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Abstract
Weconstruct the hyper-Kählermoduli space of framedmonopoles overR3 for any connected,
simply connected, compact, semisimple Lie group and arbitrary mass and charge, and hence
arbitrary symmetry breaking. In order to do so, we define a configuration space of pairs with
appropriate asymptotic conditions and perform an infinite-dimensional quotient construction.
We make use of the b and scattering calculuses to study the relevant differential operators.
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1 Introduction

1.1 Background and overview

Monopoles over R3 with gauge group SU(2) have been studied quite extensively. When a
finite energy condition is imposed, their behaviour near infinity is determined, up to a certain
order, by the charge, which is given by a single integer [15]. If we fix a value of this charge
and further fix a framing for the monopoles of that charge, then we can form moduli spaces
which are complete hyper-Kähler manifolds whose dimension is four times the charge [1].
The metric is inherited from the L2 norm.

For more general gauge groups, however, the picture is more complicated. Here, the
charge is no longer given by a single integer, and the mass takes on a more prominent role,
determining the symmetry breaking. This complicates the analysis involved and new features
arise which were not present in the case of SU(2). Nonetheless, these monopoles and their
moduli spaces have also been studied. Often, this has been through equivalences between
them and other mathematical objects.

For example, Nahm’s equations have been used to study SU(n)-monopoles with maximal
symmetry breaking [4, 13, 14] and SU(3)-monopoles with non-maximal symmetry breaking
[9].More recently, they have beenused to produce someSU(n)-monopoleswith non-maximal

B Jaime Mendizabal
ucahmen@ucl.ac.uk

1 Department of Mathematics, University College London, London, UK

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10455-024-09954-z&domain=pdf
http://orcid.org/0009-0007-0194-5259


    4 Page 2 of 38 Annals of Global Analysis and Geometry             (2024) 66:4 

symmetry breaking [7], and a general picture has been established for the construction of
monopoles with arbitrary symmetry breaking from this type of data [8].

Rational maps have also been used to study monopoles, whose moduli spaces, in the
case of non-maximal symmetry breaking, can be organised into stratified spaces [16–18, 27,
28]. To be more precise, the case of non-maximal symmetry breaking involves two different
types of charges: magnetic and holomorphic. The magnetic charges provide discrete topo-
logical information about the asymptotics of the monopoles. However, the moduli space of
monopoles with a given magnetic charge can be further broken down into strata correspond-
ing to different holomorphic charges. These strata are in fact fibrations, where each fibre is
the moduli space corresponding to a specific framing represented by a point in the base.

Our aim is to construct these moduli spaces without relying on any of the above equiv-
alences, using the analytical framework developed by Kottke [20], which was already used
by the same author to explore the case of SU(2)-monopoles over other 3-manifolds [21].
This approach has the benefit of providing the structure of a hyper-Kähler manifold and
establishes some analytical tools with which to investigate further properties of the metric
and the monopoles.

One of the main ideas of this framework is to treat different subbundles of the adjoint
bundle separately. More specifically, at each fibre of the adjoint bundle we consider the Lie
subalgebra which commutes with the mass term, and its orthogonal complement. At the level
of subbundles, the adjoint action of the Higgs field will degenerate along the former but not
the latter, causing the relevant differential operators to have different properties and hence
require different tools: the b calculus and the scattering calculus, respectively.

Once the analysis is set up, the necessary infinite-dimensional quotient construction is sim-
ilar to that of other studied problems, like the case of anti-self-dual Yang–Mills connections
laid out in Donaldson and Kronheimer’s book [11].

Similar techniques were employed by Sánchez Galán in his PhD thesis [30]. In it, a
combination of the b and scattering calculuses is applied to the construction of the moduli
spaces of SU(n)-monopoles with arbitrary symmetry breaking and their smooth and hyper-
Kähler structures, and an index theorem fromKottke’swork [20] is applied to the computation
of the dimension for maximal symmetry breaking.

Although many of the features are already present in the case of SU(n), our setting is a
more general class of gauge groups. We similarly apply a combination of the b and scattering
calculuses, mainly followingKottke’s work, with slightly different definitions for the Sobolev
spaces involved, particularly in the choice of parameters. More specifically, we completely
fix the decay parameters and allow an arbitrarily large regularity parameter. The definitions of
the configuration space and group of gauge transformations also differ in other aspects, like
in our definition of framing—a rigorous treatment of its relationship with other definitions
in the literature is left for future work. We furthermore analyse the linearised operator and its
indicial roots in detail for arbitrary symmetry breaking, allowing us to directly compute the
dimension of the resulting moduli spaces as well as to better understand the decay parameters
needed and the resulting asymptotic properties.

Note that, in the case of non-maximal symmetry breaking, we must fix the magnetic and
holomorphic charges in order to maintain the finiteness of the metric. Hence, the resulting
moduli spaces will be the fibres of the different strata.

Although we will indicate in some places the correspondence with previous work, we will
establish the necessary concepts surrounding monopoles—including convenient notions of
mass, charge and framing—directly from more general notions in differential geometry.

We begin by introducing monopoles in Sect. 2. We furthermore construct a model which
has the asymptotic behaviour we expect of a monopole of a given charge and mass, and we
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study the adjoint bundle in relationship to this model. We then explain what we mean by
framed monopoles of the given mass and charge, as well as the corresponding moduli space.
Our definitions differ somewhat from other approaches in the literature, but are better suited
to our construction.

In Sect. 3 we start by looking at the linearised operator involved in the moduli space
construction. This serves asmotivation to introduce the analytical tools of the b and scattering
calculuses which provide the necessary framework to formally set up our moduli space
construction.

We then study the linearised operator in more detail in Sect. 4 using this analytical frame-
work, proving that it is Fredholm and surjective and computing its index.

Lastly, in Sect. 5 we complete the construction of themoduli space. This involves applying
the properties of the linearised operator to carry out the infinite-dimensional quotient. We
then see how the construction can be viewed as a hyper-Kähler reduction, which provides a
hyper-Kähler metric. We finish by discussing our resulting moduli spaces in the context of
some specific cases.

Themain result is Theorem 5.4.2, which states that the moduli space of framedmonopoles
for any mass and charge is either empty or a smooth hyper-Kähler manifold of known
dimension. This theorem can be phrased as follows.

Theorem Let G be a connected, simply connected, semisimple compact Lie group, and let
μ and κ be two elements in a maximal toral subalgebra t of the Lie algebra g of G. Assume
that exp(2πκ) = 1G. Then, the moduli space Mμ,κ of framed monopoles of mass μ and
charge κ is either empty or a smooth, hyper-Kähler manifold. If R is the space of roots of gC

relative to tC, the dimension of this manifold is given by

dim(Mμ,κ) = 2
∑

α∈R
iα(μ)>0

iα(κ) − 2
∑

α∈R
α(μ)=0
iα(κ)>0

iα(κ) . (1.1.1)

We will explain the elements involved in more detail throughout this work, including an
alternative expression for the dimension.

1.2 Notation

Our setting throughout is a principal G-bundle P over Euclidean R
3, where G is any con-

nected, simply connected, compact, semisimple Lie group. We denote the Lie algebra of G
as g.

We will write Aut(P) for the automorphism bundle, whose fibres are the automorphism
groups of each of the fibres of P . The group of automorphisms, or gauge transformations, of
the bundle P will be written as G . We have

G = �(Aut(P)) . (1.2.1)

We write Ad(P) for the adjoint bundle, whose fibres are Lie algebras associated to the fibres
of the automorphism bundle.

Althoughwewrite�(E) for the space of sections of a bundle E , thesemight not necessarily
be smooth. The appropriate regularity and asymptotic conditions for each case will be made
precise later on.

Note that from the Killing form we can obtain a bi-invariant Riemannian metric on G
and an Ad-invariant inner product on g. Combining this with the Euclidean metric on R

3,
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the bundles
∧ j ⊗Ad(P) of Ad(P)-valued j-forms acquire an inner product on their fibres.

Together with the Euclidean measure on the base manifold, this will allow us to define
Lebesgue spaces L p and Sobolev spaces W k,p on the spaces � j (Ad(P)) of Ad(P)-valued
j-forms.

2 Monopoles and framing

We start by defining monopoles. We then discuss the mass and the charge and establish an
asymptotic model for a choice of them. Lastly, we briefly explain how this will be used to
set up the moduli space problem.

2.1 Monopole definition

We construct monopoles over R3 using the principal G-bundle P described above. In par-
ticular, we consider pairs in the following space.

Definition 2.1.1 The configuration space of pairs is

C := A (P) ⊕ �(Ad(P)) , (2.1.2)

where A (P) denotes the space of principal connections on P . If (A,�) ∈ C , we refer to A
and � as the connection and the Higgs field of the configuration pair.

On this configuration space, we define the Bogomolny map

B : C → �1(Ad(P))

(A,�) �→ �FA − dA�
(2.1.3)

and the energy map
E : C → R≥0 ∪ {∞}

(A,�) �→ 1

2
(‖FA‖2L2 + ‖dA�‖2L2) .

(2.1.4)

Monopoles are then defined inside this space.

Definition 2.1.5 We say that (A,�) ∈ C is a monopole if it satisfies the Bogomolny equation

B(A,�) = 0 (2.1.6)

and it has finite energy, that is,
E(A,�) < ∞ . (2.1.7)

Note that the group G of gauge transformations of P acts on configuration pairs (A,�) ∈
C . The resulting action on the connection is the usual one and the action on the Higgs field
is the fibrewise adjoint action.

With respect to this action, the Bogomolny map is equivariant (G also acts fibrewise
on the codomain �1(Ad(P))), and the energy map is invariant. This means that the gauge
transformation of a monopole is still a monopole, which gives rise to the idea of the moduli
space of monopoles as a space that parametrises monopoles modulo gauge transformations.

Note that, with an appropriate choice of the space of sections, G will be an infinite-
dimensional Lie group. Then, its Lie algebra G will be given by the corresponding space of
sections of the adjoint bundle, that is,

G = �(Ad(P)) . (2.1.8)
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Lastly, let us state a pair of formulas which will be useful for us later on.

Proposition 2.1.9 The derivative of the Bogomolny map at a point (A,�) ∈ C is given by

(dB)(A,�)(a, ϕ) = �dAa + ad� a − dAϕ , (2.1.10)

for any (a, ϕ) ∈ T(A,�)C .
If G is a Lie group, the infinitesimal action of an element X ∈ G is given, at a point

(A,�) ∈ C , by
(X#)(A,�) = −(dA X , ad� X) . (2.1.11)

Remark 2.1.12 Monopoles can be viewed as a dimensional reduction of anti-self-dual Yang–
Mills connections: if a connection on R

4 is invariant in one direction, and we rename the
connection matrix in this direction as the Higgs field, the Bogomolny map applied to the
resulting connection onR3 with this Higgs field represents the self-dual part of the curvature
of the original connection.

This relationship becomes apparent throughout the study of monopoles. For example,
some expressions involving the connection and Higgs field of a configuration pair can be
viewed as a simpler expression involving the corresponding connection on R4, and many of
the tools used have their counterparts in the study of connections on 4 dimensions.

2.2 Mass and charge, themodel, and the adjoint bundle

In the case of G = SU(2), we know that the finite energy condition implies the existence of a
mass and a charge, which determine the monopoles’ asymptotic behaviour, but in the general
case this picture is not necessarily so clear. This means that often an additional asymptotic
condition is imposed, of the form

� = μ − 1

2r
κ + o(r−1) , (2.2.1a)

FA = 1

2r2
κ ⊗ (�dr) + o(r−2) , (2.2.1b)

in some gauge along rays from the origin, for some μ, κ ∈ g, called the mass and the charge,
respectively. Here, r is the radial variable and the 2-form �dr is, hence, the area form of
spheres centred around the origin. The lower-order terms written here as o(r •) have different
definitions in different works, but we will specify our own decay conditions in the next
section.

However, our approach is to not only impose such asymptotic conditions for some gauge,
but to actually fix a model for this asymptotic behaviour and then to require our monopoles
to be close enough to this model. This will have some benefits, as explained in Sect. 2.3, and
will allow us to set up the moduli space construction.

