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ABSTRACT
Generative AI, propelled by innovations like ChatGPT, has gained widespread 
recognition. In the realm of archeology, there exists significant potential for generative 
AI, particularly in reconstructing the appearance of cultural artifacts through the 
introduction of 2D or 3D renderings derived from damaged or degraded objects. In this 
study, we showcase and evaluate the practical application of Generative Adversarial 
Networks (GANs), harnessing the power of deep learning, for 2D image reconstruction 
of ancient Roman coins, aimed at aiding their improved visualization. Roman coins are 
chosen as our focal point due to their relative abundance and accessibility through 
online repositories and datasets. Our results demonstrate improved ability to enhance 
damaged or degraded coins, rendering them more similar to their better-preserved 
counterparts. In some instances, generated coins are virtually indistinguishable 
from the originals. The contribution of this work showcases the potential of GANs in 
assisting cultural heritage specialists and archeologists in recreating the appearance of 
damaged objects, thereby facilitating improved visualization of coins that are not well 
preserved. However, we also discuss when there might be limitations to using GANs in 
reconstructions. Although this work is tailored for ancient coins, GANs hold promise in 
application for other artifacts provided sufficient training data are available. We discuss 
how GANs can be applied and improve the appearance of artifact reconstructions, 
where we also provide relevant data used in this research.
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1. INTRODUCTION

The reconstruction and enhanced visualization of 
damaged or incomplete cultural artifacts has been a 
long-sought goal within cultural heritage and archeology. 
This has included varied techniques applied such as 
3D object reconstruction, virtual reality, mathematical 
algorithms, including diffusion models, and other digital 
reconstruction techniques (Koutsoudis et al. 2013; Bruno 
et al. 2010; Kleber & Sablatnig 2009). One recent trend is 
using generative artificial intelligence (AI) to create new 
2D or 3D images, using algorithms such as generative 
adversarial networks (GANs; Aggarwal et al. 2021). 
Generative AI has been associated with popular large 
language models such as ChatGPT or even so-called 
‘deepfakes’ that create false images that often appear 
very similar to a likely or original image (Wach et al. 
2023).

While the desire to reconstruct objects serves 
purposes ranging from aiding in object identification 
to facilitating public presentation, visualization and 
conservation efforts, generative AI approaches for the 
restoration of incomplete or deteriorated artifacts is only 
now beginning to be explored in archeology (Colmenero-
Fernández & Feito 2021. We posit that there is substantial 
untapped potential in harnessing Generative Adversarial 
Networks (GAN)-based methodologies to improve the 
appearance and quality of damaged artifacts, enabling 
degraded objects to be reconstructed so that they might 
be more clear or improve their physical appearance. 
We seek to evaluate the potential of generative AI in 
reconstructing and enhancing visualization of cultural 
objects. The unique strength of GANs lies in their ability 
to autonomously generate lifelike images that closely 
emulate real-world objects, drawing from comprehensive 
training datasets (Choi et al. 2019). This benefits viewers 
through enhanced visualization and providing a more 
clear picture of artifacts that might be damaged or 
degraded. Although 3D imagery can be employed for 
object reconstruction, 2D images often represent the 
most prevalent and easily accessible form of data. As 
with any generative AI approach, extensive training data 
are essential; data augmentation techniques further 
enhance the quality of training datasets (Farahanipad 
et al. 2022).

We explore and present a GAN-based methodology 
tailored to reconstruct artifacts, imbuing them with 
a likeness to better-preserved objects or improved 
appearance. Our objective is to unveil and evaluate the 
potential of GANs for artifact and object reconstruction 
and ascertain their relevance for reconstructing objects 
so that overall appearance is improved for damaged 
objects. Our work includes demonstrating GANs’ ability 
to improve images so that features are more clear for 
general visualization. We have chosen to illustrate our 

approach using 2D images of Roman coins because of 
their prevalence and the wealth of available data on both 
fully preserved and partially intact specimens. Although 
we use coins in our example, we are not numismatics 
experts, but we incorporate archaeologists familiar with 
coins and use coins as an illustrative example for the 
potential of GANs in cultural object reconstructions and 
visualization.

We did conducted a literature search and evaluated 
different GAN-based methods. Prior to delving into the 
specifics of our approach, we provide an overview of 
the broader landscape of generative AI, with a focus 
on its relevance for object reconstruction in archeology. 
Subsequently, we describe the methodology and the 
algorithms employed. Following this, we present our 
findings. We discuss the broader implications of our 
results for the integration of generative AI approaches for 
image-based object reconstruction and provide insights 
into the benefits and limitations of the approach for 
visualization. This includes how generative AI approaches 
could be improved for artifact reconstruction while also 
developing clear guidelines for their use so that the 
creation of fake images for deception is avoided.

