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Abstract. For problems of time-harmonic scattering by rational polygonal obstacles, embedding formulae
express the far-field pattern induced by any incident plane wave in terms of the far-field patterns for a relatively small
(frequency-independent) set of canonical incident angles. Although these remarkable formulae are exact in theory,
here we demonstrate that: (i) they are highly sensitive to numerical errors in practice, and (ii) direct calculation of
the coefficients in these formulae may be impossible for particular sets of canonical incident angles, even in exact
arithmetic. Only by overcoming these practical issues can embedding formulae provide a highly efficient approach
to computing the far-field pattern induced by a large number of incident angles.

Here we address challenges (i) and (ii), supporting our theory with numerical experiments. Challenge (i) is
solved using techniques from computational complex analysis: we reformulate the embedding formula as a complex
contour integral and prove that this is much less sensitive to numerical errors. In practice, this contour integral
can be efficiently evaluated by residue calculus. Challenge (ii) is addressed using techniques from numerical linear
algebra: we oversample, considering more canonical incident angles than are necessary, thus expanding the set of
valid coefficient vectors. The coefficient vector can then be selected using either a least squares approach or column
subset selection.
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1. Introduction. In problems of two-dimensional time-harmonic scattering of acoustic, elec-
tromagnetic or elastic waves, obtaining a full characterisation of the scattering properties of an
obstacle may require a representation of the far-field behaviour induced by a large set, possibly
thousands, of incident plane waves [15]. In this paper we propose a new method for calculating this
representation efficiently across all frequencies for a broad class of polygonal scatterers.

First, we state the scattering problem, which must be solved in order to compute the far-
field pattern. We denote each incident plane wave by ui(x;α) := e−ik(x1 cosα+x2 sinα), where x :=
(x1, x2) ∈ R2, the wavenumber k > 0, and the incident angle α ∈ [0, 2π). We consider the scattered
wave field us(·;α) induced by ui(·;α) and a sound-soft rational polygon Ω ⊂ R2, with boundary
∂Ω. Rational polygons have exterior angles that are rational multiples of π (see also Definition 1.1).
The scattered field us(·;α) satisfies the Dirichlet Helmholtz problem

(∆ + k2)us = 0, in R2 \ Ω;(1.1)

us = −ui, on ∂Ω;(1.2)

∂us(x;α)

∂r
− ikus(x;α) = o(r−1/2), r := |x| → ∞.(1.3)

The far-field pattern (also called the far-field diffraction coefficient (e.g., [10]), far-field direc-
tivity (e.g., [12]), or simply far-field coefficient (e.g., [3])) is of practical interest and is central to
this paper. Intuitively, it describes the distribution of energy of the scattered field, far away from
the scatterer. We denote the far-field pattern at observation angle θ (where x = r(cos θ, sin θ)) by
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2 A. GIBBS AND S. LANGDON

Figure 1.1. Full far-field characterisation log |D(θ, α)| for (θ, α) ∈ T, where Ω is a square of diameter 2 and
k = 10. This plot was computed using the approach described in this paper; see §5 for details.

D(θ, α), defined by the asymptotic relationship (see, e.g., [10, Theorem 2.6])

(1.4) us(x;α) =
ei(kr+π/4)

√
2πkr

(
D(θ, α) +O(r−1)

)
, r →∞.

We will consider how D(θ, α) depends on both the observation angle θ and the incident angle
α, each considered as elements of the 2π-periodic set S := [0, 2π), as shown in Figure 1.1; we will
often write (θ, α) ∈ T, where T := S2.

Numerous applications require an understanding of how D(θ, α) varies over the full range
(θ, α) ∈ T. For example, in atmospheric physics, when modelling scattering of the sun’s radiation
by ice crystals in cirrus clouds, to simplify calculations it is common to consider the orientation
average, where the far-field behaviour is averaged over α ∈ S. Details of the averaging technique
and applications can be found in [29]. Another derived quantity of interest is the monostatic cross
section 4π|D(α, α)|2 (sometimes referred to as backscatter), where the observer and the source are
in the same direction. This appears frequently in underwater acoustics and sonar modelling, where
it is common for both the signal transmitter and receiver to be positioned on the underside of a
boat. A review of relevant applications is given in [16]. This paper considers Ω ⊂ R2, which can
provide an approximation for three-dimensional scattering problems on cylindrical obstacles [10,
§3.4]. The potential extension to general three-dimensional obstacles is discussed in §6.

There are many numerical algorithms for solving (1.1)–(1.3) for fixed α, thereby producing an
approximation DN (·, α) to D(·, α). However, obtaining an approximation for a different incident
angle α′ ̸= α requires the prescription of new boundary data, and hence repetition of some or all of
the numerical algorithm; this typically requires a much larger computational cost than varying θ.
This paper is about efficient numerical approximation of D(θ, α) over the whole range (θ, α) ∈ T.



EFFICIENT FAR-FIELD COMPUTATION FOR POLYGONS 3

A popular approach for approximating D(θ, α) for (θ, α) ∈ T is the T-matrix method (see,
e.g., [28]). Once the T -matrix has been constructed, computing the far-field pattern for any given
α ∈ S requires multiplication by a single vector whose entries can be computed with an analytic
formula. A drawback though of T -matrix methods is that numerically stable construction of the
O(k)-dimensional T -matrix requires, as an input, the numerical solution of O(k) scattering problems
[14, 15]. Hence, when k is large, T -matrix methods may be computationally prohibitive.

As with the stable T -matrix approach considered in [14], an input to our method is the numerical
solution of a number of scattering problems. A key advantage of our method, when compared against
T -matrix approaches, is that this number depends only on the geometry of Ω, and, crucially, is
independent of the wavenumber k in the following sense: if the canonical scattering problems are
solved by a numerical method with error Ein, then our method will efficiently determine the far-field
pattern induced by any incident angle with an error Eout, where Eout/Ein is bounded independently
of k. In particular, this means that if the PDE (1.1)-(1.3) is solved by a numerical method for
which any prescribed level of accuracy can be achieved with a number of degrees of freedom and
computational cost that is independent of k, as is the case for HNABEM as described in §4.2, then
our algorithm will share this key property of the underlying scheme, i.e. that the number of degrees
of freedom and computational cost will be independent of k.

1.1. The embedding formula for rational polygons. Our method is based on an adap-
tation of the embedding formula derived in [3] (related ideas were first presented in [12]). First, we
clarify our geometrical constraints.

Definition 1.1 (Rational polygons). An angle ω ∈ S is rational if it can be expressed as π
multiplied by a rational number. An S-sided polygon Ω is rational if its external angles {ωj}Sj=1

are all rational angles. For a rational polygon Ω, we denote by p the smallest positive integer such
that π/p divides ωj exactly for j = 1, . . . , S, whilst {qj}Sj=1 denotes the set of integers such that
qjπ/p = ωj, for j = 1, . . . , S.

Some examples of rational polygons include: a square with q1 = . . . = q4 = 3 and p = 2; a
right-angled isosceles triangle with q1 = q2 = 7, q3 = 6 and p = 4; a screen Ω := [0, 1] × {0} with
q1 = q2 = 2 and p = 1. We note that Definition 1.1 does not require convexity, and this is the case
for all of our theoretical results. For simplicity, and due to availability of high-frequency solvers,
all of our examples are on convex polygons or screens.

As in [3], in the remainder of the paper, the formulae have been simplified by assuming that
one edge of Ω is aligned with the horizontal axis. We now state the critical result of [3].

Theorem 1.2. Suppose that Ω is a rational polygon and that there exist distinct ‘canonical
incident angles’ α1, . . . , αM , satisfying Assumption 1.3 (given below), where M :=

∑S
j=1(qj − 1)

and qj is as in Definition 1.1. Then there exist ‘embedding coefficients’ bm(α) such that

(1.5) D(θ, α) =

∑M
m=1 bm(α)Λ(θ, αm)D(θ, αm)

Λ(θ, α)
, (θ, α) ∈ T,

where

(1.6) Λ(θ, α) := cos(pθ)− (−1)p cos(pα),

and p is as in Definition 1.1. If Λ(θ, α) = 0 then one or two applications of L’Hôpital’s rule may
be used to express the right-hand side of (1.5) in terms of derivatives with respect to θ.
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The beauty of Theorem 1.2 is that, given far-field patterns D(θ, αm) for distinct α1, . . . , αM ,
the embedding formula (1.5) provides an exact expression for D(θ, α), valid for all (θ, α) ∈ T.
Referring to the example geometries above: M = 8 for the square, M = 17 for the right-angled
isosceles triangle, and M = 2 for the screen.

