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Adaptive Multilevel Subset Simulation with Selective Refinement\ast 

D. Elfverson\dagger , R. Scheichl\ddagger , S. Weissmann\S , and F. A. Diaz De La O\P 

Abstract. In this work we propose an adaptive multilevel version of subset simulation to estimate the prob-
ability of rare events for complex physical systems. Given a sequence of nested failure domains of
increasing size, the rare event probability is expressed as a product of conditional probabilities. The
proposed new estimator uses different model resolutions and varying numbers of samples across the
hierarchy of nested failure sets. In order to dramatically reduce the computational cost, we con-
struct the intermediate failure sets such that only a small number of expensive high-resolution model
evaluations are needed, whilst the majority of samples can be taken from inexpensive low-resolution
simulations. A key idea in our new estimator is the use of a posteriori error estimators combined with
a selective mesh refinement strategy to guarantee the critical subset property that may be violated
when changing model resolution from one failure set to the next. The efficiency gains and the sta-
tistical properties of the estimator are investigated both theoretically via shaking transformations,
as well as numerically. On a model problem from subsurface flow, the new multilevel estimator
achieves gains of more than a factor 60 over standard subset simulation for a practically relevant
relative error of 25\%.

Key words. rare event probabilities, adaptive model hierarchies, high-dimensional problems, Markov chain
Monte Carlo, shaking transformations
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1. Introduction. Estimating the probability of rare events is one of the most important
and computationally challenging tasks in science and engineering. By definition, the proba-
bility that a rare event occurs is very small. However, its effect could be catastrophic, e.g.,
when it is associated with some critical system failure such as the breakthrough of pollutants
into a water reservoir or the structural failure of an airplane wing. An efficient and reliable
estimator is of utmost importance in such situations.
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ADAPTIVE ML SUS WITH SELECTIVE REFINEMENT 933

We are interested in estimating rare event probabilities occurring in mathematical models
of physical systems described by stochastic differential equations (SDEs) or partial differen-
tial equation (PDEs) with uncertain data, with possibly large stochastic dimension. Standard
Monte Carlo (MC) methods are infeasible due to the huge amount of samples needed to pro-
duce even a single rare event. Remedies for this are offered by different variance reduction tech-
niques, such as importance sampling [37, 38, 12], multilevel MC methods [24, 7, 18, 23, 13, 31],
and subset simulation [5, 6, 34, 39]. In the statistics and probability literature [30], sub-
set simulation is also known as splitting and can be interpreted as a sequential MC method
[10, 16, 28, 15, 11]. There are also Bayesian versions of subset simulation using Gaussian
process emulators to reduce the number of model evaluations [9]. Moreover, a cross-entropy-
based importance sampling method for rare events and a failure-informed dimension reduction
through the connection to Bayesian inverse problems has been addressed in [40].

In this work, we propose a multilevel version of the classical subset simulation approach of
Au and Beck [5] for rare event estimation in the context of complex models. More specifically,
we combine the ideas of incorporating multilevel model resolutions across the subsets proposed
in [39] with the selective mesh refinement strategy proposed in [23]. As a result, our method
does not violate the subset property, critical in subset simulation, when changing the model
resolution. Furthermore, we formulate the subset simulation based on shaking transformations
to ensure asymptotic convergence of the resulting estimator, as shown in [26].

Let (\Omega ,\Sigma ,\BbbP ) be a probability space with \sigma -algebra \Sigma and probability measure \BbbP , defined
over some nonempty set \Omega . Given a mathematical model that describes the behavior of a
physical system, the sample space \Omega will form the input space for any sources of uncertainty
or randomness. Unless otherwise stated, we refer to a random variableX with state space \BbbR d as
a \Sigma -\scrB (\BbbR d)-measurable mapping. The expected value of a measurable functional F :\BbbR d\rightarrow \BbbR m

of such a random variable X with density \pi is denoted by

\BbbE [F (X)] =

\int 
\Omega 
F (X(\omega ))\BbbP (d\omega ) =

\int 
\BbbR d

F (x)\pi (dx) =:\BbbE \pi [F (X)].

If it is clear from the context, we will suppress the subscript \pi and simply write \BbbE [F (X)].
Let F \in \Sigma be a rare event that can be associated to system failure, that is, the demand

exceeding the capacity of the system under study. Given the above probability space, sub-
set simulation splits the estimation of \BbbP (F ) into a product of conditional probabilities by
introducing a sequence of nested events

F = FK \subset FK - 1 \subset \cdot \cdot \cdot \subset F1 \subset F0 =\Omega , Fj \in \Sigma , j = 0, . . . ,K,(1.1)

corresponding to larger failure probabilities as the subscript j\rightarrow 0. The rare event probability
\BbbP (F ) is usually prohibitive to estimate directly by MC sampling, but it can be expressed as
the product of conditional probabilities

\BbbP (F ) =

K\prod 
j=1

\BbbP (Fj | Fj - 1),(1.2)

where each \BbbP (Fj | Fj - 1) is larger than \BbbP (F ) and hence easier to estimate. The conditional
probabilities in (1.2) can be estimated effectively using Markov Chain Monte Carlo (MCMC).
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934 ELFVERSON, SCHEICHL, WEISSMANN, AND DIAZ DE LA O

Computer simulations to study physical systems very often take the form of SDE or PDE
models. Making use of a hierarchy of discretizations of these underlying models, we exploit
ideas from multilevel Monte Carlo (MLMC) methods [24, 7, 18, 23] to reduce the overall cost
of subset simulation. We refer to [29, 41] for different variants of MLMC estimators of rare
event probabilities. In principle, our approach is similar to the approach presented in [39].
However, in contrast to that work and more closely related to the ideas in MLMC methods, we
design the sequence of nested events in (1.1) such that most samples can be computed with
inexpensive, coarse models. This reduces the total cost significantly compared to classical
subset simulation, leading to more significant gains than the multilevel variant in [39].

Following the ideas in [22, 23], another key advance in our new method is the use of a
posteriori error estimators to guarantee the critical subset property, which may be violated
when changing the model resolution from one intermediate failure set to the next. It also
allows a selective, sample-dependent choice of model resolution. Finally, these three advances
lead to significant speed-up over classical subset simulation for our multilevel estimator.

In summary, this paper makes the following contributions: (i) The subset simulation
method is formulated via shaking transformations, incorporating a selective mesh refinement
strategy. The resulting algorithm is based on an MCMC method, where each sample involves
an adaptive mesh resolution based on its limit state function value. As a result, high accuracy
is only needed for samples with a rather small limit state function, whereas for most samples
low resolution evaluations are sufficiently accurate when the state is far away from failure. (ii)
Under certain assumptions, it is shown that the proposed selective refinement strategy does
not violate the subset property. Moreover, a detailed complexity analysis quantifies the gains
due to the selective refinement strategy. (iii) A novel, adaptive multilevel subset simulation
method is proposed where the accuracy increases over the defined subsets. Through a selective
refinement strategy and appropriately chosen intermediate threshold values, the failure sets
satisfy the critical subset property. Our complexity analysis shows significant improvement
through the proposed adaptive multilevel subset choice and through the additional application
of selective mesh refinement.

This paper is organized as follows. In section 2, we formulate the problem and define
hierarchies of discretizations via two abstract, sample-wise assumptions. In section 3, we ex-
plore in detail the estimation of rare event probabilities, first using standard MC and classical
subset simulation, before proposing two improved estimators based on selective refinement
and adaptive multilevel subset selection. Section 4 contains a concrete implementation of the
algorithms via shaking transformations, as well as an asymptotic convergence result. The
complexity analysis of the novel approaches is provided in section 5, while section 6 demon-
strates their performance on a series of numerical experiments, starting with two toy problems
and finishing with a Darcy flow model. Finally, section 7 offers some conclusions.

2. Problem formulation and model hierarchies. We consider a (linear or nonlinear)
model \scrM on an infinite-dimensional function space V , e.g., a PDE, which is subject to un-
certainty, or an SDE. The solution is modelled as a random field on the probability space
(\Omega ,\Sigma ,\BbbP ) with values in V . For any \omega \in \Omega , we denote by u(\omega )\in V the solution of

\scrM (\omega ,u(\omega )) = 0.(2.1)

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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ADAPTIVE ML SUS WITH SELECTIVE REFINEMENT 935

Given a quantity of interest \Phi : V \rightarrow \BbbR , i.e., a functional of the model solution u, we are
interested in computing the probability that a so-called rare event occurs. We let G=G(\omega ) :=
\Phi \ast  - \Phi (u(\omega )) be the associated limit state function, which is negative when the quantity of
interest exceeds a critical value \Phi \ast . Thus, we want to compute the probability that \omega \in \Omega is
in the failure set

F := \{ \omega \in \Omega :G(\omega )\leq 0\} .

For simplicity, we will assume that G is a real valued random variable with probability density
function (pdf) (with respect to Lebesgue measure) \pi : \BbbR \rightarrow \BbbR +, which is assumed to be
unknown. If 1F denotes the indicator function of F , i.e., 1F (\omega ) = 1 if \omega \in F and 1F (\omega ) = 0
otherwise, then the failure probability can also be expressed as the integral

P = \BbbP (F ) =

\int 
\Omega 

1F (\omega )\BbbP (d\omega ) =
\int 
\BbbR 

1( - \infty ,0](x)\pi (x) dx=

\int 0

 - \infty 
\pi (x) dx(2.2)

which, for very small P \ll 1, will be classified as a rare event. Note that the integral in
(2.2) is equivalent to the expected value \BbbE [1F ]. We are interested in applications where not
only the dimension of V , but also the dimension of the underlying sample space \Omega is high (or
infinite), e.g., in subsurface flow simulations where the permeability is described by a spatially
correlated random field. To estimate P , both V and the high-dimensional integral in (2.2)
need to be approximated in practice.

We return to the approximation of the above integral in section 3 and finish this section
by formulating some abstract assumptions on the numerical approximation of the model \scrM 
and of the limit state function G, for any given \omega \in \Omega . To this end, we introduce a hierarchy
of numerical approximations to G with increasing accuracy, namely G\ell , for \ell = 1, . . . ,L.

Assumption 2.1.
(a) We assume that the cdf of G is Lipschitz continuous, i.e., there exists a constant

c\mathrm{L}\mathrm{i}\mathrm{p} > 0 such that for any x, y \in \BbbR 

| \BbbP (G\leq y) - \BbbP (G\leq x)| \leq c\mathrm{L}\mathrm{i}\mathrm{p}| y - x| .(2.3)

(b) Let \gamma \in (0,1) and q\geq 0. Then, for all \ell \in \BbbN , we assume that

| G(\omega ) - G\ell (\omega )| \leq \gamma \ell , \BbbP -a.s. in \omega ,(2.4)

and that there exists a constant c0 > 0 such that

\BbbE [\scrC [G\ell ]]\leq c0\gamma 
 - \ell q.(2.5)

Note that to estimate \BbbP (F ), high accuracy is only needed for samples \omega \in \Omega where the
limit state function G is small. Thus, given a family of random variables (G\ell , \ell \in \BbbN ) satisfying
Assumption 2.1, the following selective refinement strategy was introduced in [22, 23], in fact
for the more general task of approximating \BbbP (G\leq y) for any y \in \BbbR .

It has been shown in [23, Lems. 5.1 and 5.2] that the construction in Algorithm 2.1 leads
to a (y-dependent) random variable Gy

\ell : \Omega \rightarrow \BbbR which satisfies the following assumption.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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936 ELFVERSON, SCHEICHL, WEISSMANN, AND DIAZ DE LA O

Algorithm 2.1 Selective refinement strategy introduced in [22, 23].