Hence, for a mass μ and a charge κ , both in g, our aim is to construct a model pair
(Aμ,κ ,�μ,κ) that, near infinity, satisfies the Bogomolny equation and has exactly the form

�μ,κ = μ − 1

2r
κ , (2.2.2a)

FAμ,κ = 1

2r2
κ ⊗ (�dr) , (2.2.2b)

in some gauge along any ray from the origin.
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To do this, we start by observing that these conditions imply that the mass and the charge
must commute, since, considering the above form near infinity along a ray, we have

0 = dAμ,κ (B(Aμ,κ ,�μ,κ))

= dAμ,κ (�Fμ,κ ) − d2Aμ,κ
�μ,κ

= dAμ,κ (�Fμ,κ ) − [FAμ,κ ,�μ,κ ]
= dAμ,κ (�Fμ,κ ) − 1

2r2
[κ, μ] ⊗ (�dr) ,

(2.2.3)

and from (2.2.2b) we deduce that the two summands in the last expression must be linearly
independent if non-zero (and hence must be zero). Hence, we can find a maximal torus
T inside G whose Lie algebra t contains μ and κ . We will firstly build our model on a
principal T -bundle and then carry it over to a principal G-bundle through an associated
bundle construction.

Now, since T is Abelian, the adjoint bundle of any principal T -bundle is trivial, and hence
can be identified with t. Furthermore, any principal connection on the principal T -bundle
induces the trivial connection on its adjoint bundle. In particular, we can define constant
sections, likeμ and κ , which are equal toμ and κ everywhere and furthermore are covariantly
constant with respect to any principal connection.

Additionally, if we have the extra integrality condition exp(2πκ) = 1G , we can build a
principal T -bundle on the unit sphere S2 whose curvature is 1

2κ ⊗ dvolS2 . Extending this
bundle and connection radially to R3 \ {0} we obtain a principal T -bundle which we call Q.
The connection, which we call AQ , satisfies the curvature condition

FAQ = 1

2r2
κ ⊗ (�dr) . (2.2.4)

Considering the identification Ad(Q) = t as bundles over R3 \ {0}, we can construct

�Q := μ − 1

2r
κ (2.2.5)

as an element of �(Ad(Q)). Since the constant sections are covariantly constant with respect
to AQ , it is straightforward to check that the pair (AQ,�Q) satisfies the Bogomolny equation
over R3 \ {0}.

Now, since T is a subgroup of G, we can associate to Q a principal G-bundle P (over
R
3 \ {0}). We can carry the pair (AQ,�Q) over to P through this construction. But since G

is simply connected, P must necessarily be trivial over R3 \ {0}, and hence we can extend
it to R

3. The pair (AQ,�Q) can be extended smoothly over the origin as well, modifying it
if necessary inside the unit ball and leaving it unchanged elsewhere. This yields a pair over
R
3, which is therefore in C .

Definition 2.2.6 We refer to the pair constructed above as the asymptotic model pair of mass
μ and charge κ , and we write it as

(Aμ,κ ,�μ,κ) . (2.2.7)

Note that this asymptotic model pair still satisfies the Bogomolny equation near infinity,
but not necessarily near the origin. This is not a problem, since we only want to use it to
study the behaviour of our monopoles near infinity. However, defining it over the entire R3

will make some notation simpler.
Note, furthermore, that this model is not the unique pair which satisfies the desired asymp-

totic conditions.However,wewill fix it here and use it throughout our constructions.Although
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it can be easily seen that some choices involved in its construction do not ultimately change
the results, we do not go into further detail here.

It will be easy to understand the behaviour of this pair, and hence of our monopoles, if we
decompose the adjoint bundle appropriately. In order to do this, near infinity, we perform a
root space decomposition of each fibre of the complexification of the adjoint bundle Ad(P)C,
with the maximal Abelian subalgebras given by the fibres of Ad(Q)C ⊂ Ad(P)C. We refer
to each of the resulting subbundles as root subbundles, which will be denoted by gα

�
for each

α in the space R of roots of gC. The bundle of maximal Abelian subalgebras will simply be
written as tC.

Therefore, we obtain a decomposition of the adjoint bundle near infinity as

Ad(P)C ∼= tC ⊕
⊕

α∈R

gα
�

, (2.2.8)

with the adjoint action on the adjoint bundle behaving under this root subbundle decomposi-
tion in the same way as it would behave under the analogous root space decomposition, that
is, if X ∈ �(tC) and Y ∈ �(gα

�
), then

adX Y = α(X)Y . (2.2.9)

We can then rephrase the asymptotic properties of the asymptotic model pair in the fol-
lowing way.

Proposition 2.2.10 For any choice of commuting mass μ and charge κ such that exp(2πκ) =
1G, there exists a smooth asymptotic model pair (Aμ,κ ,�μ,κ) ∈ C , which, near infinity,
satisfies the Bogomolny equation as well as

�μ,κ = μ − 1

2r
κ , (2.2.11a)

FAμ,κ = 1

2r2
κ ⊗ (�dr) , (2.2.11b)

where μ, κ ∈ �(t) are constant sections in (the real part of) the first summand of the
decomposition (2.2.8).

The subbundle tC in the decomposition is obviously trivial, but we can also relate the
other terms to simple line bundles. We denote a complex line bundle of degree d over the
2-sphere, with its homogeneous connection, by L d . We can extend it radially to R

3 \ {0},
where we refer to it also as L d .

Corollary 2.2.12 The asymptotic model pair (Aμ,κ ,�μ,κ) decomposes along the root sub-
bundle decomposition. In particular, on each complex line bundle gα

�
, the pair satisfies

ad�μ,κ �gα
�

= α(μ) − α(κ)

2r
, (2.2.13a)

FAμ,κ�gα
�

= α(κ)

2r2
(�dr) . (2.2.13b)

Therefore, by restricting the connection Aμ,κ to each subbundle gα
�

we have

gα
�

∼= L iα(κ) . (2.2.14)
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Remark 2.2.15 Notice that, although 0 is not defined as a root of the Lie algebra, for most
purposes we can write tC as rank(G) copies of g0

�
. By this, we mean that substituting α(•) by

0 in results about subbundles gα
�

will yield the analogous results for tC. We will follow this
convention from now on.

2.3 Framedmonopoles

One of the key ideas in the construction of moduli spaces of monopoles is to study framed
monopoles. This means that we fix not only the mass and the charge, but also the specific
asymptotic behaviour, allowing only gauge transformations which tend to the identity at
infinity.

In our case, this will be achieved by defining the configuration space for a given mass
and charge as the space of pairs which differ from the asymptotic model pair (Aμ,κ ,�μ,κ)

by a decaying element of a Banach space. This guarantees that the asymptotic behaviour is
the same up to a certain order, and it provides a Banach structure to be able to apply the
necessary analysis.

The group of gauge transformations will then be modelled on a related Banach space, so
that its Lie algebra also consists of decaying sections of the adjoint bundle.

The specific form of these Banach spaces will be discussed at the end of the next section.

3 Analytical framework

The first step towards the construction of themoduli space is to look at the linearised problem,
andmore specifically at the linearised operatormade up of the linearisedBogomolny equation
together with a gauge fixing condition.

The specific shape of this operator will motivate the introduction of the b and scattering
calculuses, whose combination is particularly well suited to the study of this problem and
will provide the analytical framework for the moduli space construction. The b calculus
is analogous to the analysis on cylindrical ends studied in other works [6, 23], whereas the
scattering calculus in this case is simply the typical analysis onR3. However, this formulation
offers a convenient setup for our problem.

In Sects. 3.2 to 3.5 we summarise the most relevant analytical definitions and results
for these calculuses, which can be combined to define hybrid Sobolev spaces. Most of this
analytical framework is obtained from Kottke’s work [20] and references therein, including
Melrose’s works [25, 26], which contain a more detailed account.

We then choose the specific spaces which will be appropriate for our case, explain some
of their properties and formally set up the moduli space construction.

3.1 The linearised operator

As stated above, the first part of the linearised operator is the derivative of the Bogomolny
map

(dB)(A,�)(a, ϕ) = �dAa + ad� a − dAϕ . (3.1.1)

On the other hand, the action of the infinitesimal gauge transformations is

(X#)(A,�) = −(dA X , ad� X) , (3.1.2)
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so we can consider the formal L2 adjoint of this map, that is,

(a, ϕ) �→ −d∗
Aa + ad� ϕ , (3.1.3)

whose kernel will be orthogonal to the orbits. Configuration pairs which differ from (A,�)

by an element in this kernel are said to be in Coulomb gauge with respect to (A,�).
Putting both of these together (and changing the sign), we obtain the following operator.

Definition 3.1.4 Let (A,�) ∈ C . We define its associated Dirac operator as

/D(A,�) =
(−�dA dA

d∗
A 0

)
− ad� , (3.1.5)

acting on the space of sections

�((
∧1 ⊕ ∧0

) ⊗ Ad(P)) . (3.1.6)

We view this operator (or, rather, its complexification, which we denote in the same way)
as a Dirac operator by using the isomorphism

(
∧1 ⊕ ∧0

)C ∼= /S ⊗ /S∗
, (3.1.7)

where /S is the spinor bundle on R3. Indeed, considering the Clifford action only on the first
factor /S, the resulting Dirac operator will be precisely the first summand of (3.1.5). In our
case, the second factor /S∗ can simply be written as C2, since the connection and Clifford
action are trivial, whereas we preserve the notation for the first factor as /S to emphasise the
Clifford action on it. Therefore, we can write

/D(A,�) = /D A − ad� , (3.1.8)

where /D A is the Dirac operator twisted by the connection A on Ad(P), which acts on the
space of sections

�(/S ⊗ C
2 ⊗ Ad(P)C) , (3.1.9)

with the factor C2 simply having the effect of duplicating the bundle and operator. Note
how the Dirac operator notation is related to the interpretation of configuration pairs as the
dimensional reduction of connections on R4, as explained in Remark 2.1.12.

Remark 3.1.10 Here we have complexified the bundle (
∧1⊕∧0

)⊕Ad(P), which allows us
to apply the theory of Dirac operators and spinor bundles, as well as to make use of the root
subbundle decomposition (2.2.8). However, we are ultimately concerned with real solutions
to the equations, so it is important to consider how our analytical results translate between
the real and complex contexts.

The crucial observation is that, although we may regard some operators as complex, they
preserve the real parts of the spaces between which they act. To be more specific, our spaces
are originally defined as real spaces—like the space of sections of a real vector bundle—and
are then complexified, providing them the structure of complex vector spaces with a real
structure. Furthermore, it is easy to check that the operators we define throughout preserve
these real structures. Then, if such a complexified operator between complexified spaces
is Fredholm, the corresponding operator between the real parts is also Fredholm, has the
same index, and its kernel and image will be the real parts of the kernel and image of the
complexified one. In particular, the real dimension of the kernel of the real operator coincides
with the complex dimension of the kernel of the complexified operator.
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The characterisation of /D(A,�) as a Dirac operator will allow us to write it out in a more
convenient form. To do so, note that if (A,�) = (Aμ,κ ,�μ,κ)+ (a, ϕ) for some mass μ and
charge κ , then

/D(A,�) = /D(Aμ,κ ,�μ,κ ) + (cl⊗ ad)a − adϕ , (3.1.11)

where a acts through Clifford multiplication on the /S factor with its
∧1 component and

through the adjoint action on the Ad(P)C factor with its Ad(P) component, and ϕ acts
similarly through the adjoint action. Hence, we will actually write out /D(Aμ,κ ,�μ,κ ) and use
the above formula to understand the operator for other configuration pairs of the given mass
and charge.

Now, near infinity, Aμ,κ and �μ,κ decompose along the root subbundle decomposition
(2.2.8), so the operator /D(Aμ,κ ,�μ,κ ) will be made up of the diagonal terms

/Dα := /D(Aμ,κ ,�μ,κ )�/S⊗gα
�

= /Diα(κ) − α(μ) + 1

2r
α(κ) , (3.1.12)

where /Diα(κ) represents the Dirac operator twisted by the line bundle L iα(κ).
Therefore, we can characterise the behaviour of the linearised operator near infinity in the

following way.

Proposition 3.1.13 The operator /D(Aμ,κ ,�μ,κ ) decomposes near infinity as

/D(Aμ,κ ,�μ,κ ) = /D⊕2 rank(G)
0 ⊕

⊕

α∈R

/D⊕2
α , (3.1.14)

which acts on sections of the bundle

(
∧1 ⊕ ∧0

) ⊗ Ad(P)C ∼= (/S ⊗ C
2 ⊗ tC) ⊕

⊕

α∈R

(/S ⊗ C
2 ⊗ gα

�
) . (3.1.15)

Furthermore, if (A,�) = (Aμ,κ ,�μ,κ) + (a, ϕ), then

/D(A,�) − /D(Aμ,κ ,�μ,κ ) (3.1.16)

will be a bundle endomorphism proportional to (a, ϕ).

We can notice that the expression for /Dα , when α(μ) �= 0, is like the one needed to apply
Callias’s index theorem, since it is a Dirac operator plus a skew-Hermitian algebraic term
which doesn’t degenerate at infinity. However, when α(μ) = 0, this last condition is not
satisfied, since the Higgs field tends to 0 at infinity.

