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Abstract—In the intelligent communication field, deep learning
(DL) has attracted much attention due to its strong fitting ability
and data-driven learning capability. Compared with the typical
DL feedforward network structures, an enhancement structure
with direct data feedback have been studied and proved to have
better performance than the feedfoward networks. However, due
to the above simple feedback methods lack sufficient analysis
and learning ability on the feedback data, it is inadequate to
deal with more complicated nonlinear systems and therefore the
performance is limited for further improvement. In this paper, a
novel multi-agent feedback enabled neural network (MAFENN)
framework is proposed, which make the framework have stronger
feedback learning capabilities and more intelligence on fea-
ture abstraction, denoising or generation, etc. Furthermore, the
MAFENN frame work is theoretically formulated into a three-
player Feedback Stackelberg game, and the game is proved to
converge to the Feedback Stackelberg equilibrium. The design of
MAFENN framework and algorithm are dedicated to enhance
the learning capability of the feedfoward DL networks or their
variations with the simple data feedback. To verify the MAFENN
framework’s feasibility in wireless communications, a multi-
agent MAFENN based equalizer (MAFENN-E) is developed for
wireless fading channels with inter-symbol interference (ISI).
Experimental results show that when the quadrature phase-
shift keying (QPSK) modulation scheme is adopted, the SER
performance of our proposed method outperforms that of the
traditional equalizers by about 2 dB in linear channels. When
in nonlinear channels, the SER performance of our proposed
method outperforms that of either traditional or DL based
equalizers more significantly, which shows the effectiveness and
robustness of our proposal in the complex channel environment.
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I. INTRODUCTION

Intelligent communication is considered to be one of the key
directions of wireless communication development after 5G.
Due to its powerful nonlinear mapping and distribution pro-
cessing capability, DL is being considered as a very promising
tool to attack the big challenge in wireless communications and
networks. It can be used to provide better channel modeling and
estimation in millimeter and terahertz bands; to select a more
adaptive modulation in massive multiple-input and multiple-
output (MIMO) technology; and to offer a more practical
solution for intelligent network optimization. DL was proposed
by Hinton et al. in 2006 and is a branch of machine learning
(ML). It has already widely used in computer vision, speech
recognition, natural language processing, audio recognition,
bioinformatics and other fields, and has achieved excellent
results. Although DL has achieved great success in this century,
but can the existing DL really have the intelligence of the
human brain and the ability to think like humans? In [1],
when given a sentence with disordered words, the human
brain can still easily understand the meaning of the sentence,
but the DL algorithm is helpless. In the study of adversarial
attack in [2] , when a person has an attack picture hanging
on the abdomen, the classifier cannot recognize human beings,
and the judgment is wrong. With the gradual exposure of
DL in semantics, image and other fields, the application of
DL in the field of wireless communications also encounters
many challenges to achieve significantly better performance and
more convenient implementations compared to the traditional
communication systems, particularly in the complex nonlinear
systems [3]. It is urgent to explore the higher level thinking and
cognitive methods of the human brain in artificial intelligence
(AI) study for wireless communications and other applications.
An important debate in the Al community today is how higher
level intelligence and cognition is constituted?

In the wireless communication systems, we noticed that the
feedback mechanism has already been deployed in multiple core
technologies, including closed-loop large-scale antenna pre-
coding/beamforming technology and interference cancellation
technology based on CSI feedback; resource allocation and load
balancing technology based on the feedback of resource status
and QoS (Quality of Service) variations; channel equalization
technology based on the decision feedback equalizers (DFE),



etc. Inspired by the feedback mechanisms and in combination
with the existence of human brain’s reflective thinking ability,
this paper is committed to endowing DL with higher level of
intelligence and cognition by exploring the neural networks
and algorithms with a feedback structure. Contrasted with the
feedforward structure of a system, the conclusions drawn in
the integrated information theory (IIT 3.0) [4] also verifies that
an integrated system with feedback is autonomous due to it
can take action and respond to its internal state, and therefore
has the stronger consciousness.