1: Let y \in \BbbR , \ell \in \BbbN , and \omega \in \Omega .
2: Compute G1(\omega ) and initialize k= 1 and Gy

\ell (\omega ) =G1(\omega ).
3: while k < \ell and | Gk(\omega ) - y| <\gamma k do
4: refine the accuracy by setting k\leftarrow k+ 1 and compute Gk(\omega ).
5: Set Gy

\ell (\omega ) =Gk(\omega ).
6: end while

Assumption 2.2. Suppose that Assumption 2.1 (a) holds, and let \gamma \in (0,1) and q \geq 0.
Then, for fixed y \in \BbbR and for all \ell \in \BbbN , we assume that

| G(\omega ) - Gy
\ell (\omega )| \leq max

\Bigl( 
\gamma \ell , | Gy

\ell (\omega ) - y| 
\Bigr) 
, \BbbP -a.s. in \omega ,(2.6)

and that there exists a constant c0 > 0 such that

\BbbE [\scrC 
\bigl[ 
Gy

\ell 

\bigr] 
]\leq c0

\Bigl( 
1 + \gamma (1 - q)\ell 

\Bigr) 
.

It was also shown in the proof of [23, Lem. 5.2] that under Assumption 2.2 the bias for
approximating \BbbP (G\leq y) remains of order \gamma \ell , i.e., there exists a constant cy > 0 independent
of \gamma and \ell such that \bigm| \bigm| \BbbP (Gy

\ell \leq y) - \BbbP (G\leq y)
\bigm| \bigm| \leq cy\gamma 

\ell .

In order to verify that Gy
\ell indeed is a random variable on (\Omega ,\Sigma ,\BbbP ), we introduce (as in

[20]) the stopping time \omega \mapsto \rightarrow \tau y(\omega ) := inf\{ k \in \{ 1, . . . , \ell \} | | Gk(\omega )  - y| \geq \gamma \ell \} with respect to
the natural filtration \scrF k = \sigma (Gs, s \leq k) and define Gy

\ell := G\ell \wedge \tau y as the final iteration of the
stopped discrete time stochastic process (Gk\wedge \tau y , k= 1, . . . , \ell ) which is measurable with respect
to \scrF L \subset \Sigma , since all Gk are assumed to be \Sigma /\scrB (R)-measurable.

Note that Assumption 2.2 holds naturally for the choice y =\infty , since any finite random
variable G\ell satisfying Assumption 2.1 also satisfies (2.6) and 1G\ell \leq \infty = 1 almost surely.

Remark 2.3. For the complexity analysis of subset simulation and of the standard MC
method, we will consider a fixed y \in \BbbR and thus suppress the dependence of Gy

\ell on y. Under
Assumption 2.2 we then refer to the random variable Gy

\ell satisfying (2.6) simply by G\ell .

In a PDE setting, we typically have approximations \~Gh of G associated with some numer-
ical discretization method and error bounds of the type

| G(\omega ) - \~Gh(\omega )| \leq C(\omega )h\alpha ,(2.7)

where h is a discretization parameter, e.g., mesh size, and \alpha is a convergence rate. The
constant C(\omega ) may depend on \omega . For SDEs or PDEs with random coefficients, \alpha and C(\omega )
can be estimated using adjoint methods or hierarchical error estimators; see, e.g., [14, 25, 33].

For sufficiently well behaved models\scrM and sufficiently smooth functionals \Phi , there exists
a constant C\mathrm{m}\mathrm{a}\mathrm{x} < \infty such that C(\omega ) \leq C\mathrm{m}\mathrm{a}\mathrm{x} \BbbP -almost surely in \omega . Thus, considering,

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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ADAPTIVE ML SUS WITH SELECTIVE REFINEMENT 937

for example, numerical approximations of G obtained on a sequence of uniformly refined
meshes \scrT \ell , \ell \in \BbbN 0, with h\ell = h02

 - \ell and \scrT 0 some fixed coarsest mesh, the bound in (2.4) can

be achieved for every \ell \in \BbbN by choosing G\ell = \~Gh\ell 
and \gamma = 2 - \alpha , provided h0 \leq C

 - 1/\alpha 
\mathrm{m}\mathrm{a}\mathrm{x} . The

constant q in (2.5) depends on the (physical) dimension of the problem, the order of accuracy
of the underlying numerical method, and the choice of deterministic solver. The constant c0
depends on the distribution of the constant C(\omega ). A similar choice is possible in the case of
finite element methods with locally adaptive mesh refinement driven by an a posteriori error
estimator. In that case, the bound in (2.7) can be replaced by a sharper bound in terms of
the number of mesh elements; cf. [8].

Finally, we mention that both Assumption 2.1 and Assumption 2.2 are formulated as \BbbP -
almost sure conditions, and we are aware of the fact that in practical scenarios this may be very
restrictive. It is of great interest to relax this assumption and to allow numerical error bounds
that hold only with high probability or in an Lp-sense instead of \BbbP -almost surely. However, this
relaxation would lead to nontrivial changes in the complexity analysis presented in section 5.
Therefore, we will leave this extension for future work.

3. Adaptive subset simulation and selective refinement. In this section, we explore
in detail the estimation of the failure probability P given by (2.2), and propose two new
extensions of the classical subset simulation approach.

Let \widehat P denote an estimator of P . There are several sources of error in this estimator. These
include the following: systematic error due to the choice of mathematical model, numerical
error due to model approximation, and statistical error due to finite sampling size. Here,
we will assume the model is exact and will only consider how to control the numerical and
statistical errors. We measure the quality of the estimator \widehat P by using the relative root mean
squared error (rRMSE)

\delta ( \widehat P ) =
1

P

\sqrt{} 
\BbbE [( \widehat P  - P )2],(3.1)

and we let TOL > 0 be the desired accuracy for \delta ( \widehat P ). In subset simulation, the rRMSE is
often referred to as the coefficient of variation (c.o.v.); see, e.g., [5].

3.1. Estimating rare event probabilities by standard Monte Carlo. The most basic way
of estimating the probability in (2.2) to an accuracy TOL is to use a standard MC method
where all samples are computed with a numerical approximation to accuracy \scrO (TOL). Let
FL := \{ \omega \in \Omega :GL(\omega )\leq 0\} be the approximate failure set on a fixed numerical discretisation
level L, and consider the standard MC estimator

\widehat P\mathrm{M}\mathrm{C} =
1

N

N\sum 
i=1

1FL(\omega i) =
1

N

N\sum 
i=1

1( - \infty ,0](G
(i)
L ) ,(3.2)

where \omega i \in \Omega are independent and identically distributed (i.i.d.) samples and each G
(i)
L =

GL(\omega i) is computed to accuracy \gamma L. This is an unbiased estimator for

PL = \BbbP 
\bigl( 
FL
\bigr) 
=

\int 
\Omega 

1FL(\omega )\BbbP (d\omega ) =\BbbE 
\Bigl[ \widehat P\mathrm{M}\mathrm{C}

\Bigr] 
,(3.3)

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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938 ELFVERSON, SCHEICHL, WEISSMANN, AND DIAZ DE LA O

and we can expand

\delta ( \widehat P\mathrm{M}\mathrm{C})2 =
\BbbE 
\Bigl[ 
( \widehat P\mathrm{M}\mathrm{C})2

\Bigr] 
 - 2\BbbE 

\Bigl[ \widehat P\mathrm{M}\mathrm{C}
\Bigr] 
P + P 2

P 2

=
\BbbE 
\Bigl[ 
( \widehat P\mathrm{M}\mathrm{C})2

\Bigr] 
 - \BbbE 

\Bigl[ \widehat P\mathrm{M}\mathrm{C}
\Bigr] 2

+\BbbE 
\Bigl[ \widehat P\mathrm{M}\mathrm{C}

\Bigr] 2
 - 2\BbbE 

\Bigl[ \widehat P\mathrm{M}\mathrm{C}
\Bigr] 
P + P 2

P 2

=

\Biggl( \BbbE 
\Bigl[ \widehat P\mathrm{M}\mathrm{C}  - P

\Bigr] 
P

\Biggr) 2

+
\BbbV 
\Bigl[ \widehat P\mathrm{M}\mathrm{C}

\Bigr] 
P 2
L

P 2
L

P 2
=

\biggl( 
1 - PL

P

\biggr) 2

+
1 - PL

NPL

P 2
L

P 2
,

(3.4)

which includes a bias error due to the numerical approximation GL \approx G. The expectation and

the variance of \widehat P\mathrm{M}\mathrm{C} in (3.4) are with respect to the joint distribution of the samples G
(i)
L , in

the i.i.d. case here, the N -fold product measure of the distribution of GL. As shown in [23,
sect. 3], it follows from Assumption 2.2 that there exists a constant c1 > 0 such that\biggl( 

1 - PL

P

\biggr) 2

\leq c21\gamma 
2L .

To ensure that the first term on the right hand side of (3.4) is less than TOL2/2 it suffices that

L\geq log
\Bigl( \surd 

2c1TOL - 1
\Bigr) 
.(3.5)

We will assume this throughout this paper.
We note that the constant c1 does, in general, depend on the underlying distribution of G

and GL, in particular, on the rareness of the event and on the gradient of G near the boundary
of the failure domain. However, L only grows logarithmically with c1 and this contribution to
the rRMSE is the same for all methods considered. We refer to [42] for a detailed analysis of
approximation errors for rare event probabilities in the context of PDE based models.

The main challenge in achieving the required accuracy for \delta ( \widehat P\mathrm{M}\mathrm{C}), is to ensure that the
second term on the right hand side of (3.4) is sufficiently small such that

1 - PL

NPL

P 2
L

P 2
\leq TOL2

2
.(3.6)

A sufficient condition for this to hold is

N \propto TOL - 2P - 1
L (PL/P )2 .(3.7)

Hence, the number of samples needs to be proportional to the inverse of the rare event proba-
bility. For realistic applications, where the cost \scrC [GL]\gg 1 and PL \approx P \ll 1, this is completely
infeasible. Under Assumption 2.1 and choosing L as in (3.5), the total cost of the standard
MC estimator would be

\BbbE 
\Bigl[ 
\scrC [ \widehat P\mathrm{M}\mathrm{C}]

\Bigr] 
=N\BbbE [\scrC [GL]]\leq Nc0\gamma 

 - Lq \leq c2TOL - (2+q)P - 1
L

P 2
L

P 2
,(3.8)

for some constant c2 > 0 which is independent of TOL. It is possible to improve this through
importance sampling techniques [37, 38, 12], but that requires some a priori knowledge of the
distribution of GL, which we typically do not have. Further note that the factor PL/P is close
to 1, since L was chosen large enough such that PL/P \in (1 - TOL/

\surd 
2,1 +TOL/

\surd 
2).

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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ADAPTIVE ML SUS WITH SELECTIVE REFINEMENT 939

3.2. Subset simulation. In engineering applications, subset simulation [5, 6, 34] is one of
the most widespread variance reduction techniques to design an efficient estimator for P in
(2.2). It has been successfully used in many different contexts and for different applications,
which include engineering reliability analysis [4], robust design [2], topology optimization
[35], multiobjective optimization [43], Bayesian inference [21], and model calibration through
history matching [27].

The main idea is to define a sequence of nested failure sets that contain the target failure
set F , as in (1.1). This is accomplished using a sequence of intermediate failure thresholds

0 = yK < yK - 1 < . . . < y0 =\infty .(3.9)

That way, each intermediate failure set is defined as

Fj := \{ \omega \in \Omega :G(\omega )\leq yj\} = \{ G\in ( - \infty , yj ]\} , for j = 1, . . . ,K.

