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Abstract

Neonatal respiratory distress syndrome (nRDS) is a challenging condition to
diagnose which can lead to delays in receiving appropriate treatment. Mid
infrared (IR) spectroscopy is capable of measuring the concentrations of two
diagnostic nRDS biomarkers, lecithin (L) and sphingomyelin (S) with the
potential for point of care (POC) diagnosis and monitoring. The effects of
varying other lipid species present in lung surfactant on the mid IR spectra
used to train machine learning models are explored. This study presents a
lung lipid model of five lipids present in lung surfactant and varies each in
a systematic approach to evaluate the ability of machine learning models
to predict the lipid concentrations, the L/S ratio and to quantify the un-
certainty in the predictions using the jackknife+-after-bootstrap and variant
bootstrap methods. We establish the L/S ratio can be determined with an
uncertainty of approximately ±0.3 moles/mole and we further identify the 5
most prominent wavenumbers associated with each machine learning model.
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1. Introduction

Mid-infrared (mid-IR) spectroscopy has been posited as a platform for
rapid, point of care diagnostic tool which can interrogate samples in the
functional group and fingerprint spectral regions[1, 2] . This allows for both
qualitative and quantitative determination of biomarkers to provide a clin-
ician with useful information to consider during diagnosis and prognostica-
tion. Attenuated total reflectance Fourier Transform infrared spectroscopy
(ATR-FTIR) is one method by which such information may be obtained.
Spectroscopic analysis of biological samples followed by machine learning of
collected spectra provides an opportunity to apply a more robust multivari-
ate analysis, using all relevant information from multiple spectral peaks, to
give quantitative estimates of biomarker concentrations without the need for
an expert end-user.

Neonatal respiratory distress syndrome (nRDS) is a condition affecting
pre-term neonates due to immature lungs and surfactant deficiency. The
resulting increased surface tension within the alveoli means that there is a
greater effort required to breathe[3], and intervention is required to reduce
it. Treatment usually consists of exogenous surfactant replacement and, if
required, mechanical ventilation[4]. While some neonates respond positively
to such treatment, there is a subset that do not. Early treatment for positive
responders is linked with better survival[5], so differentiating between these
two groups is key to ensuring the best patient outcome[6]. Moreover, re-
peated doses of exogenous surfactant may be required in some neonates but
currently there are no established rapid methods to assess ongoing surfactant
deficiency.

Lung surfactant is a complex mix of proteins (approx. 10%) and lipids
(approx. 90%) and its ability to lower the surface tension in lungs is re-
lated to its composition[7, 8]. The compositions of lung surfactant for both
healthy babies and neonates suffering from nRDS have been previously com-
piled and reported[9, 10, 11, 12, 13] and show that there is a proportionately
lower ratio of phosphatidylcholine (PC) component (also known as lecithin)
to sphingomyelin (L/S ratio) present in cases of nRDS. Lecithin (between
approximately 63 to 80% of the total phospholipids) is the primary con-
stituent responsible for reducing lung surface tension, the largest proportion
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of which is dipamitoylphosphatidylcholine (DPPC) (between 40 to 55% of
the PC fraction[14]), with the next most prolific being palmitoyloleoylphos-
phatidylcholine (POPC) [15] which comprises around 12% of the PC frac-
tion. The DPPC concentration is known to increase with increasing lung
maturity[16], while the concentration of another lipid, sphingomyelin (S), re-
mains relatively constant. In late gestation, surfactant phosphatidylglycerol
(PG) (present at concentrations around 10%) is observed to increase with
a concomitant decrease in phosphatidylinositol (PI) [13] (present in smaller
amounts), heralding the onset of maturity. Cholesterol (Chol) is present at
concentrations up to 15% [17] of the total lipid concentration and comprises
the majority of the neutral lipid component.

