstream”). 

A series of environmental factors influence GPP, and we collect and divide the 157 

factors set with two datasets in the current study based on the usage of factors, which 158 

are estimation dataset (including dissolved oxygen (DO), saturated DO (SDO), water 159 

temperature (WT), photosynthetically active radiation (PAR), and water depth (WD)) 160 

and analysis dataset (including pH, surface pressure (PS), wind speed (WS), 161 

precipitation (Pre), carbon dioxide (CO2)). Factors in the estimation dataset were all 162 

selected based on the requirements of the streamMetabolizer approach to calculate GPP 163 
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levels in the main canal  164 

. In the analysis dataset, pH represents the acidity or alkalinity of water, which 165 

affects phytoplankton photosynthesis by influencing the equilibrium of the carbonate 166 

system and controlling the partial pressure of carbon dioxide (Appling et al., 2018b; 167 

Jakobsen et al., 2015). PS, WS, and Pre are common meteorological factors widely 168 

adopted in GPP research. PS has a significant influence on SDO; WS is one of the most 169 

important determinants of the gas exchange coefficient (K600) (Antonopoulos and 170 

Gianniou, 2003; Jia et al., 2020b); and Pre may cause high flow event which inputs 171 

inorganic nutrients, dissolved organic carbon and suspended sediments, which can 172 

induce both positive and negative effects on primary production (Tang et al., 2015). 173 

CO2 is one of the greenhouse gas which produced in the metabolism process of aquatic 174 

organisms. The relationship between greenhouse gases and oxygen was previously 175 

interpreted as an important metabolic role in dynamic gas production (e.g., respiration, 176 

methanogenesis, methane oxidation) and can reflect the oxygen concentration in 177 

surface water (Shen et al., 2015). 178 

The water quality parameters were monitored from the automatic national 179 

monitoring stations along the main canal, including dissolved oxygen (DO, mg/L), 180 

water temperature (WT, ℃), and pH values, from January 2017 to December 2020, with 181 

a monitoring frequency of every six hours. The water depth (WD, m) data were 182 

recorded simultaneously in the nearest regulating sluice to each water quality 183 

monitoring station. Meteorological and environmental indicators included surface 184 

pressure (PS, hPa), shortwave radiation (SW, J/m2), wind speed (WS, m/s), and 185 



 

Page 10 / 72 

precipitation (Pre, mm/day). Of which, the PS, WS, and Pre data were obtained from 186 

ERA5 (ECMWF Re-Analysis 5) hourly data (Campeau and Del Giorgio, 2014), while 187 

SW data were obtained from CERES satellite re-analysis hourly data (Muñoz Sabater, 188 

2019). Greenhouse gas, i.e., the surface carbon dioxide concentrations (CO2, mg/kg) 189 

was used from the Copernicus Atmosphere Monitoring Service (CAMS) and global 190 

greenhouse gas re-analysis (EGG4) dataset, provided as hourly data 191 

(Nasa/Larc/Sd/Asdc, 2017). 192 

2.2 Data processing 193 

High-quality data is essential for reliable data analysis (Inness, 2019). This study 194 

pre-processed the collected data by data management, cleaning, and denoising methods. 195 

Different intelligent techniques were applied to eliminate and reduce outliers and data 196 

noise as follows:  197 

(1) Data pre-processing, including removing and replacing significant outliers in 198 

the raw data. The outliers were detected and removed using quartile and moving median 199 

methods, and the missing data were imputed using linear interpolation. Additionally, to 200 

make the distribution of rainfall conform to the normal distribution, a logarithm 201 

transformation 𝑃𝑟𝑒∗ = log10(0.1 + √𝑃𝑟𝑒) was applied for the raw precipitation data, 202 

where 𝑃𝑟𝑒∗ and 𝑃𝑟𝑒 represent the transformed and raw data, respectively (Ehrlinger 203 

and Woess, 2022). Finally, all the indicators in the estimation dataset were resampled 204 

to a frequency of every six hours using the time series resampling method, generating 205 

processed data after the basic data cleaning step.  206 

(2) Deep denoising. In this study, the Complete Ensemble Empirical Mode 207 
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Decomposition with Adaptive Noise (CEEMDAN), Sample Entropy (SamEn), and 208 

Density-based Spatial Clustering of Applications with Noise (DBSCAN) were applied 209 

for deep denoising of the cleaned data. Detailed information about CEEMDAN, SamEn, 210 

and DBSCAN can be found in sections S1, S2, and S3, respectively. The steps were as 211 

follows: 1) the original sequences were decomposed into multiple Intrinsic Mode 212 

Functions (IMFs) and a residual term using CEEMDAN; 2) the SamEn method was 213 

employed to divide the IMF signals from complex to simple, categorizing them into 214 

high-frequency, mid-frequency, and low-frequency signals. These signals were mapped 215 

to the feature space of high-frequency, mid-frequency, and low-frequency 216 

characteristics, and then DBSCAN was applied to cluster the 3D feature space data. In 217 

the clustering results, clusters with a small number of data points less than 50% of the 218 

total samples, and with a variance more significant than the variance of the original 219 

sequence were defined as noise clusters; 3) the data was processed to obtain the final 220 

denoised data by filtering out the noise. The CEEMDAN was implemented using the 221 

MATLAB toolbox provided by Torres (Feng et al., 2020), with the parameters set as 222 

follows: the noise standard deviation, the number of realizations, and the maximum 223 

sifting iterations were set to 0.2, 700, and 5000, respectively. We developed a program 224 

based on the principle of sample entropy, with reconstruction dimension and threshold 225 

set as program parameters, and classified the complexity of IMF signals using 2 and 226 

0.15*S.D. (⋅), respectively. “(⋅)” stands for the inputted signal in SamEn, i.e., the IMF 227 

from CEEMDAN. DBSCAN was implemented using relevant functions provided by 228 

MATLAB, with minPts set to 10, and eps calculated as the mode of the Euclidean 229 
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distances between all data points. All data processing procedures were performed on 230 

the MATLAB R2021a platform (Torres et al., 2011). 231 

Finally, the processed data were divided into an estimation dataset (including DO, 232 

Saturated DO (SDO), WT, photosynthetically active radiation (PAR), and WD) and an 233 

analysis dataset (including pH, PS, WS, Pre, CO2), respectively. 234 

2.3 GPP estimation method 235 

In this study, the GPP based on measurements from individual water sampling 236 

stations was calculated using the single-station method. We used data such as dissolved 237 

oxygen, water temperature, photosynthetically active radiation, and water depth to 238 

calculate GPP using the streamMetabolizer program in R language. The core equation 239 

in the program for the DO variations at each time step was based on eq.(1) as follows 240 

(The MathWorks, 2022): 241 

𝑑𝑂𝑖,𝑑

𝑑𝑡
= (

𝐺𝑃𝑃𝑑

𝑧𝑖,𝑑̅̅ ̅̅
×

𝑃𝑃𝐹𝐷𝑖,𝑑

𝑃𝑃𝐹𝐷𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅

) + (
𝐸𝑅𝑑

𝑧𝑖,𝑑̅̅ ̅̅
) + 𝑓𝑖,𝑑(𝐾600𝑑)(𝑂𝑠𝑎𝑡𝑖,𝑑 − 𝑂𝑖,𝑑) (1) 