The failure set F and some intermediate failure sets that contain it are illustrated in Figure 3.1
via level curves of G(\omega ). As stated in (1.2), the rare event probability \BbbP (F ) can be expressed
as a product of conditional probabilities, i.e., \BbbP (F ) =

\prod K
j=1 \BbbP (Fj | Fj - 1), where each \BbbP (Fj | Fj - 1)

is by construction larger than \BbbP (F ) and thus less rare---significantly so, if K is sufficiently
large and the yj are chosen appropriately.

To estimate \BbbP (F ) from the product of conditional probabilities we need to compute

\BbbP (Fj | Fj - 1) =

\int 
\BbbR 

1( - \infty ,yj ](x)\pi j - 1(x)dx, for j = 1, . . . ,K,(3.10)

where \pi j - 1 is the pdf of G conditioned on the event G\leq yj - 1, i.e.,

\pi j - 1(x) =
\pi (x)1( - \infty ,yj - 1](x)

Z
with Z :=

\int yj - 1

 - \infty 
\pi (x) dx .(3.11)

G(ω)

yK−2

yK−1

Ω

R

yK

Figure 3.1. A cartoon of the limit state function \omega \mapsto \rightarrow G(\omega ) and the resulting failure sets.
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940 ELFVERSON, SCHEICHL, WEISSMANN, AND DIAZ DE LA O

The standard MC estimator for the integral in (3.10) is given by

\BbbP (Fj | Fj - 1)\approx 
1

N

N\sum 
i=1

1( - \infty ,yj ](G
(i)), G(i) \sim \pi j - 1.(3.12)

In general, we cannot generate i.i.d. samples from \pi j - 1 directly, at least not efficiently. In
order to circumvent this, MCMC methods are commonly employed; see section 4 below.

3.3. Subset simulation with selective refinement. In practice we also need to take into
account the numerical approximations of the failure domains. Instead of having a fixed com-
putational mesh for all samples, which is the typical approach in the literature, we follow [23]
and use a sample-dependent approximation GL(\omega ) that guarantees instead that the error in
the limit state function satisfies either the bound (2.4) in Assumption 2.1 or the weaker bound
(2.6) in Assumption 2.2.

Firstl, in the case of Assumption 2.1, we use the sequence of intermediate failure sets

FL
j := \{ \omega :GL(\omega )\leq yj\} , for \infty = y0 > . . . > yK - 1 > yK = 0 ,(3.13)

which obviously fulfill the critical subset property

FL = FL
K \subset FL

K - 1 \subset \cdot \cdot \cdot \subset FL
1 \subset FL

0 =\Omega .(3.14)

In the case of the selective refinement strategy, i.e., under Assumption 2.2, the following
sequence of intermediate failure sets is chosen:

FL
j := \{ \omega :G

yj

L (\omega )\leq yj\} , for \infty = y0 > . . . > yK - 1 > yK = 0 .(3.15)

The subset property can be guaranteed again if the failure thresholds are sufficiently far apart.

Lemma 3.1. Let j \in \{ 1, . . . ,K\} . Suppose that the random variable GL satisfies Assump-
tion 2.2 and that yj - 1  - yj \geq 2\gamma L. Then

FL
j = \{ \omega :G

yj

L (\omega )\leq yj\} \subset \{ \omega :G
yj - 1

L (\omega )\leq yj - 1\} = FL
j - 1.

Proof. First, note that by convention F0 =\Omega in which case the subset property is always
satisfied. Next, we assume that j \geq 2 and we will give a proof by contradiction. Fix \omega \in \Omega 
such that G

yj

L (\omega )\leq yj and G
yj - 1

L (\omega )> yj - 1.
Case 1: Assume that | Gyj

L (\omega ) - G(\omega )| >\gamma L, i.e.,

| Gyj

L (\omega ) - G(\omega )| \leq max(| Gyj

L (\omega ) - yj | , \gamma L) = yj  - G
yj

L (\omega ).

If | Gyj - 1

L (\omega ) - G(\omega )| \leq \gamma L, then

G
yj - 1

L (\omega ) =G
yj - 1

L (\omega ) - G(\omega ) +G(\omega )\leq \gamma L +G(\omega )

= \gamma L +G(\omega ) - G
yj

L (\omega ) +G
yj

L (\omega )

\leq \gamma L + | G(\omega ) - G
yj

L (\omega )| +G
yj

L (\omega )

\leq \gamma L + yj  - G
yj

L (\omega ) +G
yj

L (\omega )

= \gamma L + yj \leq yj - 1,
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ADAPTIVE ML SUS WITH SELECTIVE REFINEMENT 941

which contradicts G
yj - 1

L (\omega )> yj - 1. On the other hand, if | Gyj - 1

L (\omega ) - G(\omega )| >\gamma L, then

| Gyj - 1

L (\omega ) - G(\omega )| \leq max(| Gyj - 1

L (\omega ) - yj - 1| , \gamma L) =G
yj - 1

L (\omega ) - yj - 1,

and therefore,

G
yj - 1

L (\omega ) =G
yj - 1

L (\omega ) - G(\omega ) +G(\omega )\leq | Gyj - 1

L (\omega ) - G(\omega )| +G(\omega )

\leq G
yj - 1

L (\omega ) - yj - 1 +G(\omega )

=G
yj - 1

L (\omega ) - yj - 1 +G(\omega ) - G
yj

L (\omega ) +G
yj

L (\omega )

\leq G
yj - 1

L (\omega ) - yj - 1 + yj <G
yj - 1

L (\omega ),

which is a contradiction in itself.
Case 2: Now, assume that | Gyj

L (\omega ) - G(\omega )| \leq \gamma L, i.e.,

| Gyj

L (\omega ) - G(\omega )| \leq max(| Gyj

L (\omega ) - yj | , \gamma L) = \gamma L.

Now, if | Gyj - 1

L (\omega ) - G(\omega )| \leq \gamma L, then

G
yj - 1

L (\omega ) =G
yj - 1

L (\omega ) - G(\omega ) +G(\omega ) - G
yj

L (\omega ) +G
yj

L (\omega )\leq 2\gamma L + yj \leq yj - 1,

which contradicts G
yj - 1

L (\omega )> yj - 1. If again | Gyj - 1

L (\omega ) - G(\omega )| >\gamma L, then

G
yj - 1

L (\omega ) =G
yj - 1

L (\omega ) - G(\omega ) +G(\omega ) - G
yj

L (\omega ) +G
yj

L (\omega )

\leq G
yj - 1

L (\omega ) - yj - 1 + \gamma L + yj <G
yj - 1

L (\omega ),

due to the assumed upper bound on yj  - yj - 1, which is again a contradiction in itself.

Hence, in both cases the numerical approximation of the rare event probability PL = \BbbP (FL)
on level L can be written as a product of intermediate failure set probabilities as

PL =

K\prod 
j=1

\BbbP (FL
j | FL

j - 1).(3.16)

Finally, given estimators \widehat Pj for \BbbP (FL
j | FL

j - 1), we define the subset simulation estimator as

\widehat P \mathrm{S}\mathrm{u}\mathrm{S} =

K\prod 
j=1

\widehat Pj .(3.17)

In general, this is a biased estimator for PL, but it can be shown that it is asymptotically
unbiased [5]. We will return to this in section 4.

As stated already in Remark 2.3, for simplicity we will omit the dependence on yj and
write in the following G\ell (\omega ) instead of G

yj

\ell (\omega ), also in the case of selective refinement when
using Assumption 2.2.

3.4. Adaptive multilevel subset simulation. We will now go one step further and consider
the sequence of failure sets

F\mathrm{M}\mathrm{L}
j = \{ \omega :G\ell j (\omega )\leq yj\} , j = 1, . . . ,K,
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942 ELFVERSON, SCHEICHL, WEISSMANN, AND DIAZ DE LA O

where each G\ell j is computed only to tolerance \gamma \ell j with \ell j \leq L, and yj and \ell j are adaptively
chosen. Typically, we assume \ell j \geq \ell j - 1 and \ell K =L. We consider both the cases without and
with selective refinement, i.e., G\ell j (\omega ) or G

yj

\ell j
(\omega ), respectively.

Such a multilevel strategy was also at the heart of [39], but there the thresholds yj were

chosen to roughly balance the contributions from the individual subsets, i.e., \widehat P1 \approx \widehat P2 \approx . . .\approx \widehat PK , as in classical subset simulation. This reduces the number of expensive fine resolution
samples only by a linear factor \scrO (K). Furthermore, without any further conditions the crucial
subset property F\mathrm{M}\mathrm{L}

j \subset F\mathrm{M}\mathrm{L}
j - 1 cannot be guaranteed. Thus, one focus of [39] was to estimate

the correction factor that arises due to the loss of the subset property.
To circumvent this problem, in the following lemma we propose a method whereby the

thresholds yj are chosen adaptively, to maintain the subset property. Crucially, we exploit
here the samplewise error bounds in Assumptions 2.1 and 2.2.

Lemma 3.2. Consider the sequence FML
j , j = 1, . . . ,K, where either Assumption 2.1 or

Assumption 2.2 is satisfied. Let yK = 0 and y0 =\infty , and choose

yj = yj+1 + (\gamma \ell j + \gamma \ell j+1)> 0, for j =K  - 1, . . . ,1.

Then, the subset property FML
j+1 \subset FML

j holds.

Proof. First, suppose that Assumption 2.1 holds. Then

| G\ell j (\omega ) - G\ell j+1
(\omega )| \leq | G(\omega ) - G\ell j (\omega )| + | G(\omega ) - G\ell j+1

(\omega )| \leq (\gamma \ell j + \gamma \ell j+1),(3.18)

and hence, if G\ell j+1
(\omega )\leq yj+1, then

G\ell j (\omega )\leq G\ell j+1
(\omega ) + (\gamma \ell j + \gamma \ell j+1)\leq yj+1 + (\gamma \ell j + \gamma \ell j+1) = yj ,(3.19)

which concludes the proof for Assumption 2.1.
The proof for Assumption 2.2 then follows directly since yj  - yj - 1 \geq 2\gamma \ell j .

For simplicity, we assume that K =L and that \ell j = j for all j = 1, . . . ,K. The rare event
probability can then be written as

\BbbP (F\mathrm{M}\mathrm{L}
L ) =

L\prod 
\ell =1

\BbbP (F\mathrm{M}\mathrm{L}
\ell | F\mathrm{M}\mathrm{L}

\ell  - 1),(3.20)

where F\mathrm{M}\mathrm{L}
\ell = \{ \omega : G\ell (\omega ) \leq y\ell \} . However, this does not preclude us from using more than

L subsets. If the first intermediate failure set F\mathrm{M}\mathrm{L}
1 is still a rare event, we can estimate

\BbbP (F\mathrm{M}\mathrm{L}
1 | F\mathrm{M}\mathrm{L}

0 ) = \BbbP (F\mathrm{M}\mathrm{L}
1 ) using classical subset simulation with an additionalK1 subsets instead

of plain MC, but with all evaluations of the limit state function on those additional K1 subsets
only computed to an accuracy of \gamma 1 in Assumptions 2.1 and 2.2. This may also be necessary
for intermediate failure probabilities P (Fj | Fj - 1) if they happen to be very small.

Let \widehat P1 be an estimator for \BbbP (F\mathrm{M}\mathrm{L}
1 ) = \BbbP (F\mathrm{M}\mathrm{L}

1 | F\mathrm{M}\mathrm{L}
0 ) using standard MC or classical subset

simulation on discretization level \ell = 1. For \ell > 1 we assume as above that we are given
estimators \widehat P\ell for \BbbP 

\bigl( 
F\mathrm{M}\mathrm{L}
\ell | F\mathrm{M}\mathrm{L}

\ell  - 1

\bigr) 
that will be constructed by MCMC sampling in the following.