2. BACKGROUND

2.1. CONCEPT BEHIND GANs
Given that GANs are relatively new in archeology, it is 
essential to understand the fundamental principles of 
GANs and what they can potentially provide the field. At 
their core, GANs represent a form of deep learning that 
harnesses the power of two artificial neural networks: 
the discriminator and the generator. These networks 
engage in a dynamic interplay resembling a zero-sum 
game. To comprehend this concept fully, artificial neural 
networks need to be understood, which are a subset of 
deep learning approaches. Artificial neural networks aim 
to replicate the intricate processes of human learning by 
creating interconnected nodes, analogous to neurons in 
the human brain. These nodes are structured in layers, 
facilitating data flow through the network, thereby 
enabling the identification and learning of specific 
patterns, such as those found in images or objects 
within images (LeCun et al. 2015). In the realm of GANs, 
the generator’s primary function is to produce new, 
generated images. The generator’s output is fed into 
the discriminator’s input. The discriminator endeavors 
to differentiate between newly generated images and 
those from a training dataset. The ultimate goal is for 
the generator to create data that closely mimics the 
training data to the extent that the discriminator cannot 
distinguish between the two. When this equilibrium 
is achieved, this signifies a converged GAN model 
(Goodfellow et al. 2014).
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Figure 1 proviwdes an example of a basic (i.e., so-called 
‘vanilla’ ) GAN structure. In the initial stages of training, 
the generator produces data that significantly deviate 
from the discriminator’s data. Random input serves as 
the basis for generating these data. However, as training 
progresses and more adjustments are made based on 
previous training, the discriminator becomes more error-
prone in distinguishing between generated and real 
images. Through a process known as backpropagation, 
the generator adjusts its weights based on feedback 
from the discriminator. This iterative process leads to the 
GAN’s refinement in subsequent iterations. The generator 
incorporates a loss function that penalizes it for failing to 
deceive the discriminator, while the discriminator acts as 
a classifier that distinguishes between generated and real 
input data. The discriminator’s loss function measures 
classification accuracy, penalizing it for classifying real 
instances as fakes, and vice versa. Weight adjustments 
based on outcomes are integral to this process. Both 
the generator and discriminator are typically trained 
separately and kept constant while the other is trained. As 
the generator improves, the discriminator’s performance 
deteriorates. A converged model is typically achieved 
when the discriminator’s accuracy oscillates around 
50%; this signifies the inability to confidently distinguish 
real from generated images (Gonog & Zhou 2019; Langr 
& Bok 2015).

Various GAN types exist, primarily differing in their 
underlying structures and generator and discriminator 
configurations, including how image reconstruction is 
generated based on given input. Some GANs focus on 
certain aspects of reconstruction, such as adding or 
infilling missing areas in images, while others focus on 
enhancing provided features such as faces or clothing 
(Gragnaniello et al. 2021).

2.2. USE OF GANs IN HERITAGE
Generative AI, particularly using GANs, has experienced 
a surge in popularity across diverse domains, including 
advertising, filmmaking, and autonomous driving (Yan 
et al. 2023). GANs are often popular for reconstructing and 
enhancing imagery; they also can create fake or derived 
images which can be used to train other machine learning 
models (Zhang et al. 2024; Wang et al. 2024; Hermoza 
& Sipiran 2018a). While GANs have gained traction in 
numerous industries, their adoption in archeology, or 
heritage more broadly, has been relatively limited until 
recently. There is recognition that generative AI will 
become increasingly adopted for a variety of areas in 
heritage, including in artifact reconstructions (Münster 
et al. 2024). Material culture reconstruction, in fact, 
appears to be among the more likely areas of application. 
GANs are now increasingly being adopted and finding favor 
within some archeological or heritage-related areas due 
to their proficiency in augmenting or recreating missing 
data. Other approaches have also looked at improving 
visual experience for viewers. Garozzo et al. (2021) 
introduced a GAN-based approach to transform unrealistic 
representations into realistic classical architectural scene 
reconstructions. Their methodology enables the synthesis 
of objects and their spatial alignment within predefined 
ontological frameworks, contributing to the creation of 
more authentic visual narratives. The work was deployed to 
create realistic images so that they can be used for object 
classification. In another context, the Z-GAN architecture 
was employed to transfer 2D image features onto a 3D 
voxel model, facilitating the learning of intricate 3D shapes 
commonly encountered in architectural structures (Kniaz 
et al. 2019). This model generates voxel models using 
object silhouettes from an input image and information 
during a training stage. A U-Net generator is used to 
translate between 2D color images and 3D models.

For smaller cultural objects, perhaps one of the 
earliest applications is a GAN called ORGAN, which is a 
conditional GAN variant used in reconstructing cultural 
objects. This basically applies a shape completion 
network that represents 3D objects as a voxel grid; it uses 
a 3D encoder that compresses input voxels using a series 
of 3D convolutional layers. Notably, ORGAN demonstrates 
the ability to reconstruct cultural artifacts, specifically 
ceramics missing up to 50% of their surface area, with 
more damaged objects less clearly reconstructed. This 
approach facilitated 3D reconstructions, employing dual 

Figure 1 General structure and workflow of a basic ‘vanilla’ 
GAN showing the role of the generator and discriminator in 
generating ‘fake’ images and using real image data to compare 
with generated images.
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loss functions to train on missing ceramic parts (Hermoza 
& Sipiran 2018b). GANs have also been instrumental 
in tasks such as ceramic profile reconstruction and 3D 
volumetric reconstruction, streamlining the recreation 
of ceramic profiles and aiding in volume determination 
for various vessels (Navarro et al. 2022; Colmenero-
Fernández & Feito 2021). Recent work has also applied 
GAN-based architecture for profile drawings in small 
objects. This deploys a multi-branch feature cross fusion 
(U2FGAN) algorithm for generating line drawings for 
different cultural remains, which enables line extraction 
and edge detection (Zeng et al. 2024).