Despite the remarkable implications of Theorem 1.2, to the best knowledge of the authors,
embedding formulae have not found significant use in computational scattering applications. This
may be surprising, as the formulae appear to provide a highly efficient and k-independent means for
computing D(θ, α) for all (θ, α) ∈ T. However, although (1.5) is exact in principle, we will now see
that these formulae are incredibly sensitive to numerical errors in the canonical far fields D(θ, αm).

We define the numerical analogue of (1.5)

(1.7) DN (θ, α) :=

∑M
m=1 bm(α)Λ(θ, αm)DN (θ, αm)

Λ(θ, α)
,

where DN (·, α) is some numerical approximation to the far-field pattern D(·, α) for α ∈ S, such
that DN (·, α) → D(·, α) pointwise as N → ∞. We reserve discussion about the approximation of
the coefficients bm until §3, for now we assume that they exist and are known exactly.

Algorithmically, (1.7) requires solution of M canonical problems corresponding to incident
angles α1, . . . , αM , after which evaluation for any (θ, α) ∈ T is straightforward. However, for any
given α, if we consider θ ≈ θ0, where Λ(θ0, α) = 0, it is not hard to see that we immediately run
into problems with the representation (1.7). For the exact theoretical formula (1.5), when θ = θ0
the theorem states that the value of D(θ, α)|θ=θ0 is determined by the rate at which both the
denominator and numerator go to zero as θ → θ0. In the approximate case (1.7), there are no
guarantees that the numerator tends to zero as θ → θ0; a zero of the numerical approximation is
likely close to θ0, but not at θ0. Instead, we expect that the numerator will tend to something
small at θ0, approximately zero, but not zero. This numerical artifact is referred to as a pole-zero
pair, and will lead to arbitrarily large errors in DN (θ, α), because this ‘small’ number is multiplied
by unbounded values of 1/Λ(θ, α). In this sense (1.7) is numerically ill-conditioned; this effect can
be seen in Figure 1.2. These qualitative statements are made precise later by Lemma 2.6. To
address these pole-zero pairs, we will reformulate (1.5) and (1.7) as complex contour integrals. This
technique is natural when dealing with removable singularities, see [2, §2.1] and the references [28],
[51], and [76] therein.

We summarise this in the first fundamental challenge of this paper:
(C1) The naive embedding approximation (1.7) is highly sensitive to numerical errors in the

canonical far-field patterns.
Henceforth, to simplify the presentation we write

(1.8) D̂(θ, α) := Λ(θ, α)D(θ, α), D̂N (θ, α) := Λ(θ, α)DN (θ, α).

We now focus on calculating the coefficients b := [b1, . . . , bM ]T , which, as we will see, poses a second
practical challenge. Using (1.5) and the reciprocity principle (see, e.g., [10, Theorem 3.15]), which
implies that D̂(θ, α) = (−1)p+1D̂(α, θ) for all (θ, α) ∈ T, we see that the coefficients b satisfy

Ab = d, where A := [D̂(αm, αm′)]Mm,m′=1, d = (−1)p+1[D̂(α, αm)]Mm=1.(1.9)

In Theorem 1.2 and [3] the following is assumed:

Assumption 1.3. For any distinct canonical incident angles α1, . . . , αM , the system (1.9) has
a unique solution.
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Figure 1.2. Example of unbounded errors which occur when applying the naive embedding approximation (1.7)
directly. Here Ω is a square of diameter 2 and k = 10. The numerical solver used is described in §4.1.

Under this assumption, the coefficients b can be derived from readily available quantities,
namely the canonical far-field patterns D(θ, αm), for m = 1, . . . ,M . We remark that we have
conducted tens of thousands of numerical experiments on varying geometries and wavenumbers, and
in each case we have found a set of canonical incident angles α1, . . . , αM satisfying Assumption 1.3.
However, in many of these experiments we have also found distinct canonical incident angles under
which Assumption 1.3 is not satisfied, hence the coefficients b cannot be found. For example, for
the screen problem (M = 2), if we choose α1 and α2 such that cosα1 = − cosα2 then Λ(α1, α2) =
Λ(α2, α1) = 0, thus A is the zero matrix and (1.9) cannot be solved. For a second example, consider
the equilateral triangle (M = 12) with equispaced canonical incident angles αm = a+2(m−1)π/M
for some a ∈ S. Numerical approximation to A suggests that the condition number blows up as
a→ 0; see Figure 1.3.

Even if Assumption 1.3 holds, A may have a large condition number. In this case, the coefficient
vector b may have large entries, amplifying numerical errors in (1.7). These issues are summarised
in the second fundamental challenge below:

(C2) In general, it is unclear how to choose the canonical incident angles so that Assumption 1.3
holds and hence how to determine the coefficients b. Even if Assumption 1.3 holds, it is
still unclear how to ensure that the coefficients b have a small norm.

1.2. Aims and outline of this paper. In this paper, we address the fundamental challenges
(C1) and (C2), reformulating the embedding formula (1.7) for rational polygons so that it can be
of practical use with approximate far-field patterns.

In §2, we address (C1). We reformulate the embedding formula (1.7) as a complex contour
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Figure 1.3. Blow-up of (approximations to) the condition number of A as a → 0, for the equilateral triangle
with αm = a + (m − 1)π/6, m = 1, . . . , 12. The approximation was computed using the method described in §4.1,
with N = 375.

integral to reduce the sensitivity to numerical errors. This is quantified by Theorem 2.3. This
contour integral may be evaluated by residue calculus, except in a very small set of cases where
rounding errors can affect the result. In this case, we interpolate the k-dependent part of the
integrand by a quadratic polynomial so that the cost of evaluating the integral is independent of k.
This interpolation is done in such a way that the value of the integral is unchanged. For simplicity,
in §2 we assume that the embedding coefficients b exist and are exact.

In §3, we address (C2), and consider the implications of numerical approximation of the embed-
ding coefficients b. We cannot solve this challenge theoretically, so instead, we oversample, taking
more than M canonical far-field patterns, under the assumption that this gives us a broader space
of coefficient vectors to choose from. We consider two strategies for selecting a coefficient vector
from this enhanced space. The first strategy solves the redundant linear system via a regularising
truncated singular value decomposition. This approach is partially supported by theory, which in-
forms the choice of the truncation parameter. The second approach chooses a subset of M incident
angles which are in some sense optimal, and discards the remaining redundant incident angles. This
approach has less theoretical justification, but appears to be more efficient and accurate in practice.

In §5, we present numerical results. These demonstrate the effectiveness of our method via nu-
merical examples, add empirical justification to the approach of §3 and demonstrate the frequency-
independence of our method at high frequencies.

2. Reformulating the embedding formula. This section addresses (C1). The basic idea
of our approach is as follows: It is well-known that the far-field pattern D(θ, α) is an entire function
with respect to observation angle θ (see, e.g., [10, §2.2]; note that by reciprocity [10, Theorem 3.17]
it is also entire in α, but we do not require this here). It is then clear from (1.6) and (1.8) that
any finite sum of D̂(θ, α) is entire in θ. Hence, we can complexify θ, and, using Cauchy’s integral
formula, express (1.5) as a complex contour integral

(2.1) D(θ, α) =
1

2πi

∮
γ

∑M
m=1 bm(α)D̂(z, αm)

Λ(z, α)(z − θ)
dz,
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where γ is any closed contour containing θ, oriented anti-clockwise in C. This is the only constraint
on γ, recalling that the numerator of the integrand is entire and the singularities of 1/Λ(z, α) are
all removable (Theorem 1.2). The advantage of (2.1), compared to (1.5), is that we can choose γ in
such a way that the magnitude of the denominator in the integrand remains bounded below, away
from zero, for z ∈ γ. This is in contrast to (1.5), where the magnitude of the denominator has no
lower bound, and small errors in the numerator lead to arbitrarily large errors overall.

We will show that the approximation

(2.2) DN (θ, α; γ) =
1

2πi

∮
γ

∑M
m=1 bm(α)D̂N (z, αm)

Λ(z, α)(z − θ)
dz,

is well-conditioned in terms of numerical errors in D̂N (z, αm), because we can always choose γ to
be a safe distance from the poles where Λ(z, α) = 0, and a safe distance from the pole at θ, so that
the denominator does not get too large; hence the numerical errors are not significantly amplified.
We now calculate the locations of these poles.