Therefore, in the next few subsections, we introduce two separate formalisms which are
suited to these two circumstances. These are the b calculus, which will help us study the case
where α(μ) = 0, and the scattering calculus, which will provide a convenient rewording of
the setup of Callias’s index theorem for the case α(μ) �= 0. We will then see how these two
formalisms fit together to study our linearised operator.

3.2 B and scattering calculuses

We now introduce the b and scattering calculuses, whose tools and results will be expanded
upon in the following sections. We largely follow Kottke’s work on Fredholmness and index
results for operators of the form exhibited by our linearised operator [20], which we aim to
apply in our case. More details can be found there, as well as in its references, about both the
b calculus [25] and the scattering calculus [19, 26].
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The basic setting for these calculuses is a compact manifold with boundary K , together
with a boundary defining function x , that is, a smooth non-negative function which is 0
precisely on the boundary and such that dx is never zero on the boundary ∂K .

Definition 3.2.1 We define the spaces of b and scattering vector fields as

Vb(K ) = {V ∈ V(K ) | V is tangent to ∂K } (3.2.2)

and
Vsc(K ) = {xV | V ∈ Vb(K )} , (3.2.3)

respectively, where V(K ) is the space of vector fields on K .

These spaces of vector fields can also be regarded as sections of certain bundles over K ,
the b and scattering tangent bundles, denoted by bT K and scT K . There are natural maps

scT K → bT K → T K , (3.2.4)

which are isomorphisms in the interior of K (but not on the boundary). Near a point on the
boundary, if {y1, . . . , yn−1} are local coordinates for ∂K around this point, then

{
x

∂

∂x
,

∂

∂ y1
, . . . ,

∂

∂ yn−1

}
(3.2.5)

and {
x2

∂

∂x
, x

∂

∂ y1
, . . . , x

∂

∂ yn−1

}
, (3.2.6)

are local frames for bT K and scT K , respectively. Sections of the corresponding cotangent
bundles (that is, the duals of the tangent bundles), will be the b and scattering 1-forms.
Analogously, near the boundary, these bundles have local frames { dx

x , dy1, . . . , dyn−1} and
{ dx

x2
,
dy1
x , . . . ,

dyn−1
x }.

It is important to note that the spaces Vb(K ) and Vsc(K ) form Lie algebras with the usual
Lie bracket for vector fields, and that, furthermore, we have [Vb(K ),Vsc(K )] ⊆ Vsc(K ).

Like with the usual vector fields, we can also define differential operators. In order to do
so, assume that E is a vector bundle on K with a connection whose covariant derivative is
given by ∇.

Remark 3.2.7 In general, we will take this vector bundle E to be complex. However, some of
these definitions will also be valid for a real vector bundle, which will be necessary for us to
make the correct definitions, as noted in Remark 3.1.10. In particular, the definitions of the
Sobolev spaces and the spaces of bounded polyhomogeneous sections will admit both real
and complex vector bundles.

Definition 3.2.8 We define the spaces of b and scattering differential operators of order
k ∈ Z≥0 on E as

Diffk
b(E)

:= span�(End(E)){∇V1∇V2 · · · ∇V�
| V1, V2, . . . , V� ∈ Vb(K ), 0 ≤ � ≤ k} (3.2.9)

and

Diffk
sc(E)

:= span�(End(E)){∇V1∇V2 · · · ∇V�
| V1, V2, . . . , V� ∈ Vsc(K ), 0 ≤ � ≤ k} ,

(3.2.10)

respectively, where a composition of 0 derivatives is simply taken to mean the identity
endomorphism.
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3.3 B and scattering Sobolev spaces

In order to define Sobolev spaces, let us assume that the vector bundle E carries an inner
product. Furthermore, suppose that we have an exact scattering metric on K , by which we
mean a metric on the interior of K which can be written as

hsc = dx2

x4
+ h∂K

x2
(3.3.1)

near ∂K , where h∂K restricted to ∂K defines a metric on the boundary. This is a metric on
the scattering tangent space, and also provides a measure on K .

The definition of Sobolev spaces for the b and scattering calculuses is then analogous
to the usual Sobolev spaces. Two additional features will be useful: adding weights to the
Sobolev spaces, and combining b and scattering derivatives in the same space. The following
definition encompasses these ideas.

Definition 3.3.2 Let δ ∈ R, k, � ∈ Z≥0 and p ∈ [1,∞]. We define the Sobolev spaces

xδW k,�,p
b,sc (E)

:= {u | x−δ Db Dscu ∈ L p(E),∀Db ∈ Diffkb(E),∀Dsc ∈ Diff�sc(E)} .
(3.3.3)

We also write
xδ Hk,�

b,sc(E) := xδW k,�,2
b,sc (E) . (3.3.4)

When there is only one kind of derivative present,wemayomit the corresponding subscript
and superscript. The weight and the bundle may also be omitted when trivial.

Remark 3.3.5 Note that the ordering of the first three terms in the expression x−δ Db Dscu in
(3.3.3) does not matter, as can be shown by looking at the commutators of the appropriate
operators.

Remark 3.3.6 These are Banach and Hilbert spaces with respect to their natural norms. In
fact, we can also define pseudodifferential operators and Sobolev spaces of negative order,
and these will be briefly mentioned later on, but we will not give details about it here.

Now, it will be useful to have some embedding results between these Sobolev spaces.
From the definitions we see that we can exchange b and scattering derivatives, by taking

the weighting into account, as follows.

Lemma 3.3.7 We have

W k,p
b (E) ⊆ W k,p

sc (E) ⊆ x−k W k,p
b (E) . (3.3.8)

Furthermore, we can also consider the usual Sobolev embeddings adapted to our situation.
Consider firstly the interior of the manifold K with our given scattering metric hsc. The

usual Sobolev spaces on this Riemannian manifold are precisely the spaces W k,p
sc (E) that we

defined with scattering derivatives.
Furthermore, consider again the interior of K , but with the metric

hb := x2hsc . (3.3.9)

Then, the resulting Sobolev spaces on this new Riemannian manifold are precisely the spaces

x− n
p W k,p

b (E) that we defined with b derivatives, where the weight takes into account that
the underlying measure is also weighted by xn .

123



Annals of Global Analysis and Geometry             (2024) 66:4 Page 13 of 38     4 

Let us assume that both Riemannian manifolds described above have bounded geometry
(that is, positive injectivity radius and bounds on the curvature tensor and all its derivatives).
In particular, this implies that we can obtain Sobolev embedding theorems [2, Thm. 2.21]
for our b and scattering Sobolev spaces—taking into account the weighted measure on the
former.

Clearly, we can also obtain an embedding of a Sobolev space into one with lower weight
(all other parameters being equal), but we can also combine this with the Sobolev embeddings
to obtain compact embeddings.

This is captured in the following proposition, where ⊆ is taken to mean that there is a
continuous inclusion between the spaces.

Lemma 3.3.10 Assume that

k > k′ , (3.3.11a)

k − n

p
> k′ − n

p′ , (3.3.11b)

p ≤ p′ , (3.3.11c)

δ ≥ δ′ . (3.3.11d)

Then,

xδW k,p
b (E) ⊆ x

δ′+ n
p − n

p′ W k′,p′
b (E) (3.3.12)

and
xδW k,p

sc (E) ⊆ xδ′
W k′,p′

sc (E) . (3.3.13)

Furthermore, if δ > δ′, then the embeddings are compact.

Remark 3.3.14 If we have an embedding

xδW k,�,p
b,sc (E) ⊆ xδ′

W k′,�′,p′
b,sc (E) , (3.3.15)

then we also have the embedding

xδ+δ′′
W k+k′′,�+�′′,p

b,sc (E) ⊆ xδ′+δ′′
W k′+k′′,�′+�′′,p′

b,sc (E) , (3.3.16)

where δ′′ ∈ R and k′′, �′′ ∈ Z≥0. This is a consequence of the properties noted in
Remark 3.3.5.

Lastly, we observe that the condition of having bounded geometry also implies the fol-
lowing density property [12, Thm. 2.8].

Lemma 3.3.17 If p < ∞, then the space of smooth compactly supported sections is dense
in xδW k,�,p

b,sc .

3.4 Polyhomogeneous expansions

Another important collection of spaces are those of polyhomogeneous sections.
To define them, we consider index sets I ⊂ C × Z≥0 which are discrete, and satisfy

|{(λ, ν) ∈ I | Re λ ≤ k}| < ∞, ∀k ∈ Z≥0 , (3.4.1)

and

(λ, ν) ∈ I �⇒ (λ + j1, ν − j2) ∈ I, ∀ j1 ∈ Z≥0,∀ j2 ∈ {0, 1, . . . , ν} . (3.4.2)
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Then, we say that a section of a vector bundle E , on K has a polyhomogeneous expansion
with index set I if u is asymptotic to the sum

∑

(λ,ν)∈I
xλ log(x)νuλ,ν (3.4.3)

at ∂K , for some choice of sections uλ,ν of E which are smooth up to the boundary. Here, by
asymptotic we mean that, for any k ∈ Z≥0,

u −
∑

(λ,ν)∈I
Re λ≤k

xλ log(x)νuλ,ν (3.4.4)

is k times differentiable, and it and its first k derivatives vanish to order xk at the boundary.
We will be mostly concerned with a specific subset of these.

Definition 3.4.5 Let δ ∈ R≥0. Then, we define the space

Bδ(E) (3.4.6)

of sections of E which are bounded polyhomogeneous of order xδ as the space of polyho-
mogeneous sections whose index sets satisfy I ⊂ ((δ,∞) × Z≥0) ∪ {(δ, 0)}.

Furthermore, B∞(E) will denote the space of sections which vanish with all derivatives
to infinite order.

If a section is in B0(E), we simply say it is bounded polyhomogeneous.

It is important to note that b operators preserve the order of bounded polyhomogeneous
sections, and hence scattering derivatives increase the order by 1.

3.5 Fredholm theory

In the b and scattering calculuses there are results which allow us to prove that certain
operators are Fredholm and to compute their index. We will briefly summarise them, since
the main notions will reappear when we combine both calculuses to study our operator.

In the case of the scattering calculus, the relevant notion is Callias’s index theorem [5,
19]. Suppose that K is odd dimensional, and that we have an operator D + �, where D is a
Dirac operator for the scattering metric and � is an algebraic, skew-Hermitian term which is
non-degenerate on the boundary of K and commutes with the Clifford action on the bundle
E . Then, the operator is Fredholm as a map

D + � : xδ Hk
sc(E) → xδ Hk−1

sc (E) (3.5.1)

for any δ and k.
To find its index (which is independent of δ and k), consider the restriction of E to ∂K and

the subbundle E+ given by the positive imaginary eigenspaces of the endomorphism ��∂K .
This, in turns, splits as E+ = E++ ⊕ E−+ as the ±1 eigenspaces of i cl(x2 ∂

∂x ). If /∂
+
+ denotes

the Dirac operator mapping E++ to E−+ induced by D, then

ind(D + �) = ind(/∂+
+) . (3.5.2)

Furthermore, any element in the kernel of this operator will be in B∞.
In the b calculus, the situation is a bit more involved.
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Suppose we have an elliptic operator D of order k which, near the boundary, can bewritten
as

D =
∑

j+|β|≤k

b j,β(x, y)
(

x
∂

∂x

) j( ∂

∂ y

)β

, (3.5.3)

where y represents coordinates on the boundary ∂K and β is a multi-index. Restricting it to
the boundary produces the indicial operator

I (D) =
∑

j+|β|≤k

b j,β(0, y)
(

z
∂

∂z

) j( ∂

∂ y

)β

, (3.5.4)

which is a differential operator on the inward-pointing normal bundle to ∂K inside bT K .
This bundle is generated by x ∂

∂x and its fibres are parametrised by z ≥ 0, and it can be
thought of as modelling K near its boundary.

From this we obtain a family of operators on the boundary given, for a parameter λ ∈ C,
by

I (D, λ) =
∑

j+|β|≤k

b j,β(0, y)λ j
( ∂

∂ y

)β

. (3.5.5)

These operators will be elliptic on ∂K , and they will give us information about the operator
at the boundary. In particular, define the b spectrum of the operator D as

specb(D) = {λ ∈ C | I (D, λ) is not invertible} , (3.5.6)

which is a discrete set. We call the real parts of its elements indicial roots.
For a value λ ∈ specb(D), elements u ∈ Null(I (D, λ)) represent sections in the kernel

of the indicial operator I (D) of the form zλu. In fact, we can also define the order ord(λ) of
λ, representing the existence of sections in this kernel of the form

zλ

ord(λ)−1∑

ν=0

log(z)νuν , (3.5.7)

which make up the formal nullspace at λ. In our case, this order will always be 1, so we will
not go into more details.