For numismatics, Cycle-Consistent GANs, or 
CycleGANs, have been deployed to reconstruct Roman 
coins from degraded 2D images. Although this approach 
predominantly enhanced surface details for eroded 
coins, such as facial features and legends, it did not 
address other forms of damage including missing 
structural components, cracking, and discoloration. 
In this approach, we attempt to improve upon this as 
outlined and discussed below by broadening the types of 
reconstructions applied. Nevertheless, previous CycleGAN 
application demonstrates how surface details that are 
deteriorated on coins could be enhanced and made 
clearer for visual presentation (Zachariou et al. 2020). 
The architecture of CycleGANs is discussed below.

In addition to physical artifacts, GANs have found 
utility in ancient written content reconstruction. For 
example, GANs have been used to recreate bone 
inscriptions and illuminate their evolutionary processes. 
By simulating different character development stages, 
GANs can trace the evolution of script forms, shedding 
light on what these ancient inscriptions might have 
originally looked like (Chang et al. 2022). This highlights 
also the potential for GANs in contributing to areas such 
as ancient languages or inscriptions’ histories. Overall, 
the last few years have demonstrated an accelerated 
use of GANs in heritage and archeology, but work has 
still been generally limited. In particular, data availability 
limitations and the technical nature of applying GANs 
are likely preventing their wider application, although 
we anticipate the adoption of GANs will accelerate in 
coming years. For many GAN-based efforts, specific GAN 
architectures enable these works to focus on varied 
reconstruction, that is how given and different data are 
generated to produce a new image. For instance, in the 
case of voxels, generating from 2D images is possible 
by focusing on the translator and image generation 
capabilities. These all vary from the basic generator and 
discriminator networks in ‘vanilla’ GANs.

3. DATA AND METHODS

We procured data through web scraping from the 
Online Coins of the Roman Empire (OCRE) site, which 

accesses Nomisma-based websites. Coins range from 
being well preserved to heavily degraded. This enabled 
other repositories to be accessed to provided data 
used for model training and qualitative validation and 
testing. Furthermore, we utilize lightly to heavily eroded 
or damaged coins in our testing phase to assess our 
model’s capability to reconstruct coin images and 
determine the ability of the deployed GAN to improve 
coin reconstructions. We considered damaged coins 
as those that are clearly broken from their original 
appearance, eroded, or cracked. The degree of damage 
varied in our recovered coin samples; we utilize light 
to severely damage coins based on the surface area 
affected in the results discussed below. Such damage 
could have been deliberate in antiquity; however, we aim 
to reconstruct damaged areas to an appearance as close 
as possible to when the object was made. In total, our 
training data comprises 351 coin images, while 110 coin 
images are reserved for validation and testing purposes. 
Our intention is to use a GAN to both recreate damaged 
or broken areas, including cracks, as well as enhance coin 
features that might be degraded.

3.1. DATA
Our dataset, utilized for both training and validation to 
assess the model’s fidelity to real coin images, is provided 
in the supplementary data. We sourced the dataset from 
Nomisma-based websites containing Roman coin images. 
We deliberately confined the dataset to 2D images; these 
are the most prevalent and align with our primary goal: 
facilitating the reconstruction and visualization of eroded 
or degraded coins. Our dataset encompasses coin images 
from the Roman Empire (31 BCE – 476 CE), including 
different denominations (e.g., denarius, dupondius), 
and includes coins from mostly Roman emperors. We 
do not focus on any period or coin types. However, we 
searched different periods and emperors within the date 
range to obtain a diverse dataset. We selected coins 
based on good quality images, well preserved condition, 
coming from known collections, and those that are not 
well preserved (Figure 2). This is in order for training to 
have a variety of available data that aids reconstruction, 
based on less well preserved coins but also using 
better preserved coins to improve reconstruction. Data 
restrictions limit potential to reconstruct coin images. 
For instance, relatively shiny well preserved images of 
complete coins informs the trained GAN to then attempt 
to generate coins that appear more shiny. Based on this 
criteria, we were able to collect our images, including all 
training and validation data, which are made available 
in the supplementary data. While we restricted the coin 
variety for better control of image quality during testing 
and validation, it is entirely feasible to expand the dataset 
to encompass coins from different historical periods and 
types. The dataset comprises colored images, including 
obverse and reverse views, with annotated features for 



305Altaweel et al. Journal of Computer Applications in Archaeology DOI: 10.5334/jcaa.146

enhanced analysis. In our examples provided, we focus 
on the obverse. We acknowledge that because we are 
limited to what is available online, both training and 
validation are affected. Very poorly preserved coins, 
where identification is nearly impossible, commonly 
found in excavations are not as prevalent in our data, 
although examples of coins not well preserved are used 
in this work.