Lemma 2.1. Given α ∈ [0, 2π), the set of poles of Λ(·, α) is given by

Θα := {θ ∈ C : Λ(θ, α) = 0} =
{
{±α+ (2n+ 1)π/p : n ∈ Z}, p odd,
{±α+ 2nπ/p : n ∈ Z}, p even.

Proof. Noting that

Λ(θ, α) =

 2 cos
(

p(θ+α)
2

)
cos

(
p(θ−α)

2

)
, p odd,

−2 sin
(

p(θ+α)
2

)
sin

(
p(θ−α)

2

)
, p even,

the location of the poles immediately follows.

Note that the elements of Θα are all real.

Definition 2.2 (Nearby poles). Given θ, we define

θ0 := argmin
θ̃0∈Θα

|θ − θ̃0|2π,

the closest pole to θ, where |θ − θ′|2π := minn∈Z{|θ − θ′ + 2nπ|}. Similarly,

θ′0 :=

{
argminθ̃′

0∈Θα\{θ0} |θ0 − θ̃′0|2π, θ0 ̸∈ {nπ/p : n ∈ Z}
θ0, θ0 ∈ {nπ/p : n ∈ Z}

is the closest pole to θ0 in the case where θ′0 ̸= θ0, corresponding to the poles being order one, and
θ′0 = θ0 corresponding to a pole of order two.

Intuitively, it makes sense to choose γ such that it encloses θ, remaining as far as possible from
the elements of Θα in order to avoid blow-up of the integrand. Doing so may require us to enclose
θ0 and possibly θ′0 inside γ, if these poles are close to θ. This is the idea behind the following
theorem.

Theorem 2.3. Suppose the approximations DN (z, αm), for m = 1, . . . ,M , satisfy

|D(z, αm)−DN (z, αm)| ≤ ϵm, for (z, αm) ∈ Ψ× S
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where Ψ := {|ℑz| < ln(3 + π2/64)/p} and ϵm, m = 1, . . . ,M , are N -dependent constants. Then
there exists a closed rectangular complex contour γ enclosing θ, θ0, and θ′0, such that

|D(θ, α)−DN (θ, α; γ)| ≤ C∥ϵ∥2,

where ∥ϵ∥2 :=
√∑M

m=1 |ϵm|2 and

(2.3) C :=
128

(
5π + 4 ln(3 + π2/64)

) (
6 + π2/64

)
π4

∥b∥2.

This theorem is proved in §2.2, where details of the contour γ can also be found.
Theorem 2.3 should be interpreted in the following way: if the error in the canonical far-field

approximations is bounded, then the error in the contour integral (2.2) is bounded. Therefore, the
reformulated embedding formula (2.2) succeeds where our naive representation (1.7) failed, and we
have addressed (C1). It is clear from (2.3) that the error will also depend on the size and accuracy
of the coefficients b - this is addressed in §3.

The sceptical reader may point out that: (i) we have analytically extended our approximations
DN (·, αm), a process which is known to be ill-conditioned [34], and (ii) quadrature evaluation
of (2.2) may carry a frequency-dependent cost. Fortunately, if we further assume that our numerical
approximationDN (θ, α) is analytic for θ in a complex neighbourhood of S (justified below in Remark
2.4), we can choose γ to be a closed contour in this neighbourhood containing {θ, θ0, θ′0} and evaluate
the integral (2.2) by residue calculus:

DN (θ, α, γ) =

∑M
m=1 bm(α)D̂N (θ, αm)

Λ(θ, α)

−



∑
χ∈{θ0,θ′

0}

∑M
m=1 bm(α)D̂N (χ, αm)

p(χ− θ) sin(pχ)
, θ0 ̸= θ′0,

2

∑M
m=1 bm(α)

[
(θ0 − θ)

∂D̂N (z, α)
∂z

|z=θ0 − D̂N (θ0, αm)

]
p2(θ0 − θ)2 cos(pθ0)

, θ0 = θ′0,

θ ̸∈ Θα.(2.4)

The second case on the right-hand side corresponds to the double pole. As in Theorem 1.2, at the
points θ ∈ Θα we can compute DN using L’Hôpital’s rule.

By representing the integral as (2.4), we address the two concerns above: (i) because all poles
are in Θα∪{θ}, no analytic continuation is required, and (ii) we have evaluated the integral without
quadrature.

It is instructive to notice that the first term on the right-hand side of (2.4) is precisely (1.7).
Therefore, the second term on the right-hand side of (2.4) may be interpreted as a correction
to (1.7). Conversely, in the exact case (where DN is replaced by D), the formula (2.4) is exact,
because the residues are zero. This is because the points at Θα are removable singularities in theory,
manifesting as pole-zero pairs in practice.

Remark 2.4 (Analyticity of numerical solutions). The assumption required by (2.4), that
DN (θ, α) is analytic for θ in a neighbourhood of S, is entirely reasonable. In finite difference /
element / volume and boundary element methods for solving (1.1)-(1.3), the far-field pattern (1.4)
is approximated by integrating some (typically piecewise-analytic) data against an entire kernel
(see e.g. [30] and [10, §3.5]). Therefore, the resulting approximation is entire, and the estimate of
Theorem 2.3 also applies to the formula (2.4).
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2.1. Evaluation of residues in finite precision arithmetic. Until now, we have not dis-
cussed the implications of rounding errors, implicitly assuming that all calculations are done in
exact arithmetic. When two poles in (2.4) coalesce, the corresponding residues will grow, and there
will be a large amount of numerical cancellation. In finite precision arithmetic, small rounding
errors will be amplified; this is commonly known as catastrophic cancellation. We first remark
that the region where this occurs is much smaller than the region where (1.7) breaks down (see
the discussion around h and H in §4), so even if nothing is done to address this issue, (2.4) still
offers a significant improvement over (1.7) in practice. Secondly, we remark that variable precision
arithmetic (VPA) may be used to address catastrophic cancellation, whereas VPA would not fix
the breakdown of (1.7). Here, we present a fix for this issue, which may be used without VPA.

Suppose we were to evaluate the integral representation (2.2) by numerical quadrature. This
offers the advantage that we could choose γ such that the denominator remains bounded below, thus
the samples at the quadrature nodes remain bounded, avoiding catastrophic cancellation between
the quadrature samples (see [27] for a summary of relevant numerical integration techniques).
However, we recall that a potential disadvantage of the quadrature approach (which motivated
(2.4)) is that the numerator is an oscillatory function, and as k →∞ this may grow exponentially
and/or oscillate increasingly rapidly along certain segments of γ. Here lies the dilemma: the
contour integral approach can avoid catastrophic cancellation, and the residue approach avoids an
O(k) factor increase in computational cost due to quadrature. Can we avoid both?

Surprisingly, thanks to an idea we believe to be new, the answer is yes. The idea rests on the
following key observation. For large k the integrand of (2.2) is highly oscillatory (on the real line),
but the integral still only depends on the integrand’s values at three points: θ, θ0 and θ′0. Therefore,
we can interpolate the k-dependent oscillatory numerator by a quadratic polynomial ρ2, constructed
such that ρ2(ξ) =

∑M
m=1 bm(α)D̂N (ξ, αm) for ξ ∈ {θ, θ0, θ′0}. In the case where θ = θ0 or θ0 = θ′0 we

add the additional constraint that ρ′2(θ0) =
∑M

m=1 bm(α)∂D̂N

∂θ (θ, αm)|θ=θ0 , since residues at double
poles depend on the derivative of the numerator. Obtaining the (approximate) derivative of the
far-field pattern is easy in practice, for reasons similar to those given in Remark 2.4.

Barycentric interpolation may be used for efficiency (see e.g. [25, 31]). However, it is not
essential for accurate results, because γ can be chosen so that ρ2 is only evaluated at a bounded
distance from the interpolation points. It follows that

(2.5) DN (θ, α; γ) =
1

2πi

∮
γ

ρ2(z)

Λ(z, α)(z − θ)
dz,

since the residues of the integral depend only on the value of the integrand (and possibly its
derivative) at the poles ξ = θ, θ0, θ

′
0. At these poles, the integrands and, where appropriate, the

derivatives of the integrand in (2.2) and (2.5) are equal, and thus by the residue theorem (2.2) and
(2.5) have the same value. However, (2.5) is independent of k, so accurate evaluation by quadrature
requires an O(1) cost, instead of O(k), as k →∞.