A diagnosis of nRDS may be made on the basis of the ratio of these
biomarkers, so giving rise to the use of the lecithin/sphingomyelin ratio (L/S
ratio). To discern between the healthy and nRDS states it is necessary to
identify a particular L/S ratio which is considered to be the ”cut-off” value
below which the baby is considered to have nRDS and requires appropriate
treatment. This cut-off is often decided by analysing and balancing the
sensitivity (true positive rate), and specificity (false negative rate) for the
ability of the biomarker to predict the disease[18, 19]. The value of L/S ratio
cut-off has been the subject of discussion in the literature [20, 21, 22], but has
been reported as 2.2 in a previously reported study performed using mid-IR
spectroscopy[23]

Previously reported studies have assessed fetal lung maturity by using
thin layer chromatography (TLC)[24] to measure the lecithin/sphingomyelin
(L/S) ratio and for the presence of PG, while others have measured the
L/S ratio of phospholipids extracted from bronchoalveolar lavage using mass
spectrometry (MS)[20] . However, none of these are suitable for use as point
of care (PoC) tests as they require time and skill to carry out and interpret
and there are no current devices available to assist with diagnosis. Measure-
ment of dried gastric aspirate using attenuated total reflectance coupled with
Fourier transform infrared spectrometry (ATR-FTIR)[23] has been reported
and shows promise to be realized in a PoC device. However, although the use
of dried samples ensures the highest concentration of biomarkers for spectral
analysis, it can cause challenges for measurement. For example, variations in
thickness within and between samples [25, 26], and crack formations occur
as an artefact from the drying process [27] and both of these phenomena
will result in spectra which have additional sources of error that can increase
the uncertainty of component concentration predictions. Our approach [28]
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makes use of bulk liquid sampling to overcome these spectral issues and
presents a repeatable and reproducible method by which such measurements
can be made.

Our previous work[28] applied machine learning to binary liquid compo-
nent mixtures of S and DPPC to establish that these lipid biomarkers are
amenable to being quantified using ATR-FTIR spectra and that it was pos-
sible to establish the L/S ratio based on the spectra alone. However, lung
surfactant is constituted of many more components than DPPC and S, and
the impact of these additional factors is likely to complicate the analysis and
impair the ability to estimate the L/S ratio using the spectra. In this work we
investigate the impact of variations in concentrations of five prominent lung
surfactant lipids on the ability to estimate the L/S ratio from ATR FTIR
spectra, by training machine learning models to predict the lipid concentra-
tions. This study, to our knowledge, is the first to systematically assess the
effect of varying DPPC, POPC, S, PG and Chol within physiologically rel-
evant concentration ranges and demonstrate the use of partial least squares
regression models to predict the concentration of nRDS biomarkers and the
L/S ratio using liquid samples. Our findings show promise for predictive
models of total PC, SM and PG, all useful nRDS biomarkers, to be simulta-
neously used to give a lung maturity index score and provide a clinician an
evidential basis for deciding treatment. These results further indicates that
ATR-FTIR on liquid samples may be translated into a clinical point of care
device for the diagnosis of nRDS.

2. Materials and Methods

2.1. Machine Learning Procedure

For measurements which generate spectra, many biomarkers may con-
tribute to the absorbance at a particular wavenumber. It is, however, difficult
to summarize the contribution of each biomarker to the absorbance at a par-
ticular spectral region. In order to identify and then quantify a biomarker of
interest, multivariate techniques must be resorted to reduce the complexity
of the data, and allow effective modelling of the spectral information.

The design of experiments (DoE) methodology [29] is a systematic ap-
proach to experimentation for characterizing and quantifying how a set of
process parameters affects some response parameter. The experiments are
designed to efficiently capture information about how the response parameter
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is affected by input parameter interactions/higher order effects. Identifica-
tion of input parameters is usually based on prior domain knowledge and are
shortlisted by a using a screening experimental design, however this requires
a level of domain knowledge to identify which ones to observe. This approach
provides a useful framework to generate appropriate mixtures and map out
the experimental domain, and establish whether the presence of varying con-
centrations of surfactant lipids impinges on the ability to develop machine
learning models and ultimately predict the L/S ratio. Machine learning can
be used to model the underlying patterns in the collected data and simplify
the data analysis without requiring an a priori understanding of the specific
relevant parameters[30].

FTIR spectra are sensitive to the molecular environment of an analyte
due to intermolecular interactions, so testing spectral variation by varying
a single lipid at a time would not permit modelling of the interactions that
occur between them. A general full-factorial [31] approach testing 5 com-
ponents at 5 different concentration levels requires 3125 samples for a single
run. While this would comprehensively answer how prediction models are
affected by the variation in each component, the number of runs required is
prohibitive in time and cost and is wasteful in terms of exploring an unre-
alistic physiological model. An alternative approach is to pursue a mixture
design with constraints on each component to limit them closer to reported
physiological ranges. This has the advantage of reducing the number of tests
required by focusing on realistic values for each of the components, and is
known as an extreme vertices design.