Different emperors and dates were searched, although 
our search was somewhat random because quality, that 
is well preserved coins, and variety of samples differed 
based on availability. Coin collections are accessible 
via Nomisma.org SPARQL, where we accessed the 
numismatics.org/ocre site for coin data (Nomisma 
2024). To facilitate data collection, we developed our 
own custom scraper for this site (see supplementary 
data) that also enabled access to other coin repositories 
in museum collections that linked back via numismatics.
org. This is provided as an additional output of this 
paper and information about its use is discussed in 
the given link. Our data search and acquisition process 
spanned and connected to the British Museum, the 

Portable Antiquities Scheme, the University of Vienna’s 
numismatic collection, the Kunsthistorisches Museum 
in Vienna, and the Münzkabinett in Berlin (American 
Numismatic Society 2023a, b; British Museum 2023; 
Portable Antiquities Scheme 2023; Univerity of Vienna 
2023; Kunsthistorisches Museum Wien 2023; Berlin 
2023). We used the American Numismatics Society’s 
referenced coins for training and testing given the 
quality, diversity, and provided coin reference. All coin 
data utilized in this effort have metadata associated with 
their identifier numbers; these identifiers can be found 
in the image titles and link to their original files found 
in numismatics.org. The supplementary data contain 
training and generated output used for this effort. The 
link provided further explains our data.

3.2. GAN-BASED METHOD
We deployed a CycleGAN (i.e., short for Cycle-Consistent 
GAN; code and documentation link provided in the 
supplementary data), similar to prior deployments 
(Zachariou et al. 2020), as this model proved to be 
useful for our own goals in enhancing visualization 

Figure 2 Example coins divided into deteriorated and well preserved coin categories (or ‘bad’ and ‘good’ coins) used to train our GAN. 
Others can be found in the supplementary data.

Figure 3 The CycleGAN-based approach applied in reconstructing coins.

https://Nomisma.org
https://numismatics.org/ocre
https://numismatics.org
https://numismatics.org
https://numismatics.org/
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(Figure 3). This is mainly because CycleGANs deal well 
with multifaceted reconstructions and one of the 
contributions of this paper is to demonstrate how 
multiple enhancements are possible. We had searched 
for the best underlying architecture to use and this 
architecture proved to be the most capable in coin 
reconstruction quality. Among various GANs evaluated, 
this GAN-based method seemed the best option given 
its ability to address different forms of degradation in 
reconstructing coins. We should note that a GAN used 
in this case is for enhancing given input data; other data 
may exist for the same artifact that could of course prove 
to be of a higher quality image and may show additional 
detail the GAN does not initially see in its enhancements. 
In addition to improving surface details, we wanted to 
be able to provide a more complete reconstruction of 
2D coin images that enhanced broken or missing areas. 
This includes functionality such as infilling missing 
areas on coins. Previous work on CycleGANs focused on 
a limited range of enhancements, particularly eroded 
surface detail improvements. We wanted to determine 
if a broader set of feature enhancements is possible 
and CycleGANs proved to have this capability. The 
degree and extent of how damaged coins could be for 
reconstruction to be possible or the degree to which 
coins can be reconstructed based on how damaged 
they are is important to determine where advantages 
and limitations of CycleGAN are. Overall, this allows us 
to determine how effective CycleGAN is for damaged 
object reconstructions and address various types of coin 
damage.

The CycleGAN approach harnesses both generator 
and discriminator networks for training purposes; it 
is a generative adversarial tool for image-to-image 
translation tasks, where the goal is to learn the mapping 
between two image domains using paired training 
data. Obtaining such paired data can be difficult and 
expensive. CycleGAN can translate images between two 
domains without the need for paired data. CycleGAN is 
used in popular tools such as ArcGIS; between two image 
domains X and Y, CycleGAN learns a mapping G : X -> Y 
where the generated images from G : X are intended to 
be images comparable to domain Y. Another mapping 
F : Y -> X is also learned in order to translate an image 
from domain Y to domain X (ArcGIS 2023; Harms et al. 
2019). This feedback between X and Y generated images 
becomes cycle consistent.

In using augmentation for training, several steps are 
conducted. This includes random crop positioning, that 
is, selecting random sub-regions of the image to ensure 
that the same image position in training does not always 
appear. The method also uses random horizontal flip 
which flips the given image and helps vary samples’ 
orientation for training. Resizing is applied to deploy 
consistent image dimensions; normalizing pixel values 
helps to facilitate faster convergence in training. We also 

use standard deviation for pixel values to scale pixels for 
training and create variety image data for training.

Table 1 lists key hyperparameters employed in 
CycleGAN and that are required to execute training. We 
utilized a variety of settings in the hyperparameters and 
the results given reflect our best output. The number 
of epochs refers to training cycles or passes for the 
GAN model. Image dimensions relates to the image 
resolution used for training data. The loss function used 
is a least squares function used in the discriminator for 
the GAN and used for evaluating the training process. 
This penalizes any misclassification between real and 
generated images during training. The patch size refers to 
the pixel dimensions used in training. The batch size refers 
to the samples in training that are propagated through 
the network. The initial learning rate defines the pace 
where the algorithm updates/learns and responds to the 
estimated error in training when updating the training 
model. Both the discriminator and generator have their 
own learning rates, where the discriminator responds to 
classification between real and generated images and 
the generator produces a randomized sampling to make 
a new image. This helps define step size during training; 
both the discriminator and generator apply the same 
learning rate in this case (Ghosh et al. 2020; Zachariou 
et al. 2020; Kurach et al. 2019). Data augmentation is 
used to avoid overfitting and poor results from limited 
data.