2.2. Proof of Theorem 2.3. Before we can prove Theorem 2.3, we require some preliminary
results. First, we note that for certain values of α, pairs of poles in Θα coalesce, forming a pole of
order two.

Definition 2.5 (Coalescence points).
We define the set of ‘coalescence points’ by:

(2.6) Θ∗ :=

{
θ ∈ S :

∂Λ

∂θ
(θ, α) = 0

}
= {θ ∈ S : θ = nπ/p, n ∈ Z}.
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With θ0 and θ′0 defined as in Definition 2.2, we define the ‘nearest coalescence point’ as

θ∗ = argmin
θ̃∗∈Θ∗

|θ0 − θ̃∗|2π.

When θ0 and θ′0 are close to θ∗, the singularity will be stronger. Therefore these points play
an important role when quantifying the breakdown of the naive embedding formula (1.7). The
following result provides a lower bound on Λ(θ, α), and will be useful when choosing the contour γ
to avoid amplification of errors in the integral representation (2.2).

Lemma 2.6. For Λ as in (1.6), θ0 as in Definition 2.2 and θ∗ as in Definition 2.5,

(2.7)
p2

8
|θ − θ0||θ − θ∗| ≤ |Λ(θ, α)|, (θ, α) ∈ T.

Proof. Firstly, by Definition 2.2, we have Λ(θ, α) = Λ(θ, α)− Λ(θ0, α) = cos(pθ)− cos(pθ0) and
from standard trigonometric identities it follows that

(2.8) |Λ(θ, α)| = 2 |sin (p(θ − θ0)/2)| · |sin (p(θ0 + θ)/2)|.

We first focus on the lower bound of (2.7), for which we will require the inequality

(2.9) | sin(p(θ∗ + θ)/2)| ≤ | sin(p(θ0 + θ)/2)|.

To see why (2.9) holds, we note that the points θ0 ∈ Θα are distributed symmetrically about
the points θ∗ ∈ Θ∗, and we have specified the condition that θ0 must be the element of Θα closest
to θ; hence it follows that θ and θ0 both lie on the same side of θ∗ (in a local sense). Hence, it is
clear that p(θ+θ0)/2 is farther from pθ∗ than p(θ+θ∗)/2, and this distance is no more than π/(2p)
by (2.6).

Combining (2.8) with (2.9) yields

|Λ(θ, α)| ≥ 2 |sin (p(θ − θ0)/2)| · |sin (p(θ∗ + θ)/2)|
= 2 |sin (p(θ − θ0)/2)| · |sin (p(2θ∗ + (θ − θ∗))/2)|
= 2 |sin (p(θ − θ0)/2)| · |sin(pθ∗) cos(p(θ − θ∗)/2) + sin(p(θ − θ∗)/2) cos(pθ∗)|.

By the definition (2.6) of Θ∗, we have that sin(pθ∗) = 0 and | cos(pθ∗)| = 1, so

(2.10) |Λ(θ, α)| ≥ 2 |sin (p(θ − θ0)/2)| · |sin(p(θ − θ∗)/2)|.

From Definition 2.2 and (2.6), it follows that the farthest θ can be from the nearest θ0 or θ∗ is
π/(2p). Hence the argument of both sines of (2.10) is at most π/4, so we may use the identity
| sin(x)| ≥ |x/2| for 0 ≤ |x| ≤ π/4 to obtain the lower bound on |Λ(θ, α)| as claimed.

The above result provides an explanation for the blow-up observed in, for example, Figure 1.2.
With this in mind, we aim to construct the contour γ in (2.2) so that the denominator in the
integrand never gets too close to zero. To do this, we will also need a lower bound on Λ in the
complex plane.

Lemma 2.7. For Λ as in (1.6) and c ∈ R,

|Λ(θ, α)| ≤ |Λ(θ + ic, α)|, (θ, α) ∈ T.
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Proof. Define J(θ, c) := |Λ(θ + ic, α)|. We are interested in how Λ changes as we move from
the real line in the positive imaginary direction. Therefore, the following quantity will be useful:

∂J

∂c
(θ, c) =

p
(
(−1)p+1 cos(pα) cos(pθ) + cosh(pc)

)
sinh(pc)√

(cos(pα) cosh(pc) + (−1)p+1 cos(pα))
2
+ (sin(pθ) sinh(pc))

2
,

which can be obtained by using the representation

Λ(θ + ic, α) = cos(pθ) cosh(pc)− i sin(pθ) sinh(pc)− (−1)p cos(pα).

The denominator is clearly positive, because θ, α and c are all real. We focus on the sign of the
numerator. We have cos(pα) cos(pθ) ≥ −1 and, for all c ̸= 0, cosh(pc) > 1, hence

(
(−1)p+1 cos(pα) cos(pθ) + cosh(pc)

)
sinh(pc)

 > 0 when c > 0
= 0 when c = 0
< 0 when c < 0.

Hence |Λ(θ + ic, α)| is minimised when c = 0, proving the assertion.

The above result tells us that |Λ(z, α)| increases as we move vertically into the complex plane.
This a helpful result for evaluating the contour integral (2.2), because numerical errors are amplified
when |Λ| is small. Considering that Λ is in the numerator and the denominator of (2.2), we also
require the following bound.

Lemma 2.8. For Λ as in (1.6),

ep|ℑz| − 3

2
≤ |Λ(z, α)| ≤ ep|ℑz| + 3

2
, for (z, α) ∈ C× S.

Proof. By the triangle inequality and the definition (1.6),

|Λ(z, α)| ≤ | cos(pz)|+ 1=

∣∣∣∣eipz + e−ipz

2

∣∣∣∣+ 1.

Similarly, by the negative triangle inequality,

|Λ(z, α)| ≥ | cos(pz)| − 1=

∣∣∣∣eipz + e−ipz

2

∣∣∣∣− 1.

The assertion follows by considering the cases ℑz positive and negative.

We are now ready to prove the main result of this section.

Proof of Theorem 2.3. We aim to continuously deform onto a rectangular complex contour γ
(as in Figure 2.1), such that we can bound below the denominator of (2.1), and (2.2), uniformly
on γ. We denote this bound byM(γ) := minz∈γ{Λ(z, α)(z − θ)}. Using this bound, which will be
derived shortly, together with Lemma 2.8, taking the absolute value of the integrand and applying
the Cauchy-Schwarz inequality, we can obtain the following estimate:

(2.11)∣∣∣∣∣ 1

2πi

∮
γ

∑M
m=1 bm(α)Λ(z, αm)[D(z, αm)−DN (z, αm)]

Λ(z, α)(z − θ)
dz

∣∣∣∣∣ ≤ |γ|(3 + epmax |ℑγ|)

4πM(γ)

√√√√ M∑
m=1

|bm(α)|2ϵ2m.
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γ

θ∗θ∗ − π/p

θ∗ + π/p

θ0 θ′0θ′0 − 2π/p θ

(case one)

θ

(case two)

C

ℜ(z)
= ln(3+π2/64)

p

≥ π
2p

≥ π
4p ≥ π

4p = π
p

z− z+

Figure 2.1. Rectangular contour, covering both cases one and two of the proof of Theorem 2.3. The arrows
are labelled with values (or bounds) of the length of the regions to which the arrows are parallel.

It is sufficient to consider two cases, as depicted in Figure 2.1, the rest follow by symmetry.
Case one is where θ ≤ θ0 ≤ θ∗. By definition, θ∗ is closer to θ0 than θ∗ − π/p is to θ0, hence

|(θ∗− π/p)− θ0| ≥ π/(2p). As the elements of Θα are symmetric about the elements of Θ∗, we can
then deduce that |(θ∗ − π/p)− (θ′0 − 2π/p)| ≥ π/(2p). If we choose γ to bisect the real line at z−,
the point halfway between (θ∗ − π/p) and (θ′0 − 2π/p), then we have that dist(Θα, z−) ≥ π/(4p)
and dist(Θ∗, z−) ≥ π/(4p). Since θ ≥ (θ∗ − π/p), we also have dist(z−, θ) ≥ π/(4p). A similar
construction holds in the region to the right, choosing γ to intersect R at the point z+, which is
halfway between θ′0 and θ∗+π/p. This is indicated by Figure 2.1, and the bound dist(z+, θ) ≥ π/(4p)
follows similar arguments.