We define the multilevel subset simulation estimator by

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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ADAPTIVE ML SUS WITH SELECTIVE REFINEMENT 943

\widehat P\mathrm{M}\mathrm{L} = \widehat P1

L\prod 
\ell =2

\widehat P\ell .(3.21)

In practice, we propose applying classical subset simulation for the estimation of \widehat P1.
An illustration of the idea behind Lemma 3.2 is given in Figure 3.2. An additional benefit

of the choice of thresholds in Lemma 3.2 is that the difference in the intermediate failure
thresholds y\ell shrinks geometrically as \ell increases. See Figure 3.3 for an illustration. Thus,
by continuity of \BbbP it follows that \BbbP (F\ell ) \rightarrow \BbbP (F ), and therefore, also \BbbP (F\mathrm{M}\mathrm{L}

\ell | F\mathrm{M}\mathrm{L}
\ell  - 1) \rightarrow 1 as

\ell \rightarrow \infty . This effect reduces the variance on the latter subsets that have to be computed to
higher accuracy. As a consequence, significantly fewer samples have to be computed at high
accuracy reducing the overall complexity of the estimator dramatically. We will return to this
point in section 5.

The three considered algorithms, namely subset simulation, subset simulation with selec-
tive refinement, and multilevel subset simulation, are summarized in Appendix A. To estimate
the conditional probabilities in (3.16) and (3.20) an MCMC algorithm is used, which will be
described in the following section. The different types of subset simulation only differ in the
construction of the considered subsets Fj . We have further included an adaptive choice for N\ell 

in Algorithm A.2 in order to verify the required tolerance with respect to the rRMSE \delta ( \widehat P ).
Sufficient bounds on \delta ( \widehat P ) are derived in section 5.1. A similar choice can also be included in
Algorithm A.1.

G(ω)
Gℓ+1(ω)

Gℓ(ω)

yℓ

yℓ+1

γℓ

γℓ+1

Ω

ML

R

G(ω)
Gℓ+1(ω)

Gℓ(ω)

yℓ

yℓ+1

γℓ

γℓ+1

Ω

FML
ℓ+1

R

Figure 3.2. Illustration of the choice of failure thresholds in Lemma 3.2, which guarantee the subset property
FML
\ell +1 \subset FML

\ell . It holds, when y\ell  - y\ell +1 = \gamma \ell +1 + \gamma \ell and | G\ell (\omega ) - G\ell +1(\omega )| \leq \gamma \ell +1 + \gamma \ell , as chosen in Lemma
3.2 (left plot). If y\ell  - y\ell +1 < \gamma \ell +1 + \gamma \ell , then Lemma 3.2 does not apply. In particular, for too small choices of
y\ell  - y\ell +1 we may find \omega \in \Omega such that G\ell +1(\omega ) \leq y\ell +1, but G\ell (\omega ) > y\ell , as illustrated by the red zone (in the
right plot).

y\ell +3 y\ell +2 y\ell +1 y\ell 

\gamma \ell +3 + \gamma \ell +2 \gamma \ell +2 + \gamma \ell +1 \gamma \ell +1 + \gamma \ell 

Figure 3.3. Illustration of the shrinkage of the subsets FML
\ell with increasing \ell .
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944 ELFVERSON, SCHEICHL, WEISSMANN, AND DIAZ DE LA O

4. Shaking transformations and asymptotic convergence. From the above discussion
we see that a crucial component of any subset simulation is an efficient estimator for the
conditional probabilities \BbbP (Fj | Fj - 1), for j > 1. In other words, we need to generate samples
from the pdf given in (3.11). Due to the small probability of failure, standard MC sampling is
infeasible. Instead, several authors have developed MCMC algorithms [5, 34, 3]. Here, we use
the general, parallel, one-path (POP) algorithm based on shaking transformations introduced
in [26] and further developed in [1]. The key idea is to build one Markov chain, exploring the
space through shaking transformations and moving from the coarsest subset to the finest via
a sequence of rejection operators.

The shaking transformation of a random variable X with respect to a random variable W ,
acting on measurable spaces (\BbbX ,\scrX ) and (\BbbW ,\scrW ), respectively, can be defined as a measurable
mapping S :\BbbX \times \BbbW \rightarrow \BbbX that satisfies

(X,S(X,W )) = (S(X,W ),X)(4.1)

in distribution. Assuming that the rare event and the corresponding intermediate subsets can
be written as events of X, i.e.,

F = \{ X \in A\} , Fj = \{ X \in Aj\} , such that A,Aj \in \scrX , j = 1, . . . ,K,

the shaking transformation will act as the proposal in the constructed MCMC algorithm. In
order to force the Markov chain to explore the subset Fj , we define the rejection operator

MS
j :\BbbX \times \BbbW \rightarrow \BbbX , with MS

j (x,w) = S(x,w)1S(x,w)\in Aj
+ x1S(x,w)/\in Aj

.

The proposed MCMC algorithm in the earlier multilevel subset simulation paper [39] is
based on a preconditioned Crank--Nicholson (pCN) [32, 19] proposal which can, in fact, be
written as a shaking transformation and hence the theoretical results in [26] can be applied.
The property of being a shaking transformation is related to the detailed balance condition.
This observation has been made and verified already in [1, Thm. 8]. The general POP algo-
rithm is given in Algorithm 4.1.

Assuming that the resulting Markov chains (Xj,i)i\geq 0 are \pi j-irreducible and Harris recur-
rent under a small set condition, the POP algorithm converges in the sense that for every j
there exists a constant Cj > 0 such that

\BbbE 
\Bigl[ 
| \widehat Pj  - \BbbP (X \in Aj+1 | X \in Aj)| 2

\Bigr] 
\leq Cj

Nj
.

In [1] the authors include a model for X via Gaussian transformations which has also been
considered in [34]. We consider X modelled through a measurable transformation T as

X(\omega ) = T (\Theta (\omega )), \omega \in \Omega , T :\BbbR d\rightarrow \BbbX measurable,

where \Theta \sim \scrN (0, I\BbbR d). The underlying rare event can then be formulated as

A= \{ \theta \in \BbbR d | \varphi (\theta , \=y)\leq 0\} \subset \scrB (\BbbR d), \varphi :\BbbR d \times \BbbR \cup \{ \infty \} \rightarrow \BbbR 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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ADAPTIVE ML SUS WITH SELECTIVE REFINEMENT 945

Algorithm 4.1 Parallel One-Path (POP) algorithm.

1: Given a seed X0,0 \sim X
2: for j = 0, . . . ,K  - 1 do
3: for i= 0, . . . ,Nj+1  - 1 do
4: Generate Wj,i \sim W ,
5: Shake and accept/reject Xj,i+1 =MS

j (Xj,i,Wj,i)

6: end for
7: Estimate the probability of subset Fj+1 by

\widehat Pj+1 =
1

Nj+1

Nj+1 - 1\sum 
k=0

1Aj+1
(Xj,k),

8: ij = argmin\{ k | Xj,k \in Aj+1\} 
9: Define initial state for next level Xj+1,0 =Xj,ij

10: end for

11: Result: \widehat P =
\prod K

j=1
\widehat Pj

where \varphi is nonincreasing in the second component in the sense that \varphi (\theta , y)\geq \varphi (\theta , y\prime ), for any
\theta \in \BbbR d and y \geq y\prime , and the convention \varphi (\theta ,\infty ) :=  - \infty is assumed. Further, we assume that
\varphi is measurable in the first component. The nested subsets are built through a sequence of
level parameters \=y := yK < . . . < yk < . . . < y0 \leq \infty by

Aj = \{ \theta \in \BbbR d | \varphi (\theta , yj)\leq 0\} \in \scrB (\BbbR d),(4.2)

such that

A :=AK \subset \cdot \cdot \cdot \subset Aj \subset \cdot \cdot \cdot \subset A0 :=\BbbR d.

In fact, the special case \varphi (\theta , y) := T (\theta )  - y for a measurable model functional T : \BbbR d \rightarrow \BbbR 
connects the present approach to the setting considered in the previous sections. The sequence
of subsets Fj considered above can then be written as Fj = \{ \Theta \in Aj\} \in \Sigma .

Consider the shaking transformation

S\eta (\theta ,w) =
\sqrt{} 

1 - \eta 2\theta + \eta w,(4.3)

which obviously satisfies (4.1), and let W be an independent copy of \Theta . The shaking trans-
formation (with rejection) is now defined as

M
S\eta 

j :

\Biggl\{ 
\BbbR d \times \BbbR d\rightarrow \BbbR d,

(\theta ,w) \mapsto \rightarrow S\eta (\theta ,w)1S\eta (\theta ,w)\in Aj
+ x1S\eta (\theta ,w)/\in Aj

.
(4.4)

We note that this is, in fact, equivalent to using the pCN approach, which is in detailed balance
with the prior. This has the advantage that the acceptance rate does not decrease with the
dimension, which is the case, e.g., for traditional random walk proposals. The POP algorithm
is then of very similar form as one of the algorithms proposed in [34] to generate samples from
the conditional pdf \pi j - 1. For completeness, details are provided in Algorithm 4.2. Under
certain assumptions geometric convergence of the resulting estimator can be verified.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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946 ELFVERSON, SCHEICHL, WEISSMANN, AND DIAZ DE LA O

Algorithm 4.2 POP algorithm based on Gaussian transformation.

1: Given a seed \Theta 0,0 \sim \Theta and a correlation parameter \eta \in [0,1]
2: for j = 0, . . . ,K  - 1 do
3: for i= 0, . . . ,Nj+1  - 1 do
4: Generate Wj,i \sim \Theta ,

5: Shake and accept/reject \Theta j,i+1 =M
S\eta 

j (\Theta j,i,Wj,i)

6: end for
7: Estimate the probability of subsets Fj+1 by

\widehat Pj+1 =
1

Nj+1

Nj+1 - 1\sum 
k=0

1Aj+1
(\Theta j,k),

8: ij = argmin\{ k | \Theta j,k \in Aj+1\} 
9: Define initial state for next level \Theta j+1,0 =\Theta j,ij

10: end for

11: Result: \widehat P =
\prod K

j=1
\widehat Pj

Theorem 4.1 (see [1, Thm. 8]). Let j \in \{ 0, . . . ,K  - 1\} be fixed and consider the Markov
chain (\Theta j,i)i\geq 0 resulting from Algorithm 4.2. Assume that

sup
\theta \in Aj

\BbbP (S(\theta ,W ) /\in Aj) = \delta 1 < 1,(4.5)

and let c \geq 2 and q \geq 2. Define V (\theta ) = exp(c
\sum d

k=1 \theta k) and assume that the initial condition
\Theta j,0 is independent of the future evolution of the Markov chain and such that \BbbE [V (\Theta j,0)] <
+\infty . Then, there exists C > 0 and a geometric rate r \in (0,1) such that for any measurable
function g :\BbbR d\rightarrow \BbbR with

sup
\theta \in \BbbR d

| g(\theta )| 
V 1/q(\theta )

<+\infty 

it holds true that

\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| 1N
N\sum 
i=1

g(\Theta j,i) - \BbbE [g(\Theta ) | \Theta \in Aj ]

\bigm| \bigm| \bigm| \bigm| \bigm| 
q\Biggr] 
\leq CN

 - q/2
j ,

and | \BbbE [g(\Theta j,N ] - \BbbE [g(\Theta ) | \Theta \in Aj ]| \leq Crn.

In this setting, the estimator \widehat Pj of \BbbP (Fj | Fj - 1) is then given by

\widehat Pj =
1

N

N\sum 
i=1

1\{ \Theta j - 1,i\in Aj\} =
1

N

N\sum 
i=1

1( - \infty ,0](\varphi (\Theta j - 1,i , yj)).(4.6)

Note that by using a measurable transformation T\ell such that G\ell (\omega ) = T\ell (\Theta (\omega )), the limit
state function can also be defined pointwise in y\ell , i.e., \varphi (\theta , y\ell ) := T\ell (\theta )  - y\ell . In that case,
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ADAPTIVE ML SUS WITH SELECTIVE REFINEMENT 947

the subset property follows from Lemma 3.2 and Theorem 4.1 can be applied to the adaptive
multilevel subset simulation algorithm as well.