𝑓𝑖,𝑑(𝐾600𝑑) = 𝐾600 × (
𝑠𝐴 + 𝑠𝐵𝑇𝑡 + 𝑠𝐶𝑇𝑡

2 + 𝑠𝐷𝑇𝑡
3

600
)

𝑠𝐸

 (2) 

Where 𝑂𝑖,𝑑  is the modeled oxygen concentration on day 𝑑  at time index 𝑖 , and 242 

𝑑𝑂𝑖,𝑑/𝑑𝑡  is the rate of concentration change. 𝐺𝑃𝑃𝑑 , 𝐸𝑅𝑑 , and 𝐾600𝑑   are the three 243 

daily parameters fitted by the model: 𝐺𝑃𝑃𝑑 and 𝐸𝑅𝑑 are daily average rates of gross 244 

primary productivity and ecosystem respiration, respectively (g O2 m−2 d−1), while 245 

𝐾600𝑑  is a daily average value of the standardized gas exchange rate coefficient (d−1, 246 

scaled to a Schmidt number of 600). The other variables are model inputs: 𝑧𝑖;𝑑̅̅ ̅̅  is the 247 

average water depth (m) over the width and length of the upstream; 𝑃𝑃𝐹𝐷𝑖,𝑑  is the 248 



 

Page 13 / 72 

photosynthetic photon flux density (μmol photons m−2 d−1); 𝑃𝑃𝐹𝐷𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅ is the daily average 249 

observed 𝑃𝑃𝐹𝐷𝑖,𝑑; 𝑓𝑖,𝑑(𝐾600𝑑) is a function that converts daily average 𝐾600𝑑  to an 250 

O2-specific, temperature-specific gas exchange coefficient (𝐾𝑂2𝑖,𝑑, d−1) based on eq. 251 

(2) with  𝑇𝑡 is the water temperature in ℃, the Schmidt number coefficients are 𝑠𝐴 = 252 

1568, 𝑠𝐵 = −86.04, 𝑠𝐶 = 2.142, and 𝑠𝐷 = −0.0216, and the scaling exponent 𝑠𝐸 = −0.5 253 

(Raymond et al., 2012); 𝑂𝑠𝑎𝑡𝑖,𝑑 is the theoretical saturation concentration of 𝑂2 if the 254 

water and air were in equilibrium. More detailed information can be found in (Jähne et 255 

al., 1987). 256 

The streamMetabolizer can estimate GPP based on the Bayes hierarchical model, 257 

Monte Carlo Markov Chain (MCMC) method, and Euler's differential equations. The 258 

model outputs posterior probability distributions for daily GPP and K600. The 259 

reliability of the results can be assessed by examining the convergence of the model 260 

outputs, the fit between observed and predicted dissolved oxygen values, model errors, 261 

and the daily variation in GPP (Appling et al., 2018a). This study used a model called 262 

“b_np_oi_eu_psrckm.stan”. Each Bayesian metabolism model ran on 4 MCMC chains, 263 

including 500 burn-in steps and 2000 save steps. The convergence of the daily estimated 264 

data was assessed using the Gelman-Rubin 𝑅̂  criterion, with values below 1.1 265 

indicating convergence. Data with 𝑅̂  values higher than 1.1 were removed, which 266 

stands for whether there is still similar variation within or between chains after 267 

discarding the Warmup samples (Brooks and Gelman, 1998). The variation in GPP was 268 

modeled as a saturating function of light, as this setting typically provides robust and 269 

accurate results (Gelman and Rubin, 1992). The SDO and PAR were calculated using 270 
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the “calc_do_sat” and “calc_light” functions provided by the package, respectively. The 271 

average water depth of the neighboring control structures was used as the mean depth 272 

of the river. In the output results, GPP was constrained to be always positive, and any 273 

data points that did not meet this criterion were removed and interpolated. Additionally, 274 

a moving window with a width of 15 was used to apply a moving average filter to the 275 

GPP output, reducing noise and estimation errors. The data pre-processing and GPP 276 

prediction framework can be seen in Fig. 2. 277 

 278 

Fig. 2. In-situ monitoring and satellite re-analysis data processing scheme diagram in this study 279 

(Note: In basic data cleaning, the first and second numbers of “window sizes” stand for the backward 280 

and forward window sizes respectively; In deep data cleaning, numbers, and bracketed words are 281 

values and names of the algorithm parameters, “(⋅)” imply the input signal of sample entropy; In 282 
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using streamMetabolizer function, enclosed content and subsequent text are the name of the R 283 

package and specific function respectively). 284 

2.4 Statistical approaches 285 

2.4.1 Random Forest 286 

In this study, random forest regression and variable importance methods were 287 

applied to identify the driving factors of GPPs. Random forest is a supervised ensemble 288 

learning algorithm widely used for classification and regression problems (Hall et al., 289 

2015). It trains multiple weak learners by repeatedly bootstrap sampling and combines 290 

their output using voting (for classification problems) or averaging (for regression 291 

problems) to generate robust and accurate predictions. In this study, random forest 292 

regression was applied to identify the key drivers of GPP in analysis dataset, and to 293 

assess the explanatory ability of environmental factors on GPP variations. Additionally, 294 

the relative importance of factors in the analysis dataset was evaluated based on the 295 

“percent increase in mean square error (%IncMSE)” and the significance P values. The 296 

“%IncMSE” calculates the MSE increase when a feature is replaced. A 297 

higher %IncMSE indicates a feature has higher explanatory capacity on the dependent 298 

variable (Breiman, 2001). This calculation used the R package “randomForest” for 299 

random forest regression with 500 trees, and the “rfPermute” R package was used to 300 

calculate the “%IncMSE” and P values. 301 

2.4.2 Structural Equation Model 302 

The casual relationships and interactions between GPP and the physicochemical 303 

factors in different sections were identified through the structural equation modeling 304 
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(SEM) in this study. SEM is widely used in environmental and ecology science, which 305 

can provide a causal analysis framework to explore the relationship network and direct 306 

and indirect driving path among multivariate empirical data and theoretical models 307 

(Burpee et al., 2022; Song et al., 2021). Each introduced causal path in the model 308 

structure is quantified using a univariate regression model to assess if it is supported by 309 

empirical data. Furthermore, direct and indirect pathways can be combined to calculate 310 

the variables’ total effect on the model’s response by simple addition and multiplication 311 

of standardized path coefficients in the individual regression models (Bai and Cotrufo, 312 

2022).  313 

This study employed the SEM to analyze the causal pathways between 314 

environmental factors and GPP variations. To avoid the mixture of causal path patterns 315 

of different monitoring locations, the main canal was further divided into five segments 316 

based on the spatial distances inter-station in Section 2.1, i.e., TC to LW, LW to ZHB, 317 