Case two is where θ0 ≤ θ ≤ θ∗. If we use the same contour as in case one, we can make the
stronger statement dist(z±, θ) ≥ 3π/(4p). By combining both cases, we have

(2.12) dist(Θα, z±) ≥ π/(4p), dist(Θ∗, z±) ≥ π/(4p), |θ − z±| ≥ π/(4p).

Combining the above statement with Lemma 2.6, we obtain

(2.13) M({z−, z+}) ≥
p2

8

(
π

4p

)3

=
π3

512p
.

Denote by γv the union of the vertical components of the complex rectangle γ. By combining (2.13)
with Lemma 2.7, we haveM(γv) ≥ π3/(512p).

We know that the integrand will oscillate along the horizontal components, which we denote
by γh. We want to choose the length of γv to be sufficiently large that M(γh) is bounded below,
where γh are the horizontal components of the rectangle γ. From Lemma 2.8 we have

|Λ(θ + ic, α)| ≥ e|c|p

2
− 3

2
,

and it follows that if we choose c := ± ln(3 + π2/64)/p, then

(2.14) |Λ(θ + ic, α)| ≥ π2

128
, for θ ∈ R.

Thus we choose ℑγh = {−c, c}, where c := ± ln(3 + π2/64)/p. Since c ≥ π/(4p), we have
dist(γh, θ) ≥ π/(4p) and hence, from (2.12), dist(γ, θ) ≥ π/(4p). Combining this with (2.14)
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gives

(2.15) M(γ) ≥ π3

512p
.

The final ingredient required in the bound (2.11) is a bound on the contour length |γ|. Recalling
that the distance between the elements of Θ∗ is π/p, and our choice of z±, as stated above, we have
z− ≥ θ∗−π/p−π/(2p), and z+ ≤ θ∗+π/p, so |z+− z−| ≤ 5π/(4p). Thus we can bound the length
of the rectangle as follows:

(2.16) |γ| = 2|z+ − z−|+ 4c ≤ 5π + 4 ln(3 + π2/64)

4p
.

Inserting (2.15) and (2.16) into (2.11) completes the proof.

We do not expect the rectangular choice of γ to be optimal; other choices of γ may yield a
smaller constant C in Theorem 2.3.

3. Computing the embedding coefficients. We now focus on (C2). Intelligently choosing
the canonical incident angles α1, . . . , αM such that Assumption 1.3 holds is a challenging problem.
For standard bases of polynomials or trigonometric functions, unisolvence theorems (see for e.g. [13,
§2.4]) tell us that an M -dimensional function can be reconstructed uniquely from a set of M distinct
points. The problem (1.9) may be interpreted similarly, as a reconstruction problem in the non-
standard basis {D̂(·, αm)}Mm=1; here we have no theoretical guarantees about reconstruction from M
distinct points. Assuming b is unique and we can construct it, (2.3) adds a further constraint that
∥b∥2 cannot get too large (recall the discussion after Theorem 2.3). These difficulties are already
significant before we consider that, in practice, we must work with an approximation to the matrix
and right-hand side of (1.9).

To address (C2), we consider two empirical approaches inspired by the philosophy of oversam-
pling. This approach has proven to be effective in cases with non-orthogonal bases which satisfy
the frame condition in [1], and was observed to be effective for problems using high-frequency bases
which do not satisfy the frame condition in [20]. The idea here is to incorporate M̃ > M canonical
far-field patterns into our algorithm, more than are strictly necessary according to [3]. The larger

we choose M̃ , the more likely it is that there exists a subset of {αm}M̃m=1 which satisfies Assump-
tion 1.3. Likewise, we expect that if M̃ is large enough, there are many subsets which satisfy
Assumption 1.3, and we are free to choose a subset which minimises ∥b∥2. Thus, by introducing
redundancy, we have more samples and basis functions available, reducing the risk of aliasing and
the effects of ill-conditioning. Hence, we expect that this gives us a better chance of solving (C2).

Suppose we use a sampling strategy, which chooses {αm}m∈N dense in S. Then for M̃ > M , we
consider the oversampled system

Ãb̃ = d̃, where Ã := [D̂(αm, αm′)]M̃m,m′=1, d̃ = (−1)p+1[D̂(α, αm)]M̃m=1.(3.1)

It is easy to see that for any M̃ > M , we have rank(Ã) ≤M , and we expect that there are multiple
b̃ which satisfy (3.1).

We have added redundancy to our problem, under the assumption that this increases the chance
of finding a coefficient vector which addresses (C2). We now consider two different strategies to
select the coefficient vector.
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3.1. Strategy One. For the first strategy, we assume that M̃ is chosen sufficiently large that
there are multiple solutions b̃ to (3.1), each satisfying

(3.2) D̂(·, α) =
M̃∑

m=1

b̃m(α)D̂(·, α).

When multiple solutions exist to (3.1), the system is under-determined, and Algorithm 3.1 (see,
e.g., [21]) with δ = 0 provides a pseudo-inverse which will find the solution with minimal norm -
this is consistent with our aim to address (C2).

Algorithm 3.1 Pseudo-inverse via truncated singular value decomposition

1: Inputs: X ∈ CM̃,M̃ , δ > 0
2: Compute the singular value decomposition,

X = UΣV ∗

3: Denote by σm the mth entry of Σ. Define Σ† as the diagonal matrix with entries

σ†
m ←

{
1/σm if σm > δ,
0 if σm ≤ δ

, m = 1, . . . , M̃

4: return Return pseudo-inverse X† ← V Σ†U∗

However, we must consider the added implications of working with numerical approximations.
Hence, we define another problem:
(3.3)

ÃN b̃N ≈ d̃N , where ÃN := [D̂N (αm, αm′)]M̃m,m′=1 ≈ Ã, d̃N = (−1)p+1[D̂N (α, αm)]M̃m=1 ≈ d̃.

To determine b̃N , we will use Algorithm 3.1. The following lemma, simply an application of [11,
Lemma 3.3], describes how the error is balanced between the residual and coefficient norms.

Lemma 3.1. Suppose that the pseudo-inverse Ã†
N is obtained using Algorithm 3.1 with matrix

ÃN and threshold δ. Then

(3.4) b̃N := Ã†
N d̃N ,

satisfies

∥d̃N − ÃN b̃N∥2 ≤ inf
v∈CM̃

{
∥d̃N − ÃNv∥2 + δ∥v∥2

}
.

Lemma 3.1 informs us how to choose δ so as to balance the residual error with the coefficient
norm. A small choice of δ means that the residual error is relatively small, whereas a large choice
of δ means that the coefficient norm is relatively small. A balance of both is desirable. When
balancing these two, we first consider that for fixed N , even if ∥d̃N − ÃN b̃N∥2 → 0 for δ → 0,
this does not imply ∥b̃N − b̃∥2 → 0, for any b̃ solving (3.2). This is simply due to the problems
(3.1) and (3.3) having different solutions. Obviously, as N →∞, we expect ∥b̃N − b̃∥2 to be small,
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but it can only be made so small by decreasing δ. There will exist a threshold as δ → 0, beyond
which there is no practical advantage in decreasing δ any further. Moreover, choosing δ too small
is a disadvantage, because the norm ∥b̃N∥2 is permitted to become very large as δ → 0, which is
inconsistent with our aim to address (C2). This threshold will depend on the accuracy of D ≈ DN ,
but can be estimated using the following result.

Lemma 3.2. For ÃN and d̃N of the approximate system (3.3), b̃ of the exact system (3.1) and
∥ϵ∥2 as in Theorem 2.3,

inf
v∈CM̃

{
∥d̃N − ÃNvN∥2

}
≤ ∥d̃N − ÃN b̃∥2 ≤ 2(M̃∥b̃∥2 + 1)∥ϵ∥2.

Proof. The infimum is taken over all v ∈ CM̃ , we proceed by choosing v = b̃. We have

d̃N − ÃN b̃ = d̃N + (d̃− d̃)−
[
ÃN + (Ã− Ã)

]
b̃

=
[
d̃N − d̃− (ÃN − Ã)b̃

]
+
[
d̃− Ãb̃

]
= d̃N − d̃− (ÃN − Ã)b̃,

by (3.1). Elementary norm manipulation then gives

∥d̃N − ÃN b̃∥2 ≤ ∥d̃N − d̃∥2 + ∥ÃN − Ã∥F ∥b̃∥2,

where ∥ · ∥F denotes the Frobenius norm. The assertion follows by bounding each entry of d̃N − d̃
and ÃN − Ã, in terms of ϵm for m = 1, . . . , M̃ . The factor of two follows because |Λ| ≤ 2.