For this study, five lipids (DPPC, S, POPC, PG and Chol) were chosen
to generate the mixtures. A constraint applied on the mixtures was that
the component parts, when combined should give a total proportion of 100%
to avoid exploration of mixtures that stray from the physiologically relevant
concentration and the proportions were directly relatable to reported values
in the literature. The dataset necessarily contained imbalances with respect
to the number of levels tested with each lipid, but as the primary aim of this
experiment was to establish sample L/S ratios and to explore the extent to
which the presence of other lipids in a physiological range can interfere with
its determination, this remained unmodified and there were no treatments
to the dataset to address this imbalance.

Partial least squares regression (PLSR) was chosen to build prediction
models for the lipids test because it can be used to reduce the dimension-
ality of the dataset and handle multicollinear data. This builds from our
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previous work following the same pre-processing methods and where it was
established that PLSR models of the second derivative dataset provided the
best performance for predicting DPPC and S concentrations in similar, albeit
less complex mixtures[28].

The data pathway used is shown in fig. 1 showing the methodology
employed to calibrate the PLSR models and shows how the data is split and
processed after collection. The PLSR models were trained on the training
data using a cross validation approach to establish the model parameters.
The optimal parameters for each lipid PLSR model are used and trained
using the whole training dataset giving a final set of models and uncertainty
calculations. K-fold[32] cross-validation (CV) was used to split the training
data such that for each evaluation the CV test dataset contained around 1%
of the total training set data. To establish the optimal parameters for the
model (number of latent variables (LVs), models with increasing numbers
of LVs were generated and trained using each of the 100 CV train datasets
and then assessed against the CV test datasets. The maximum average
R2/minimum average mean squared error (MSE) for the LVs was then used
to select the optimal parameters for the model. The final model was retrained
on the full training dataset.

Figure 1: Machine learning data flow pathway used to generate the PLSR models

Reporting uncertainties in estimates provided by a point of care mea-
surement [33] is useful in giving clinicians additional information about how
much weight to give the predicted lipid concentration when reaching a diag-
nosis. If the prediction interval encompasses the cut-off region of L/S 2.2,
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then it should necessarily be treated with more caution than one in which
the prediction intervals were far from the cut-off region. This diagnostic
‘gray’ zone[34] is the region between where the test results are not definitive,
and are distinguished from those test results that indicate a clear positive or
negative result.

The uncertainties related to the model predictions in this study were
obtained using two similar approaches, a “jackknife+-after-bootstrap”[35]
method implemented in the MAPIE library and a variant bootstrap method[36]
implemented in the Doubt library. The jackknife+-after-bootstrap incorpo-
rates theoretical guarantees on the prediction intervals such that, in the worst
case, they will always provide a coverage rate of 1-2α (where α is the required
level of uncertainty) while placing the mild requirement of “exchangeability”
on the modelled data. The variant bootstrap also incorporates theoretical
guarantees on the prediction intervals of a coverage rate of 1-α, and has been
shown to provide better coverage in circumstances where the model outputs
have a high variance, while requiring input data fulfilling the slightly more
stringent independent and identically distributed condition. Both methods
are expected to provide coverage close to 1-α under most conditions and are
suitable for analyzing models without the constraint of requiring a normally
distributed output data; something which is not guaranteed when generating
predictive regression models.

2.2. Experimental Lung Surfactant Lipid Model

This study required the use of a generated lung surfactant lipid model so
that the concentrations of each lipid in the mixture could be controlled and its
effect on the spectra evaluated. Using patient derived samples would require
a large pool of individuals, with no guarantee that the whole physiological
range would be covered and was therefore deemed inappropriate in this case.
Using a generated model permits the application of a designed approach to
explore the physiological concentrations of each lipid and map out the phys-
iological space. The lipids in this study were dissolved in dichloromethane in
the state that they would be in post liquid-liquid extraction which separates
the phospholipid fraction from other components present in the surfactant
sample. The surfactant sample, when taken from a neonate, is in an aque-
ous form. While it would be ideal from the the perspective of a point of
care device to measure directly in this form, it does invite complexity, such
as the presence of proteins and strong absorption by water in the mid in-
frared region, which can make measuring small concentrations of lipids more
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difficult.
The lung surfactant lipid model in this study (given in table 1, be-