The following summarizes the key steps involved 
in training and deploying our model. For CycleGAN to 
accurately produce translations of the input image, what 
is known as cycle consistency, the idea is that if an image 
is translated from domain X to Y, it should be possible to 
translate the image back to domain X from Y. In our case, 
one generator (XY) converts images of deteriorated coins 
to good coins, and vice versa for the other generator YX. 
Generator XY excels in recreating surface details and 
reconstructing worn or missing parts of the coin. If a 
deteriorated coin is fed into generator XY producing an 
image of a good coin, generator YX will use the good coin 
as input to produce an initial deteriorated coin similar to 
the original. Cycle consistency uses an additional loss to 
measure the difference between the initial deteriorated 
coin and the output produced by generator YX, thus 

INPUT PARAMETER VALUE 

Epochs 155 

Image Dimensions 256 × 256 

Loss Function Least Squares GAN

Patch Size 196 × 196 

Batch Size 1 

Initial Learning Rate 0.0002 

Table 1 Relevant hyperparameters for the CycleGAN deployed.
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training the generators to produce accurate translations. 
The steps, as indicated in Figure 3, are summarized 
below.

Adversarial Loss Process:

1. GeneratorXY translates an image of a deteriorated 
coin to a good coin.

2. DiscriminatorY compares the translated image from 
generatorXY with original images of good coins 
and outputs whether the generated coin is fake or 
authentic.

3. GeneratorYX translates an image of a good to a 
deteriorated coin.

4. DiscriminatorX compares the image from 
generatorYX with original images of deteriorated 
coins and outputs whether the generated coin is fake 
or authentic.

Cycle consistency process:

1. GeneratorXY inputs deteriorated coinA and generates 
good coinB. CoinB is used as input to generatorYX 
which generates deteriorated coinC. Both coinA and 
coinC are compared and their loss is calculated.

2. GeneratorYX inputs good coinX and generates 
deteriorated coinY. CoinY is used as input to 
generatorXY which generates good coinZ. Both coinX 
and coinZ are compared and their loss is calculated.

In reconstruction training, instance normalization plays 
a pivotal role, ensuring that each example coin feature 
significantly contributes to the training process. This 
approach accommodates a diverse range of coins, with 
mean and variance calculated over spatial locations in 
the feature map (Ulyanov et al. 2017). We employ ResNet 
as the foundational network architecture, incorporating 
nine residual layers for given images. The discriminator 
network, following the PatchGAN paradigm, consists of 
five layers using pixel input (Ya-Liang et al. 2019). The 
pixel quality for input training images constrains the 
overall quality of the reconstruction outputs. Coins are 
also converted to grayscale prior to training to minimize 
light-based effects on generated coins; we noticed 
lighting can vary for coins in databases, which can alter 
detail and appearance of coins both in the generated 
and empirical data. Grayscale allowed images to be more 
equal and minimizes this effect.

We conducted 155 training epochs, which is somewhat 
different than the approach employed by Zachariou et al. 
(2020). Based on our observations, this number of epochs 
typically generates synthetic images closely resembling 
real coins. To optimize overall performance, the Adaptive 
Moment Estimation (ADAM) optimizer is used, with  and  
parameters set to 0.5 and 0.99, respectively (Jiang & 
Sweetser 2022). The learning rate is set at 0.0002 for 
the discriminator and generator. Consistent with prior 

CycleGAN applications, we identified that discriminator 
learning can lead to overfitting, while variations in 
color and lighting conditions impact learning rates and 
accuracy. Further detail on the CycleGAN method are 
provided by Zhu et al. (2020) and Zachariou et al. (2020). 
We provide the final trained model in the supplementary 
data.

3.3. MODEL EVALUATION
After completing the results, reviewers are used to 
evaluate output generated images and their quality. 
Two distinct tests are applied in this work. Evaluators 
are asked to view coloration, edges and surface 
reconstruction, reconstruction of writing, reconstruction 
of cracks and chips, improvement on surface wear, and 
overall quality. These evaluators are familiar with ancient 
coins but are not specialists. The evaluation of training 
and output results is critical in demonstrating the utility 
of GANs to specific problems, where the generated 
output is evaluated against real images (Park et al. 
2023; Parmar et al. 2022). Researchers have used and 
propose various methods for evaluation of GAN results 
using quantitative and qualitative measures. Traditional 
methods for accuracy and sensitivity of AI-based 
methods, such as precision-recall, are not feasible here 
because no coin is exactly the same in the Roman period. 
GAN-based methods are not always easy to evaluate 
using quantitative methods as results can be subjective 
or relative to user perceptions.