In this setting, the operator is Fredholm as a map

Dδ : xδ− n
2 H �

b (E) → xδ− n
2 H �−k

b (E) (3.5.8)

as long as δ is not an indicial root, that is, δ /∈ Re specb(D).
The index of the operator might change depending on the weight of the Sobolev spaces.

However, there are two properties which can be useful for its computation:

D self-adjoint �⇒ ind(Dδ) = − ind(D−δ) , (3.5.9)

and, if [δ0 − ε, δ0 + ε] ∩ Re specb(D) = {δ0}, then
ind(Dδ0−ε) = ind(Dδ0+ε) +

∑

Re λ=δ0

ord(λ) · dimNull(I (D, λ)) . (3.5.10)

Lastly, when the spectrum is real, elements in the kernel of Dδ (when δ is not an indicial
root) will be bounded polyhomogeneous of order xλ1 log(x)ord(λ1)−1, where λ1 is the smallest
indicial root bigger than δ; in particular, they will be in Bλ1 if ord(λ1) = 1.
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3.6 Hybrid spaces

Let us now return to the study of the linearised operator from Sect. 3.1.
Firstly, in order to view our base manifold, the Euclidean spaceR3, as a compact manifold

in the sense needed for the b and scattering calculuses, we consider the radial compactifica-
tion.

Topologically, this identifies R3 with the interior of a 3-ball, whose closure provides the
compact manifold K . Its boundary is a 2-sphere, which we will refer to as the sphere at
infinity. We then obtain a boundary defining function by taking

x = 1

r
(3.6.1)

near infinity and smoothing over the origin.
A crucial observation is that the Euclidean metric on R

3 is precisely a scattering metric
on the radial compactification, since, away from the origin, it can be written as

dr2 + r2hS2 = dx2

x4
+ hS2

x2
, (3.6.2)

where hS2 is the metric on the unit 2-sphere. In particular, this metric has bounded geometry.
Furthermore, the corresponding b metric—the Euclidean metric weighted by x2, which is
equal to 1

r2
near infinity—is isometric to a cylinder near infinity and hence also has bounded

geometry. Therefore, we can apply the properties described in Sect. 3.3.
Let us now recall the form of our linearised operator for the model monopole on each root

subbundle, given by (3.1.12).
On root subbundles gα

�
for which α(μ) �= 0 it has precisely the form required to apply the

Fredholm theory for scattering operators, but on the root subbundles for which α(μ) = 0 the
action of the Higgs field degenerates. However, in the latter case, let us consider the operator
x−1 /Dα , which near infinity is simply

x−1 /Diα(κ) + iα(κ)

2
. (3.6.3)

Since the Dirac operator can be written in terms of scattering derivatives (with no algebraic
term), the operator x−1 /Diα(κ) is a b operator. Furthermore, the action of the Higgs field is
bounded, so x−1 /Dα is also a b operator.

This means that we have to treat root subbundles differently depending on whether α(μ)

is 0 or not. Hence, let us start by defining, near infinity, the subbundles

Ad(P)C := ker(adμ) , (3.6.4a)

Ad(P)C⊥ := ker(adμ)⊥ , (3.6.4b)

of the real bundle Ad(P)—where C refers to the centraliser of μ in g. It is important to note
that these definitions indeed determine subbundles, due to the definition of the mass element
μ, whose adjoint action must have a constant rank near infinity. Their complexifications are
the subbundles

Ad(P)CC = tC ⊕
⊕

α∈R
α(μ)=0

gα
�

, (3.6.5a)

Ad(P)CC⊥ =
⊕

α∈R
α(μ)�=0

gα
�

, (3.6.5b)
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of Ad(P)C.
Then, the operator near infinity will look like a weighted b operator along the first sub-

bundle and like a scattering operator along the second one.
With that in mind, we make the following definition, where we are further allowing the

construction to depend on a parameter s ∈ Z≥1 which will add regularity (in the form of
b derivatives) to the configurations we consider. This will remain essentially fixed for most
of the rest of this work, and only plays a minor role in some proofs. We will then see in
Proposition 5.2.7 that the results do not ultimately depend on this choice.

Definition 3.6.6 We define

Hδ0,δ1,s,k
E :=

{
u | �χu ∈ xδ0 Hs+k

b (E ⊗ Ad(P)C ),

(1 − �)χu ∈ xδ1 Hs,k
b,sc(E ⊗ Ad(P)C⊥),

(1 − χ)u ∈ Hs+k
c (E ⊗ Ad(P))

}
,

(3.6.7)

where � is the orthogonal projection onto Ad(P)C , χ is a smooth cutoff function which is 0
on the unit ball and 1 outside a larger ball, and H •

c denotes the corresponding Sobolev space
of compactly supported functions.

When the bundle E is just an exterior bundle
∧ j , we will simply write the subscript j ,

and when the bundle is
∧1 ⊕ ∧0, we will omit the subscript altogether. That is,

Hδ0,δ1,s,k
j := Hδ0,δ1,s,k∧ j , (3.6.8)

Hδ0,δ1,s,k := Hδ0,δ1,s,k∧1⊕∧0 . (3.6.9)

Furthermore, we will centre our attention on these spaces for very specific parameters. In
particular, we define

H s,k
E := H1−k,1,s,k

E , k = 0, 1, 2 , (3.6.10)

following the same notation for subscripts:

H s,k
j := H s,k∧ j , k = 0, 1, 2 , (3.6.11)

H s,k := H s,k∧1⊕∧0 , k = 0, 1, 2 . (3.6.12)

Note the difference betweenH s,k
E andH s,k−1

E : the subbundle corresponding to the cen-
traliser of μ loses one b derivative and its weight increases by 1, whereas the subbundle
corresponding to the orthogonal complement loses one scattering derivative while its weight
remains the same. This is exactly how we expect our linearised operator to act on each of
these subbundles.

Another good indication that these spaces are well suited to our situation is the following
result.

Lemma 3.6.13 The maps
dAμ,κ : H s,k

j → H s,k−1
j+1 (3.6.14)

and
ad�μ,κ : H s,k

E → H s,k−1
E (3.6.15)

are continuous for k ∈ {1, 2}.
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Proof For the operator dAμ,κ , we first note that it is a scattering differential operator of order
1. This means that we have the continuous map

dAμ,κ : xδ Hk,�
b,sc(

∧ j
) → xδ Hk,�−1

b,sc (
∧ j+1

) . (3.6.16)

However, x−1dAμ,κ is a b operator of order 1, so the map

dAμ,κ : xδ Hk,�
b,sc(

∧ j
) → xδ+1Hk−1,�

b,sc (
∧ j+1

) (3.6.17)

is also continuous. We apply these two facts to the subbundles Ad(P)C⊥ and Ad(P)C ,
respectively.

For the operator ad�μ,κ , we use Corollary 2.2.12. OnAd(P)C⊥ , themass term is a constant
along the decomposition, so multiplying by it preserves the Sobolev space we find ourselves
in. The charge term is a constant weighted by x , which also preserves the space. On Ad(P)C ,
however, the mass term vanishes, so we can increase the weight by 1. In both cases, we can
then remove one derivative from the respective Sobolev spaces to obtain maps like the above.

In both cases we are relying on the fact that the connection and Higgs field are smooth
near the origin, and hence they locally act between the appropriate spaces. ��

The specific weights chosen will be important later on for several reasons. Firstly, the
index of the operator will depend on the choice of weights. Secondly, we need to make
sure that products of elements in these spaces preserve the appropriate properties. The most
important of these, which will be used throughout, are in the following lemma.

Lemma 3.6.18 The maps

[•, •] : H s,2
0 × H s,1

0 → H s,1
0 , (3.6.19)

[•, •] : H s,2
0 × H s,0

0 → H s,0
0 , (3.6.20)

[•, •] : H s,1
0 × H s,1

0 → H s,0
0 , (3.6.21)

[•, •] : H s,2
0 × H s,2

0 → H s,2
0 , (3.6.22)

and

[•, •] : H0,1,s,1
0 × H0,1,s,1

0 → H
5
4 , 54 ,s,1
0 (3.6.23)

given by the adjoint action on Ad(P) are continuous.
Furthermore, in the first three cases, if we fix an element of the second space, the map is

compact from the first space to the codomain.

Proof These follow from the properties laid out in Sect. 3.3 combined with Hölder’s inequal-
ity. Let us illustrate this by summarising the proof for some of the maps.

Firstly we look at (3.6.19). To simplify notation, we take 0 instead of s (although, as
stated before, we will need to assume s ≥ 1 for other proofs), so the map we are interested
in becomes

[•, •] : H−1,1,0,2
0 × H0,1,0,1

0 → H0,1,0,1
0 . (3.6.24)

Now, we note that
[Ad(P)C ,Ad(P)C ] ⊆ Ad(P)C . (3.6.25)

Furthermore, the asymptotic conditions are stronger on the subbundle Ad(P)C⊥ than on the
subbundle Ad(P)C (and the regularity conditions are the same). Therefore, it will suffice to
prove the multiplication properties for the pointwise multiplication maps

• · • : x−1H2
b × H1

b → H1
b , (3.6.26a)
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• · • : x−1H2
b × x H1

sc → x H1
sc , (3.6.26b)

• · • : x H2
sc × H1

b → x H1
sc , (3.6.26c)

since these are the spaces that determine the asymptotic conditions along the relevant sub-
bundle combinations.

To prove (3.6.26a), we first see that if u and v are smooth and compactly supported, then

‖uv‖H1
b

� ‖x−1d(uv)‖L2(
∧1)

+ ‖uv‖L2

� ‖x−1(du)v)‖L2(
∧1)

+ ‖ux−1dv‖L2(
∧1)

+ ‖uv‖L2

� ‖x−1du‖
x− 1

2 L4(
∧1)

‖v‖
x
1
2 L4

+ ‖u‖L∞‖x−1dv‖L2(
∧1)

+ ‖u‖L∞‖v‖L2

� ‖u‖
x− 1

2 W 1,4
b

‖v‖
x
1
2 L4

+ ‖u‖L∞‖v‖H1
b

+ ‖u‖L∞‖v‖L2 ,

(3.6.27)

where the relation � denotes that there is an inequality if we multiply the right-hand side by
a positive constant which does not depend on u or v. Note that we need to use x−1d instead
of d to account for the b derivatives, since the Euclidean metric is a scattering metric. Now,
from Lemma 3.3.10 and Hölder’s inequality we deduce that

x−1H2
b � x− 1

2 W 1,4
b ⊆ L∞ , (3.6.28)

where � denotes a compact embedding, and that

H1
b ⊆ x

1
2 L4, L2 . (3.6.29)

This implies the continuity and compactness properties of the multiplication map.
For (3.6.26b) and (3.6.26c) we can apply a similar procedure to see that

‖uv‖x H1
sc

� ‖u‖
x− 1

2 W 1,4
sc

‖v‖
x
1
2 L4

+ ‖u‖L∞‖v‖x H1
sc

+ ‖u‖L∞‖v‖L2 , (3.6.30)

‖uv‖x H1
sc

� ‖u‖
x
1
2 W 1,4

sc
‖v‖

x
1
2 L4

+ ‖u‖L∞‖v‖H1
b

+ ‖u‖
x
1
2 L4

‖v‖
x
1
2 L4

. (3.6.31)

Taking into account the previous embeddings together with

x H1
sc ⊂ x

1
2 L4, L2 , (3.6.32)

x H2
sc � x

1
2 W 1,4

sc ⊆ x
1
2 L4, L∞ , (3.6.33)

completes the proof.
If we want to account for other values of s we can simply add s b derivatives to all the

spaces involved, since Hölder’s inequality will still hold, and so will the embeddings applied.
The proofs for the maps (3.6.20) to (3.6.22) follow a similar procedure.
The proof of (3.6.23) is slightly different in that it relies on s ≥ 1. To demonstrate it, let us

therefore take s = 1 and observe, similarly to above, that it reduces to proving the continuity
of the maps

• · • : H2
b × H2

b → x
5
4 H2

b , (3.6.34a)

• · • : H2
b × x H1,1

b,sc → x
5
4 H1,1

b,sc . (3.6.34b)
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The continuity of the first map follows from the inequality

‖uv‖
x
5
4 H2

b

� ‖u‖H2
b
‖v‖

x
5
4 L∞ + ‖u‖

x
5
8 W 1,4

b

‖v‖
x
5
8 W 1,4

b

+ ‖u‖
x
5
4 L∞‖v‖H2

b

+ ‖u‖
x
5
8 W 1,4

b

‖v‖
x
5
8 L4

+ ‖u‖
x
5
8 L4

‖v‖
x
5
8 W 1,4

b

+ ‖u‖
x
5
8 L4

‖v‖
x
5
8 L4

(3.6.35)

and the embeddings

H2
b ⊆ x

5
8 W 1,4

b ⊆ x
5
4 L∞, x

5
8 L4 , (3.6.36)

whereas the continuity of the second follows from

‖uv‖
x
5
4 H1,1

b,sc

� ‖u‖H2
b
‖v‖

x
1
4 L∞ + ‖u‖

x− 3
4 W 1,4

b

‖v‖xW 1,4
b

+ ‖u‖
x
1
4 L∞‖v‖x H1,1

b,sc

+ ‖u‖
x
1
4 W 1,4

b

‖v‖x L4 + ‖u‖
x
1
4 L4

‖v‖xW 1,4
b

+ ‖u‖
x
1
4 L4

‖v‖x L4

(3.6.37)

taking into account, additionally, the embeddings

x H1,1
b,sc ⊆ xW 1,4

b ⊆ x
1
4 L∞, x L4 . (3.6.38)

��
Naturally, the spaces H s,k

0 can be substituted by H s,k
E in the above lemma when appro-

priate, and similarly for Hδ0,δ1,s,k
0 and Hδ0,δ1,s,k

E .
Lastly, we will also consider spaces of bounded polyhomogeneous sections with different

orders on different subbundles. The only relevant one for us is

Bδ0,δ1 , (3.6.39)

which will denote bounded polyhomogeneous sections of (
∧1 ⊕∧0

)⊕Ad(P) which are of
orders xδ0 and xδ1 in the subbundles corresponding to Ad(P)C and Ad(P)C⊥ , respectively.
Multiplication properties for such spaces are more straightforward.