ZHB to TZ, TZ to ZYS, and ZYS to HNZ, respectively. Path coefficients (partial 318 

multiple regression coefficients) were standardized to a common metric, allowing for 319 

the comparison of the relative importance of each effect. Greater effect values indicate 320 

a stronger influence on GPP. Additionally, four model goodness-of-fit evaluation 321 

indicators, including chi-square (𝜒2), goodness of fit index (GFI), root mean square 322 

error of approximation (RMSEA), and standardized root mean square residual (SRMR), 323 

were selected to assess the fit of the SEMs. The feasibility of SEM models was tested 324 

by p-value, and p > 0.05 indicated a reliable simulation of SEM. Notably, the dataset 325 

that has a large sample size could yield a model with p > 0.05, even though the model 326 
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is well-fitted. Therefore, the evaluation of path models should consider different 327 

evaluation metrics. The ranges and recommended values of the above indicators can be 328 

found in Table S2. This study applied the maximum likelihood estimation method to 329 

the SEM estimation and all response variables were previously standardized in order to 330 

eliminate the effect of unit. The calculation and evaluation of the SEM were conducted 331 

with the “lavaan” R package (Palt et al., 2022). 332 

3 Results 333 

3.1 Spatial and temporal distribution of environment parameters  334 

The average DO concentrations and pH of the main canal ranged from 9.10 to 335 

11.02 mg/L and 7.90 to 8.18, respectively (Fig. 3a and 3c). The DO, SDO, and pH 336 

values were increased along the canal with maximum and minimum average DO at 337 

XHS at TC station, respectively. The PS and WS varied across stations, whereas the 338 

PAR exhibited minor spatial differences. CO2 was mostly consistent across stations, 339 

with sudden increases noted at specific locations. WD falls along the canal from 8.15 340 

m to 3.86 m (Table S1). The temporal variations of each parameter in the main canal 341 

are shown in Fig. S2, and most of the indicators showed a significant seasonal variations 342 

pattern from 2017 to 2020.  343 

The results of the Spearman correlation coefficients and the Mantel test showed 344 

the relationships among different factors in the entire canal (Fig. 3b). The highest 345 

correlations were the PS and CO2 in the main canal. However, the correlation between 346 

indicators varied among different canal sections. For instance, the pH values and CO2 347 

showed no significance with PAR in the upstream, whereas they exhibited a significant 348 
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correlation in the midstream and downstream (Fig. S3). To sum up, different indicators 349 

showed complex spatial variation patterns in interstation, indicating the complex 350 

impacts on GPP and energy flux variations in the ecosystem of the main canal. 351 

 352 

Fig. 3. Statistical summary of environmental variables in the main canal of MRSNWDPC (Note: (a) 353 

statistical summary of the GPP estimation dataset; (b) Spearman correlation matrix of the GPP 354 

analysis dataset and the Mantel test between the GPP estimation dataset and analysis dataset; (c) 355 

statistical summary of the GPP analysis dataset; Detailed information about the variables’ monthly 356 

variance, section-scale mantel tests, and stations with WD data included can be found in Fig. S2, 357 

Fig. S3, and Table S1).  358 

3.2 Spatial and temporal distribution of GPP 359 

The spatial distributions and seasonal variations of GPPs at different stations can 360 

be seen in Fig. 4. The average daily GPP in the MRSNWDPC is 2.650 g O2 m
-2

 d
-1. Of 361 

which, the highest (3.289 g O2 m
-2

 d
-1) and lowest (1.910 g O2 m

-2
 d

-1) GPP were 362 

observed at the HNZ and TC stations, respectively. Additionally, the highest seasonal 363 

GPP was observed in summer (3.713 g O2 m
-2

 d
-1), followed by spring (2.614 g O2 m

-2
 364 
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d-1), autumn (2.598 g O2 m
-2

 d
-1), and winter (1.630 g O2 m

-2
 d

-1). The histograms showed 365 

that the GPPs have the narrowest variation range in winter (range from ~1.0 to ~2.5 g 366 

O2 m
-2

 d
-1) and have the most significant variation ranges in summer and autumn. 367 

However, the peak modes of the GPP in each season showed surprising consistency 368 

(~1.8 g O2 m
-2

 d
-1). 369 

Temporal variations of GPP in the main canal and different canal sections can be 370 

found in Fig. 5. The monthly average GPPs usually rose gradually at the beginning of 371 

each year, reaching their peak in June or July and then decreasing. Based on the 372 

interannual maximum GPP variations, the GPP in the main canal has been increasing 373 

over the years, and the midstream showed more significant change (range roughly from 374 

3 to 5 g O2 m
-2

 d
-1) compared to the upstream and downstream. Additionally, the Mann-375 

Kendall trend test results (Table S3) showed all the canal sections of the MRSNWDPC 376 

have significant GPP-increasing trends. 377 

 378 

Fig. 4. Spatiotemporal variations of the GPP in the main canal of MRSNWDPC from 2017 to 2020 379 

(Note: (a) The GPP distributions in different stations and periods based on the violin plots; (b) The 380 

mode distribution of GPPs in different seasons). 381 

 382 
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 383 

Fig. 5. Time series of GPP estimation in the entire canal and different canal sections from 2017 to 384 

2020 (Note: the “black line” represents daily average GPPs, the “red dotted” line represents monthly 385 

average GPPs, and the “shaded area” represents the intraday daily GPP variation range in all 386 

stations).  387 

3.3 Relationships between GPP and environmental driving effect 388 

The RF and Spearman correlation are both used to analyze the relationship 389 

between environmental factors and GPP at the station scale, whose results can be found 390 

in Fig. 6. For most stations, the explained variances exceeded 60%, except for the JG 391 

station at 55.88% and the ZYS station at 39.32%. The PS showed the highest 392 

explanatory capacity of GPP variation in most stations, followed by the pH values and 393 

CO2. The Spearman’s correlation exhibits significant spatial difference patterns 394 

between different environmental factors and GPP. For instance, the pH-GPP pairs may 395 

present negative or positive correlations in different stations, while the PS-GPP pair 396 

kept strong negative relationships in all stations.  397 



 

Page 21 / 72 

 

Fig. 6. Driving factors analysis of GPP variation in the MRSNWDPC based on the Spearman 

correlation matrix and random forest-based explained variances (Note: different rectangles with 

circles represent the combinations of Spearman’s ρ and “percent increase in mean square error 

(%IncMSE)” based on the random forest regression predictions between GPP and the 

corresponding environmental factors). 