In our first test, qualitative accuracy is measured by 
presenting 20 generated and real coins and asking 5 
independent judges to determine if a coin is real or fake 
using rating and preference judgment in a so-called 
rating and preference judgment method (Borji 2019). 
This allowed us to see if generated images are seen as 
similar or different from real coin images, where the 
independent judge rates the images. The first test shows 
how well generated coins appear realistic to viewers, 
that is if they are able to easily distinguish between 
real or fake coins. For all tests conducted, data and the 
evaluation forms used are provided in the supplementary 
data. A second, final test is used. In this case, the test 
is conducted to check the generated images’ quality 
against real coin images that are deteriorated. This test 
asked 3 respondents if they notice any improvement on 
22 coin images relative to the original, degraded coins 
used as the basis for generated images. Respondents rate 
reconstructions on a scale from 1 to 5; 1 reflects no visible 
improvement, 2 represents slight improvement, 3 is clear 
improvement, 4 is good quality improvement, and 5 is 
excellent improvement. This test specifically focuses on 
reconstruction quality. In summary, two tests are used. 
The first simply differentiated if the generated coins are 
realistic or not and the second focuses on the quality of 
reconstruction and if they improved deteriorated coins’ 
features.
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4. RESULTS

We present results that underscore the capabilities of 
our approach (Table 2). For the first test discussed in 
the methods, positive identifications, that is correctly 
distinguishing if a coin is real or fake, range between 
55% and 35%, with the average being 46% accuracy 
in distinguishing real and fake coins. This shows that 
the ability to distinguish real coins from generated ones 
is not easy and demonstrates our GAN can produce 
realistic-looking coins not easily distinguishable from 
real coins. We acknowledge that our chosen testers 
are not numismatic experts, but all evaluators are 

knowledgeable about heritage and archeology, including 
coins used in the Roman and other periods. The aim we 
had is to produce realistic looking coins that enhances 
appearance and reconstruction, which is how we focused 
our effort and evaluation. Coin experts may be better 
able to find differences between generated and real 
coins, but our goal is to generate realistic looking artifacts 
that improve visual appearance. The result achieved, we 
believe, demonstrates realistic-looking output; we want 
to also determine if our generated coins could be used 
to enhance or improve what damaged coins should look 
like if they were better preserved.

For the second test, which checks reconstruction 
quality, damaged real coins are used for reconstructing 
coins (i.e., each test set had 1 degraded and 1 generated 
coins based of the degraded coin; Figure 4). Degraded 
coins vary from only minor degradation to a high degree 
of degradation (i.e., more than 30% surface damage 
or degradation as well as missing parts). We evaluate 
if generated coin images demonstrate improved facial 
features, more clear letters, clothing and other items 
appearing on coins. Overall, the average was 3.5, using 
the 1–5 scale for reconstruction quality, for the randomly 
selected (see supplementary data) coins generated, 
where almost all of the coins show at least some 

Figure 4 Second test performed showing respondent results evaluating reconstructions and checking for visual improvement quality 
(1–5; 1 reflects no improvement and 5 reflects excellent improvement).

EVALUATOR ACCURATE 
IDENTIFICATION

Evaluator 1 35%

Evaluator 2 50%

Evaluator 3 45%

Evaluator 4 45%

Evaluator 5 55%

Table 2 Results (in percent) from the first test checking accuracy 
in distinguishing real and generated coins using 20 coins.
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improvement. Coin 4 (CoinsEvaluation file), if we exclude 
Evaluator 2, does not show improvement, but this is 
mainly because the coin was already not very damaged. 
The majority of the results indicate that our approach is 
seen to improve coin reconstruction quality, where the 
samples had varying degrees of different damage or 
wear. However, ranges in improvements vary between 
1–5, indicating there is variability in our random sample, 
reflecting that not all reconstructions improved clarity to 
a great extent. Generally, coins that are heavily damaged 
(e.g., 11) are likely to yield poorer results, but in most 
cases those varied between 2–4 in ratings, showing at 
least some improvement. Well preserved coins also only 
showed slight improvement in quality (e.g., 4). Evaluator 
2 seemed potentially overly positive, but for many 

examples the evaluators had similar opinions. Most of 
the testers are not coin experts, but the overall result 
helps to demonstrate visual improvement in the coins as 
identified by individuals with some knowledge on coins. 
These reviewers are comparable to informed, but non-
expert viewers determining if the overall output is an 
enhancement.

We want to further demonstrate current capability 
by providing some reconstructed coin examples from 
our total output that contains original degraded or 
damaged ancient coins and new generated coins; the 
obverse side is used in the examples. Figure 5’s numbers 
are linked to their numismatics.org identifiers; these 
identifiers can be found in the supplementary data. 
These original coin examples have light to moderate 

Figure 5 Example GAN reconstructions showing original (left) and reconstructed (right) Roman coins (obv.).

https://numismatics.org/
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damage, where damage can be evaluated based on 
overall evident surface deterioration and damage. This 
includes damage such as cracking, pieces missing, 
discoloration, and wear. Metadata providing provenance 
details and the original source data for our examples 
can be found using the coin identifier record. The 
CycleGAN demonstrates coin reconstructions based 
on the final trained model. The examples demonstrate 
the various types of enhancements made using our 
CycleGAN approach. In particular, visual improvements 
are made in reconstructions that incorporate infilling 
(2, 4, 5, 6, 7, 8), that is filling in broken areas or cracks, 
feature enhancements where evidence of improved 
appearance are evident on clothing, hair, or faces (2, 
3, 4, 5, 7, 11), as well as providing clarity in the text (2, 
6, 8, 10). This improvement includes adjusting worn 
surfaces to improve visualization. Another area where 
we see improvement from the original coins is where 
discoloration, or toning, is evident. In particular, coins 
1–8 and 10–11 from Figure 5 produce generated coins 
from darker appearances (grayscale) to lighter shades 
comparable to other, better preserved coins used in 
training. In coins 4 and 6, this can be seen as helping in 
feature identification as more detail becomes evident 
from the lighter shading.