3.7 Moduli space setup

Of particular interest are the spaces

H s,2
0 = H−1,1,s,2∧0 , (3.7.1)

H s,1 = H0,1,s,1∧1⊕∧0 , (3.7.2)

H s,0
1 = H1,1,s,0∧1 , (3.7.3)

which will be used to define the setup of the moduli space of framed monopoles for our mass
and charge suggested in Sect. 2.3.

We start with the configuration space.

Definition 3.7.4 The configuration space of framed pairs of mass μ and charge κ is defined
as

C s
μ,κ := (Aμ,κ ,�μ,κ) + H s,1 . (3.7.5)

The Bogomolny map restricted to the configuration space Cμ,κ is denoted as

Bs
μ,κ := B�C s

μ,κ
. (3.7.6)
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For the group of gauge transformations the aim is to model its Lie algebra on the Sobolev
spaceH s,2

0 . Since the group of gauge transformations itself is not a vector (or affine) space,
its definition is slightly more involved.

In order to build it, we consider the group G as a compact subgroup of a space of matrices,
and construct the bundle EMat overR3 which is associated to P through the conjugation action
of G on this space of matrices. Since the conjugation action respects matrix multiplication,
this will yield a bundle of algebras. Furthermore, since the bundle Aut(P) can be constructed
as the bundle associated to P through the conjugation action of G on itself, the bundle EMat

will contain Aut(P) as a subbundle. By the same reasoning, it will also contain Ad(P) as a
subbundle. Lastly, we observe that near infinity we can decompose this bundle EMat in the
same way as the adjoint bundle by considering the subbundle EMat

C that commutes with μ

and its orthogonal complement EMat
C⊥ (with respect to any metric which extends the metric

on the adjoint bundle). This can be used to define a Sobolev space H s,2(EMat) in a way
analogous to the definitions for the bundle Ad(P).

Definition 3.7.7 The group of (small) gauge transformations for mass μ and charge κ is
defined as the group of sections

G s
μ,κ := {

g ∈ 1G + H s,2(EMat) | g takes values in Aut(P)
}

, (3.7.8)

and its Lie algebra is denoted by

Gs
μ,κ := Lie(G s

μ,κ ) . (3.7.9)

We can see that these definitions provide an adequate setup by applying the properties of
the hybrid Sobolev spaces involved.

Proposition 3.7.10 The gauge group G s
μ,κ is a well-defined Lie group whose Lie algebra

satisfies
Gs

μ,κ = H s,2
0 . (3.7.11)

This group acts smoothly on the configuration space C s
μ,κ , and the Bogomolny map Bs

μ,κ is
smooth as a map

Bs
μ,κ : C s

μ,κ → H s,0
1 . (3.7.12)

Furthermore, if (A,�) ∈ C s
μ,κ , then the maps

dA : H s,k
j → H s,k−1

j+1 (3.7.13)

and
ad� : H s,k

E → H s,k−1
E (3.7.14)

are continuous for k ∈ {1, 2}, and so is the linearised operator as a map

/D(A,�) : H s,1 → H s,0 . (3.7.15)

Proof The space G s
μ,κ inside H s,2(EMat) can be seen to be a submanifold by applying the

implicit function theorem locally around a given section g ∈ G s
μ,κ . The function whose

zero locus determines the group of gauge transformations simply takes sections to their
components which are transverse to Aut(P) inside EMat. Locally, this transverse part can be
defined using the exponential map. Group multiplication is smooth and internal due to the
properties of the map (3.6.22).

Its Lie algebra is simply the space of sections of EMat with the same asymptotic conditions
but lying inside the bundle Ad(P).
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The rest of the properties are a straightforward application of Lemma 3.6.13 and the
continuity of the maps (3.6.19) to (3.6.21). ��

We can now define the moduli space which, as pointed out before, will be seen to be
independent of s in Proposition 5.2.7.

Definition 3.7.16 The moduli space of framed monopoles of mass μ and charge κ is defined
as

Ms
μ,κ := (Bs

μ,κ )−1(0)/G s
μ,κ . (3.7.17)

An important feature of this setup is that we can perform integration by parts between
H s,2

0 and H s,1
0 .

Lemma 3.7.18 The L2 pairings on the pairs of spaces H s,2
0 ×H s,0

0 and H s,1
0 ×H s,1

0 are

continuous. Hence, we can perform integration by parts between elements of H s,2
0 and H s,1

0
with any connection A in (the first factor of) the configuration space Cμ,κ .

Proof The continuity of the pairings can be easily seen because H s,k
0 is inside x1−k L2.

These pairings imply that we can perform integration by parts, since the functional

(u, v) �→ 〈dAu, v〉L2 + 〈u, dAv〉L2 (3.7.19)

is continuous for (u, v) ∈ H s,2
0 ×H s,1

0 and zero for smooth, compactly supported elements,
which, as seen in Lemma 3.3.17, are dense. ��

Once again, the spacesH s,k
0 can be substituted byH s,k

E in this lemma when appropriate.

4 The linearised problem

With the analytical setup of the previous section, we now aim to study the linearised operator
in more detail. In particular, we want to prove that it is Fredholm and surjective. This will
rely on the results in Kottke’s work [20], which studies operators on hybrid Sobolev spaces.

4.1 Fredholmness and index

As we saw, along the subbundles Ad(P)C and Ad(P)C⊥ of the adjoint bundle given by
(3.6.4), the linearised operator resembles b and scattering Fredholm operators, respectively.
As it turns out, wewill be able to put both approaches together to prove that the entire operator
is Fredholm.

For the computation of the index it will, in fact, be useful to look at a family of related
operators. This family will connect our operator with another one which is self-adjoint in the
relevant sense, for which the computation of the index is simplified. The family of operators
will be defined by modifying the Higgs field. We initially consider these operators as acting
on complex spaces, although we will formulate Theorem 4.1.11 in terms of the real operator
that we are interested in, whose relevant properties can be deduced from its complexification
as discussed in Remark 3.1.10.

Let (A,�) = (Aμ,κ ,�μ,κ) + (a, ϕ) ∈ C s
μ,κ . Recalling (2.2.11a), we have

� = μ − 1

2r
κ + ϕ , (4.1.1)
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where the constant sections μ, κ ∈ �(t) are smoothed out near the origin. Then, for a given
parameter t ∈ R, we define

�(t) := μ − t

2r
κ + tϕ . (4.1.2)

Now, by looking at the resulting family of operators /D(A,�(t)), for t ∈ [0, 1], we will be able
to compute the index. For t = 1 this is the linearised operator we are interested in, whereas
for t = 0 the b part of the operator will be self-adjoint, which will help in the computation.
By keeping the mass term for every t we guarantee that the scattering part of the operator
remains non-degenerate.

In order to apply Kottke’s Fredholmness and index results, let us establish some relevant
notation. We write

D(t) := /D(A,�(t)−μ) , (4.1.3a)

� := − adμ , (4.1.3b)

so that /D(A,�(t)) = D(t) + �. This acts on sections of (
∧1 ⊕ ∧0

) ⊗ Ad(P)C, which, near
infinity, decomposes as

((
∧1 ⊕ ∧0

) ⊗ Ad(P)CC ) ⊕ ((
∧1 ⊕ ∧0

) ⊗ Ad(P)CC⊥) . (4.1.4)

With respect to this splitting, we write

D(t) :=
(

D(t)
00 D(t)

01

D(t)
10 D(t)

11

)
, (4.1.5)

and we also write D̃(t)
00 = x−2D(t)

00 x . Then, D̃(t)
00 represents the b part of the operator, and

hence we can define I (D̃(t)
00 , λ), whereas D(t)

11 + � represents the scattering part, and hence
we can define the operator /∂

+
+ associated to it—in both cases following Sect. 3.5. Note that

we need to multiply D(t)
00 by x−1 in order to make it a b operator. The extra conjugation by

x−1 will simplify some notation by shifting the b spectrum of the operator.
If, furthermore, the configuration pair (A,�) is bounded polyhomogeneous (by which we

mean that (A,�) − (Aμ,κ ,�μ,κ) is), then the operator satisfies the necessary properties to
apply Kottke’s results. More specifically, we observe the following properties, which follow
from the definitions and results laid out above.

• D(t) is a Dirac operator with respect to the Euclidean metric on R
3, plus an algebraic

term of order x .
• Near infinity, � commutes with the Clifford action, is skew-Hermitian and has constant

rank, and the first term of the splitting (4.1.4) is the kernel of �, which also preserves
the second term.

• The connection Aμ,κ preserves the above splitting, and a is of order x
3
2 .

These properties imply the conditions (C1–5) in Sect. 2 of Kottke’s article [20], so we
can apply the results from this work to compute the index by computing the indices of the
scattering and b parts and adding them. The latter contribution will be referred to as the
defect.

For simplicity, we assume here that the elements in the b spectrum specb(D̃(t)
00 ) are real

and of order 1. This can be deduced from the proof of Theorem 4.1.11.
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Lemma 4.1.6 Let the pair (A,�) = (Aμ,κ ,�μ,κ) + (a, ϕ) ∈ C s
μ,κ be bounded polyhomo-

geneous, let t ∈ R, and let /D(A,�(t)) = D(t) + � be as above. Then, if δ ∈ R \ specb(D̃(t)
00 )

the operator
/D(A,�(t)) : (Hδ− 1

2 ,δ+ 1
2 ,s,1)C → (Hδ+ 1

2 ,δ+ 1
2 ,s,0)C (4.1.7)

is Fredholm.
Furthermore, its index is given by

ind( /D(A,�(t))) = ind(/∂+
+) + def( /D(A,�(t)), δ) , (4.1.8)

where the defect def( /D(A,�(t)), δ) ∈ Z is locally constant in δ onR\specb(D̃(t)
00 ) and satisfies

def( /D(A,�(t)), δ) = − def( /D(A,�(t)),−δ) (4.1.9)

when t = 0, and

def( /D(A,�(t)), λ0 − ε) = def( /D(A,�(t)), λ0 + ε) + dimNull(I (D̃(t)
00 , λ0)) (4.1.10)

when [λ0 − ε, λ0 + ε] ∩ specb(D̃(t)
00 ) = {λ0}.

Lastly, elements in the kernel of this operator will be in (B1+λ1,2+λ1)C, where λ1 is the
smallest indicial root of D̃(t)

00 bigger than δ.

Proof This follows from Theorems 2.4 and 3.6 of Kottke’s work [20] and the observation
that D̃(0)

00 is self-adjoint. ��

This allows us to compute the index of our operator. The formula (4.1.13) deduced here
is discussed in more detail in Sect. 5.4, where in particular we see that it is a multiple of 4.

Theorem 4.1.11 Let (A,�) ∈ C s
μ,κ be bounded polyhomogeneous. Then, the operator

/D(A,�) : H s,1 → H s,0 (4.1.12)

is Fredholm and
ind( /D(A,�)) = 2

∑

α∈R
iα(μ)>0

iα(κ) − 2
∑

α∈R
α(μ)=0
iα(κ)>0

iα(κ) . (4.1.13)

Furthermore, elements in its kernel are in B2,3.