A brief discussion of the assumptions is in order. To ensure condition (4.5) the acceptance
rate of the algorithm needs to be uniformly bounded from below. If

sup
\theta \in Aj

\BbbP (S(\theta ,W ) /\in Aj) = 1,

the Markov chain may get stuck in some points. The condition is problem dependent and, in
general, difficult to verify. However, this is a common problem with MCMC algorithms.

Since the sequences of samples \{ \Theta j - 1,i\} Ni=1 are dependent, we use convergence diagnostics
to estimate the autocorrelation factor in the sequence. A common measure of the dependence
in the sequence is the autocorrelation factor. Following [5], we use multiple chains to compute
an estimate of the autocorrelation factor \phi j . The total number of samples N to achieve a
certain accuracy of the estimator in (4.6) is again determined by the rRMSE in (3.1):

\delta ( \widehat Pj) =
1

\BbbP (Fj | Fj - 1)

\sqrt{} 
\BbbE 
\Bigl[ 
( \widehat Pj  - \BbbP (Fj | Fj - 1))

2
\Bigr] 
.

Expanding the square of the rRMSE, we can estimate

\delta ( \widehat Pj)
2 =

1 - \BbbE 
\Bigl[ \widehat Pj

\Bigr] 
N\BbbP (Fj | Fj - 1)

=
1 - \BbbP (Fj | Fj - 1)

N\BbbP (Fj | Fj - 1)
(1 + \phi j),(4.7)

with autocorrelation factor \phi j = 0 for i.i.d. samples and \phi j > 0 for dependent samples. We
note that for each j the expectation in (4.7) is with respect to the joint distribution of the
\Theta j - 1,i, i= 1, . . . ,N .

5. Complexity analysis. We will now bound the complexity of the new estimators.

5.1. Complexity of subset simulation with selective refinement. Analogous to (3.4), the
square \delta ( \widehat P \mathrm{S}\mathrm{u}\mathrm{S})2 of the rRMSE for the subset simulation estimator can be expanded into the
sum of a bias term---identical to the one in (3.4) for standard MC---and the relative variance
\BbbV [ \widehat P \mathrm{S}\mathrm{u}\mathrm{S}]/P 2

L. The bias term can again be made less than TOL2/2 by choosing L as before in
(3.5). Moreover, applying results derived in [5] it turns out that

\BbbE 
\biggl[ 
( \widehat P \mathrm{S}\mathrm{u}\mathrm{S}  - PL)

2

P 2
L

\biggr] 
\leq TOL2

2
if \delta ( \widehat Pj)

2 =\BbbE 
\biggl[ 
( \widehat Pj  - Pj)

2

P 2
j

\biggr] 
\propto K - sTOL2 ,(5.1)

where s = 1 if the estimators \widehat Pj , j = 1, . . . ,K, are uncorrelated and s = 2 if they are fully
correlated. To simplify notation, the biased densities defined by FL

j - 1 instead of Fj - 1 in (3.11)
are again denoted by \pi j - 1 suppressing the dependence on L.

Let us now estimate the cost for the particular case where \widehat Pj is chosen to be the MCMC
estimator for \BbbP (Fj | Fj - 1) described in section 4 with Nj samples. As it has been shown in [5]
the rRMSE can be computed as

\delta ( \widehat Pj)
2 =

1 - \BbbP (Fj | Fj - 1)

Nj\BbbP (Fj | Fj - 1)
(1 + \phi j),(5.2)
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948 ELFVERSON, SCHEICHL, WEISSMANN, AND DIAZ DE LA O

where \phi j is the autocorrelation factor of the Markov chain produced by Algorithm 4.2. We note
that (5.2) crucially depends on the fact that the underlying Markov chain generated through
the MCMC algorithm is ergodic. The ergodicity of the Markov chain can be obtained from
Theorem 4.1.

In the following complexity analysis, we assume that (5.2) is satisfied. Moreover, we
assume an adaptive selection of the failure sets has been applied, e.g., as described in [5],
where the values of yj are chosen in the course of the algorithm, such that \widehat Pj \approx p0, for all j =
1, . . . ,K. It was shown in [44] that the best performance is achieved for values of the constant
p0 \in [0.1,0.3]. For simplicity, we assume (without loss of generality) that \BbbP (Fj | Fj - 1) = p0 for
all j = 1, . . . ,K.

Theorem 5.1. Suppose the following:
1. Assumption 2.1 is satisfied for some q\geq 0 and \gamma \in (0,1);
2. the subsets are chosen such that \BbbP (Fj | Fj - 1) = p0 := P

1/K
L , for all j = 1, . . . ,K  - 1;

and
3. there exists a constant \phi <\infty such that \phi j \leq \phi in (5.2) for all j = 1, . . . ,K.

Then, for any TOL> 0 the maximum discretisation level L and the numbers of samples \{ Nj\} 
can be chosen such that

\BbbE 
\biggl[ | \widehat P \mathrm{S}\mathrm{u}\mathrm{S}  - P | 2

P 2

\biggr] 
\leq TOL2

with a cost that is bounded by

\BbbE 
\Bigl[ 
\scrC [ \widehat P \mathrm{S}\mathrm{u}\mathrm{S}]

\Bigr] 
\leq c4

P 2
L

P 2
TOL - (2+q)

\Bigl( 
log (P - 1

L )
\Bigr) s+1

for some constant c4 > 0. Here, s= 1 if the estimators \widehat Pj, j = 1, . . . ,K, are uncorrelated and
s= 2 if they are fully correlated.

If, in addition, Assumption 2.2 holds and the conditions yj - 1  - yj \geq 2\gamma L are satisfied for
all j = 1, . . .K, then the cost can be bounded by

\BbbE 
\Bigl[ 
\scrC [ \widehat P \mathrm{S}\mathrm{u}\mathrm{S}]

\Bigr] 
\leq c4

P 2
L

P 2
TOL - \mathrm{m}\mathrm{a}\mathrm{x}(2,1+q)

\Bigl( 
log (P - 1

L )
\Bigr) s+1

.

Proof. We first split

\BbbE 
\biggl[ | \widehat P \mathrm{S}\mathrm{u}\mathrm{S}  - P | 2

P 2

\biggr] 
=

\biggl( 
\BbbE [ \widehat P \mathrm{S}\mathrm{u}\mathrm{S}  - P ]

P

\biggr) 2

+
P 2
L

P 2
\BbbE 
\biggl[ 
( \widehat P \mathrm{S}\mathrm{u}\mathrm{S}  - PL)

2

P 2
L

\biggr] 
,(5.3)

where the first term can be bounded by\biggl( 
\BbbE [ \widehat P \mathrm{S}\mathrm{u}\mathrm{S}  - P ]

P

\biggr) 2

\leq 2

\biggl( 
PL  - P

P

\biggr) 2

+ 2
P 2
L

P 2

\biggl( 
\BbbE [ \widehat P \mathrm{S}\mathrm{u}\mathrm{S}  - PL]

PL

\biggr) 2

.(5.4)

To bound the bias error we choose L \propto log(TOL - 1) as in (3.5). Due to the assumptions of
the theorem we can choose Nj =N uniformly across all subsets. The expressions

A :=

\biggl( 
\BbbE [ \widehat P \mathrm{S}\mathrm{u}\mathrm{S}  - PL]

PL

\biggr) 2

and B :=\BbbE 
\biggl[ 
( \widehat P \mathrm{S}\mathrm{u}\mathrm{S}  - PL)

2

P 2
L

\biggr] 
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ADAPTIVE ML SUS WITH SELECTIVE REFINEMENT 949

have been analyzed in [5], where it has been shown that

A\leq 
K\sum 

i,j=1, j>i

\delta ( \widehat Pi)\delta ( \widehat Pj) + o

\biggl( 
1

N

\biggr) 
and B \leq 

K\sum 
i,j=1

\delta ( \widehat Pi)\delta ( \widehat Pj) + o

\biggl( 
1

N

\biggr) 

if the estimators \{ \widehat Pj\} are correlated, whereas

A\leq 
K\sum 
j=1

\delta ( \widehat Pj)
2 and B \leq 

K\sum 
j=1

\delta ( \widehat Pj)
2

if the estimators \{ \widehat Pj\} are uncorrelated. If N is now chosen such that

\delta ( \widehat Pj)
2 \leq c3K

 - sTOL2

5

P 2

P 2
L

,(5.5)

it follows that

A\leq c3
TOL2

5

P 2

P 2
L

and B \leq c3
TOL2

5

P 2

P 2
L

.(5.6)

Taking into account the choice of L in (3.5) and combining (5.3), (5.4), and (5.6), finally
leads to

\BbbE 
\biggl[ | \widehat P \mathrm{S}\mathrm{u}\mathrm{S}  - P | 2

P 2

\biggr] 
\leq TOL2 .

Now, using the third assumption of the theorem, i.e., that \phi j \leq \phi , a sufficient condition on
the number of samples to ensure that the bound in (5.5) holds is

N \propto P 2
L

P 2
KsTOL - 2 ,

where the proportionality constant depends on p0, \phi , and c3, but is independent of TOL and
K. Then, recalling that PL = pK0 and thus K \propto log (P - 1

L ) it follows that

N \propto 
\Bigl( 
log (P - 1

L )
\Bigr) s+1P 2

L

P 2
TOL - 2 .

Hence, combining this with the assumed bound on the cost per sample in Assumption 2.1
and using the fact that L\propto log(TOL - 1) implies \gamma  - qL \propto TOLq, the total cost to compute the
subset simulation estimator can be bounded by

\BbbE 
\Bigl[ 
\scrC [ \widehat P \mathrm{S}\mathrm{u}\mathrm{S}]

\Bigr] 
\leq KNc0\gamma 

 - Lq \leq c4
P 2
L

P 2
TOL - (2+q)

\Bigl( 
log (P - 1

L )
\Bigr) s+1

,

for some constant c4 > 0. Under the selective refinement Assumption 2.2 and for q > 1, the
computational cost can be bounded by

\BbbE 
\Bigl[ 
\scrC [ \widehat P \mathrm{S}\mathrm{u}\mathrm{S}]

\Bigr] 
\leq KNc0(1 + \gamma (1 - q)L)\leq c4

P 2
L

P 2
TOL - \mathrm{m}\mathrm{a}\mathrm{x}(2,1+q)

\Bigl( 
log (P - 1

L )
\Bigr) s+1

.
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950 ELFVERSON, SCHEICHL, WEISSMANN, AND DIAZ DE LA O

Remark 5.2. We note that following Lemma 3.1, the assumption yj - 1  - yj \geq 2\gamma L, for
j = 1, . . . ,K, is needed to ensure the subset property in the case of Assumption 2.2 (i.e., for
subsets defined through Fj = \{ \omega \in \Omega : G

yj

L (\omega ) \leq yj\} ). Although this condition may fail in
practical scenarios, it is easy to check on the fly and then to apply the selective refinement
strategy only on subsets where it is satisfied. Alternatively, since the choice of p0 is somewhat
arbitrary, it could also be chosen level-dependent so that the condition yj - 1  - yj \geq 2\gamma L is
satisfied on all subsets (at the expense of potentially increasing the number of subsets K).
The presented complexity analysis in Theorem 5.1 can then be viewed as the best-case scenario.
In the worst case, the complexity is the same as the cost of classical subset simulation.

5.2. Complexity of adaptive multilevel subset simulation. We now turn our attention
to the complexity of the adaptive multilevel subset estimator defined in (3.21). We will make
use of the following convergence property in the analysis below, assuming that we can control
the ratio of the subset probabilities sufficiently well.