The effect pathways of different factors on GPP variations were explored by the 398 

SEM and shown in Fig. 7. WS has both significant direct and indirect effects on GPP 399 

variations upstream (Fig. 7a, b). However, those pathways showed slightly or no 400 

significant relationships in midstream and downstream. The CO2 and PS were the most 401 

important environmental factors of GPP variation with high and significant factor 402 

loadings in both direct and indirect effect pathways. PS showed negative direct effects 403 

on GPP variations with factor loadings ranging from -0.40 to -0.71, whereas CO2 404 

showed significant effects on GPP changes with spatial differences from 0.06 to -0.29. 405 

CO2 shows little impact on GPP in TC to LW (Fig. 7a), ZHB to TZ (Fig. 7c), and ZYS 406 

to WHH section (Fig. 7e), and the rest of the SEMs showed significant positive effects 407 

on GPP. From the explanatory capacities of the SEMs, the models at the upstream (Fig. 408 
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7a) and downstream (Fig. 7e) of the canal showed relatively low explained variances 409 

of GPP with R2 of 0.29 and 0.27, respectively. The canal section from LW to ZYS 410 

showed significant R2 ranging from 0.49 to 0.57, indicating reasonable driving effects 411 

on GPP changes.  412 
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 413 

Fig. 7. Standard driving path analysis of GPPs in different sections of the main canal (Note: (a) TC 414 

– LW; (b) LW – ZHB; (c) ZHB – TZ; (d) TZ – ZYS; (e) ZYS – HNZ; the red arrow, blue arrow, 415 

black, and grey arrow were defined as the positive, negative, correlation, and not significant effect; 416 

the “***” and “**” represents the significance level of 0.001 and 0.01 for the factor loadings; the 417 

explained variances (R2) of GPP variations from (a) to (e) are 0.29, 0.57, 0.49, 0.54, and 0.27, 418 

respectively).  419 
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4 Discussions 420 

4.1 Spatiotemporal variance of GPP analysis in the main canal 421 

Based on the spatial differences of GPPs in the MRSNWDPC canal case, the 422 

lowest average GPPs were observed at the starting point of the canal (TC). However, 423 

the maximum and minimum monthly average GPPs were detected in the midstream and 424 

downstream. Additionally, the highest monthly average GPPs occurred in summer and 425 

autumn, consistent with previous studies on the spatial distributions of algal cell density 426 

in the MRSNWDPC canal (Rosseel, 2012). These spatiotemporal variation 427 

characteristics of GPP can be attributed to the algal, as well as the primary producers, 428 

which photosynthesize and absorb atmospheric CO2 and lead to organic carbon stock 429 

in the water bodies (Wang et al., 2022).  430 

However, it should be noted the GPP of this study did not show identically 431 

increasing characteristics like the algae density with the canal distance rose in ZYS. 432 

Previous studies have reported a significant increase in algal cell density from south to 433 

north in the main canal (Segatto et al., 2021). Indeed, the phenomenon of GPP-related 434 

variables decoupling is common. Previous research has found features such as the 435 

geomorphic characteristics of rivers (Nong et al., 2021), flow turbidity with bed particle 436 

composition (Segatto et al., 2021), and the local nutrient variance (Ledford et al., 2021) 437 

could exert the decoupling on GPP related variables. Even though fully unveiling and 438 

quantitating the complex and interacting controls on GPP requires a large number of 439 

additional stations and long data series, these observations show that GPP can serve as 440 

an indicator of the ecological environment to provide a comprehensive assessment of 441 
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habitat conditions, which were also reported in previous studies (Huang et al., 2018; 442 

Ledford et al., 2021; Levi and McIntyre, 2020). Therefore, water quality management 443 

agencies should pay more attention to GPP indicators’ utility in assessing the ecological 444 

functionality of projects. 445 

It should be noticed that the main canal still perseveres certain features similar to 446 

natural water bodies, even though it is an artificial water system. For instance, it shares 447 

the determining factors of phytoplankton community (water temperature, total 448 

phosphorus, ammonia nitrogen, flow speed, and flow discharge) with most surface 449 

water bodies and exhibits approximately 20 days long water residence time like lakes 450 

(Zhang et al., 2021b). Therefore, several major rivers and coastal water bodies in China 451 

were used as a comparison to evaluate the level of GPP in the MRSNWDPC by 452 

converting GPP to carbon flux based on the respiratory quotient between O2 and CO2  453 

as shown in Table 1 (Zhang et al., 2023). The average carbon equivalent GPP (0.828 g 454 

C m-2 d-1) of the MRSNWDPC is closest to that of the Yangtze River (0.684 g C m-2 d-455 

1) and the East China Sea (0.873 g C m-2 d-1). This may be because both of their water 456 

sources come from the Yangtze River resulting in similar physicochemical properties 457 

of the water bodies, even if the intake water of this project is sourced from a tributary 458 

of the Yangtze River. Overall, the GPP of MRSNWDPC is at a moderate level among 459 

China’s major rivers in terms of productivity and there was no occurrence of high GPP 460 

due to abnormal algal proliferation during the study period. 461 
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Table 1 462 

Average GPP comparison with the main canal of the MRSNWDPC and other water bodies in China. 463 

Water bodies Type Average (Min-Max) GPP (g C m-2 d-1) Length (km) Surface area (km2) Number of sites 

Main canal of MRSNWDPC Open canal 0.828 (0.60 – 1.03) 1,179 - 11 

Pearl River River 0.460 (0.05 – 2.30) 2,320 452,000 8 

Yangtze River River 0.684 (0.07 – 1.35) 6,300 1,800,000 18 

Yellow River River 3.003 (0.001 – 10.66) 5,464 752,443 14 

Haihe River River 2.353 (0.01 – 5.75) 1,031 318,200 17 

Liaohe River River 1.002 (0.01 – 1.89) 1,345 219,600 10 

Songhua River River 3.020 (1.37 – 4.11) 2,309 556,800 18 

South China Sea Coastal zone 1.556 (0.01 – 5.98) - 3,500,000 51 

East China Sea Coastal zone 0.873 (0.04 – 3.75) - 770,000 58 

Bohai Sea Coastal zone 0.307 (0.01 – 0.65) - 77,284 23 

Yellow Sea Coastal zone 0.722 (0.03 – 3.79) - 380,000 31 

Note: “-” stands for no data or invalid data. “Number of sites” only includes the monitoring sites located in the mainstream, and sites located in the estuary of the river 464 

are not involved. The data on China’s main river and coastal area are from (Zhang et al., 2023). 465 
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4.2 Driving factors identification of GPP 466 

Random Forest and Spearman’s correlation were conducted to identify the driving 467 

factors of GPP by analyzing the correlation and explained variance (Fig. 6). PS 468 

exhibited a higher Spearman correlation coefficient (-0.47 – -0.84) with GPP than other 469 

environmental factors. This may be attributed to PS can control the oxygen deficit 470 

levels by directly influencing the concentration of SDO, thereby exerting control over 471 

GPP. Previous studies have reported that precipitation events can impact GPP in rivers 472 

by increasing flow, altering the physicochemical parameters of the water environment, 473 

and reducing PAR through cloud cover (Nijboer and Verdonschot, 2004; O'Donnell and 474 

Hotchkiss, 2019). However, there is a relatively small correlation between GPP and Pre 475 

across different stations, indicating the water levels and flow rates in the canal depend 476 

on human regulation instead of increasing through surface runoff caused by Pre, like 477 

the natural rivers, resulting in a small impact of Pre on GPP. WS is considered an 478 

important factor influencing the gas transfer coefficient K600 (Shen et al., 2022). 479 

However, our study shows a slight correlation between GPP and WS, and not all canal 480 

sections are affected by WS. Therefore, using WS-based methods to estimate the GPP 481 

in water diversion projects may risk overestimating and exaggerating the effect of WS. 482 