Generally, the results show coins are improved in 
appearance but there are areas where enhancements 
are not evident or are not very significant. In some cases, 
even if some parts of a coin are clearer other features are 
not improved. For instance, Figure 5:9 does not appear to 
greatly improve; Figure 5:5 & 6 enhances the coin image 
but the clarity still does not make it easier to identify 
features on the coin (e.g., the mouth or chin on the coins’ 
faces). In this case, some distortion is noted and that 
can be due to insufficient training or poor reconstruction 
from what is evident on coins. Image quality is also likely 
to play a role in distorting output reconstruction. In cases 
where a coin did not need significant enhancement, 

such as 12, the GAN did not distort the original image, 
indicating the model recognizes the coin is relatively 
undamaged and does not need significant enhancement. 
The examples demonstrate that CycleGAN works well in 
enhancing or clarifying many of the degraded coins, but 
there is a limit to this where more degraded coins are not 
greatly improved. For the most part, our assessment is 
qualitative rather than quantitatively measured (Zhang 
& Banovic 2021).

To better understand the limitations of the approach, 
a further analysis on more heavily degraded coins is 
assessed. Figure 6 provides some examples where 
large areas (i.e., more than 40%) are missing (13), facial 
features are very unclear (14&16), edges are broken (14, 
15 & 16), and there is a lot of darkening or toning (16). 
In these cases, these qualities affect large areas or all of 
the coin surfaces. It is clear reconstructing a coin that is 
heavily damaged is not always successful (13), but where 
there is less damage or darkening the reconstruction 
is better and more clear (15). Furthermore, edges and 
features are improved (14) even with some moderate 
damage. Overall, what we see is if damage is severe 
(i.e., more than 40%), the reconstruction is incomplete, 
but with more minor damage then reconstruction is 
generally better with some feature enhancement and 
improved visualization. For feature enhancements, 
objects that are severely damaged (i.e., more than 40% 
surface damage) still show enhancements; however, 
deep surface damage that removes most of the surface 
details limits reconstruction.

5. DISCUSSION AND CONCLUSION

Our approach showcases the potential of GANs and 
generative AI for coin image enhancement. This 
application has utility in artifact visualization provided 
sufficient data are available from given repositories. We 

Figure 6 More heavily degraded real coins (left) and reconstructed (right) coins (obv.) using the CycleGAN. These examples highlight 
how the GAN addresses coins having 40% or more surface damage in cases.
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intentionally confined our efforts to 2D coin images, 
as they constitute the most prevalent form of data 
and align with our primary objective: providing visual 
reconstructions to demonstrate visual enhancement for 
cultural objects.

Overall, our CycleGAN application demonstrates utility 
in creating good 2D reconstructions. We demonstrate 
multifaceted reconstruction that addresses infilling of 
broken parts and cracks, improvements on toning, and 
feature enhancements, where worn hair, face, clothing, 
writing, and other surface features are improved. Provided 
damage was less than 30–40% for coin surfaces, we 
see general improvement in coin appearance. Results 
show there is improvement in visualizing coins, including 
making degraded coins visually clear. In cases where no or 
very minimal damage (i.e., less than 1% surface damage) 
is evident, the GAN often did not overly reconstruct a 
given coin, indicating the model also recognises when 
there is minimal reconstruction needed or even no need 
to reconstruct an object. Currently, we do not think 
reconstructions are of the quality that enable easier 
identification of heavily eroded or poorly preserved coins 
to interpret what they might be, although enhancement 
and general visualization improvement is evident. This is 
among the main contributions of this work. The approach 
does show some weaknesses in cases where coins are 
heavily degraded, with reconstructions not showing 
much benefit in some cases. Coins missing more than 
40% percent of their material, facial features heavily 
degraded by more than 40%, and if letters are similarly 
erased from coins then reconstructions proved difficult. 
At times, reconstructions are not accurate, where facial 
features appear distorted (e.g., Figure 5:6). This is mainly 
due to heavy surface damage that made a given feature 
difficult to reconstruct. Nevertheless, we see many cases 
where CycleGAN performs well in reconstructing coins 
and helping improve visualization.

Previously, CycleGAN was used to improve coins’ 
general appearance, focusing mainly on worn surface 
features (Zachariou et al. 2020). We improve on earlier 
results by employing new training data that focus on a 
variety of different forms of damage, using CycleGAN’s 
capabilities in global image transfer, and hyperparameter 
settings that enable the approach to do more than only 
limited feature enhancement. We demonstrate that 
our approach combined several types of enhancements 
in reconstructions as discussed above. This includes 
infilling of cracks, adding to broken parts, improvement 
of discoloration, and surface detail enhancements. 
This demonstrates CycleGAN’s potential for artifact 
enhancement and visualization along multiple areas 
where coin degradation is evident. This we see as a new 
contribution from this work.