Proof We consider the complexification of the operator and apply Lemma 4.1.6. Our aim is
to compute the index for t = 1 and δ = 1

2 , but we will also have to consider other values of
t and δ in order to do so. We set D(t) and � as above.

It will be useful throughout the proof to consider the positive and negative spinor bundles
/S+ and /S− over the unit sphere (which satisfy /S± ∼= L ∓1). We then get Dirac operators

/D±
d : �(/S± ⊗ L d) → �(/S∓ ⊗ L d) (4.1.14)

twisted by any bundle L d . We know that, over the sphere, /D±
d has index ±d . Furthermore,

/D+
d is injective and /D−

d is surjective when d ≥ 0, and vice versa when d < 0.
We can extend these bundles and operators radially to R

3 \ {0}, where we also refer to
them as /S± and /D±

d , identifying /S = /S+ ⊕ /S−.
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As seen in Lemma 4.1.6, we must compute the defect of the b part of the operator and the
index of /∂

+
+ induced from the scattering part. Recall that, near infinity, the former acts on the

subbundle
((

∧1 ⊕ ∧0
) ⊗ Ad(P)C )C ∼= /S ⊗ C

2 ⊗
(
tC ⊕

⊕

α∈R
α(μ)=0

gα
�

)
, (4.1.15)

whereas the latter acts on

((
∧1 ⊕ ∧0

) ⊗ Ad(P)C⊥)C ∼= /S ⊗ C
2 ⊗

⊕

α∈R
α(μ)�=0

gα
�

. (4.1.16)

We will then study the operator on each line bundle of the form /S ⊗ gα
�

and add up the
contributions of each subbundle. We note that these line bundles are duplicated due to the
factorC2 (or replicated 2 rank(G) times in the case of α = 0 corresponding to tC), and hence
the contributions to the index will be multiplied accordingly.

Now, we start by computing the contribution from the b part of the operator (the defect),
so we must find specb(D̃(t)

00 ) for each t . Near infinity, the operator acts on subbundles of the
form /S ⊗ gα

�
for α(μ) = 0 (two copies for each such root α and 2 rank(G) copies for α = 0,

corresponding to tC). We have the decomposition

/S ⊗ gα
�

= (/S+ ⊗ gα
�

) ⊕ (/S− ⊗ gα
�

) , (4.1.17)

with respect to which we can write

D̃(t)
00 �gα

�
� /̃D

(t)
α :=

⎛

⎝−i
(

x ∂
∂x + i tα(κ)

2

)
/D−

iα(κ)

/D+
iα(κ) i

(
x ∂

∂x − i tα(κ)
2

)

⎞

⎠ , (4.1.18)

where the left-hand side differs from the right-hand side by an algebraic term which is
proportional to t x−1((A,�)−(Aμ,κ ,�μ,κ)), and hence bounded polyhomogeneous of order

smaller than x
1
2 . To obtain the expression for /̃D

(t)
α we have combined the form of the Dirac

operator on /S ⊗ gα
�

over R3 viewed as a cone over the unit sphere with the action of the
Higgs field [29]. Note that the radial variable r has now been substituted by the inverse of
the boundary defining function x .

In order to compute the indicial roots, we must consider the operators I (D̃(t)
00 , λ) over the

sphere at infinity. For each subbundle gα
�
, these restrict to

I
(

/̃D
(t)
α , λ

)
=

⎛

⎝−i
(
λ + i tα(κ)

2

)
/D−

iα(κ)

/D+
iα(κ) i

(
λ − i tα(κ)

2

)

⎞

⎠ , (4.1.19)

acting on the bundles (/S+ ⊗ L iα(κ)) ⊕ (/S− ⊗ L iα(κ)) over the unit sphere.

To find the kernels of these operators, let us take (u, v) ∈ ker I ( /̃D
(t)
α , λ). The resulting

equations are

/D−
iα(κ)v = i

(
λ + i tα(κ)

2

)
u , (4.1.20a)

/D+
iα(κ)u = −i

(
λ − i tα(κ)

2

)
v . (4.1.20b)

123



    4 Page 26 of 38 Annals of Global Analysis and Geometry             (2024) 66:4 

If we apply /D−
iα(κ) to the second equation and substitute /D−

iα(κ)v using the first, we get

/D−
iα(κ)

/D+
iα(κ)u =

(
λ2 −

( i tα(κ)

2

)2)
u . (4.1.21)

But the eigenvalues of /D−
iα(κ)

/D+
iα(κ) are j( j + |iα(κ)|), for j ∈ Z≥0, excluding 0 when

iα(κ) ≤ 0 [22, 24]. Hence, if u �= 0, we must have

λ = ±
√

j2 + j |iα(κ)| +
( i tα(κ)

2

)2
(4.1.22)

for some integer j ≥ 0.
Let us first take j = 0, that is, λ = ± i tα(κ)

2 .

When λ = − i tα(κ)
2 our equations become

/D−
iα(κ)v = 0 , (4.1.23a)

/D+
iα(κ)u = −tα(κ)v . (4.1.23b)

When iα(κ) > 0, the first equation implies v = 0, and the second equation has a space
of solutions of dimension iα(κ). When iα(κ) ≤ 0, (4.1.21) implies u = 0, which in turn
implies v = 0 if t �= 0.

When λ = i tα(κ)
2 (which also includes the case where u = 0 and v �= 0), we can perform

analogous computations to check that, when iα(κ) < 0, we have a space of solutions of
dimension −iα(κ), and, when iα(κ) ≥ 0, we only have the zero solution if t �= 0.

To summarise the case j = 0, when α(κ) �= 0 and λ = − t |iα(κ)|
2 , the kernel of I ( /̃D

(t)
α , λ)

has dimension |iα(κ)|, and otherwise it has dimension 0.
When j > 0,wehaveλ ∈ R\(−1, 1),which, aswewill see,will not affect the computation

of the index, although we observe that for t = 1 they are the half-integers ±( j + |iα(κ)|
2 ).

In particular, the b spectrum is real, and we can furthermore check that every element in
it has order 1 by computing their formal nullspaces.

Now, applying the relationships from Lemma 4.1.6, we see that

def( /D(A,�(0)), ε) = − def( /D(A,�(0)),−ε) , (4.1.24)

and
def( /D(A,�(0)),−ε) = def( /D(A,�(0)), ε) + dimNull(I (D̃(0)

00 , 0)) , (4.1.25)

when 0 < ε < 1. The last term of the last equation, as we saw, is

2
∑

α∈R
α(μ)=0

|iα(κ)| = 4
∑

α∈R
α(μ)=0
iα(κ)>0

iα(κ) . (4.1.26)

Hence,
def( /D(A,�(0)), ε) = −2

∑

α∈R
α(μ)=0
iα(κ)>0

iα(κ) . (4.1.27)

But since there are no indicial roots in (0, 1) for any t ∈ [0, 1], we also have

def
(

/D(A,�(1)),
1

2

)
= −2

∑

α∈R
α(μ)=0
iα(κ)>0

iα(κ) . (4.1.28)
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Fig. 1 We can represent the operator for each choice of the parameter t and the weight δ as a point on this
diagram. Then, for a given root subbundle gα

�
(in this example, drawn for |iα(κ)| = 1), we can represent the

corresponding indicial roots as lines on the same diagram. The defect corresponding to this component will
be locally constant on the complement of these lines. The relative index formula with the above computations
tells us that crossing the marked line from right to left would correspond to adding |iα(κ)| to the defect. The
other indicial roots, also drawn here, will fall in the regions |δ| ≥ 1, so they won’t affect our computation.
Furthermore, since the operator is self-adjoint for t = 0, reflecting around the origin changes the sign. These

two facts together imply that the defect corresponding to this root subbundle is precisely −|iα(κ)|
2 for the

whole dark grey area, and, in particular, for the relevant point (t = 1 and δ = 1
2 )

Fig. 2 Here we can see the result of adding indicial roots corresponding to |iα(κ)| being equal to 0, 1, 2 and 3.
We can see that the only relevant contributions are the ones corresponding to the lowest indicial root in each
case (or none, in the case of α(κ) = 0)

Figures 1 and 2 give a visual representation of the indicial roots for t ∈ [0, 1] and how we
can deduce the defect of the operator.

Now we compute ind(/∂+
+), the contribution to the index from the scattering part, which

does not depend on δ or t . This is given by the index of a Dirac operator induced on the
sphere at infinity by the operator D(t)

11 , which acts on sections of the subbundles /S ⊗ gα
�
,

for α(μ) �= 0 (two copies for each such root α). But the positive imaginary eigenspaces of
� are just those for which iα(μ) > 0. Furthermore, for each of these subbundles, the +1
eigenspace of i cl(x2 ∂

∂x ) consists of the positive spinor parts. To summarise, we are left with
the subbundles

/S+ ⊗ gα
�

∼= /S+ ⊗ L iα(κ) (4.1.29)

for which iα(μ) > 0.
The Dirac operator /∂

+
+ restricted to such a bundle at the sphere at infinity is simply /D+

d ,
which has index iα(κ). Putting them all together, we get

ind(/∂+
+) = 2

∑

α∈R
iα(μ)>0

iα(κ) . (4.1.30)
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Adding (4.1.30) and (4.1.28) produces the formula for the index.
Lastly, the order of the bounded polyhomogeneous elements in its kernel follows from

the fact that, in the b part, the smallest possible indicial root bigger than 1
2 for t = 1 is 1. ��

4.2 Surjectivity and kernel

It is also important that the linearised operator be surjective. This relies, among other things,
on the flatness of the underlying manifold R3.

Proposition 4.2.1 Let (A,�) ∈ C s
μ,κ be bounded polyhomogeneous, and assume it satisfies

the Bogomolny equation. Then, the operator

/D(A,�) : H s,1 → H s,0 (4.2.2)

is surjective. Hence, its kernel is a vector space whose dimension is given by (4.1.13).

Proof Consider the formal adjoint /D(A,−�) of the operator. If we consider the dual spaces
(H s,0)∗ and (H s,1)∗ as spaces of distributions (using the L2 pairing), we have the operator

/D(A,−�) : (H s,0)∗ → (H s,1)∗ , (4.2.3)

which is the transpose of the operator in the statement. Hence, if we prove that it is injective,
we will be done.

Now, suppose that u ∈ (H s,0)∗ satisfies /D(A,−�)u = 0. Similarly to elements in the ker-
nel of /D(A,�), u must also be bounded polyhomogeneous, which follows from the parametrix
construction from Kottke’s work.

To find the order of u, we remember that H s,0 is weighted by x1, so its dual will be
weighted by x−1. In the notation of Lemma 4.1.6, this corresponds to δ = − 1

2 . Furthermore,
the indicial roots of /D(A,−�) will be the opposite of those of /D(A,�). Using, once again,
the same notation, we see that we have no indicial roots in (−1, 1

2 ). Therefore, u must be

bounded polyhomogeneous of order x
3
2 .

Let us consider the operator /D(A,�) /D(A,−�). Applying the Bogomolny equation and the
Weizenböck formula, we can see that

/D(A,�) /D(A,−�)u = ∇∗∇u − ad2� u , (4.2.4)

where ∇ denotes the covariant derivative with respect to the connection A [29].

Therefore, ∇u and ∇∗∇u are also bounded polyhomogeneous of orders x
5
2 and x

7
2 ,

respectively. This means, firstly, that we can integrate by parts to get

〈∇∗∇u, u〉L2 = 〈∇u,∇u〉L2 = ‖∇u‖2L2 . (4.2.5)

Secondly, since /D(A,�) /D(A,−�)u = 0, ad2� u must also be bounded polyhomogeneous of

order x
7
2 , which means that we can write

〈ad2� u, u〉L2 = −〈ad� u, ad� u〉L2 = ‖ad� u‖2L2 . (4.2.6)

Putting both things together, we get

0 = 〈 /D(A,�) /D(A,−�)u, u〉L2 = ‖∇u‖2L2 + ‖ad� u‖2L2 , (4.2.7)

implying ∇u = 0. Given the decay condition on u, this implies that u = 0, which completes
the proof of the surjectivity of the operator. ��
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5 Moduli space construction

We can now use this to construct the moduli space as a smooth manifold. The kernel of the
linearised operator will provide the model space for the charts.