CO2 will be mainly discussed in the later path analysis section. 483 

pH, as one of the essential water quality indicators, is acknowledged to have a 484 

significant effect on phytoplankton growth by influencing the equilibrium of the 485 

carbonate system and controlling the partial pressure of carbon dioxide (Jakobsen et al., 486 

2015). In the case of photosynthesis alone, pH and GPP are positively correlated 487 
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because an increase in the intensity of photosynthesis, as one of the processes of gross 488 

primary production, simultaneously depletes dissolved CO2 in the water column, 489 

leading to an increase in pH. However, a negative correlation was observed between 490 

pH with GPP before the NDG station, while the correlation reversed after this station. 491 

This result is consistent with previous research about pH variation with dissolved 492 

inorganic carbon (DIC, including CO2 (aq), 𝐻𝐶𝑂3
− , and 𝐶𝑂3

2− ) in the water system 493 

(Shen et al., 2022). As the flow rate decreases from upstream to downstream 494 

(Bukaveckas et al., 2020), large flow disturbance dilution makes it difficult for primary 495 

producers to utilize DIC for photosynthesis before the NDG station, resulting in lower 496 

pH values. After the NDG station, the flow disturbance on the primary production 497 

process is negligible as flow decreases, DICs are mainly absorbed and consumed by 498 

primary producers, leading to higher GPP and pH values. This observation is consistent 499 

with Zhang et al. (2015) and Hall et al. (2023), which demonstrated that hydrological 500 

conditions control the nutrient structure and mass transfer efficiency in water bodies 501 

through flushing and stifle effects. 502 

Apart from pH values, GPP is also driven by the nexus of water quality and 503 

ecological conditions in the main canal of SNWDPMRC. Zhang et al. (2021a) indicated 504 

that the primary producers in the main canal contain only two types, that is 505 

phytoplankton and epiphytic algae, due to the special characteristics of the water 506 

diversion canal. Therefore, the GPP is supplied by these two types of phytoplankton in 507 

the main canal, and changes in the community structure and quantity of the two groups 508 

will have a direct impact on the GPP status. Tang et al. (2020) investigated the 509 
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relationship between water quality and phytoplankton community based on the 510 

sampling data within the entire main canal. The results indicated that the WT affected 511 

the dynamic of phytoplankton cell density and dominant taxa in the main canal. 512 

Meanwhile, the nutrients can both influence the growth and population structure. On 513 

the one hand, phytoplankton absorbed a large amount of ammonia nitrogen for cell 514 

growth in the main canal. On the other hand, when nitrogen concentration increased 515 

and phosphorus concentration decreased, the diatoms in the main canal gradually 516 

succeeded in becoming the dominant taxa. 517 

Overall, measuring GPP can serve as a pivotal way to understand the health of an 518 

ecosystem amidst various environmental factors. Enhancing our understanding of the 519 

interrelationship between GPP and its driving factors presents a novel ecological option. 520 

It offers a comprehensive approach to monitoring and regulating the aquatic 521 

environment in long-distance water diversion projects. 522 

4.3 Path analysis of GPP’s drivers 523 

Previous studies on SEM of GPP mainly include water physicochemical factors, 524 

riparian vegetation cover, nutrient load, and algal biomass in natural rivers (Jia et al., 525 

2020a; Marzolf and Ardón, 2021; Tan et al., 2021; Zhang et al., 2021b), while little 526 

research discusses the effects of greenhouse gases on GPP. Furthermore, the turbulent 527 

characteristics of water diversion projects could amplify the significant greenhouse 528 

gases when compared to the natural rivers. Because inter-basin water diversion projects 529 

require maintaining high flow velocity and significant flow rates, the turbulent water-530 

air interface facilitates the entry of greenhouse gases from the surface to the water of 531 
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the canal, participating in the river’s metabolic processes. Additionally, the heightened 532 

water flow induces the formation of bubbles could amplify the exchange between water 533 

and air (Ulseth et al., 2019). Therefore, the fast water flow allows more greenhouse 534 

gases to enter, providing more carbon supplementation for primary production. 535 

Numerous studies have revealed the complex exchange relationships of CO2 at the 536 

water-air interface (Cao et al., 2020; Cole et al., 2007; Gong et al., 2021; Ulseth et al., 537 

2019), such as CO2 entering the river through photosynthesis and gas diffusion 538 

coefficient K (Crawford et al., 2014; Gomez-Gener et al., 2021; Ulseth et al., 2019) 539 

controlled the disturbance, mixing state, and intensity at the water-air interface. 540 

However, these investigations predominantly focused on natural river systems, and 541 

their applicability to canal-based water diversion projects remains partially limited. As 542 

such, more specific research on the characteristics and impact of CO2 and other 543 

greenhouse gases in water diversion projects is still needed. 544 

In this study, spatiotemporal variance, driving factors, and path analysis of GPP 545 

were performed in an inter-basin water diversion project using multiple data sources. 546 

While focusing on the GPP, this important ecological indicator, we could contribute to 547 

a better understanding of the artificial aquatic ecosystem in water diversion projects for 548 

the government and water quality management departments. It also promotes using 549 

GPP for evaluating artificial ecosystems and developing standardized ecological 550 

guidelines for inter-basin water diversion projects to manage water ecosystems. Similar 551 

research has been successfully applied in various water body restoration (Baattrup-552 

Pedersen et al., 2022; Blersch et al., 2019; Gomez-Gener et al., 2021). Considering that 553 
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the project will continue to operate for decades, future research focusing on the 554 

ecological assessment of inter-basin water diversion projects and carbon-related studies 555 

should receive more attention. 556 

5 Conclusions 557 

The spatiotemporal variations of GPP in the Middle Route of the South-to-North 558 

Water Diversion Project of China were studied based on 11 water quality monitoring 559 

stations and satellite re-analysis data from 2017 to 2020. The environmental driving 560 

factors of GPP and effect pathways were analyzed using random forest and structural 561 

equation modeling methods. The main findings of this study are as follows: 562 

(1)  The overall GPP level of the canal ranged from 1.920 to 3.290 g O2 m
-2

 d
-1, 563 

which presents similar GPP levels with the Yangtze River and the East China 564 

Sea while comparing to other major rivers and estuary areas of China. This 565 

indicates the ecosystems and ecological service of the main canal of 566 

MRSNWDPC are healthy and well-functioning.  567 

(2) The GPP exhibited significant spatial differences in the main canal, with the 568 

concentrations gradually increasing from upstream to downstream, and the 569 

highest monthly average GPPs occurred in summer, while the lowest in winter. 570 

(3) Path analysis of GPP factors in the canal revealed significant causal driving 571 

relationships of CO2, pH, and PS on GPP variations. The PS had significant 572 

negative impacts on GPP changes in the canal, while CO2 and pH showed 573 

different direction effects in different sections. Additional attention should be 574 

given to greenhouse gas emissions in water diversion project management. 575 
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This study provides a new ecological indicator for evaluating the aquatic 576 

ecosystem in the complex and unique context of long-distance inter-basin water 577 

diversion projects. It reveals the spatiotemporal variations of GPP, and the relationships 578 

with driving factors and offers a new perspective for water quality management in 579 

large-scale water projects. The findings of this study can also be applied to other large-580 

scale inter-basin water diversion projects. In the current situation of sharp water 581 

resources supply conflicts, this study provides insights into the ecological status of 582 

artificial large-scale water projects from an ecosystem perspective. It also suggests that 583 

mega hydro-projects require specific attention when studying the carbon cycle 584 

contribution of water bodies. 585 
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Figure captions 842 