In the direction of network design with feedback, there
have been some research results on it. In wireless commu-
nication systems, ISI caused by such as multipath signal
propagation, nonlinear signal distortions, imperfect design of
wireless transceivers, and channel fading environments, etc.,
will increase the error rate and weaken the reliability of the
communication system. In order to conquer ISI, as early as
1985, Qureshi et al. proposed to use the decision feedback
mechanism to improve the performance of the equalization
module in the digital signal communication system [5]. In
the subsequent research, Kim et al. added a discriminative
feedback mechanism to the original decision feedback equalizer,
which further improved the equalization effect [6]. Siu et
al. introduced a three-layer perceptron neural network into
the structure of the original decision feedback equalizer, and
screened and compared the feedback signals. The results
show that the performance of the equalizer with the feedback
mechanism is better than that without it, and the performance
of the equalizer that selects the correct decision signal for
feedback is better than that of the equalizer that feeds back all
signals [7]. However, the equalizer cannot guarantee low error
rate when the channel nonlinearity is strong and the multipath
is abundant. In 5G and beyond 5G networks, as the propagating
signal at mmWave communication systems suffers from high
free space propagation loss, atmospheric loss, rain attenuation,
and material penetration loss, etc., ISI cancellation becomes a
more challenging issue.

In the image processing field, some interesting networks
with feedback have also been presented. Among them, Karim,
et al. proposed RIGN which improved the performance of
the network by adding a simple canonical loop gate control
mechanism to the deep convolutional neural networks (CNN)
in [8]; Li et al. proposed a “rethinking” learning algorithm by
adding a feedback layer and generating an emphasis vector in
[9]; Nayebi et al. proposed ConvRNNSs to explore the role of
recursion in improving classification performance in [10]; and
Caswell et al. proposed Loopy Neural Net (LNN) to simulate
the feedback loop in the brain by unrolling several time steps
of the recurrent neural network in [11]. The results of these
network designs all show that the existence of a feedback struc-
ture can effectively improve network performance. However,
the design of the existing solutions is mostly based on feedback
and analysis of the data of a module or hidden layers, without
considering more complex rethinking capabilities of humans or
the realization of machine intelligence. Thus, the performance
of the algorithm is insufficient. Moreover, the existing feedback
schemes basically lack theoretical modeling of the network
model, rigorous theoretical analysis and verification, and thus

cannot guarantee the effectiveness of the model in complicated
applications.

From the above investigation in either wireless communi-
cations or image processing fields, in spite of many feedback
based DL networks have been applied and achieved better
gains, most of the existing solutions adopt a structure with
direct data feedback, which lacks intelligent processing of
the feedback data, and therefore leads to that the existing
feedback structure is unexplainable and too mechanical. This
also effects its applications on more complex situations, e.g.,
complicated nonlinear systems, systems with the increased
and nonindependent parameters, and scenarios with serious
channel distortion [12], etc. Due to lack of the design concept
of the feedback modules, the current designs also lack the
thinking about the relationship between the feedback module
and the feedforward modules, which simulate the collaboration
of multiple function modules of the human brain. Finally,
the existence of the human brain’s ability to rethink is the
function of a complex system. The simple information loops
of a neural network are not considered to have achieved
machine intelligence. It is necessary to consider the information
sharing and mutual cooperation among the various modules
in the system. In this paper, focusing on the integration of the
frontier areas of DL and feedback mechanisms, we propose
a multi-agent feedback architecture named MAFENN, which
mainly targets on the improvement of classical feedforward
DL networks. The MAFENN framework, consisting of three
cooperative agents, namely Encoder, Feedbacker and Processor,
as shown in Fig. 1, aims to intelligently remove the noise
and recover the clean data as much as possible to facilitate
the subsequent downstream tasks. With the introduction of
feedback modules in MAFENN, mathematical modeling and
the convergence issues of the networks are then addressed to
provide a stronger theoretical support to our proposal. Finally,
in order to verify our MAFENN framwork, focusing on the
wireless equalization, a MAFENN framework based equalizer,
i.e. MAFENN-E, is formulated and modeled to solve the
equalization problem in wireless multipath channels with either
linear or nonlinear signal distortions. Different from the existing
DL solutions with simple feedback loops, which lack intelligent
rethinking capabilities and theoretical modeling. Based on the
two-player game modeling [13], we mathematically formulate
the network as a three-player Stackelberg game and provide
theoretical modeling and analysis. As far as we know, our
work is the first multi-agent system work to introduce a
feedback agent in the feedforward DL networks and provides
the theoretical modeling of the network. The key contributions
of our paper are summarized as follows.

1) A noval multi-agent MAFENN framework is proposed,
which consists of three fully cooperative agents to solve
the problem that the conventional feedback mechanism
lacks feedback learning ability from feedback data and
makes DL networks more intelligent.

2) The MAFENN framework is mathematically formulated
as a three-player Feedback Stackelberg game, and this
game is proved to converge to the Feedback Stackelberg
equilibrium.



3) For wireless channel equalization, the issue is formulated
as a conditional probability distribution learning and
feedback learning problems, and MAFENN-E is pro-
posed for wireless communications with ISI interference.
Simulation results show the effectiveness and robustness
of our proposal in either linear or nonlinear channels.