To simplify notation, we introduce the following two operators. For a given pair M =
(A,�) ∈ C , we write

d(A,�) : �(Ad(P)) → �((
∧1 ⊕ ∧0

) ⊗ Ad(P))

X �→ (dA X , ad� X)
(5.0.1)

and
d∗

(A,�) : �((
∧1 ⊕ ∧0

) ⊗ Ad(P)) → �(Ad(P))

(a, ϕ) �→ d∗
Aa − ad� ϕ .

(5.0.2)

The first operator provides us with the infinitesimal actions of the group of gauge transfor-
mations, since (X#)M = −dM X . The second operator is the formal L2 adjoint of the first,
whose kernel (in the appropriate space) is hence orthogonal to the gauge orbits. It was part
of the linearised operator defined in Sect. 3.1, since it provides the Coulomb gauge fixing
condition, and will be used in this way again in this section. The notation itself once again
draws on the interpretation of configuration pairs as dimensionally reduced connections on
R
4, as noted in Remark 2.1.12, since d(A,�) corresponds simply to the covariant derivative

of the connection on R4.

5.1 Regularity

Given a monopole (A,�) in the configuration space, we want to build a chart of the moduli
space near thismonopole. Thiswill be donebyusing the implicit function theorem to construct
a slice of the gauge action within the subspace of monopoles, which relies on the properties
seen in the previous section regarding the linearised operator /D(A,�).

The above properties required some additional assumptions on the regularity of the
monopole; however, as it turns out, we can apply a gauge transformation to any monopole
to obtain one with this regularity. This is done by choosing a nearby configuration pair with
good enough regularity and asymptotic conditions, and then looking for a monopole which is
gauge equivalent to ours and also in Coulomb gauge with respect to the chosen configuration
pair. This gauge fixing condition together with the Bogomolny equation will then provide an
elliptic system, allowing us to obtain the regularity.

This is analogous to the linearised problem we studied in the previous section: the lin-
earised operator was a linear elliptic operator which consisted of the Coulomb gauge fixing
condition together with the linearisation of the Bogomolny equations. Note that the gauge
fixing condition is linear, and hence is common in the linear and non-linear problems.

Proposition 5.1.1 Let M ∈ C s
μ,κ and let U be a sufficiently small neighbourhood of M. Then,

there exists another neighbourhood U ′ of M such that if N ∈ C s
μ,κ is in U ′, then there exists

a gauge transformation g ∈ G s
μ,κ such that

d∗
M (g · N − M) = 0 (5.1.2)

and g · N ∈ U. Furthermore, this gauge transformation is unique within a neighbourhood
of the identity.
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Proof This is a consequence of applying the implicit function theorem to the smooth function

f : C s
μ,κ × G s

μ,κ → H s,0
0

(N , g) �→ d∗
M (g · N − M) .

(5.1.3)

Note that M is fixed for the definition of f , and that f (M, 1G s
μ,κ

) = 0.
Hence, we must prove that the map

d f(M,1G s
μ,κ

)(0, •) = −d∗
MdM : H s,2

0 → H s,0
0 (5.1.4)

is an isomorphism.
We first study its Fredholmness and index by defining a pair M0 for which the operator

d∗
M0

dM0 is easier to understand. This will then be seen to differ form (the complexification
of) d∗

MdM by a compact operator.
To do so, we first observe that the bundles Ad(P)CC and Ad(P)C

C⊥ are trivial away from the

origin, as follows from (3.6.5) and (2.2.14), so they can be extended as subbundles of Ad(P)C

overR3. Hence, since the model pair Mμ,κ = (Aμ,κ ,�μ,κ) respects the decomposition near
infinity, we canmodify the connection Aμ,κ smoothly inside a compact set to obtain a unitary
connection A0 which preserves this decomposition over the entire R3. We can also modify
�μ,κ into a section�0 whose adjoint action also preserves this decomposition over the entire
R
3 by cutting it off smoothly over a compact set. Note that the extension of the subbundle

decomposition near the origin will not necessarily respect the properties of the adjoint action
in the region near the origin where it has been extended, but this is not important if �0 is
identically 0 in this region. We call the new pair M0 = (A0,�0).

With these properties, the operator d∗
M0

dM0 decomposes along the subbundles Ad(P)CC
andAd(P)C

C⊥ , where it is a weighted elliptic b operator and a fully elliptic scattering operator,
respectively. It is furthermore formally self-adjoint. This implies that the scattering part is
Fredholm of index 0. For the b part we can compute the indicial roots, knowing that near
infinity the operator is equal to d∗

Mμ,κ
dMμ,κ . The relevant weight in this case is 0, which does

not coincide with an indicial root, and using the self-adjointness we deduce that this part is
also Fredholm of index 0. Therefore we conclude that dM0dM0 is Fredholm of index 0 from
(H s,2

0 )C to (H s,0
0 )C.

But Mμ,κ and M0 differ by a smooth compactly supported element, so d∗
Mμ,κ

dMμ,κ differs
from d∗

M0
dM0 by a compact operator, and hence d∗

Mμ,κ
dMμ,κ is also Fredholm of index 0.

Additionally, since M − Mμ,κ ∈ H s,1, we can apply the compactness properties of the first
three multiplication maps in Lemma 3.6.18 to deduce that the map d∗

MdM − d∗
Mμ,κ

dMμ,κ is
also a compact operator. Therefore, d∗

MdM is Fredholm of index 0 as well. Recall that this

property is preserved when restricting to the real spaces H s,2
0 and H s,0

0 .

Lastly, it is injective, because if u ∈ H s,2
0 is such that d∗

MdM u = 0, then, using
Lemma 3.7.18,

0 = 〈d∗
MdM u, u〉L2 = 〈dM u, dM u〉L2 , (5.1.5)

and hence dM u = 0. This implies that u is covariantly constant with respect to the connection
of the pair M . Since u must necessarily decay, this means that u ≡ 0.

Since the operator is Fredholm of index 0 and injective it must be an isomorphism, as
required, completing the proof. ��
Corollary 5.1.6 Let M ∈ C s

μ,κ . Then, there exists a pair M0 ∈ C s
μ,κ which satisfies that

M0 − Mμ,κ is smooth and compactly supported, and a gauge transformation g0 ∈ G s
μ,κ ,
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such that
d∗

M0
(g0 · M − M0) = 0 . (5.1.7)

Proof Firstly, by substituting g0 with its inverse, we can see that the condition is equivalent
to

d∗
M (g0 · M0 − M) = 0 . (5.1.8)

Since, by Lemma 3.3.17 the set of pairs satisfying the desired regularity condition is dense
in the configuration space, we can always pick such an M0 as close as we want to M . Then,
we can apply Proposition 5.1.1 to obtain g0. ��

We can now use the gauge fixing condition to obtain the desired regularity for our
monopole.

Proposition 5.1.9 Let M ∈ C s
μ,κ be a monopole. Then, there exists a gauge transformation

g ∈ G s
μ,κ such that

g · M ∈ Mμ,κ + B2,∞ . (5.1.10)

Proof Let M0 = (A0,�0) be a pair obtained from the previous corollary applied to M . After
applying a gauge transformation to M (which we omit for simplicity of notation), we have
that

d∗
M0

(M − M0) = 0 . (5.1.11)

Since M is a monopole, we know that B(M) = 0. Additionally, since M0 − Mμ,κ is
smooth and compactly supported, so is B(M0). Hence, the same can be said of

B(M) − B(M0) = �dA0a + ad�0 a − dA0ϕ + 1

2
�[a ∧ a] − [a, ϕ] , (5.1.12)

where (a, ϕ) = M − M0. Combining this with the gauge fixing condition (5.1.11), and
writing m = (a, ϕ), we have

/DM0m + {m, m} = v , (5.1.13)

where {•, •} is a fibrewise bilinear product between the appropriate spaces and v is smooth
and compactly supported. Note that this fibrewise product is bounded above and below and
uses the Lie bracket to multiply the factors in the adjoint bundle.

The crucial fact to obtain the desired regularity is that

/DM0m ∈ Hδ0,δ1,s,k + B4,∞ �⇒ m ∈ Hδ0−1,δ1,s,k+1 + B2,∞ (5.1.14)

when theweight δ0 does not correspond to any indicial root of the operator.We can see that this
is essentially an elliptic regularity result adapted to our specific framework. It can be deduced
from Kottke’s work and more general analytical results from the b and scattering calculuses.
In particular, note that /DM0 has no off-diagonal terms, simplifying the computations.

We can use this to carry out a bootstrapping argument and obtain the desired regularity.
In particular, we prove that, for every j ∈ Z≥0,

m ∈ H jη,1+ jη,s,1+ j + B2,∞ , (5.1.15)

where 0 < η < 1
4 is some fixed irrational number. We can see that, if this is true for every j ,

then m must be in B2,∞, as desired.
Now, the case j = 0 is simply the condition m ∈ H s,1. The rest will be proven by

induction.
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The first induction step involves the fact that

m ∈ H0,1,s,1 + B2,∞ �⇒ {m, m} ∈ H1+η,1+η,s,1 + B4,∞ , (5.1.16)

which follows from the continuity of the map (3.6.23). Then, from (5.1.13) and (5.1.14) we
deduce

m ∈ Hη,1+η,s,2 + B2,∞ . (5.1.17)

Here, the irrationality of η allows us to avoid indicial roots when applying (5.1.14), since, as
we observed in the proof of Theorem 4.1.11, the indicial roots are always half-integers.

The remaining induction steps follow similarly, since the same multiplication property
also implies

m ∈ H jη,1+ jη,s, j+1 + B2,∞ �⇒ {m, m} ∈ H1+( j+1)η,1+( j+1)η,s, j+1 + B4,∞ (5.1.18)

(see Remark 3.3.14), allowing us to apply (5.1.13) and (5.1.14) once more to obtain the
needed expression. ��

5.2 Smoothness

If we hope to model the moduli space near a monopole by looking at a small slice near a
representative, we also need to know that sufficiently close orbits will only intersect this slice
once. The following lemma and its corollary allow us to do that.

Lemma 5.2.1 Let {M j } and {M ′
j } be sequences of configuration pairs in C s

μ,κ , and let {g j }
be a sequence of gauge transformations in G s

μ,κ such that g j · M j = M ′
j for all j . If the

sequences of configuration pairs have limits M∞ and M ′∞, respectively, in C s
μ,κ , then the

sequence of gauge transformations will have a limit g∞ in G s
μ,κ such that g∞ · M∞ = M ′∞.

Proof Once again, we consider gauge transformations as sections of a vector bundle.
Let M j = Mμ,κ + m j and M ′

j = Mμ,κ + m′
j for all j (including ∞). Then, the condition

g j · M j = M ′
j is equivalent to

dMμ,κ g j = g j m j − m′
j g j . (5.2.2)

The proof then proceeds similarly to that ofLemma4.2.4 inDonaldson’s andKronheimer’s
book [11], although we must modify the first few steps to ensure we have the appropriate
asymptotic conditions.

At each step, we start by knowing that m j and m′
j are uniformly bounded in the norm

of H s,1, and that g j − 1G s
μ,κ

is uniformly bounded in some other norm (initially, the L∞
norm). We then use (5.2.2) to obtain a uniform bound on a better norm for g j − 1G s

μ,κ
. We

firstly obtain bounds on weighted L6 and L3 norms, and afterwards on a Sobolev norm.
This implies that there is a weak limit g∞, which must satisfy the equation

dMμ,κ g∞ = g∞m∞ − m′∞g∞ . (5.2.3)

We can then prove that g∞ is in G s
μ,κ and is in fact the strong limit of the sequence through

a bootstrapping argument using (5.2.2) and (5.2.3): we start in the same way as before, and
then continue until we obtain the appropriate bounds on the norm ofH s,2

0 . Note that to start
the bootstrapping argument for the strong convergence we rely on the fact thatH s,2 � L∞.
��

123



Annals of Global Analysis and Geometry             (2024) 66:4 Page 33 of 38     4 

Corollary 5.2.4 Proposition 5.1.1 still holds if the gauge transformation g is required to be
unique in the entire group G s

μ,κ (with possibly different choices of neighbourhoods).

Proof Let us suppose, on the contrary, that we have a sequence {N j } of configuration pairs
in C s

μ,κ and a sequence {g j } of gauge transformations in G s
μ,κ such that the sequences {N j }

and {g j · N j } tend to M and are in Coulomb gauge with respect to it. By Proposition 5.1.1,
the sequence {g j } must eventually be bounded away from the identity. Then, we can deduce
from Lemma 5.2.1 that there exists a g∞ ∈ G s

μ,κ \ {1G s
μ,κ

} such that dM g∞ = 0. This is not
possible given the asymptotic conditions on G s

μ,κ . ��
We now have all the necessary elements to prove that our moduli space, constructed as a

quotient, is smooth.