low) was generated by including the more prominent phospholipids (DPPC
and POPC), neutral lipids (cholesterol) and those lipids considered to be
biomarkers for nRDS (S and PG). The concentration of DPPC and POPC
together formed 53% to 69% of the total lipid fraction (58% to 76% of the
total phospholipid fraction) which encompasses the range of concentrations
reported in healthy control and nRDS conditions[11, 13] . The concentra-
tions for each lipid were chosen by combining the reported values for each
tested lipid in both healthy and nRDS states, and checking to see that the
regions above and below L/S ratio 2.2 were covered so that the impact of
varying each of the lipids could be established for measuring the L/S ratio,
by ATR-FTIR, on liquid samples. The levels studied denote the unique con-
centrations for each lipid within the sample mixtures due to the constraints
enforced by the extreme vertices [31] approach and the lipid concentration
ranges tested were in the order of those that have been previously reported
as recovered from pharyngeal aspirates of neonates[12].

% DPPC POPC S PG Chol

Max 48 24 30 12.4 6
Min 38 19.3 9.6 0.3 4

Levels 44 5 84 41 5
Concentration
Range (mM)

1.035 -
1.308

0.508 -
0.632

0.273 -
0.853

0.008 -
0.333

0.207 -
0.310

Table 1: Lipid composition limits used in Minitab® for the Extreme Vertices experimental
design and concentration ranges for the lipids tested.

2.3. Sample Generation

Measured masses of purified synthetic DPPC (1,2-dipalmitoyl-sn-glycero-
3-phosphocholine), POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine), PG
(1,2-dipalmitoyl-sn-glycero-3-phospho-(1’-rac-glycerol)) (Avanti® Polar Lipids)
and SM (N-Palmitoyl-D-sphingomyelin) and cholesterol (Merck) were dis-
solved in methanol (Arcos) and dichloromethane (Arcos) and used to prepare
homogeneous stock solutions, with vortex mixing as required. Methanol was
used to increase solubility of the lipids at room temperature so that each
mixture was homogeneous, as PG in particular does not easily dissolve in
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dichloromethane. Samples were generated by pipetting required amounts of
each stock lipid solution into a vial and then dried on a hot plate set to
63 °C under nitrogen. The proportions of each lipid for each sample were
constrained to sum to 100 when generating the samples, which was done us-
ing the Extreme Vertices design implemented in Minitab®, so as to cover a
physiologically relevant experimental space, while still exploring the impact
of different L/S ratios on the spectra (further detail in Supplementary Ma-
terial). The sample vials were capped with a PTFE lined screw cap until
measurement. Immediately prior to measurement samples were redissolved
in 3 ml of dichloromethane, vortex mixed for 30 s and observed to be visibly
homogenous and fully dissolved. If required, heat was applied by placing the
closed vial on a hotplate for 30 s and further vortex mixing applied until
visibly homogeneous and fully dissolved. The complete list of lipid concen-
trations can be found in the supplementary materials table S2.

2.4. FTIR Spectra Collection and Preprocessing

Prior to generating optimised prediction models spectra were collected
and preprocessed to remove sources of noise that were attributed to parame-
ters other than changes in the target analyte. Data used to assess the model
performance should not influence nor inform the model optimisation process,
so the data should be appropriately split to prevent such data leakage from
occurring.

Measurements were performed on an Agilent Cary 670 FTIR instrument
equipped with a potassium bromide (KBr) beam splitter and a deuterated
triglycine sulphate (DTGS) detector. The resolution was set to 4cm−1 with
32 co-added scans. Nitrogen purging was set to 8 liters per minute and the
sample presented to the spectrometer by means of a 10-bounce Pike® zinc
selenide (ZnSe) horizontal ATR (HATR) accessory with a solvent lid. 0.5
ml of sample was used for each measurement and tested in a random order.
Between each sample the ATR crystal was cleaned and a new background
scan performed as per our previously published[28] protocol. Nine spectra
were collected consecutively for each sample.