Lemma 5.3. Suppose Assumption 2.1 is satisfied and y\ell is defined as in Lemma 3.2. Fur-
thermore, we assume that

\BbbP (G\leq y)

\BbbP (G\leq x)
\leq 1 + \~c| y - x| log(P - 1),(5.7)

for y > x > 0 and \~c > 0 independent of P . Then the difference between the intermediate
probabilities can be bounded in the following way:

1 - \BbbP (FML
\ell | FML

\ell  - 1)

\BbbP (FML
\ell | FML

\ell  - 1)
=

1 - \BbbP (G\ell \leq yl | G\ell  - 1 \leq y\ell  - 1)

\BbbP (G\ell \leq yl | G\ell  - 1 \leq y\ell  - 1)
\leq c5\gamma 

\ell log(P - 1).

Proof. Applying the subset property we obtain

1 - \BbbP (G\ell \leq yl | G\ell  - 1 \leq y\ell  - 1)

\BbbP (G\ell \leq y\ell | G\ell  - 1 \leq y\ell  - 1)
=

\BbbP (G\ell  - 1 \leq y\ell  - 1)

\BbbP (G\ell \leq y\ell )
 - 1 =

\BbbP (G\ell  - 1 \leq y\ell  - 1) - \BbbP (G\ell \leq y\ell )

\BbbP (G\ell \leq y\ell )
.

First, note that by Assumption 2.1 we have G\ell \leq G+ \gamma \ell and G - \gamma \ell  - 1 \leq G\ell  - 1, and thus

\BbbP (G\ell \leq y\ell )\geq \BbbP (G+ \gamma \ell \leq y\ell ) = \BbbP (G\leq y\ell  - \gamma \ell ),

\BbbP (G\ell  - 1 \leq y\ell  - 1)\leq \BbbP (G - \gamma \ell  - 1 \leq y\ell  - 1) = \BbbP (G\leq y\ell  - 1 + \gamma \ell  - 1).

By definition we have y\ell  - 1 + \gamma \ell = y\ell + (\gamma \ell + \gamma \ell  - 1) + \gamma \ell , which together with (5.7) implies

0\leq \BbbP (G\ell  - 1 \leq y\ell  - 1) - \BbbP (G\ell \leq y\ell )

\BbbP (G\ell \leq y\ell )
\leq \BbbP (G\leq y\ell  - 1 + \gamma \ell  - 1) - \BbbP (G\leq y\ell  - \gamma \ell )

\BbbP (G\leq y\ell  - \gamma \ell )

\leq \~c(2\gamma \ell + 2\gamma \ell  - 1) log(P - 1),

where we have used that \BbbP (G\ell  - 1 \leq y\ell  - 1)\geq \BbbP (G\ell \leq y\ell ) due to Lemma 3.2.

We note that the dependence on log(P - 1) in (5.7) is the weakest assumption we can take
in order to obtain an improvement through our proposed multilevel subset simulation strategy.
However, the bound (5.7) crucially depends on the underlying limit state function G and one
might drop the dependence on log(P - 1) for certain models.
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ADAPTIVE ML SUS WITH SELECTIVE REFINEMENT 951

As in the classical subset simulation, we estimate the failure sets such that

\delta ( \widehat P\ell )
2 =

1 - \BbbP 
\bigl( 
F\mathrm{M}\mathrm{L}
\ell | F\mathrm{M}\mathrm{L}

\ell  - 1

\bigr) 
\BbbP 
\bigl( 
F\mathrm{M}\mathrm{L}
\ell | F\mathrm{M}\mathrm{L}

\ell  - 1

\bigr) (1 + \phi \ell )N
 - 1
\ell \leq L - sTOL2,(5.8)

which guarantees that the relative variance of the multilevel estimator is bounded by TOL2.
We finish by stating and proving the main theoretical result of the paper on the complex-

ity of the proposed adaptive multilevel subset simulation method, with and without selective
refinement, under similar assumptions made for the single-level complexity result in Theo-
rem 5.1. Recall that for simplicity we have set K =L and \ell = \ell j = j for j = 1, . . . ,K.

Theorem 5.4. Suppose that
1. Assumption 2.1 is satisfied for some q\geq 0 and \gamma \in (0,1) and that (5.7) holds;
2. the level thresholds y\ell are defined as in Lemma 3.2; and
3. there exists a constant \phi <\infty such that \phi \ell \leq \phi in (5.8), for all \ell = 1, . . . ,L.

Then, for any TOL> 0, the maximum discretization level L and the numbers \{ N\ell \} of samples
on each level can be chosen such that

\BbbE 
\biggl[ | \widehat P\mathrm{M}\mathrm{L}  - P | 2

P 2

\biggr] 
\leq TOL2

with a cost that is bounded by

\BbbE 
\Bigl[ 
\scrC [ \widehat P\mathrm{M}\mathrm{L}]

\Bigr] 
\leq 
\Biggl\{ 
c7TOL - \mathrm{m}\mathrm{a}\mathrm{x}(2,(1+q))(1 + \phi ) log(P - 1), s= 1,

c7TOL - \mathrm{m}\mathrm{a}\mathrm{x}(2,(1+q)) log(TOL - 1)(1 + \phi ) log(P - 1), s= 2,

for some constant c7 > 0. Here, s= 1 if the estimators \widehat P\ell , \ell = 1, . . . ,L, are uncorrelated and
s= 2 if they are fully correlated.

If, in addition, Assumption 2.2 is satisfied, the cost can be bounded by

\BbbE 
\Bigl[ 
\scrC [ \widehat P\mathrm{M}\mathrm{L}]

\Bigr] 
\leq 
\Biggl\{ 
c7TOL - \mathrm{m}\mathrm{a}\mathrm{x}(2,q)(1 + \phi ) log(P - 1), s= 1,

c7TOL - \mathrm{m}\mathrm{a}\mathrm{x}(2,q) log(TOL - 1)(1 + \phi ) log(P - 1), s= 2.

Proof. The result follows similarly as the proof of Theorem 5.1 for single-level subset
simulation. Note that the resulting number of samples

N\ell \propto 
P 2
L

P 2

1 - \BbbP 
\bigl( 
F\mathrm{M}\mathrm{L}
\ell | F\mathrm{M}\mathrm{L}

\ell  - 1

\bigr) 
\BbbP 
\bigl( 
F\mathrm{M}\mathrm{L}
\ell | F\mathrm{M}\mathrm{L}

\ell  - 1

\bigr) (1 + \phi \ell )L
sTOL - 2

are now level dependent due to the fact that the probabilities \BbbP (F\mathrm{M}\mathrm{L}
\ell | F\mathrm{M}\mathrm{L}

\ell  - 1) differ in \ell . Hence,
applying Lemma 5.3 the total computational costs result in

\BbbE 
\Bigl[ 
\scrC [ \widehat P\mathrm{M}\mathrm{L}]

\Bigr] 
\leq TOL - 2Ls - 1(1 + \phi )

L\sum 
\ell =1

\BbbP (F\mathrm{M}\mathrm{L}
\ell | F\mathrm{M}\mathrm{L}

\ell  - 1)
 - 1(1 - \BbbP (F\mathrm{M}\mathrm{L}

\ell | F\mathrm{M}\mathrm{L}
\ell  - 1))\gamma 

 - \ell q,

\leq TOL - 2Ls - 1(1 + \phi )

L\sum 
l=1

c5\gamma 
(1 - q)\ell log(P - 1)

\leq c6TOL - 2Ls - 1(1 + \phi )(1 + \gamma (1 - q)L) log(P - 1)

\leq c7TOL - \mathrm{m}\mathrm{a}\mathrm{x}(2,1+q)Ls - 1(1 + \phi ) log(P - 1),
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952 ELFVERSON, SCHEICHL, WEISSMANN, AND DIAZ DE LA O

for some c5, c6, c7 > 0. If, in addition, Assumption 2.2 holds the bound can be improved to

\BbbE 
\Bigl[ 
\scrC [ \widehat P\mathrm{M}\mathrm{L}]

\Bigr] 
\leq c7TOL - \mathrm{m}\mathrm{a}\mathrm{x}(2,q)Ls - 1(1 + \phi ) log(P - 1).

Clearly, the asymptotic complexity is significantly improved over classical subset simu-
lation. In addition to the gains due to the level-dependent cost for each sample and to the
variance reduction on the rarer subsets, an additional cost reduction in practice comes from
the fact that the accept/reject step for \ell > 0 in Algorithm 4.2 is computed to tolerance \gamma \ell  - 1

and only accepted samples are then computed also to tolerance \gamma \ell . The intermediate failure
thresholds and thus the failure sets F\mathrm{M}\mathrm{L}

\ell are defined a priori based on the value of \gamma . Thus, the
probabilities \BbbP (F\mathrm{M}\mathrm{L}

\ell | F\mathrm{M}\mathrm{L}
\ell  - 1) are problem dependent and---as in MLMC [24]---optimal sample

sizes \{ N\ell \} are difficult to compute. This would be an interesting area for future investigation.

6. Numerical results. In the following, we consider three numerical examples with in-
creasing difficulty. We start the experiments with a one-dimensional toy example where we
can ensure Assumption 2.2. In this example, it is possible to verify the complexity results
expected from Theorems 5.1 and 5.4, respectively. In our second example we consider a rare
event estimation problem based on a Brownian motion. In this case, Assumption 2.2 does not
hold almost surely but only in Lp. The results of our numerical experiments remain promising
and we observe a significant improvement through our multilevel subset simulation and the
incorporation of selective refinement. The last experiment is based on an elliptic PDE model
and represents a more realistic scenario of application.

6.1. Example 1: Toy experiment. We start by verifying our derived complexity results
on a simplified toy model. We assume that G \sim \scrN (0,1) and define the pointwise approxi-
mation G\ell (\omega ) := G(\omega ) + \kappa (\omega )\gamma \ell with \kappa \sim \scrU (\{  - 1,1\} ) such that (2.4) is obviously satisfied.
Furthermore, we let \gamma = 1/2 and assume that q= 2 for the expected costs in (2.5).

The aim is to estimate the failure probability

\BbbP (G\leq  - 3.8)\approx 7.23 \cdot 10 - 5.(6.1)

Applying Algorithm 2.1 [23, Alg. 1] allows one to simulate Gy
\ell satisfying Assumption 2.2.

For any accuracy level \ell , the selective refinement algorithm starts with the coarsest approx-
imation k = 1 and successively refines the accuracy by increasing k until | Gk(\omega )  - y| \geq \gamma k

or | Gk(\omega )  - G(\omega )| \leq \gamma \ell is satisfied. Note that in more realistic applications, estimates of
the error | Gk(\omega ) - G(\omega )| are needed; cf. section 6.3 for more details. In this simplified ex-
ample we increase the accuracy until | Gk(\omega )  - y| \geq \gamma k or until k = \ell , since we know that
| G\ell (\omega ) - G(\omega )| \leq \gamma \ell by definition. We then set Gy

\ell (\omega ) =Gk(\omega ).
We compare standard MC, classical subset simulation with and without selective refine-

ment, as well as our proposed adaptive multilevel subset simulation algorithm, choosing
L \propto log(TOL - 1) in all cases, where TOL is the required tolerance. For subset simulation,
we use K = 5 subsets such that all \BbbP (Fj | Fj - 1)\approx [0.1,0.2], where we choose the threshold val-
ues (y5, y4, y3, y2, y1, y0) = ( - 3.8, - 3.3, - 2.8, - 2, - 1.3, \infty ). In contrast, for multilevel subset
simulation we choose y\ell following Lemma 3.2 and let the number of subsets increase depending
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Figure 6.1. Mean computational cost plotted against the estimated values of \delta ( \widehat P ) (with tolerance TOL)
for the toy problem in Example 1 using standard MC (expected), classical subset simulation, as well as subset
simulation and multilevel subset simulation with selective refinement.

on the size of L. For the estimation of \widehat P1 in (3.21) we apply a standard MC estimate. The
highest accuracy level L and the numbers of samples on each subset (Nj and N\ell , resp.) are
chosen according to the assumptions in Theorems 5.1 and 5.4, respectively.