Proposition 5.2.5 The quotient (Bs
μ,κ )−1(0)/G s

μ,κ is either empty or a smooth manifold of
dimension given by the index of the linearised operator (4.1.13).

Proof Firstly, we observe that (Bs
μ,κ )−1(0) is a submanifold of C s

μ,κ , since the Bogomolny
map is a submersion. Hence, we want to give the quotient by G s

μ,κ a smooth structure such
that the projection map from (Bs

μ,κ )−1(0) is a smooth submersion. Note that such a smooth
structure must be unique.

We firstly observe that Lemma 5.2.1 implies that the quotient is Hausdorff. Indeed, if [M]
and [M ′] are points in the quotient, and they don’t have disjoint open neighbourhoods, we
can construct a sequence of points in the quotient which gets arbitrary close to both points.
This means that, in the configuration space, these can be lifted to two sequences, {M j } and
{M ′

j } which tend to M and M ′, respectively, and are pairwise gauge equivalent. But then the
limits must also be gauge equivalent.

Now let us take a point in this quotient, represented by a monopole M ∈ C s
μ,κ . By Propo-

sition 5.1.9, we may assume that it is bounded polyhomogeneous. Consider the function

f : C s
μ,κ → H s,0

N �→ (Bs
μ,κ (N ), d∗

M (N − M)) .
(5.2.6)

Its derivative is precisely the operator /DM that we studied in the previous section, which
is Fredholm and surjective, so applying the implicit function theorem allows us to identify
a small ball in its kernel (which is a finite dimensional vector space of known dimension)
with the set of monopoles near M which are in Coulomb gauge with respect to it. But, by
Corollary 5.2.4, all monopoles in an orbit close enough to the orbit of M must have a unique
such representative, so this gives us a chart.

The smoothness of the transition functions follows from the uniqueness of the quotient
smooth structure. ��

Note that our definition of moduli space was, a priori, dependent on a regularity parameter
s. However, we can see that for any two choices of this parameter, the resulting quotients are
naturally diffeomorphic.

Proposition 5.2.7 The smooth structure on the moduli space Ms
μ,κ does not depend on the

choice of s.

Proof Given that every monopole is gauge equivalent to a bounded polyhomogeneous one,
the sets of monopoles are the same independently of s. Furthermore, if two monopoles
M1, M2 ∈ C s

μ,κ are related by a gauge transformation g ∈ G s′
μ,κ , for s′ < s, then we
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must have g ∈ G s
μ,κ . This follows from the same bootstrapping argument as in the proof

of Lemma 5.2.1. Therefore, the underlying set of the moduli space is independent of s.
Furthermore, the slice constructed in Proposition 5.2.5 must be the same independently of s,
so the smooth structure is also the same. ��

We will therefore simply refer to this moduli space, along with its smooth structure, as

Mμ,κ . (5.2.8)

5.3 The hyper-Kähler metric

One of the benefits of constructing the moduli space of framed monopoles is that we expect
it to inherit a hyper-Kähler metric from the L2 inner product in the configuration space. This
is because the moduli space construction can be viewed as an infinite-dimensional hyper-
Kähler reduction. Throughout this subsection we can once again notice the analogy with
connections on R4 mentioned in Remark 2.1.12.

To set up the hyper-Kähler reduction, we start by identifying the base manifold R
3 with

the imaginary quaternions. This provides a quaternionic structure on the bundle
∧1 ⊕ ∧0

(which can be identified with H = Im(H) ⊕ R), compatible with the Euclidean metric.
This, in turn, provides a quaternionic structure on the space H s,1, since it is a space of
sections of (

∧1 ⊕ ∧0
) ⊗ Ad(P). Furthermore, the L2 inner product, which is bounded by

Lemma 3.7.18, is compatible with it. This gives the configuration space C s
μ,κ the structure

of a flat, infinite-dimensional hyper-Kähler manifold. Combining the analogous expressions
for the quaternions with the L2 inner product we can write out this structure in the following
terms.

Proposition 5.3.1 The configuration space C s
μ,κ is a hyper-Kähler manifold with respect to

the L2 metric. If (A,�) ∈ C s
μ,κ and (a1, ϕ1), (a2, ϕ2) ∈ T(A,�)C

s
μ,κ

∼= H s,1, then

ω(A,�) : H s,1 × H s,1 → Im(H)

((a1, ϕ1), (a2, ϕ2)) �→
∫

R3
�〈a1 ∧ a2〉g + 〈ϕ1, a2〉g − 〈a1, ϕ2〉g

(5.3.2)

defines the triple of symplectic forms.

In the above expression, the fibrewise inner product 〈•, •〉g is given by the metric on the
adjoint bundle, and 〈• ∧ •〉g combines this inner product with the wedge product of 1-forms.
The integrand is then a 1-form over R3. But, as stated above, this is the same as an Im(H)-
valued function, which can be integrated with respect to the Euclidean measure to give an
element of Im(H).

Proof of Proposition 5.3.1 The metric of a hyper-Kähler manifold can be viewed as the real
part and the negative of the imaginary part of a bilinear form on the tangent bundle which is
H-left-linear in the first argument and conjugate-symmetric.

For the space H such a bilinear form is given by the multiplication of a quaternion with
the conjugate of another. Drawing a parallelism with our setting, suppose that a1 and a2
are imaginary quaternions, and ϕ1 and ϕ2 real numbers. Then, this bilinear form applied to
ϕ1 + a1 and ϕ2 + a2 can be written as

(ϕ1 + a2)(ϕ2 + a2) = (a1 · a2 + ϕ1ϕ2) − (a1 × a2 + ϕ1a2 − a1ϕ2) , (5.3.3)
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where the right-hand side is split into real an imaginary parts.
Consider now sections of (

∧1 ⊕ ∧0
) ⊗ Ad(P). As we saw, the bundle

∧1 ⊕ ∧0 is
trivial with fibres isomorphic to H. Let us then multiply these sections by multiplying the
component of

∧1 ⊕ ∧0 fibrewise as in (5.3.3), the component of Ad(P) using its metric,
and then integrating overR3. If we write the resulting bilinear form in two parts as in (5.3.3),
the first one corresponds to the L2 norm on H s,1, whereas the second one corresponds to
the formula we sought. ��

It is easy to check that the gauge transformations respect this hyper-Kähler structure, but,
as it turns out, the properties of the gauge action go far beyond this.

Proposition 5.3.4 The group of gauge transformations G s
μ,κ acts on the configuration space

C s
μ,κ through a tri-Hamiltonian action, and the moment map is given by the Bogomolny map

Bs
μ,κ .

Proof Consider the pairing
H s,2

0 × H s,0
1 → ImH (5.3.5)

given by the L2 inner product using the metric on the adjoint bundle, which is continuous by
Lemma 3.7.18. Since the second space contains sections of the bundle

∧1 ⊗ Ad(P) rather
than just Ad(P), the pairing is valued in ImH, using the same identification as above. This
means that we can write

H s,0
1 ⊆ (Gs

μ,κ )∗ ⊗ Im(H) , (5.3.6)

where (Gs
μ,κ )∗ denotes the space of continuous linear functionals on Gs

μ,κ . Note that the
Bogomolny map takes values precisely in this space, as we would expect of a moment map.

Now, the condition for the action to be tri-Hamiltonian is

〈d(Bs
μ,κ )(A,�)(a, ϕ), X〉 = ω(A,�)((X#)(A,�), (a, ϕ)) , (5.3.7)

for all (A,�) ∈ C s
μ,κ , (a, ϕ) ∈ T(A,�)C

s
μ,κ and X ∈ Gs

μ,κ . Combining the expression for the
symplectic form fromProposition 5.3.1with the ones for the derivative of theBogomolnymap
and the infinitesimal actions from Proposition 2.1.9, we see that this condition is equivalent
to ∫

R3
〈�dAa, X〉g + 〈ad� a, X〉g − 〈dAϕ, X〉g

=
∫

R3
−�〈dA X ∧ a〉g − 〈ad� X , a〉g + 〈dA X , ϕ〉g ,

(5.3.8)

for all (A,�) ∈ C s
μ,κ , (a, ϕ) ∈ H s,1 and X ∈ H s,2

0 . The middle summands are the same on
both sides given the skew-symmetry of the adjoint action. By Lemma 3.7.18, we can apply
integration by parts to identify the first and third summands. ��

Putting this together with the smoothness of the moduli space, we complete the construc-
tion.

Proposition 5.3.9 The L2 metric on C s
μ,κ descends to a hyper-Kähler metric on the moduli

space Mμ,κ .

Proof Proposition 5.3.4 implies that our moduli space construction is “formally” a hyper-
Kähler reduction, since we have

Ms
μ,κ = (Bs

μ,κ )−1(0)/G s
μ,κ = C s

μ,κ///G s
μ,κ . (5.3.10)
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Hence, given that this space is smooth, the quotient metric must be hyper-Kähler on Ms
μ,κ .

Furthermore, note that at each monopole M the metric is given by the L2 norm on the
kernel of /DM , which is the tangent space to the moduli space and independent of s (when a
suitable representative is chosen). This means that the metric is well defined on the moduli
space Mμ,κ independently of s. ��

5.4 Themoduli space

To simplify the dimension formula let us define R+ as a set of positive roots such that

{α ∈ R | either iα(μ) > 0, or α(μ) = 0 and iα(κ) < 0} ⊆ R+ , (5.4.1)

where the only ambiguity arises from roots such that α(μ) = α(κ) = 0.
Then, putting Propositions 5.2.5, 5.2.7 and 5.3.9 together, we obtain the following.

Theorem 5.4.2 For any mass μ and charge κ , the moduli space Mμ,κ of framed monopoles
is either empty or a smooth hyper-Kähler manifold of dimension

2
∑

α∈R+
iα(κ) . (5.4.3)

Although there are differing conventions surrounding Lie algebras, we can check that the
dimension of these moduli spaces coincides with the dimension formula given by Murray
and Singer from the corresponding spaces of rational maps [28]. Indeed, let us consider the
fundamental weights associated the choice R+ of positive roots. If α1, α2, . . . , αrank(G) are
the simple roots of R+, we get corresponding fundamental weights w1, w2, . . . , wrank(G). In
terms of these weights, our dimension formula becomes

dim(Mμ,κ ) = 4
rank(G)∑

j=1

iw j (κ) , (5.4.4)

which coincides with Murray’s and Singer’s. The numbers

iw1(κ), iw2(κ), . . . , iwrank(G)(κ) ∈ Z (5.4.5)

are the charges, which are called magnetic when α j (μ) �= 0 and holomorphic otherwise.
Note that, as expected from the hyper-Kähler structure, this dimension is a multiple of 4.

In the case of G = SU(2), of course, the only resulting integer from the above procedure
is the usual charge, and our dimension computation yields four times this value, as expected.

For other groups, since our moduli spaces depend on fixing all the charges, in the case of
non-maximal symmetry breaking theywill correspond to thefibres of the strata in the stratified
moduli space of monopoles sharing only the magnetic charges, as noted in Sect. 1.1.

Let us illustrate this with the case of G = SU(3) with non-maximal symmetry breaking,
corresponding to

μ =
⎛

⎝
−i 0 0
0 −i 0
0 0 2i

⎞

⎠ . (5.4.6)

Here, the symmetry breaks to the non-Abelian group

S(U(2) × U(1)) < SU(3) , (5.4.7)

which is isomorphic to U(2).
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The case in which the (only) magnetic charge is set to 2 has been studied in some detail
[3, 9, 10]. In it, the (only) holomorphic charge can be 1 or 0, corresponding to

κ =
⎛

⎝
−i 0 0
0 −i 0
0 0 2i

⎞

⎠ , or κ =
⎛

⎝
0 0 0
0 −2i 0
0 0 2i

⎞

⎠ , (5.4.8)

respectively. For the former choice, our construction yields a moduli space of dimension 12,
whereas for the latter it produces a moduli space of dimension 8.

In the stratified moduli space picture, the 12-dimensional space forms the open stratum,
whereas the 8-dimensional space provides the fibres of the lower 10-dimensional stratum.
Notice that the stabiliser of the mass also preserves the first choice of charge; in the second
case, however, the stabiliser of the charge is the smaller group

S(U(1) × U(1) × U(1)) < S(U(2) × U(1)) , (5.4.9)

which is isomorphic to U(1)2. This accounts for the 2-dimensional base of the fibration,

S(U(2) × U(1))/S(U(1) × U(1) × U(1)) ∼= U(2)/U(1)2 ∼= S2 . (5.4.10)

As it turns out, the monopoles in this case are essentially SU(2)-monopoles embedded into
the SU(3) bundle, where the base of the fibration represents the possible embeddings (and
hence framings).
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