The spectra collected were initially preprocessed using Peak® Spectroscopy
(Operant LLC) software where the spectra were baseline offset corrected,
the spectra were truncated to 3500 cm−1 to 850 cm−1 and regions where
dichloromethane and carbon dioxide exhibit strong absorbances were re-
moved from the spectra. This region was chosen because the strong ab-
sorbance below 850 cm−1 of dichloromethane results in a poor signal-to-
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noise ratio, while spectra above 3500 cm−1 contain little additional informa-
tion that would be useful for a PLSR model (OH stretch modes exist above
3500 cm−1, but this is . The data were converted into csv files and further
processed in Python using Pandas and Scikit-Learn[37] to calibrate PLSR
models to predict the concentration of each lipid component in the sam-
ple. The spectra were grouped by sample and split into a training and test
dataset. Additional preprocessing was separately performed on these sets in
Python by applying a Savitzky-Golay derivative filter (15-point window, 3rd
order polynomial, second derivative) to obtain smoothed second derivative
spectra. The test set spectra were not considered for any model building and
only used to assess the model performance after optimal parameters obtained
through cross-validation had already been obtained. Once the PLSR models
had been generated, they were evaluated using the test set spectra.

3. Results and Discussion

3.1. Model Optimization

Figure 2 shows the normalised ATR-FTIR spectra of each of the individ-
ual lipids (originally at 1 mM concentration) that comprised the model lung
surfactant. PG and both lecithins (DPPC and POPC) share peaks in the
1730 cm−1 region which is associated with the ester carbonyl bond present
on these molecules. Table 2 assigns the more prominent peaks and shows
that DPPC and POPC share many spectral features but are distinguishable
from other lipids present. Chol shares the 2800 - 3000 cm−1 spectral region
with other lipids but its spectrum is distinct which is expected to be a useful
property to develop effective predictive PLSR models (in proceeding section).

In total 1062 spectra were collected from 118 different samples (9 spectra
for each sample) and randomly split by sample into a training (846 spectra)
and evaluation test set (216 spectra). The training set spectra were further
split by sample into 100 different CV training sets (containing 837 spectra)
and CV test sets (containing 9 spectra) corresponding to a ‘leave one out’
k-fold approach with respect to the sample number. The CV test sets were
used to evaluate the initial models calibrated using the CV training sets to
discover the optimal number of LVs required for the final PLSR models.

The average R2 values for the 100 cross-validation models for LVs from
1 to 39 are shown in fig 3. For each of the PLSR lipid models, the LV
corresponding to the maximum average R2 value for the CV test set was
chosen as the optimal number of LVs for the prediction model. The highest
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Figure 2: Normalised ATR-FTIR Spectra of the lipids constituting the lung surfactant
model in this study at 1 mM concentration, with regions, where CO2 and dichloromethane
absorbs strongly, removed.

peak R2 values for the CV test data were observed from PG (fig 3 C, R2 =
0.934, MSE = 0.0007 mM2) and S (fig 3 A, R2 = 0.928, MSE = 0.0013 mM2)
indicating that a high degree of variance in the spectra was explained by their
respective PLSR models. The DPPC model performed less well (R2 = 0.758),
and those for POPC and Chol performed poorly, with lower CV test R2 values
(0.612 and 0.448 respectively) indicating that much less of the variance in
the data was captured by the model. The reason for such may be due to the
fewer levels, smaller concentrations and smaller sample interval ranges tested
for POPC and Chol (between 0.10 to 0.27 mM concentrations), as opposed
to the levels and ranges in the better performing models (between 0.33 to
0.58 mM concentrations). The DPPC model is thought to be affected by the
molecular similarity between DPPC and POPC which share many features in
their respective mid-IR spectra so that differentiating between them is more
difficult. The addition of other lipids into the mixtures, as expected, makes
it more difficult to distinguish between similarly structured molecules.

Due to the poorer performance of the POPC and DPPC models individ-
ually, an additional model for PC was developed, which was trained on the
total PC concentration in the sample (sum of DPPC and POPC) and used to
generate a predictive model. The CV test performance for this model (fig 3,
R2 = 0.876) was better than either of the two lipids individually. The larger
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Wavenumber
(cm−1)

Bond Vibration

2853-2962 C-H stretch (CH2 and CH3)
1720-1745 C=O stretch of ester carbonyl
1650-1640 Amide I (C=O stretch)
1445-1480 CH2 bend
1160-1190 C-O stretch
1100-1200 C-C stretch
1085-1110 P-O−

2 stretch
1060 C-O-P stretch
970 C-N stretch (choline)

Table 2: Selected wavenumbers associated with bond vibrations present within the lipids
tested [38, 39]

sample PC concentration range (0.396 mM, ranging from 1.543 to 1.939 mM)
and additional levels was likely to have contributed a larger variance to the
data, providing a better basis upon which to calibrate a predictive model,
and match the variance of other better performing models. In a physiological
setting this approach may be equally valid, as the largest PC component is
made up of DPPC, so long as PCs as a group can be differentiated from
other lipids present.