Fig. 1. Locations of the water quality monitoring stations along the main canal of the Middle Route 843 

of the South-to-North Water Diversion Project of China in this study (Note: TC to FCN are 844 

“upstream”, ZHB to TZ are “midstream”, and XHS to HNZ are “downstream”). 845 

Fig. 2. In-situ monitoring and satellite re-analysis data processing scheme diagram in this study 846 

(Note: In basic data cleaning, the first and second numbers of “window sizes” stand for the backward 847 

and forward window sizes respectively; In deep data cleaning, numbers and bracketed words are 848 

values and names of the algorithm parameters, “(⋅)” imply the input signal of sample entropy; In 849 

using streamMetabolizer function, enclosed content and subsequent text are the name of the R 850 

package and specific function respectively). 851 

Fig. 3. Statistical summary of environmental variables in the main canal of MRSNWDPC (Note: (a) 852 

statistical summary of the GPP estimation dataset; (b) Spearman correlation matrix of the GPP 853 

analysis dataset and the Mantel test between the GPP estimation dataset and analysis dataset; (c) 854 

statistical summary of the GPP analysis dataset; Detailed information about the variables’ monthly 855 

variance, section-scale mantel tests, and stations with WD data included can be found in Fig. S2, 856 

Fig. S3, and Table S1).  857 

Fig. 4. Spatiotemporal variations of the GPP in the main canal of MRSNWDPC from 2017 to 2020 858 

(Note: (a) The GPP distributions in different stations and periods based on the violin plots; (b) The 859 

mode distribution of GPPs in different seasons). 860 

Fig. 5. Time series of GPP estimation in the entire canal and different canal sections from 2017 to 861 

2020 (Note: the “black line” represents daily average GPPs, the “red dotted” line represents monthly 862 
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average GPPs, and the “shaded area” represents the intraday daily GPP variation range in all 863 

stations). 864 

Fig. 6. Driving factors analysis of GPP variation in the MRSNWDPC based on the Spearman 865 

correlation matrix and random forest-based explained variances (Note: different rectangles with 866 

circles represent the combinations of Spearman’s ρ and “percent increase in mean square error 867 

(%IncMSE)” based on the random forest regression predictions between GPP and the corresponding 868 

environmental factors). 869 

Fig. 7. Standard driving path analysis of GPPs in different sections of the main canal (Note: (a) TC 870 

– LW; (b) LW – ZHB; (c) ZHB – TZ; (d) TZ – ZYS; (e) ZYS – HNZ; the red arrow, blue arrow, 871 

black, and grey arrow were defined as the positive, negative, correlation, and not significant effect; 872 

the “***” and “**” represents the significance level of 0.001 and 0.01 for the factor loadings; the 873 

explained variances (R2) of GPP variations from (a) to (e) are 0.29, 0.57, 0.49, 0.54, and 0.27, 874 

respectively).875 
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Fig. 1. Locations of the water quality monitoring stations along the main canal of the Middle 

Route of the South-to-North Water Diversion Project of China in this study (Note: TC to FCN 

are “upstream”, ZHB to TZ are “midstream”, and XHS to HNZ are “downstream”). 
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 877 

Fig. 2. In-situ monitoring and satellite re-analysis data processing scheme diagram in this study 878 

(Note: In basic data cleaning, the first and second numbers of “window sizes” stand for the backward 879 

and forward window sizes respectively; In deep data cleaning, numbers and bracketed words are 880 

values and names of the algorithm parameters, “(⋅)” imply the input signal of sample entropy; In 881 

using streamMetabolizer function, enclosed content and subsequent text are the name of the R 882 

package and specific function respectively). 883 
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 884 

Fig. 3. Statistical summary of environmental variables in the main canal of MRSNWDPC (Note: (a) 885 

statistical summary of the GPP estimation dataset; (b) Spearman correlation matrix of the GPP 886 

analysis dataset and the Mantel test between the GPP estimation dataset and analysis dataset; (c) 887 

statistical summary of the GPP analysis dataset; Detailed information about the variables’ monthly 888 

variance, section-scale mantel tests, and stations with WD data included can be found in Fig. S2, 889 

Fig. S3, and Table S1).  890 
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 891 

Fig. 4. Spatiotemporal variations of the GPP in the main canal of MRSNWDPC from 2017 to 2020 892 

(Note: (a) The GPP distributions in different stations and periods based on the violin plots; (b) The 893 

mode distribution of GPPs in different seasons). 894 
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 895 

Fig. 5. Time series of GPP estimation in the entire canal and different canal sections from 2017 to 896 

2020 (Note: the “black line” represents daily average GPPs, the “red dotted” line represents monthly 897 

average GPPs, and the “shaded area” represents the intraday daily GPP variation range in all 898 

stations). 899 
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Fig. 6. Driving factors analysis of GPP variation in the MRSNWDPC based on the Spearman 

correlation matrix and random forest-based explained variances (Note: different rectangles with 

circles represent the combinations of Spearman’s ρ and “percent increase in mean square error 

(%IncMSE)” based on the random forest regression predictions between GPP and the 

corresponding environmental factors). 
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 901 

Fig. 7. Standard driving path analysis of GPPs in different sections of the main canal (Note: (a) TC 902 

– LW; (b) LW – ZHB; (c) ZHB – TZ; (d) TZ – ZYS; (e) ZYS – HNZ; the red arrow, blue arrow, 903 

black, and grey arrow were defined as the positive, negative, correlation, and not significant effect; 904 

the “***” and “**” represents the significance level of 0.001 and 0.01 for the factor loadings; the 905 

explained variances (R2) of GPP variations from (a) to (e) are 0.29, 0.57, 0.49, 0.54, and 0.27, 906 

respectively). 907 
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Table 908 

Table 1 909 

Average GPP comparison with the main canal of the MRSNWDPC and other water bodies in China. 910 

Water bodies Type Average (Min-Max) GPP (g C m-2 d-1) Length (km) Surface area (km2) Number of sites 

Main canal of MRSNWDPC Open canal 0.828 (0.60 – 1.03) 1,179 - 11 

Pearl River River 0.460 (0.05 – 2.30) 2,320 452,000 8 

Yangtze River River 0.684 (0.07 – 1.35) 6,300 1,800,000 18 

Yellow River River 3.003 (0.001 – 10.66) 5,464 752,443 14 

Haihe River River 2.353 (0.01 – 5.75) 1,031 318,200 17 

Liaohe River River 1.002 (0.01 – 1.89) 1,345 219,600 10 

Songhua River River 3.020 (1.37 – 4.11) 2,309 556,800 18 

South China Sea Coastal zone 1.556 (0.01 – 5.98) - 3,500,000 51 

East China Sea Coastal zone 0.873 (0.04 – 3.75) - 770,000 58 

Bohai Sea Coastal zone 0.307 (0.01 – 0.65) - 77,284 23 

Yellow Sea Coastal zone 0.722 (0.03 – 3.79) - 380,000 31 

Note: “-” stands for no data or invalid data. Number of sites only includes the monitoring sites located in the mainstream, and sites locate in the estuary of the river 911 

are not involved. The data on China's main river and coastal area are from (Zhang et al., 2023). 912 
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Complete ensemble empirical mode decomposition 