Figure 6.1 shows the estimated rRMSE \delta ( \widehat P ) using the true reference probability of (6.1)
plotted against the computational cost for the different applied estimators. We have used 100
runs for building the estimates of \delta ( \widehat P ) for each algorithm.

6.2. Example 2: Brownian motion. In our second numerical example, we consider es-
timating the probability that a standard Brownian motion drops below a threshold value
within a certain time interval. To be more precise, let (Bt)t\geq 0 be a Brownian motion. We are
interested in the estimation of

\BbbP (F ) = \BbbP (mint\in [0,1] Bt \leq  - 4),
where we can compute the reference value of \BbbP (F ) by

\BbbP (mint\in [0,1] Bt \leq  - 4) = 2 \cdot \BbbP (B1 \leq  - 4)\approx 6.3 \cdot 10 - 5.

We define the limit state function pointwise by

G(\omega ) :=mint\in [0,1] Bt(\omega ) + 4,

and introduce approximations of the limit state function such that

\~Gk(\omega ) :=mint\in Tk
Bt(\omega ) + 4, Tk :=

\Bigl\{ i

2k
| i= 0, . . . ,2k

\Bigr\} 
.

For all 1\leq p <\infty , the resulting approximation error can be bounded in Lp [36], i.e., there
exists a constant Cp > 0 such that

\| G - \~Gk\| Lp(\Omega ) =\BbbE 
\Bigl[ 
| mint\in [0,1] Bt(\omega ) - mint\in Tk

Bt(\omega )| p
\Bigr] 1/p
\leq Cp2

 - k/2 .(6.2)
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Figure 6.2. Paths of the Brownian motion conditioned on the different subsets Fj.

The Brownian motion is generated pathwise through a Karhunen--Lo\'eve expansion

Bt(\omega ) =

\infty \sum 
i=1

\xi i(\omega )\varphi i(t),

with \xi i
\mathrm{i}.\mathrm{i}.\mathrm{d}.\sim \scrN (0, 1

(i - 1/2)2 ) and \varphi i(t) =
\surd 
2

\pi sin((i - 1/2)\pi t). See Figure 6.2 for various realizations
of the Brownian motion, conditioned on the different chosen subsets, i.e., for different level
thresholds yj .

As in Example 1, on each accuracy level \ell and for each sample \omega , the selective refinement
algorithm starts on the coarsest level k= 1 and successively refines the accuracy by increasing
k until | \~Gk(\omega )  - y| \geq \gamma k or | \~Gk(\omega )  - G(\omega )| \leq \gamma \ell . We then set Gy

\ell (\omega ) :=
\~Gk(\omega ). Based on

the error bound (6.2), we consider \gamma = 1\surd 
2
in our numerical experiments. Then q= 2 and the

latter of the two conditions above is satisfied at least in an Lp-sense for k = \ell + 2 log2(Cp).
Unfortunately, it is not possible to satisfy this condition in an almost sure sense.

Depending on the required tolerance value TOL we set again L\propto log(TOL - 1) and fix the
number of subsets in the classical subset simulation to K\mathrm{S}\mathrm{L} = 5. In the multilevel formulation,
K\mathrm{M}\mathrm{L} =max(L - 1,8) subsets are considered and the threshold values yj are chosen again ac-
cording to Lemma 3.2, with the following values of \ell j for the failure sets Fj = \{ \omega :G

yj

\ell j
(\omega )\leq yj\} :

j 1 2 3 4 5 . . . L - 1

\ell j 4 4 4 5 6 . . . L

The MC estimates for the multilevel estimator ML are built using 100 paths, resulting in

\BbbE [ \widehat P\mathrm{M}\mathrm{L}]\approx 5.11 \cdot 10 - 5 and \delta ( \widehat P\mathrm{M}\mathrm{L})\approx 0.0534\leq TOL=: 0.1 .

To compare the proposed multilevel method with classical subset simulation in Figure 6.3
we compare the resulting costs for various choices of TOL. Note that we have estimated the
expected number of samples for the classical MC estimator as N = (TOL) - 2P - 1.
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Figure 6.3. Mean computational cost plotted against the estimated values of \delta ( \widehat P ) (with tolerance TOL) for
the Brownian motion in Example 2 using standard MC (expected), classical subset simulation, as well as subset
simulation and multilevel subset simulation with selective refinement.

6.3. Example 3: Elliptic PDE. Finally, we consider the following diffusion equation,
which is used, e.g., to model stationary Darcy flow:

 - \nabla \cdot A\nabla u= 0 in \scrD ,
subject to u= 0 on \Gamma 1, u= 1 on \Gamma 2, \nu \cdot A\nabla u= 0 on \Gamma 3 \cup \Gamma 4,

(6.3)

where \scrD = (0,1) \times (0,1) is a unit square and \Gamma 1, \Gamma 2, \Gamma 3, \Gamma 4 are the left, right, upper,
and lower boundaries, respectively. The permeability A(x,\omega ) is a log-normal random field.
In particular, log(A(x,\omega )) is a stationary, zero mean Gaussian field \scrN (0,\scrC ) with covariance
operator \scrC = ( - \Delta +\tau 2\cdot id) - \alpha , where \Delta denotes the Laplacian operator equipped with Neumann
boundary conditions and we set \tau = 0.1 and \alpha = 1. The random field has been generated
path-wise via a truncated Karhunen--Lo\'eve expansion; see Figure 6.4 for two realizations of
the random field and the associated PDE solutions.

The functional to define the limit state function is chosen to be

\scrG (u) = y - 1

| B| 

\int 
B
u(x)dx,(6.4)

for B = [0.4,0.6]\times [0.9,0.99]\subset \scrD , i.e., ``failure"" occurs when the mean of u over the subdomain
B exceeds y, with | \cdot | denoting the area of B. For the numerical experiments below we choose
y= 0.92.

Now, given a sample \omega \in \Omega and defining

H1
D(\scrD ) = \{ v \in H1(\scrD ) : v| \Gamma 1

= 0, v| \Gamma 2
= 1\} and H1

0 (\scrD ) = \{ v \in H1(\scrD ) : v| \Gamma 1\cup \Gamma 2
= 0\} ,

the weak form of (6.3) is equivalent to finding u\in H1
D(\scrD ) such that
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956 ELFVERSON, SCHEICHL, WEISSMANN, AND DIAZ DE LA O

Figure 6.4. Two realizations of the log-normal permeability field A(x,\omega ) (left) and the corresponding so-
lution for the Darcy flow problem (6.3) (right) in Example 3. The first realization is sampled from the whole
probability space, whereas the second one is a rare event realization.

a(\omega ;u, v) =

\int 
\scrD 
A(x,\omega )\nabla u \cdot \nabla v dx= 0 for all v \in H1

0 (\scrD ).(6.5)

The value of the exact limit state function at \omega is set to be G(\omega ) = \scrG (u).
We approximate the weak formulation and the limit state function with a finite element

(FE) method. Let \scrT h be a uniform triangulation of \scrD , and suppose \scrV h denotes the associated
P1-Lagrange FE space. The FE approximation of the solution u of (6.5) on \scrT h is then defined
to be the uh \in \scrV h \cap H1

D(\scrD ) satisfying

a(\omega ;uh, vh) = 0 for all vh \in \scrV h \cap H1
0 (\scrD ).(6.6)

The FE approximation of the limit state function is defined as \~Gh(\omega ) = \scrG (uh).
Given \gamma \in (0,1), we then compute G\ell (\omega ) by iterating over a sequence of uniformly refined

meshes \scrT h with h\rightarrow 0, starting from some h0 > 0, until | G(\omega ) - \~Gh(\omega )| \leq \gamma \ell . For selective
refinement we start with accuracy k= 1 and reduce h until | G(\omega ) - \~Gh(\omega )| \leq \gamma k or | \~Gh(\omega ) - y| \geq 
\gamma k. If the second condition is satisfied, we stop and set Gy

\ell (\omega ) = \~Gh(\omega ). Otherwise, we
increment k\rightarrow k+ 1 and repeat the process until the second condition is satisfied for some k
or until k= \ell .

To estimate the error in the limit state function \~Gh computed on mesh \scrT h we use a
hierarchical a posteriori error estimator. In particular, for the chosen random field and limit
state function we may assume that

ch2 \leq | G(\omega ) - \~Gh(\omega )| \leq Ch2, for some 0< c\leq C <\infty .(6.7)
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ADAPTIVE ML SUS WITH SELECTIVE REFINEMENT 957

Figure 6.5. Different levels of refinement of the FE mesh for the Darcy flow problem (6.3) in Example 3.

Table 6.1
Chosen level (\ell j), mean probability (Pj), and mean acceptance rates (\alpha j) for each subset j after 100 runs

of adaptive multilevel subset simulation (left) and single-level subset simulation (right), both with selective
refinement.

j 1 2 3 4 5

j 2 2 2 3 4
Pj 0.05 0.13 0.17 0.38 0.83
αj — 0.45 0.32 0.22 0.18

j 1 2 3 4

j 4 4 4 4
Pj 0.13 0.1 0.16 0.07
αj — 0.5 0.38 0.29

Provided r :=C/c< 4 it follows from those bounds and the triangle inequality that

| G(\omega ) - \~Gh(\omega )| \leq 
1

1 - r/4
| \~Gh/2(\omega ) - \~Gh(\omega )| =: \eta h .

The PDE Toolbox within MATLAB is used in our implementation. The FE meshes that were
constructed are shown in Figure 6.5. For the numerical experiments we choose \gamma = 1/4 and use
the sufficient condition \eta h \leq \gamma \ell to bound the FE error on \scrT h (with r= 2). In the experiments,
the estimate \eta h of the FE error on the finest mesh depicted in Figure 6.5 was always below \gamma 4.

For the proposed single-level and multilevel estimators, we choose L, Nj , N\ell according
to Theorems 5.1 and 5.4, with a fixed number of subsets K = 4 for the classical (single
level) subset simulation. The number of subsets for our multilevel subset simulation on the
highest evaluated accuracy, together with the corresponding accuracy levels \ell j , are presented
in Table 6.1 (left). Moreover, the table shows the mean probability for each level and the
mean acceptance rate for the Markov chains. The details for single-level subset simulation are
presented in Table 6.1 (right).