In some sense, b̃ is the perfect approximation to the solution of (3.4), because there will be no error
in our embedding coefficients. Lemma 3.2 quantifies that even with this perfect solution, there will
still be a residual error; therefore, we should not waste too much effort minimising the residual,
especially if this comes at the cost of ∥b̃N∥2 growing. Assuming that ∥b̃N∥2 ≈ ∥b̃∥2, Lemmas 3.1
and 3.2 suggest that to balance the residual error with the coefficient norm, a sensible choice is

(3.5) δ ≥ M̃∥ϵ∥2.

This will minimise the coefficient norm ∥b∥2, subject to the constraint that the residual error is no
smaller than necessary. In §5.2, we experiment with different M̃ and δ, providing solid numerical
evidence that this approach addresses (C2).

3.2. Strategy Two. In Strategy One, we addressed (C2) by increasing the number of canon-
ical far-field patterns in the embedding formula from M to M̃ , minimising the least-squares error.
Strategy Two considers M̃ canonical far-field patterns only as a preprocessing step, before re-
stricting to a subset of M indices I ⊂ {1, . . . , M̃} which are in some sense optimal. Then in the
embedding formula, we use the canonical incident angles {αm}m∈I , thus choosing A (of (1.9)) as a
square submatrix of Ã, keeping only the rows and columns in the index set I. Strategy Two aims
to choose this submatrix A such that (C2) is addressed.

To achieve this, we use Algorithm 3.2, initially proposed in [5]. This greedy algorithm is designed
for problems which require a subset of matrix columns which maximises volume and equivalently
(see [26]), minimises condition number. Although these are NP-hard optimisation problems, this
algorithm achieves near-optimal results [6].
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Algorithm 3.2 Column subset selection

1: Inputs: Ã = [a1| . . . |aM̃ ] ∈ CM̃×M̃ , M < M̃
2: Define an empty array I ← {}
3: while I contains fewer than M elements do
4: Assign

m∗ ← argmax
m=1,...,M̃

{|am|}

5: Update I ← I ∪m∗

6: Update each vector

am ← am − am∗
⟨am,am∗⟩
⟨am∗ ,am∗⟩

, m = 1, . . . , M̃

7: end while
8: return I

Informally, at each iteration of the while loop, Algorithm 3.2 chooses the column vector which
is (in some sense) the most orthogonal to the columns which have already been logged in the array
I, via the same computation used in Gram-Schmidt orthogonalisation.

To the best knowledge of the authors, current theoretical results for Algorithm 3.2 apply to
column subset selection, whereas our application requires us to choose a subset of columns and rows.
Despite the lack of available theory, our numerical experiments of §5 suggest that Strategy Two is
highly effective in practice, provided M̃ is chosen sufficiently large; our experiments suggest that
M̃ = ⌈3M/2⌉ is typically more than sufficient. In terms of accuracy, we observe that it outperforms
Strategy One at high frequencies. Moreover, considering that most CPU time is spent on far-field
evaluations DN (θ, α), Strategy Two is more computationally efficient, by a factor of roughly M/M̃ .

4. The algorithm. The algorithm we use for the numerical experiments in §5 is based upon
the ideas presented in §1–§3, with some modifications in order to minimise unnecessary flops (float-
ing point operations). It can be seen from Figure 1.2 that for some values of θ the naive ap-
proximation (1.7) is sufficient. With this in mind, we introduce a threshold H > 0, such that if
|θ − θ0|2π < H, then we consider it necessary to correct the naive approximation in some way,
otherwise we simply use (1.7). When a correction is considered necessary, all of the relevant inte-
grals and sums are based on equations (2.4) and (2.5), with the following exception: the residue
θ′0 is excluded from the sum (2.4) when |θ0 − θ′0|2π ≥ H, as it is considered to have a negligible
contribution.

Similarly, in the vast majority of cases, there will be no issues with rounding errors, and we
introduce a second threshold h < H, such that if |θ0− θ′0|2π < h, we use the interpolation approach
described in §2.1. For these contour integrals, we use a rectangular contour R(X,h), where X is
the set of poles which the integral encloses, chosen so that R(X,h) is the smallest rectangle with
X in its interior, satisfying dist(X,R(X,h)) = h. These contour integrals are evaluated using a
20-point Gaussian quadrature rule along each edge.

Algorithm 4.1 summarises the key steps of our implementation, excluding details such as quad-
rature (discussed above), for brevity. Our algorithm has been implemented in Matlab and is avail-
able at [18]. This implementation is intended to be a proof of concept — developing a streamlined
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Algorithm 4.1 Main routine

1: Inputs: θ, α, {DN (·, αm)}M̃m=1, { ∂
∂θDN (·, αm)}M̃m=1, { ∂2

∂θ2DN (·, αm)}M̃m=1, p, Strategy ∈ {1, 2}
2: Adjustable parameters: δ = 10−8, H = 0.1, h = 10−3

3: First pre-computation step: Construct {D̂N (·, αm)}M̃m=1 (and the first and second deriva-
tives) using (1.8).

4: Second pre-computation step - determining coefficient vector. Note that this step
does not need to be repeated for future values of (θ, α) ∈ T:

5: if Strategy = 1 then
6: Construct ÃN using (3.3), then construct and store Ã†

N using Algorithm 3.1 with inputs ÃN

and δ.
7: else if Strategy = 2 then
8: Construct a submatrix AN using Algorithm 3.2 with inputs ÃN and M . Store A−1

N .
9: end if

10: Construct d̃N using (3.3) and hence the coefficient vector b̃N

11: if |θ − θ0|2π > h then
12: Assign the naive approximation (1.7): I ← D(θ, α).
13: if |θ − θ0|2π ∈ [h,H) then
14: A correction will be necessary - assign

Icorrection ←



1

2πi

∮
R({θ0,θ′

0},h)

ρ2(z)

Λ(z, α)(z − θ)
dz, |θ0 − θ′0|2π < h∑

χ∈{θ0,θ′
0}

∑M
m=1 bm(α)D̂N (χ, αm)

p(χ− θ) sin(pχ)
, |θ0 − θ′0|2π ∈ [h,H)∑M

m=1 bm(α)D̂N (θ0, αm)

p(θ0 − θ) sin(pθ0)
, |θ0 − θ′0|2π > H

15: Update I ← I + Icorrection
16: end if
17: else if θ = θ0 = θ∗ then
18: Apply L’Hôpital’s rule (twice):

I ←
∑M̃

m=1 b̃m(α)∂
2D̂N (θ0,αm)

∂θ2

−p2 cos(pθ)

19: else
20: Risk of rounding errors, use polynomial interpolation at the poles.
21: Construct ρ2, interpolating as described in §2.1.

I ←



1

2πi

∮
R({θ,θ0,θ′

0},h)

ρ2(z)

Λ(z, α)(z − θ)
dz, |θ0 − θ′0|2π < h

1

2πi

∮
R({θ,θ0},h)

ρ2(z)

Λ(z, α)(z − θ)
dz +

∑M
m=1 bm(α)D̂N (θ′0, αm)

p(θ′0 − θ) sin(pθ′0)
, |θ0 − θ′0|2π ∈ [h,H)

1

2πi

∮
R({θ,θ0},h)

ρ2(z)

Λ(z, α)(z − θ)
dz, |θ0 − θ′0|2π > H

22: end if
23: Output: I



18 A. GIBBS AND S. LANGDON

software package is reserved for future work.

A key input to Algorithm 4.1 is {DN (·, αm)}M̃m=1, which must be obtained by some numerical
method. We use two different numerical methods (outlined below) to broaden the range of the
following experiments. In both methods, we reformulate the problem (1.1)-(1.3) as the standard
first kind boundary integral equation, discretise using a boundary element method, approximating
∂u/∂n on the boundary of Ω, solving using oversampled collocation, as described in [20]. The code
used for both solvers is available at [17].

4.1. Standard hp Boundary Element Method. The first solver is a standard hp boundary
element method (BEM, see, e.g., [32]). We use a piecewise polynomial approximation space, defined
on a graded mesh. The mesh is chosen so that the largest mesh element is no more than π/k (half
a wavelength) long. Towards the corners of the polygon, we use a geometric grading with grading
parameter 0.15, and 2P layers, where P is the maximal polynomial degree, reducing the polynomial
degree linearly towards corners, as described in, e.g., [19].