Complete ensemble empirical mode decomposition (CEEMDAN) is a data-

driven, non-linear, non-stationary adaptive signal decomposition method that has 

been developed based on the Empirical Mode Decomposition (EMD) technique 

(Torres et al., 2011). The core of the EMD-based method lies in its ability to reveal 

local oscillations of the time series data by considering high-frequency and low-

frequency oscillatory signals at multiple decomposition levels, thereby 

decomposing the original data into a series of Intrinsic Mode Functions (IMFs) and 

a residue (Huang et al., 1998). The IMF possesses the following characteristics: (1) 

it exhibits the same number of zero-crossings and extrema as the original data, and 

(2) it possesses symmetric envelopes defined by the local maxima and minima, 

respectively. Taking the original data 𝑥[𝑛] as an example, this decomposition can 

be represented as follows: 

𝑥[𝑛] = ∑ 𝐼𝑀𝐹𝑖

𝐼

𝑖=1

+ 𝑅[𝑛] (1) 

Herein, 𝑛 represents the length of the signal，𝐼 denotes the total number of 

decomposed 𝐼𝑀𝐹  components， 𝐼𝑀𝐹𝑖  denotes i-th IMF，𝑅[𝑛]  is the residue 

obtained from the decomposition of the data 𝑥[𝑛]. 

The original EMD algorithm suffers from a problem known as mode mixing, 

which refers to an IMF consisting of oscillations with significantly disparate scales. 

This issue typically arises when a single IMF incorporates components with vastly 

different scales or when components with similar scales are distributed across 



 

 

multiple IMFs (Lei et al., 2009). The problem of mode mixing not only results in 

the aliasing of the data signal in the time-frequency domain but also leads to the 

loss of physical interpretation of the IMFs (Wu and Huang, 2009). Several EMD-

based methods have been developed to address this issue, such as Ensemble 

Empirical Mode Decomposition (EEMD) and Complete Ensemble Empirical 

Mode Decomposition with Adaptive Noise (CEEMDAN). The EEMD introduces 

white noise into decomposition, effectively adding a complete time-frequency 

space. Through multiple iterations, the added noise helps to counteract the effects 

of noise during the decomposition process, facilitating the natural separation of 

frequency scales and reducing the occurrence of mode mixing (Wu and Huang, 

2009). However, in EEMD, when the number of ensemble trials is small, residual 

noise may still be present in the resulting IMF components. The interaction 

between the signal and noise can potentially generate additional modes. 

Furthermore, the high computational complexity of EEMD poses another 

challenge. In order to address these issues, Torres (Torres et al., 2011) introduced 

the CEEMDAN algorithm. The CEEMDAN improves upon EEMD by introducing 

a limited amount of adaptive white noise, effectively separating the IMF 

components and reducing residual noise, thereby minimizing reconstruction errors. 

This noise addition is optimized to strike a balance between noise suppression and 

preservation of signal features. By incorporating this adaptive noise, CEEMDAN 

achieves more efficient IMF separation while significantly reducing the 

computational requirements for the decomposition process. CEEMDAN is based 



 

 

on the characteristic scales of extrema and is particularly sensitive to abrupt 

fluctuations in non-stationary signals. This makes it highly suitable for applications 

in environmental monitoring, such as water quality prediction (Wang et al., 2021). 

The detail processes of CEEMDAN are as follows: (Torres et al., 2011): 

Let us define the operator 𝐸𝑗 (⋅), which, given a signal, produces the 𝑗-th 

mode obtained by EMD. Let 𝑤𝑖 be white noise with 𝒩 (0, 1). If 𝑥[𝑛] is the targeted 

data, we can describe our method by the following algorithm:  

1. decompose by EMD 𝐼 realizations 𝑥[𝑛]  +  𝜀0 𝑤𝑖 [𝑛] to obtain their first 

modes and compute 

𝐼𝑀𝐹1̃[𝑛] =
1

𝐼
∑ 𝐼𝑀𝐹1

𝑖[𝑛] = 𝐼𝑀𝐹1
̅̅ ̅̅ ̅̅ ̅[𝑛] 

𝐼

𝑖=1

 (2) 

2. at the first stage (𝑘 = 1) calculate the first residue as in Eq. (1): 𝑟1[𝑛]  =

 𝑥[𝑛]  − 𝐼𝑀𝐹1̃[𝑛].  

3. decompose realizations 𝑟1[𝑛] + 𝜀1𝐸1(𝑤𝑖[𝑛]), 𝑖 = 1, ..., 𝐼, until their first 

EMD mode and define the second mode: 

𝐼𝑀𝐹2̃[𝑛] =
1

𝐼
∑ 𝐸1(𝑟1[𝑛] + 𝜀1𝐸1(𝑤𝑖[𝑛]))

𝐼

𝑖=1
 (3) 

4. for 𝑘 = 2, ..., 𝐾 calculate the 𝑘-th residue: 

𝑟𝑘[𝑛] = 𝑟𝑘−1[𝑛] − 𝐼𝑀𝐹𝑘̃[𝑛] (4) 

5. decompose realizations 𝑟𝑘[𝑛] + 𝜀𝑘𝐸𝑘(𝑤𝑖[𝑛]), 𝑖 = 1, ..., 𝐼, until their first 

EMD mode and define the (𝑘+1)-th mode as 

𝐼𝑀𝐹̃(𝑘+1)[𝑛] =
1

𝐼
∑ 𝐸1(𝑟𝑘[𝑛] + 𝜀𝑘𝐸𝑘(𝑤𝑖[𝑛]))

𝐼

𝑖=1
 (5) 

6. go to step 4 for next 𝑘. Steps 4 to 6 are performed until the obtained residue 



 

 

is no longer feasible to be decomposed (the residue does not have at least two 

extrema). The final residue satisfies: 

𝑅[𝑛] = 𝑥[𝑛] − ∑ 𝐼𝑀𝐹𝑘̃

𝐾

𝑘=1

 (6) 

with 𝐾 the total number of modes. Therefore, the given signal 𝑥[𝑛] can be 

expressed as: 

𝑥[𝑛] = ∑ 𝐼𝑀𝐹𝑘̃ + 𝑅[𝑛]

𝐾

𝑘=1

 (7) 

Eq. (5) makes the proposed decomposition complete and provides an exact 

reconstruction of the original data. 