Weaknesses such as facial features not reconstructed 
completely or infilling more heavily damaged coins could 
be addressed. One way to improve results would be to use 

better quality image data to enable more feature details 
to be captured in training and reconstructions. However, 
we noticed in attempts to improve reconstructions 
when addressing details on coins, including infilling 
and general appearance of features by introducing 
new training data or increasing training epochs, new 
problems arise, particularly overfitting becomes a 
concern. Improvements in some aspects, such as infilling, 
sacrifice accuracy and improvement in other areas, such 
as feature details in the coins’ faces, as new coins are 
introduced. In particular, GANs are prone to overfitting, 
including in cases where reconstructions require multiple 
enhancement types (Tang 2020).

5.1. FURTHER RESEARCH AND ARCHITECTURE 
ENHANCEMENTS
Having conducted this work, we can now propose ways 
in which improvements can be made. One possibility 
is to use different reconstruction methods, including 
diffusion models (Lee & Yun 2024). These have potential 
in generating accurate reconstructions using underlying 
statistical sampling and have been shown to require less 
data and time in producing results. Another possibility is 
to develop a new GAN-based approach that emphasizes 
different steps or addresses limitations in given GAN 
architecture. For instance, infilling, various feature 
reconstruction, including improving writing visibility and 
facial or clothing features, might be better by enabling 
a step-by-step process in training that focuses on 
individual feature enhancements that then combines 
all features enhanced at a final stage. Rather than 
enhancing and training on an entire image, individual 
areas within an image can be used to train the GAN so 
that it learns well the types of evident damage, with the 
final stage combining the various enhancements so that 
a complete reconstruction is possible. CycleGAN is well 
suited for global image transfer, which enables learning 
from a given image used in training, but has weakness 
in object transfiguration. That is, attempts to segment 
only part of an image and use that to then enhance or 
improve on an output image without affecting other 
desired parts of a given image background proves 
difficult. Weaknesses in CycleGAN include the fact that 
it assumes intrinsic dimensions for a given output image 
equals the input image; variations in input size might, 
however, need to be accounted for in creating variations 
in output size (Zhou et al. 2017). For infilling and feature 
reconstruction, one key challenge is to develop an 
approach that can handle and better reconstruct objects 
with large areas missing, particularly where the input 
shape could significantly vary from the output shape 
(Hedjazi & Genc 2021). This would also be needed for 
obverse and reverse sides. Providing more enhanced 
optimization on training data using augmentation could 
improve reconstruction capabilities that are weak or have 
limited training data by increasing image variation for 
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reconstruction (Moreno-Barea et al. 2020). The challenge 
is to find similar coins to the desired reconstruction 
in training from a given input, which can also lead to 
overfitting if too many coins from a given type are used. 
For now, we see CycleGAN as a good approach that 
balances and accomplishes different improvements in 
coin reconstruction, even if it sacrifices some accuracy in 
specific features (e.g., infilling or enhanced facial details). 
Nevertheless, new GAN-based approaches might be 
a better solution in the future as various features may 
need simultaneous improvement on coins, where step-
by-step enhancements on individual features in training 
could lead to an overall improved reconstruction.

5.2 ETHICAL CONSIDERATIONS
The topic of GANs also brings up an important point that 
archeologists and cultural experts should consider. There 
is potential that GANs can be used to create fake 2D/3D 
objects to deceive, such as generated objects being 
printed by 3D printers and being displayed as real (Xu 
et al. 2023). We believe guidelines need to be created for 
using GANs in cultural fields. This includes clear warnings 
that a given image/object is generated using a GAN and 
the reconstruction purpose should be defined. Although 
one can possibly identify a generated image, this is not 
always easy. One can create computational techniques 
deploying AI to find fake images; however, works should 
declare their purpose and intent if they utilize generative 
AI methods. Therefore, we suggest that works using 
GANs 1) disclose their intent in deploying generative AI, 2) 
clearly state specific architecture (e.g., type of GAN) used, 
and 3) generated images should be clearly labelled (e.g., 
as reconstructed, fake, etc.). Using such guidelines can 
help ensure GANs are used to enhance our knowledge 
and understanding rather than for nefarious purposes.

6. SUPPLEMENTARY DATA

Data shared here include the following: model training 
and validation data, test data used for reconstructions 
given to judges, real and reconstructed coins used to test 
quality of reconstructions, all of the paper’s coin outputs 
(real and generated images), the final CycleGAN-derived 
model, and the code notebook. They can be found 
here: https://figshare.com/s/187bc45ca8d3a04caddf. 
All training and evaluation coins are named using the 
identifier on http://numismatics.org. The names of 
the files can be used to correspond to the metadata 
and data found there for individual coins (e.g., http://
numismatics.org/collection/1976.82.25 for 1976.82.25). 
The identifiers used for Figures 5–6 are also included. The 
GAN code, along with documentation, used for this effort 
is based on Zhu et al. (2020). The scraper created by this 
work and used for the coin collection effort for training 

can be accessed here: https://github.com/maltaweel/
Coin_Scrape_CGAN.
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