The performance of the PG model shows additional promise for the use
of IR spectroscopy to diagnose nRDS as PG increases in concentration in
surfactant towards the end of neonatal gestation and has been considered a
late-stage lung maturity biomarker[40]. By quantifying multiple diagnostic
biomarkers, it is potentially possible to develop a lung maturity index which
considers other inputs, including (for example) gestational age and the quan-
tity of phosphatidylinositol (PI – which decreases in concentration towards
the end of neonatal gestation), to give additional information to a clinician
upon which to base a diagnosis.

3.2. Test Set Lipid Concentration Determination

The final PLSR models for each lipid were generated by training on the
full training set using the optimal number of LVs established from the cross
validation. The ’test set’ was used to evaluate the performance of these mod-
els for predicting concentrations of each of the lipids (shown in fig 4), and the
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(a) Average cross-validation R2 (b) Average cross-validation MSE

Figure 3: Graphs showing the maximum CV R2 (left) and minimum CV mean squared
error (MSE) (right) obtained for each PLSR model (A: S, B: DPPC, C: PG, D: POPC,
E: Chol and F: PC) for both the CV train datasets (blue line) and the CV test datasets
(orange line). The maximum R2/minimum MSE and corresponding LV for the CV test
dataset is indicated for each lipid model and was used as the number of LVs for each of
the optimized PLSR lipid models.

prediction intervals generated using both the jackknife+-after-bootstrap and
the variant bootstrap methods. The prediction performance for each model
against the ’test set’ showed similar trends to the CV test performances in
terms of the R2 values obtained. The models for S, PG and PC (R2 = 0.817,
0.846 and 0.846 respectively) were able to determine lipid concentrations
within the physiological ranges tested. The model for DPPC (R2 = 0.592)
performed less well than these models but still better than those for Chol (R2

=-0.082) and POPC (R2 =-0.334). While the model performance for Chol
may be explained by the fewer levels tested, as well as the limited concentra-
tion range, this does not explain why the DPPC and POPC performance are
both poor. It is more likely that this is a result of the molecular similarities
between the two lipids which results in similar changes in the spectra when
changing the concentration in either one. The prediction intervals for the
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jackknife+-after-bootstrap and variant bootstrap give the uncertainty in the
model predictions, and are indicated in figure 3 by the error bars. While the
prediction intervals generated using the jackknife+-after-bootstrap method
cover a narrower range, their utility is suboptimal due to their optimistic
nature (fig 4, summary in supplementary information table ??) for the 1-α
region. The coverage probability for these intervals (see table 3) was observed
to be between 0.602 (POPC) and 0.935 (PC), all less than the expected 0.95
for an α value of 0.05. The variant bootstrap method is more conservative,
with wider prediction intervals, and in all but one case the coverage probabil-
ity for the predictions with their respective intervals fully encloses the true
lipid concentration for the sample. The coverage probability for the theo-
retical guaranteed region for the jackknife+-after-bootstrap, encompassing
the 1-2α region, was valid for all models apart from the POPC model, for
which the coverage probability was 0.945. While this is close to the required
coverage probability it does suggest an ill-fit POPC model, which may also
relate to the initial assumptions on the data of exchangeability in the context
of highly similar lipids.

Lipid
Jackknife+-after-bootstrap 95%

Prediction Interval
Coverage Probability

Variant Bootstrap 95%
Prediction Interval
Coverage Probability

1-α 1-2α 1-α

S 0.787 0.991 1.000
DPPC 0.806 1.000 1.000
POPC 0.602 0.944 0.995

PG 0.815 0.995 1.000
Chol 0.773 0.991 1.000
PC 0.935 0.995 1.000

Table 3: Prediction interval coverage probabilities for the jackknife+-after-bootstrap and
variant bootstrap methods for each of the lipid models tested.