After 100 runs of the multilevel estimator ML in this setting with L = 4, the estimated
mean rare event probability and the relative variance are

\BbbE [ \widehat P\mathrm{M}\mathrm{L}]\approx 1.8 \cdot 10 - 4 and \delta ( \widehat P\mathrm{M}\mathrm{L})\approx 0.172,(6.8)

while for the classical subset simulation estimator SuS they are

\BbbE [ \widehat P \mathrm{S}\mathrm{u}\mathrm{S}]\approx 1.5 \cdot 10 - 4 and \delta ( \widehat P \mathrm{S}\mathrm{u}\mathrm{S})\approx 0.192.(6.9)

For each level \ell in the multilevel subset simulation, the mean number of samples computed
on each mesh level k are presented in Table 6.2 (left). In the selective refinement process,
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958 ELFVERSON, SCHEICHL, WEISSMANN, AND DIAZ DE LA O

Table 6.2
Mean number of samples computed on mesh level k for subset j, for adaptive multilevel subset simulation

(left) and single-level subset simulation (right), both with selective refinement, estimated from 100 runs with L=
4 and summed up over all mesh levels. The tables also show the total number of samples and the (normalized)
theoretical cost per sample ck on each mesh level assuming q= 3/2.

j\k 1 2 3 4

1 3602 610.7 0 0
2 3602 1902.9 0 0
3 3602 1564 0 0
4 2002 1071.6 326.2 0
5 502 281 108.5 15.2

Total 13310 5430.2 434.7 15.2

ck 1 8 64 512

j\k 1 2 3 4

1 3602 1179.8 381.4 66.4
2 3602 2518.6 1272.1 247.6
3 3602 2373.3 1271.1 252.1
4 3602 2220.3 1066.8 181.8

Total 14404 8291.9 3991.4 747.9

ck 1 8 64 512
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Figure 6.6. Mean computational cost plotted against the estimated values of \delta ( \widehat P ) for Example 3, the Darcy
problem in (6.3), obtained by varying TOL for q= 3/2 (left) and q= 1.1 (right) using classical subset simulation,
as well as subset simulation and adaptive multilevel subset simulation with selective refinement.

the computation for each sample always starts on mesh level k = 1 and the numbers on the
lower mesh levels are the cumulative ones. The vast majority of samples are generated from
inexpensive low-resolution simulations, or put it another way, our multilevel estimator requires
the equivalent cost of \sim 175 PDE solves on the finest accuracy level to estimate a rare event
of \scrO (10 - 4) with a relative variance of \delta ( \widehat P\mathrm{M}\mathrm{L}) \approx 0.17. Since the chosen regime is not yet
optimally balancing the cost, there is still potential for significant further gains.

The table also shows the normalized theoretical cost ck for one sample on mesh level k
(including the cost for the error estimation). Here, we have assumed a sparse direct solver
such as CHOLMOD [17] (i.e., backslash in MATLAB) to solve each of the arising FE systems.
Theoretically, the cost for a sparse direct solver like CHOLMOD applied to a two-dimensional

FE system grows like \scrO (n3/2
\mathrm{F}\mathrm{E} ), while the number of unknowns grows like n\mathrm{F}\mathrm{E} =\scrO (4k) under

uniform refinement. Hence, we have chosen q = 3/2 in the definition of the normalized
theoretical cost ck. Based on this assumption, a comparison of the total normalized cost for
all the estimators is presented in Figure 6.6 (left) for various choices of the tolerance TOL.
The vastly superior performance of the proposed multilevel estimator is again apparent, e.g.,
for an estimate with \delta ( \widehat P ) \approx 0.25 there is a more than 10-fold gain in efficiency compared to
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ADAPTIVE ML SUS WITH SELECTIVE REFINEMENT 959

subset simulation with selective refinement and a more than 60-fold gain compared to standard
subset simulation with all samples being computed to accuracy \gamma L. For a fair comparison,
standard subset simulation is also ran with the hierarchical error estimator to guarantee the
required accuracy for each sample. Asymptotically, the cost does appear to grow as predicted
in Theorem 5.4, even though (as in Example 2) Assumption 2.2 does not hold uniformly in
\omega here. Note that as predicted in Theorem 5.1, the selective refinement approach alone also
leads to clear gains over standard subset simulation and to a better asymptotic rate.

In practice, the cost of CHOLMOD applied to a two-dimensional FE system is often observed
to grow only like \scrO (n1.1

\mathrm{F}\mathrm{E}) (at least in the preasymptotic regime). Thus, in Figure 6.6 (right)
we also plot the gains for q = 1.1. Even in this case, we still see a 20-fold gain in efficiency
of the proposed multilevel estimator compared to standard subset simulation. The gains for
both the single- and the multilevel method with selective refinement are even more dramatic
when q > 3/2, e.g., for three-dimensional problems or for rougher random coefficients.

7. Conclusions. In this paper, we propose a new multilevel subset simulation estimator
of the probability of rare events. By constructing a hierarchy of numerical approximations to
a model of a complex physical process, and by using a posteriori error estimation, the subset
property of the intermediate failure domains is preserved. The estimator was tested in a
Darcy flow problem, for which it reduced the cost compared to the classical subset simulation
estimator by more than a factor of 60 for a practically relevant relative error tolerance of 25\%.
Given the wide applicability of subset simulation, several problems beyond the simulation of
rare events may also benefit from this dramatic increase in efficiency.

Appendix A. Algorithmic details. We provide here some details on our versions of sub-
set simulation, subset simulation with selective refinement, and the adaptive multilevel sub-
set simulation algorithm based on shaking transformations and the POP Algorithm 4.2, as
presented in section 4. The limit state function G, as well as the corresponding numerical
approximations G\ell are modelled via measurable Gaussian transformations T and T\ell such that

G(\omega ) = T (\Theta (\omega )) and G\ell (\omega ) = T\ell (\Theta (\omega )),

where T,T\ell : \BbbR d \rightarrow \BbbR are measurable mappings and \Theta \sim \scrN (0, I\BbbR d). They only differ in the
construction of the subsets Fj = \{ \Theta \in Aj\} \subset \Sigma and Aj \subset \scrB (\BbbR d).

Subset simulation. In order to apply shaking transformations within subset simulation,
the subsets are represented in the form of (4.2) with a fixed level of accuracy L and

Fj = \{ \omega \in \Omega : GL(\omega )\leq yj\} , for j = 1, . . . ,K.

We define \varphi (\theta , y) = TL(\theta )  - y and apply the specific variant of POP based on a Gaussian
transformation presented in Algorithm A.1.

Subset simulation with selective refinement. In order to incorporate the selective refine-
ment strategy into subset simulation, we need to define the intermediate failure sets

Fj = \{ \omega \in \Omega : G
yj

L (\omega )\leq yj\} , for j = 1, . . . ,K.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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960 ELFVERSON, SCHEICHL, WEISSMANN, AND DIAZ DE LA O

Algorithm A.1 Subset simulation based on POP---with and without selective refinement.

1: Given an accuracy level L, a value for \gamma \in (0,1), a correlation parameter \eta \in [0,1], and a
seed \Theta 0,0 \sim \Theta , define subsets Fj = \{ \Theta \in Aj\} for all j = 1, . . . ,K such that

Aj =

\Biggl\{ 
\{ \theta \in \BbbR d | TL(\theta )\leq yj\} for classical subset simulation,

\{ \theta \in \BbbR d | T yj

L (\theta )\leq yj\} for selective refinement if yj - 1  - yj \geq 2\gamma L,

as well as a shaking transformation S\eta (\theta ,w) and a rejection operator M
S\eta 

j according to
(4.3) and (4.4), respectively.

2: for j = 0, . . . ,K  - 1 do
3: for i= 0, . . . ,Nj+1  - 1 do
4: Generate Wj,i \sim \Theta .

5: Shake and accept/reject \Theta j,i+1 =M
S\eta 

j (\Theta j,i,Wj,i).

6: end for

7: Estimate the probability of subsets Fj+1 by \widehat Pj+1 =
1

Nj+1

\sum Nj+1 - 1
k=0 1Aj+1

(\Theta j,k).

8: Set ij = argmin\{ k | \Theta j,k \in Aj+1\} .
9: Define initial state for next level \Theta j+1,0 =\Theta j,ij .
10: end for

11: Result: \widehat P =
\prod K

j=1
\widehat Pj .

Following Lemma 3.1, these sets satisfy the subset property provided yj - 1 - yj \geq 2\gamma L. However,
the classical strategy to choose the threshold values yj such that \BbbP (Fj | Fj - 1) \approx p0 for some
constant value p0 \in [0.1,0.3] will not always ensure yj - 1  - yj \geq 2\gamma L. On the other hand,
it is easy to check in practice on each of the failure sets whether it is satisfied in order to
decide whether to apply selective refinement on that set or not. To formulate the algorithm
via POP, we introduce measurable Gaussian transformations T

yj

L : \BbbR d \rightarrow \BbbR such that the
G

yj

L (\omega ) = T
yj

L (\Theta (\omega )) satisfy Assumption 2.2. This small variant of the above subset simulation
algorithm is also incorporated in Algorithm A.1.

Adaptive multilevel subset simulation. To formulate this algorithm in such a way that
the subset property is satisfied we choose y1, . . . , yK as defined in Lemma 3.2 and choose the
subsets

F\mathrm{M}\mathrm{L}
j = \{ \omega \in \Omega : G

yj

\ell j
(\omega )\leq yj\} , for j = 1, . . . ,K.

The proposed adaptive multilevel subset simulation algorithm with a standard MC estimator
for the first subset is summarized in Algorithm A.2. In addition, an adaptive stopping cri-
terion based on a statistical estimation of the rRMSE as presented in (4.7) is introduced in
Algorithm A.2. Note that for simplicity we set K =L and \ell j = j, for all j = 1, . . . ,L.

To employ classical subset simulation for the estimation of \BbbP (F\mathrm{M}\mathrm{L}
1 ) instead, it suffices to

replace lines 2--7 by a single-level subset simulation estimator as defined in Algorithm A.1,
but on the coarsest accuracy level \ell = 1.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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Algorithm A.2 Adaptive multilevel subset simulation.

1: Given an accuracy L, a value for \gamma \in (0,1), and correlation parameter \eta \in [0,1], define
\bullet subsets F\mathrm{M}\mathrm{L}

\ell = \{ \Theta \in A\ell \} with A\ell = \{ \theta \in \BbbR d | T y\ell 

\ell (\theta )\leq y\ell \} , for \ell = 0, . . . ,L, and
the sequence of failure thresholds

yL = 0 and y\ell = (\gamma \ell + \gamma \ell +1) + y\ell +1, \ell = 1, . . . ,L - 1,

\bullet a shaking transformation S\eta (\theta ,w) as defined in (4.3), and

\bullet a rejection operator M
S\eta 

j as defined in (4.4).

2: Set i= 0, N1 = 1, \widehat \delta ( \widehat P1) =\infty .

3: while \widehat \delta ( \widehat P1)>TOL do
4: Generate i.i.d. \Theta 0,i \sim \Theta .

5: Estimate the probability of subset F\mathrm{M}\mathrm{L}
1 by \widehat P1 =

1
N1

\sum N1 - 1
k=0 1A1

(\Theta 0,k).

6: Estimate \delta ( \widehat P1)\approx \widehat \delta ( \widehat P1) and increase i= i+ 1, N1 =N1 + 1.
7: end while
8: Set i0 = argmin\{ k | \Theta 0,k \in A1\} and define initial state \Theta 1,0 =\Theta 0,i0 for next level.
9: for \ell = 1, . . . ,L - 1 do

10: Set i= 0, N\ell +1 = 1, \widehat P\ell +1 = 1A\ell +1
(\Theta \ell ,i).

11: while \widehat \delta ( \widehat P\ell +1)>TOL do
12: Generate W\ell ,i \sim \Theta .

13: Shake and accept/reject \Theta \ell ,i+1 =M
S\eta 

\ell (\Theta \ell ,i,W\ell ,i).
14: Increase i= i+ 1, N\ell +1 =N\ell +1 + 1.

15: Estimate the subset probability F\mathrm{M}\mathrm{L}
\ell +1 by \widehat P\ell +1 =

1
N\ell +1

\sum N\ell +1 - 1
i=0 1A\ell +1

(\Theta \ell ,i).

16: Estimate \delta ( \widehat P\ell +1)\approx \widehat \delta ( \widehat P\ell +1).
17: end while
18: Set i\ell = argmin\{ k | \Theta \ell ,k \in A\ell +1\} and define initial state \Theta \ell +1,0 =\Theta \ell ,i\ell for next level.
19: end for

20: Result: \widehat P\mathrm{M}\mathrm{L}1 =
\prod L

\ell =1
\widehat P\ell .
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