It is well known that standard BEMs such as this need to increase degrees of freedom like O(k)
to maintain accuracy as k increases (see, e.g., [32]). Therefore, we use this method in examples
with moderate to low k, where Ω is a polygon.

4.2. Hybrid Numerical-Asymptotic Boundary Element Method (HNA BEM). This
method is a non-standard hp-BEM, where the basis consists of piecewise polynomials multiplied by
k-dependent oscillatory functions; details are given in [20]. The mesh is graded towards the corners
of the obstacle in the same way as for the standard BEM described above. The key difference
here is that the mesh width is not k-dependent because the oscillations are resolved by the basis
functions [23]. The numerical implementation of [20] is available at [17], and enjoys k-independent
cost for screen problems. Using this solver, we are able to experiment for extremely large k for the
case where Ω is a screen.

4.3. Default parameters. Through extensive experimentation, the following parameters
were found to provide a good balance between efficiency and accuracy:

• For the thresholds introduced above, we choose H = 0.15 and h = 0.01.
• We oversample with M̃ = ⌈3M/2⌉.
• We use Strategy Two, unless explicitly stated otherwise.
• We choose M̃ canonical incident angles equispaced on S, with α1 = 0.
• When evaluating the contour integrals over the rectangular contours R(X,h), we use a
20-point Gaussian quadrature rule along each edge of the rectangle.

• If Strategy One is chosen instead of the default Strategy Two, we use δ = 10−8.
Unless mentioned otherwise in the following experiments, it can be assumed that these parameters
have been used. It appears that smaller values of H are sufficient when k is large, potentially
reducing unnecessary flops. We do not investigate this link here, and use a fixed value for all k.

5. Numerical examples and experiments. In this section, we present numerical experi-
ments demonstrating the effectiveness of Algorithm 4.1.

5.1. Example applications of Algorithm 4.1. The first experiment we present compares
the far-field pattern produced by the naive embedding approximation (1.7) and Algorithm 4.1.

Right-angled isosceles triangle, k = 10. We consider the far-field induced by a plane wave
with angle α = 5π/4, k = 10, and Ω the right-angled isosceles triangle with vertices P1 = (0, 0),
P2 = (0, 1) and P1 = (1, 0). By Definition 1.1 we have q1 = 6, q2 = q3 = 7, p = 4 and M = 17.
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Figure 5.1. The errors in the naive approximation (1.7) (dotted) and the output of Algorithm 4.1 (solid), for
the right-angled triangle with k = 10 and α = 5π/4. In all cases, the spikes of the naive approximation do not
appear using our method.

We use the default parameters of §4.3 and compute DN using the standard hp-BEM solver of §4.1,
with a reference solution of Nref = 600. Figure 5.1 shows the errors for both approximations for a
range of N . The naive approximation is shown as a dotted line, and the output of Algorithm 4.1 is
shown as a thick line. The relative error is measured as

(5.1)
∥DN (·, α)−DNref

(·, α)∥L∞(S)

∥DNref
(·, α)∥L∞(S)

,

where each norm is approximated with 1000 equispaced points. This approximation will converge
exponentially as the number of quadrature points increases, because the far-field is periodic and
entire, see, e.g., [35]. The unbounded error of the naive approach is clearly visible and remedied by
our new approach, as predicted by Theorem 2.3. Discontinuous jumps in the error of our method are
visible. These could be smoothed out by choosing a larger value of H, although it is not necessary
to achieve a uniformly low error.

Our method is most powerful when many incident angles are considered. Hence, for the next
experiment, we consider one thousand equispaced α ∈ S. Figure 5.2 shows ℜ[D212] over T and the
pointwise relative error, estimated using

|DN (θ, α)−DNref
(θ, α)|

|DNref
(θ, α)|

.

The relative error is fairly evenly distributed, peaking at around 10−4, with no visible spikes.

Screen, k = 100. For a larger wavenumber k = 100, we now consider the far-field induced by
the screen Ω = [0, 1]×{0} and the incident angle α = π/4. We use the HNA BEM solver described
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Figure 5.2. log |D(θ, α)| for right-angled isosceles triangle k = 10 (left), and corresponding pointwise relative
error (right).

Figure 5.3. Left: the errors in the naive approximation (1.7) (dashed) and the output of Algorithm 4.1 (solid),
for the screen with k = 100 and α = π/4. Right: zoomed in around a point where (1.7) breaks down, θ0 = π − α.

in §4.2, with a reference solution of Nref = 188. The results are shown in Figure 5.3. Again, the
naive approximation ((1.7), dotted lines) blows up at θ ∈ Θα, which is fixed by our method. The
region of blow-up appears to become narrower at higher frequencies, adding weight to our earlier
claim in §4.3 that it may be possible to decrease H as k increases.

As in Figure 5.2, we consider the approximation of D(θ, α) for 1000 values of α on the screen,
with N = 152 and Nref = 188. The results are shown in Figure 5.4. When compared against the
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Figure 5.4. log |D(θ, α)| for screen k = 100 (left), and corresponding pointwise relative error (right).

low-frequency solution in Figure 5.2, we observe that the distribution of energy in the far-field has
become more focused at θ = π±α, corresponding to the angles of reflection and propagation of the
incident wave. This focusing is typical at higher frequencies.

5.2. Testing the strategies for (C2). Now we return to the two configurations identified
in §1.1 for which the system (1.9) is singular or ill-conditioned. These configurations motivated
solutions for (C2), and two strategies were proposed in §3. Here, we test these strategies for a
range of oversampling parameters M̃ ≥M and truncation parameters δ (the latter only applies to
Strategy One).

Screen, k = 1000. First, we consider the screen problem Ω = [0, 1] × {0}, with canonical
incident angles α1 = π

2 , α2 = 3π
2 . Recalling the discussion in §1.1, these incident angles correspond

to AN equal to the 2 × 2 zero matrix. This issue will occur at all wavenumbers, but we consider
k = 1000. When oversampling, we ensure these two problematic incident angles are included, by
considering the first M̃ incident angles of

α1 =
π

2
, α2 =

3π

2
, α3 = π, α4 = 0, α5 =

3π

4
, α6 =

5π

4
.

Figure 5.5 shows the effect of oversampling over the range M̃ = M = 2 up to M̃ = 6. We test
Strategy One with truncation parameters δ ∈ {10−12, 10−8, 10−4}, and compare against Strategy
Two. For the solver, we have used HNA BEM (§4.2), with N = 118, and for the reference solution
Nref = 188. The relative error is measured using (5.1) and the ‘input error’ is measured as

(5.2) Ein :=
maxm=1,...M̃ ∥DN (·, αm)−DNref

(·, αm)∥L∞(S)

maxm=1,...M̃ ∥DNref
(·, αm)∥L∞(S)

.

The norms in (5.1) and (5.2) are approximated using 1000 equispaced samples.
As expected, for M̃ = M = 2, i.e. without oversampling, the relative error is close to one. It

should be noted that when M̃ = M , Strategy Two does nothing, because the only valid submatrix
is the full matrix. Therefore, the blow-up in the coefficient norm and large relative error is what
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Figure 5.5. Error and coefficient norm, varying δ and M̃ in Algorithm 4.1, for the screen with k = 1000.

we expect. On the other hand, Strategy One responds by minimising the coefficient norm, which
is zero.

For M̃ ≥ 3 Strategy Two performs well, and over the same range with δ ∈ {10−8, 10−4},
Strategy One performs well. The experiments show that δ = 10−12 is too low for accurate results,
which is consistent with the choice (3.5).

Equilateral triangle, k = 10. Next we consider the problem where Ω is the equilateral triangle
with side length

√
12/2 (such that the vertices lie on the unit circle), with wavenumber k = 10.

Recalling Figure 1.3, we observed that the set of canonical incident angles αm = 2(m− 1)π/12, for
m = 1, . . . ,M = 12, caused cond(AN ) to blow up. We ensure these problematic incident angles
are included, and oversample with up to an additional four angles, equispaced between consecutive
angles in the above set, like so: αm = 2π/24 + αm−12, for m = 13, . . . , 16. Now we use a standard
hp-BEM, with N = 375 and Nref = 591, and as for the screen, the relative error is measured using
(5.1) and the input error is measured using (5.2).