In this section, we firstly introduce the motivation of our
MAFENN proposal, survey the feedback related network
literature in both wireless communication and image processing
fields, and briefly address our work and our contributions. In
Section II, in terms of the general neural network innovation,
we mainly introduce the details of the structure of our multi-
agent feedback based neural network, i.e., MAFENN, Feedback
Stackelberg game formulation, Stackelberg learning dynamics
and convergence proof. As a general framework, MAFENN can
be applied to promote the solutions which are developed based
on traditional feedback mechanism or feedforward networks
in many fields, e.g., intelligent communications. In Section III,
we mainly explore the application of MAFENN on wireless
equalizers. In order to help readers learn the state of arts
of wireless equalizers, particularly machine learning enabled
wireless equalizers, we further introduce some related works for
wireless equalization. Then formulate the problem and propose
the MAFENN-E network model to find the optimal solutions.
Subsequently, the training and testing results of MAFENN-
E and other counterpart equalizers on the same training and
testing dataset are shown in Section IV. Finally, the conclusion
is drawn in Section V.

II. MAFENN FRAMEWORK

In this section, we describe the main methods of our
proposed MAFENN framework. Firstly, the details of the
feedback learning model is presented in Section II-A. Secondly,
the feedback learning model is formulated as a multi-agent
feedback Stackelberg game in Section II-B. Then the learning
dynamics of MAFENN is analyzed in Section II-C. Finally, the
convergence and training process is discussed in Section II-D.

A. Feedback Learning Model

Based on a general feedforward DL network structure
with an encoder and a processor for the downstream task
implementation, in order to simulate the feedback thinking
capability in DL, we aim to add a feedback learning module
and propose a MAFENN framework, to give the entire system
stronger feedback learning skill and more intelligent infor-
mation processing power. Fig.1 shows the network structure
of MAFENN which consists of three cooperative agents, i.e.,
Encoder, Feedbacker and Processor.

In this section, the notations used for the MAFENN rep-
resentation will be introduced firstly. We consider a dataset
with the generated i.i.d data from the distribution D over
X x Y, where & is the input space and ) is the label space.
The proposed MAFENN framework consists of three agents as
shown in Fig. 1. The Encoder agent F(-) that encodes the input
& € X and feedback corrected data Z € X to a latent variable
z = E(x, %), where z € Z. The put of Encoder could be either
a concatenation of z and x or a substitution of Z to x. For clear
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Fig. 1: Network structure of MAFENN and schematic diagram of
Feedback Stackelberge game

description in the paper, we mainly consider the concatenation
method in the following sections. Detailed analysis of these two
methods will be discussed in Section IV-A. The Feedbacker
agent F'(-) that maps the latent variable z to the feedback
corrected data & = F'(z) where & € X. The Processor network
P(-) that produces the label output y = P(z). Controller
determines the number of feedback cycles.

In feedforward DL networks, the Stackelberg game can
be formalized as a bilevel optimization problem in which the
upper level optimization problem is concerned with minimizing
the learner’s cost post adversarial data transformation, while
the lower level optimization problem of finding the optimal
data transformation becomes the constraint of the upper
level problem. The theoretical definition and discussions on
the convergence issues has been studied in [13]. In this
paper, based on the Stackelberg game, we further formu-
late our MAFENN framework as a Feedback Stackelberg
game. Considering the case of three cooperative players, let
N = {Player 1, Player 2, Player 3} be the set of players.
For each i € N, let A; be the corresponding set of actions.
Without loss of generality, Encoder E(-) can be denoted as
Player 1 and deemed as leader of Player 2 and Player 3.
Feedbacker F'(-) is Player 2, and Processor P(-) is Player 3,
which are followers. In our MAFENN framework, the action
set A = {X), Xo, X3} = {Z,V,X}. Let F = {l1,ls,13} be
the set of cost functions for the corresponding players. We
assume [o o [3, they are positively correlated, and [y = lo + I3.
Algorithm 1 shows the pseudocode of the MAFENN process.

B. Feedback Stackelberg Game Model

Before we formulate the proposed MAFENN, we first
define the Feedback Stackelberg game, which is a three-player
Stackelberg game. Fig. 1 also shows the schematic diagram of
the Feedback Stackelberg game. Consider a Stackelberg game
between three agents where Player 1 is deemed the leader
to Player 2 and Player 3 , Player 2 is the leader to Player 3
but the follower to Player 1, and Player 3 is the follower to
Player 1 and Player 2. Following the definition of the n-player
differentiable game [14], we define the Feedback Stackelberg
game as follows.