Sample Entropy 

Sample entropy (SamEn) is a computational method based on entropy that 

improves upon the estimation of approximate entropy by eliminating self-matches 

(Richman and Moorman, 2000)。SampEn is the exact value of the negative 

average natural logarithm of conditional probability, which represents the 

probability of generating new patterns in a nonlinear dynamical system (Deng et 

al., 2021), It is primarily used for quantitative descriptions of the regularity and 

complexity of a system. A higher value of SampEn indicates a higher complexity 

of the time series, while a lower value indicates lower complexity. 

The detail SE calculation processes as (Wang et al., 2021):  

Define  𝑋(𝑛)  =  𝑥(1), 𝑥(2), ⋯ , 𝑥(𝑁)  as a time series. The algorithm 

implementation of SE is as follows:  

Step1: Mark off (𝑁 − 𝑚 +  1)  sub-fragments named 𝑋𝑚(𝑖)  from 𝑋(𝑛) 



 

 

according to the m data points.  

Step2: Calculate the distances between 𝑋𝑚(𝑖) and other (𝑁 −  𝑚 +  1) sub-

fragments and select the largest distance value, written as 𝑑[𝑋(𝑖), 𝑋(𝑗)].  

𝑑[𝑋𝑖, 𝑋𝑗] = max
𝑘=0,…,𝑚−1

(|𝑥(𝑖 + 𝑘|−𝑥(𝑗 + 𝑘)|) (8) 

Step3: For the given 𝑋𝑚(𝑖), count the number of 𝑗(1 ≤  𝑗 ≤  𝑁 −  𝑚, 𝑗 ≠

 𝑖) when 𝑑[𝑋(𝑖), 𝑋(𝑗)] is less than or equal to r and this number is written as 𝐵𝑖:  

𝐵𝑚
𝑖 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑋(𝑗) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑[𝑋𝑖, 𝑋𝑗] ≤ 𝑟

𝑁 − 𝑚
, 𝑖 ≠ 𝑗 (9) 

Step4: Calculate the mean value of 𝐵𝑖
𝑚 and record it as 𝐵𝑚(𝑟)  

𝐵𝑚(𝑟) = (𝑁 − 𝑚 + 1)−1 ∑ 𝐵𝑖
𝑚

𝑁−𝑚+1

𝑖=1

 (10) 

Step5: For the label k = m + 1, calculate 𝐴𝑘(𝑟) by repeating step 2 to 4.  

Step6: According to the above calculation, the final sample entropy can be 

expressed as 𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁):  

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑛) = − ln
𝐴𝑘(𝑟)

𝐵𝑚(𝑟)
 (11) 

In general, m = 1 or m = 2 and r = 0.1~0.25 SD, where SD represents the 

standard deviation of the original series. 

Density-based spatial clustering of applications with noise 

Density-based spatial clustering of applications with noise (DBSCAN) (Ester 

et al., 1996) is a clustering method based on estimating the minimum density levels 

of samples. It clusters data points by considering the neighboring points and a 

threshold radius. Essentially, the DBSCAN algorithm identifies minimum density 



 

 

regions that partition the data into different clusters within low-density areas 

(Schubert et al., 2017). DBSCAN requires the determination of two parameters: 

the minimum number of neighboring data points (minpts) and the radius (ε). Based 

on the neighboring points within different radius ranges, all data points can be 

classified into three categories: core points, boundary points, and noise. A data 

point is considered a core point if there are more than minpts data points within its 

radius range. If the points within the radius range of a core point are also core points, 

then the relationship between the two core points is called density directly 

reachable. Within the radius range of a core point, data points that are not core 

points are referred to as boundary points. The relationship between boundary points 

can be established through the transitivity of relationships between core points, 

which is known as density-reachable. Points that do not belong to any cluster, 

neither as core nor boundary points, are considered noise and are not part of any 

cluster. Fig. S1 illustrates the principal explanation diagram for minpts = 4 and ε 

as the radius range. In the figure, A is a core point, while B and C are boundary 

points, and N represents noise. A point is density-reachable to itself within the ε 

radius range, A and B have a density-reachable relationship, C and D have a 

density-connected relationship, and A, B, C, D, and N are not density-connected.



 

 

Figure captions 

Fig. S1. Illustration of DBSCAN clustering principle. minpts = 4, 𝜀  as the 

radius of the circles. A, B, and the red points represent core points, while C and D 

are boundary points, and N denotes noise. 

Fig. S2. Monthly data of estimation dataset (a – d) and analysis dataset (e – j) 

in main canal from 2017 to 2020. Points denote the average value and error bars 

stands for the value range of all sites in the same period. 

Fig. S3. Spearman correlation analysis between different factors and Mantel 

test between the GPP analysis set and the estimation set at section-scale. 

 



 

 

 

 

Fig. S1. Illustration of DBSCAN clustering principle. minpts = 4, 𝜀 as the radius of the 

circles. A, B, and the red points represent core points, while C and D are boundary points, and N 

denotes noise. 

 



 

 

 

Fig. S2. Monthly data of estimation dataset (a – d) and analysis dataset (e – i) in main canal 

from 2017 to 2020. Points denote the average value and error bars stands for the value range of all 

sites in the same period. 



 

 

 

Fig. S3. Spearman correlation analysis between different factors and Mantel test between the 

GPP analysis set and the estimation set at section-scale. 



 

 

Table S1  

Detailed information and distances from the beginning station of all the main canal 

stations. 

Cana

l sections 

Statio

ns 

Abbre

viation 

Des

igned 

Water 

depth of 

neatest 

sluice 

gates 

(m) 

Dis

tance 

away 

from 

the 

beginni

ng 

station 

(km) 

Uppe

r stream 

Taocha TC 8.1

5 

0 

Jiangg

o 

JG 7.8

3 

95 

Liuwa

ng 

LW 6.7

7 

42

6 

Fuchen

gnan 

FCN 8.5

4 

52

4 

Midst

ream 

Zhang

hebei 

ZHB 5.9

6 

73

1 

Nanda

guo 

NDG 6.0

3 

83

7 

Tianzh TZ 6.0 96



 

 

uang 5 8 

Down

stream 

Xiheis

han 

XHS 4.7

6 

11

20 

Fenzhu

anghe 

FZH 3.6

1 

11

72 

Zhong

yishui 

ZYS 4.4

0 

11

94 

Huinan

zhuang 

HNZ 3.8

6 

12

73 



 

 

Table S2  

Evaluation indicators and recommend values of model goodness-of-fit of the SEM. 

Items Abbreviati

on 

Rang

e 

Recommend value 

Chi-square minimum 𝝌𝟐 [0, 

+∞) 

The less the better 

Goodness of Fit Index GFI [0, 1] >0.9 (excellent), >0.8 

(acceptable) 

Root Mean Square Error 

of Approximation 

RMSEA [0, 

+∞] 

<0.08 

Standardized Root Mean 

Square Residual 

SRMR [0, 

+∞] 

<0.5 



 

 

Table S3  

Mann-Kendell test for GPP variations in different canal sections from 2017 to 2020. 

Sections Z value P value 

Entire main 

canal 

5.223 < 0.001*** 

Upper stream 2.476 < 0.05* 

Midstream 5.520 < 0.001*** 

Downstream 6.913 < 0.001*** 

Note: “***”represent significant in 0.001 level; “*” denotes data significant in 0.05 level. 
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