As for the screen problem, choosing M̃ = M+1 appears to be sufficient, and for this experiment
all values of δ appear to work well, see Figure 5.6. The coefficient norm is slightly increasing for
δ = 10−12, 10−8 and M̃ = 15, 16, but this does not affect the relative error.

In both of these experiments and in others which are not reported, we have observed that
Strategy Two performs at least as well as Strategy One, provided we oversample sufficiently. Con-
sidering that Strategy Two has numerous advantages (stated at the end of §3.2), we recommend
this as the default choice.

5.3. Conditioning estimates. The constant C in Theorem 2.3 explains the relationship
between input error (in the canonical far-field approximation) and output error (of our embedding
formula (2.2)). In this sense, C describes the conditioning of our embedding formula. Now we
consider another quantity to measure conditioning, measured in terms of the ratio of Eout and Ein,
where

Eout :=
∥DN −DNref

∥L∞(T)

∥DNref
∥L∞(T)

.

We approximate the norms using a tensor product trapezoidal rule with 1000× 1000 points (again,
this converges exponentially by arguments in, e.g., [35]). Here we investigate the relationship
between the input and output errors, over a range of wavenumbers, scatterers and solvers.
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Figure 5.6. Error and coefficient norm, varying δ and M̃ in Algorithm 4.1, for the equilateral triangle with
k = 10.

k Ω N Ein Eout Eout/Ein cond(AN )
5 triangle 78 4.3 × 10−4 1.0 × 10−2 2.4 × 101 4.3 × 100

triangle 192 3.6 × 10−6 7.5 × 10−5 2.1 × 101 4.3 × 100

triangle 354 9.7 × 10−8 1.3 × 10−6 1.3 × 101 4.3 × 100

square 104 1.0 × 10−4 3.5 × 10−2 3.4 × 102 2.1 × 100

square 256 1.2 × 10−6 2.8 × 10−4 2.4 × 102 2.1 × 100

square 472 4.0 × 10−8 1.1 × 10−5 2.8 × 102 2.1 × 100

pentagon 130 4.1 × 10−5 2.3 × 10−3 5.6 × 101 1.2 × 105

pentagon 320 5.1 × 10−7 2.6 × 10−5 5.0 × 101 1.2 × 105

pentagon 590 1.9 × 10−8 2.1 × 10−7 1.1 × 101 1.2 × 105

25 triangle 168 9.8 × 10−4 2.7 × 10−2 2.8 × 101 2.8 × 101

triangle 342 4.3 × 10−6 4.0 × 10−4 9.3 × 101 1.4 × 101

triangle 564 8.3 × 10−8 1.1 × 10−5 1.3 × 102 1.4 × 101

square 200 6.8 × 10−4 7.1 × 10−1 1.1 × 103 1.3 × 101

square 416 3.4 × 10−6 3.9 × 10−3 1.1 × 103 1.3 × 101

square 696 5.6 × 10−8 2.5 × 10−5 4.6 × 102 1.3 × 101

pentagon 235 4.8 × 10−4 1.9 × 100 4.0 × 103 3.7 × 102

pentagon 495 2.1 × 10−6 7.6 × 10−3 3.6 × 103 6.2 × 102

pentagon 835 4.4 × 10−8 5.8 × 10−5 1.3 × 103 6.2 × 102

Table 5.1
L∞ input and output errors for a range of regular polygons. Error values and condition numbers are reported

to two significant figures.

Regular polygons, low wavenumbers. Low-frequency results for when Ω is a regular poly-
gons with vertices positioned on the unit circle, where DN is the standard BEM solver (§4.1), are
given in Table 5.1. The same experiment was performed for Strategy One, with similar results.
For the triangle, Nref = 942, for the square, Nref = 1400, and for the pentagon, Nref = 1660. In
all cases, we observe convergence as N increases, and our method can achieve a high accuracy for
all incident angles with a relatively low N . There appears to be no obvious rule for predicting
Eout/Ein.



24 A. GIBBS AND S. LANGDON

k N Ein Eout Eout/Ein cond(AN )
500 44 4.2 × 10−4 8.4 × 10−1 2.0 × 103 2.8

90 4.3 × 10−5 2.5 × 10−1 5.7 × 103 2.8
152 1.0 × 10−5 6.0 × 10−2 6.0 × 103 2.8
230 2.9 × 10−6 1.6 × 10−2 5.6 × 103 2.8

1000 44 2.4 × 10−4 1.9 × 100 8.1 × 103 2.1
90 6.2 × 10−5 5.8 × 10−1 9.4 × 103 2.2
152 4.8 × 10−6 3.2 × 10−2 6.7 × 103 2.1
230 2.9 × 10−6 5.7 × 10−3 2.0 × 103 2.1

5000 44 9.6 × 10−5 6.5 × 10−1 6.7 × 103 2.6
90 1.3 × 10−5 4.7 × 10−2 3.6 × 103 2.3
152 2.6 × 10−6 1.1 × 10−2 4.1 × 103 2.3
230 1.3 × 10−6 1.9 × 10−3 1.5 × 103 2.3

10000 44 8.2 × 10−5 5.4 × 10−1 6.6 × 103 2.6
90 1.2 × 10−5 7.4 × 10−2 6.1 × 103 2.9
152 1.9 × 10−6 7.5 × 10−3 3.9 × 103 3.0
230 1.0 × 10−6 2.1 × 10−3 2.0 × 103 3.0

Table 5.2
L∞ input and output errors, for large k when Ω is a screen. Error values and condition numbers are reported

to two significant figures.

Screen, high wavenumbers. High-frequency results on the screen, where DN is the HNA
BEM of §4.2, are given in Table 5.2. Here Nref = 188. Again, we observe convergence in each case
as N increases. Convergence was observed to be much slower when the same experiments were run
for Strategy One. For N = 230, we observe ≈ 1% error or less for all wavenumbers tested. This
suggests that N does not need to be very large to accurately represent the far-field pattern for all
incident angles at high frequencies. This is a very encouraging result, suggesting that when paired
with the HNA BEM, the error and cost of our method remain fixed for large k.

6. Conclusions and future work. Embedding formulae describe the fascinating theoretical
connection between the far-field patterns induced by different incident plane waves. We have shown
that with careful modifications, some of these formulae can be of practical use, significantly reducing
the cost in numerical scattering models for two-dimensional sound-soft polygons.

It is natural to ask if the techniques of this paper may be generalised to different scattering
configurations. Focusing on two natural extensions, Table 6.1 places this current work within the
context of necessary related results. The table is intended to highlight gaps elsewhere in the current
scattering literature, which must be filled before the work of this paper can (possibly) be generalised.

It is clear from Table 6.1 that the main gap in the current literature is Step two - embedding
formulae in terms of far-field patterns. In principle one could skip Step 2, applying the ideas of
this paper to the embedding formulae of [12], which also hold for sound-hard problems and contain
1/Λ(θ, α)-type removable singularities; this is a possible area for future work. A similar approach
may be possible for the three dimensional structures in [33]. However, a key practical advantage of
Step 2 is that (to the best knowledge of the authors) there are many existing solvers for computing
far-field patterns, and far fewer for computing edge Green’s functions.

We remark that Step 4 is not essential for embedding formulae to be of practical use; any
problem which requires the far-field pattern induced for a large number of incident waves may
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Step Sound-soft polygons Sound-hard polygons Sound-soft polyhedra

1. Edge Green Em-
bedding formulae

Craster and Shanin
[12].

Also in Craster and
Shanin [12].

Some cases in [33],
for example cubes.

2. Far-field Embed-
ding formulae

Biggs [3]. In [3, 4], Biggs states
that sound-hard for-
mulae can be derived
with minor modifi-
cations to sound-soft
problem, but no re-
sults have yet been
published.

3. Numerically ro-
bust modification

This paper.

4. Correspond-
ing high-frequency
solver

Screens: [20, 17].
Convex polygons:
requires frequency-
independent imple-
mentation of [8, 24]
(work in progress).

Requires frequency-
independent im-
plementation of [9]
(work in progress).

Initial ideas were
discussed in [7, §7.6].
Initial experiments
on square screens
were presented in
[22]. No frequency-
independent solver is
available.

Table 6.1
Overview of existing literature on embedding formulae and high-frequency solvers for exterior scattering problems.

enjoy a reduced computational cost using a numerically robust embedding formula, if one exists.
We expect to have developed a frequency-independent solver for convex polygons in the near future,
and we are excited to combine it with Algorithm 4.1, and investigate the performance at high
frequencies.
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