Definition 1: (Feedback Stackelberg Game). A Feedback
Stackelberg game is a special three-player Stackelberg game
with a feedback structure, as shown in Fig. 1, which can be
defined to be the tuple (3, Xy, Xa, X3, 11,12, 13), where for all
i€{1,2,3}, X; C R™ is the parameters (actions) for Player



Algorithm 1: The algorithm of MAFENN

1: Input: Encoder network E(-), Feedbacker network
F(-), Processor network P(-), the length of the signal
processing window NN, the length of the feedback
learning window K (K > 0), the number of the
feedback cycles C' (C' > 0), the concatenation operation
op, and the length of the number of transmitted data
L (L>0).

2: fori=1to L do

3:  Collect the past received signal
(@)

Traw = [0, 20D 2G=N+OIT Hif j — k<0,
let z(—F) = 0.

4: qulect the past feedback signal
2 g = [2®, 20D GG <0, Tet
20—k = .

5: forj=1t0oCdo _

6: Zmid = E(op(fcgfe;;), m%)w)),

7: 29 = F(zmia)

8:  end for

9 @), =[3(,300, . G-I0T

100 2= B(op(2}), 4 2vow))

1:  y=P(z)

12: end for

i, l; : R™ — R is a twice continuously differentiable objective
function of all the parameters, where m = Zle m;.
Furthermore, we can define our proposed unified model
as a Feedback Stackelberg game in the form of the tuple
(3,1, x2,x3,l1,l2,1l3), where for all player ¢ such that 1 <
1 < 3,x; € R™, and each Player ¢ has a loss function /; :
X — R, where X = &} x Xy x A3 € R™ with &; € R™,
Zf m; = m denoting the action spaces of the three players.
The three players aim to solve the following optimization
problems, respectively:
min
T1€EX]
S.t.

ll($1,$2,$3)7

Zo € arg min ly(z1,y, T3),
yEX>

6]

s.t. x5 € arg min I3(x1, 22, 2)
z€X3

where A7 € R™, X, € R™, and A5 € R™s denote
the parameter spaces of Encoder, Processor and Feedbacker.
Then we discuss the concept of the Feedback Stackelberg
equilibrium. Considering the generality of our proposed frame-
work, it can also be applied to non-convex or non-concave
target functions. We only focus our attention on local notions of
the equilibrium concepts. Therefore, we have the local notion
of the three-player Feedback Stackelberg equilibrium.
Definition  2: (Local Feedback Stackelberg
Equilibrium (LFSE)). Consider U; N X; for each
i € {1,2,3}. The strategy z; € U; is a local
Stacelberg solution for the leader if, Vz; € Uy,

X
Sup,, ¢ Ru, (x9), Iy (a7}, xa,23) < Sup,, ¢ Ru, (21), Iy (21,22, 23) ,

x3 € Ry, (=7, x2) x3 € Ry, (w1, 2)
where Ry, (z1) = {y € Uslla(x1,y,23) < la(x1,22,23),
x3 € Ry,(x1,22),Vze € Us}, and Ry,(z3) = {z €

U3|lg($1,l‘2,z) < l3(1‘1,$2,$3),V$3 € Ug} That means
(27,25, x3) for any z5 € Ry,(z}), x5 € Ry,(z3,z3) is a
local Stackelberg equilibrium on U; X Us X Us.

We denote D;l; as the derivative of [; with respect to x;,
D;;l; as the partial derivative of D;l; with respect to x;.
15111 denoting the derivative of l} with respect to z1,x2 =
T(I1)7$3 = h(Il,T’(Il)), 1?, Dlll(Ihl‘Q,Ig) = Dlll +
Dsly Dy, xo + D3ly Dy, x3. Daly denoting the derivative of
ly with respect to xo2,x3 = h(z1,7(x1)), ie., ﬁglg(xg,xg) =
Dslo + D3lo Dy, 3. f)glg = Dsl3 denotes the derivative of I3
with respect to z3. Then, the following definition gives the
sufficient conditions for a LFSE.

Definition 3: (Differential Feedback Stackelberg Equi-
librium (DFSE)). The joint strategy z* = (x},x3,2%) €
X is a differential Stackelberg equilibrium if Dyl;(2z*) =
0,252[2(1'*) = 0,'[)3,13,(‘@*) =0, f)fll(x*) > 0, ﬁ%lg(x*) >0
and D3ls(z*) > 0, where 3 = r(x}), 25 = h(z},z}), and
r(-) and h(-) implicitly defined by Dols(z*) = 0, Dslz(x*)
0.