3.3. Test Set L/S Ratios

For the final evaluation of the L/S ratio, the mean of the 9 spectra from
each sample were used for generating averaged spectra (giving 24 different
spectra) which were used to make predictions for PC and S. The prediction
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(a) Variant bootstrap prediction intervals (b) Jackknife+ after bootstrap prediction inter-
vals

Figure 4: Lipid Predictions (A: S, B: DPPC, C: PG, D: POPC, E: Chol and F: PC) from
each of the models on the Test Set along with the R2 values for each lipid with the 95%
prediction intervals generated by the variant bootstrap (left) and the jackknife+-after-
bootstrap (right) methods. The red line in each of the graphs corresponds to the expected
prediction value while the shaded region corresponds to the prediction with the largest
prediction interval range for that concentration.

intervals for these L/S ratios were determined by combing the uncertainties
obtained from the prediction of S and PC (see supplementary data equation
??). The largest error between the upper and lower prediction interval was
used in the error propagation calculations and used as a symmetric prediction
interval around the prediction. Fig 5 shows the final L/S ratio predictions
for the averaged spectra of the test set. The prediction intervals given by
the variant bootstrap method were extremely wide, and while they cover the
true L/S ratio, they would not be useful in a clinical setting due to their
width. The prediction interval provided by the jackknife+-after-bootstrap
method was much smaller and in all but three cases included the true L/S
ratio. In those cases (right, fig 5) the error in the the prediction interval
was within L/S 0.05 moles/mole of the nearest prediction interval limit. The
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largest errors for all three were due to larger errors in the model predicting S
concentrations, which was the component at the lower concentration in this
calculation. Predictions which included the L/S 2.2 moles/mole region within
the prediction uncertainty were deemed to be within the diagnostic gray area
and these were found to fall within a region of L/S ±+0.30 moles/mole for
the averaged test set predictions. On this basis, a sample with an L/S ratio
of 2.2 would in 95% of cases provide a reading of less than 2.5 moles/mole.

(a) Full Range (b) Zoomed in between L/S 1.75 to 3.00
moles/mole

Figure 5: The predicted L/S ratios based on the PC and S models, with prediction intervals
generated by combing and propagating the largest errors in the models. The full test set
region is shown on the left, and zoomed in on the L/S 2.2 region is shown on the right.

3.4. Comparison with Reported Clinical Data

While use in a clinical scenario requires the development of different pre-
diction models trained on surfactant samples obtained from patients, it is
useful to understand what a ’gray’ region of ±0.3 moles/mole either side of
the diagnostic L/S ratio of 2.2 (which itself is still the subject of discussion)
would mean in a clinical scenario. Data on the L/S ratio of neonates from
Verder et al.[23] were reanalyzed in the context of this gray region to see how
many neonates might benefit from a point of care diagnostic device with the
performance of the current lipid models (see fig 6). The number of patients
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in the gray zone represent approximately 10% of the total 136 patients that
were part of the study. Approximately 35% of the cohort would have been
correctly diagnosed as requiring surfactant replacement therapy on the basis
of the L/S ratio, and a further 33% would have been correctly diagnosed as
not requiring surfactant replacement. The remaining 22% were incorrectly
diagnosed using the L/S ratio as a biomarker for nRDS, and would likely have
been subject to further investigation based on the presenting symptoms. In
the absence of any current method to diagnose nRDS at the point of care,
a device with a similar performance to the lipid models in this investigation
would appear to be a beneficial pursuit, and would likely improve prognoses
for a majority of preterm neonates with relevant symptoms.

One strategy to deploy the models similar to those developed in this study
would be to take measurements from many patient samples and build a cal-
ibration library. However, this may be impacted by the non-availability of
suitable concentrations to develop a model that works across the full physio-
logical range. Using a hybrid approach, which takes the data collected from
this study and combines it with data from patient derived samples, is likely
to be an efficient method to build a robust model for clinical use and has
been planned as future work.

3.5. Opportunities for Miniaturization: Model Feature Importance’s

This section considers how a point of care device might be realized in
a small form factor that is easy to place in a clinical setting by identifying
opportunities to reduce device complexity. While a commercial ATR-FTIR
system would fulfil the paradigm of a PoC device, further miniaturisation
opportunities exist for devices based on quantum cascade lasers (QCLs).
FTIR spectrometers require the use of an interferometer to generate an in-
terferogram which is Fourier transformed into a spectrum but QCL based
spectrometers can directly scan the spectrum within a specified bandwidth.
Thus, by dispensing with the requirement for an interferometer, smaller de-
vices may be realized. It is then also possible to reduce the time required to
produce a spectrum with a QCL system by concentrating on those regions
which the PLSR models have previously identified as providing the most in-
formation for the determination of the analyte concentration. By identifying
and focussing on specific wavenumbers of interest it is possible to reduce in-
crease the signal-to-noise ratio by increasing the number of co-added scans
within a given time period.
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Figure 6: Effect of gray diagnostic region on previously reported dataset from a study
seeking to diagnose nRDS using an L/S ratio of 2.2. Datapoints beyond the viewing
frame are not displayed, but were considered as part of the analysis. Reproduced, with
permission, from Verder et al[23].

SHAP (SHapley Additive exPlanations) values[41] can be used to explain
the strength of the wavenumber features used by a model when providing
a prediction in a model-agnostic manner, and therefore inform decisions on
which regions of the spectrum to focus on. One issue with comprehensively
generating SHAP values, especially for large datasets and complex models is
that there is a large computational overhead associated with it. As a result,
in this study a subset of 100 spectra from the test set was used to gener-
ate the SHAP values to balance between sufficient data for the provision of
some insight while at the same time presenting a manageable computational
overhead.

The wavenumber features which contributed the strongest features, as
represented by the features comprising the five largest mean SHAP values
for each model are shown in fig 7. Wavenumbers 1041 and 1043 cm−1 ap-
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pear as strong features in the models that predicts S, DPPC and PC, which
corresponds to the wavenumbers associated with the side of a peak centered
at 1061 cm−1 in the original spectra. It is also interesting to note that the
wavenumber associated with the ester carbonyl bond on PCs (on the side of
a peak near 1736 cm−1) was a strong feature in the S model while at the
same time a wavenumber associated with the amide I vibration in S (on the
side of a peak near 1650 cm−1) was a strong feature in the PC model.

The mean SHAP values show that wavenumber features in the region
1600 – 1800 cm−1 are in the top 5 features that contribute to the models
predicted output and this is also a region where the impact of water vapor can
degrade spectra in both the training and the test sets. While it is expected
that the PLSR algorithm will generate models that maximise the covariance
between the wavenumber features and the applied lipid concentrations, this
will necessarily be affected by differences in water vapor, particularly if it
affects a region deemed important for the model. A method to improve
the spectra collected, which can be used in a clinical setting, will permit
better models to be generated which is expected to positively influence their
ability to predict the correct concentrations. We are developing a method
to overcome the issue of vapour interference in spectra so that high quality
spectra can be provided both during training as well as to correct spectra
obtained in a point of care setting.

Figure 7: Top five SHAP Training outputs for each PLSR model (A: S, B: DPPC, C:
PG, D: POPC, E: Chol and F: PC). The features have been rounded to the nearest
wavenumber.
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4. Summary and Future Study

In summary the present investigation used a physiologically informed
model of lipids in lung surfactant to investigate the effect of varying lipid
composition on the FTIR spectra when used to generate models to predict
the concentration of each lipid in a mixture. Based on an extreme vertices
design, 118 liquid samples were systematically generated with varying com-
positions. Each sample was measured using ATR-FTIR to collect 9 spectra
which were used to generate and further test predictive models of lipid con-
centrations. The dataset was split into a training and test dataset, and
the training dataset used to define the preprocessing and optimal model pa-
rameters required. The spectra were preprocessed by removing irrelevant
data (peaks due to carbon dioxide and dichloromethane), baseline offset cor-
rection and by taking the second derivative spectra for modelling. Models
generated for predicting S, PC and PG performed the best while those for
DPPC, POPC and Chol performed poorly in predicting the test set. Predic-
tion intervals for each model were generated using the variant bootstrap and
jackknife+-after-bootstrap methods. The coverage probability of the variant
bootstrap is too conservative, while the jackknife+-after-bootstrap is slightly
too aggressive. A future study interest will be to understand the best way
to obtained well balanced prediction intervals. The SHAP values for each
model show that the five most informative features in the models includes
regions on the side of peaks that vary most with concentration, indicating
possible regions of interest for a small, compact spectrometer to concentrate
design effort on. The L/S ratio was generated using the best performing ‘L’
model (PC) and the S model and propagating the errors obtained from the
predictions for each individual component. The overly conservative variant
bootstrap prediction intervals provide no meaningful output as they provide
an interval that is too wide, while the jackknife+-after-bootstrap provides
more balanced intervals, giving a prediction interval of +/- 0.3 moles/mole
in the region of L/S ratio of 2.2 which is considered to be the diagnostic
cut-off for nRDS.
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