C. Learning Dynamics of MAFENN

In this section, we firstly design a novel neural network
structure with a feedback agent on a feedforward network
in Section II-A. In order to give mathematical analyses,
we further formulate the whole structure into a three-player
Stackelberg game and identify the optimization target in Section
II-B. Subsequently, Local Feedback Stackelberg Equilibrium
(LFSE) and Differential Feedback Stackelberg Equilibrium
(DFSE) of the three-player Stackelberg game in Definition 2
and Definition 3 are defined, respectively. If the differential
conditions in Definition 3 are satisfied, DFSE is equivalent to
LESE. In [13] for two-player Stackelberg game, gradient-based
learning dynamics were derived to emulate the natural structure
of a two-player Stackelberg game using the implicit function
theorem and further the convergence of the implicit learning
dynamics is proved. For our proposed network modeled as three-
player Stackelberg game, as enlightened by [13], the learning
dynamics for the three-player Stackelberg game are given to
solve DFSE in this subsection. Then the differomorphism and
convergence are proven in Section II-D.

Let w(z) = (ﬁlll,f)glg,f)glg) be the gradient vector for
the Feedback Stackelberg game. w; denotes the i-th element
of w, i.e., the gradient of ¢-th player. The derivative of Player
1is

w1 :D1l1($k) + Dgll(xk)Dlr(xk)

+ Dsly (:Bk) (Dlh(Ik) + Dgh($k)D1T({Ek)) ,(2)
where 7(-), h(-) defined by wy = 0 with det(D3ly(x)) # 0,
and w3 = 0 with det(D313(z)) # 0.

Dih(wy) = — D3 (2r) (D3ls(vx) ",
Doh(xy) = — Dils(xr)(D3ls(zk))
Dyr(an) = — (Dala(a) + D2312(xk)Dlh(xk))T(Dglz(xk))*lo)

The derivative of Player 2 is

Wo = Dglg(l’k) —+ Dglg(xk)DQh((ﬂk) 4)



The derivative of Player 3 is
ws = Dsls(wk). &)
So the Stackelberg learning rule we study for each player is

given by

- )\iwi(xk>- (6)

In Algorithm 2, we show the pseudocode of the Stackelberg
learning dynamics.

Te+1,0 = Tk,

Algorithm 2: Feedback Stackelberg Learning Dynam-
ics
1: Input: 2° = (29,29, 29) € X, where 29,23 are
pretrained and 2 is initialized randomly. Learning rate
A3 > g > A > 0.
2: for k=0,1,--- do

3: 1h(x ): —D31l3(xk)(D§ )t
4: (JTk) —D32l3($k)(D§ ( )) !
s, Dl’l“({L‘k) (Dgllg(xk) + D23l2( )Dlh('rk))T

(D3la(ax)) !
w1 <—D111($k) + Dzll(xk)Dﬂ’(ZL'k)
-+ Dgll(xk)(Dlh(Z‘k) + Dgh(zk)DlT(Ik)

7 Wy $— DQZQ(xk) + Dglg(CCk)DQh(LEk)
8: w3 < Dglg(l’k)

DTkl & T — AMwr
10: Tht1,i < Thk,2 — Ao
1: Tpi1, ¢ T3 — A3ws
12: end for

D. Convergence Analysis

In this section, we perform the convergence analysis and
prove that our proposed MAFENN model can reach the
fixed point and almost surely avoid the saddle points. The
proof of this section is enlightened by [13], which proves the
convergence issue of the two-player Stackelber game.

Recall the Feedback Stackelberg learning rule for each player
and rewrite the rule as

Tri1,1 =Tk — M (Dili(zr) + Daly(zx) Dir(zk)

+ Dsly (zk)(D1h(zy) + Doh(z)Dir(zr))),
Tpt1,2 =Tk 2 — Aa(Dala(zk) + Dsla(zr)Dah(zr)),
Tht1,3 =Tk 3 — A3 Dsls(xy).

)

Note that by the implicit function theorem,

Dyh(zi) = — D3 ls(2x ) (D3ls (k)
Doh(zy) = —Diyls(xx ) (D3ls (k)
Dyr(xy) = —(Darla(ar) + Dasla(wx) Dih(x)) " (D3l (w))

®)

The above Stackelberg update is equivalent to the dynamics:
A
Tht1,1 =Tk,1 — ?f(D1l1($k) + Doly(xy) Dyr(zy)
+ Dgll(,’Ek) (Dlh(.%'k) + Dgh(wk)Dﬂ"(l‘k))),
A
Thyl2 =T — ?S(Dzb(l‘k) + Dsla(wg) D2h(wg)),

Try1,3 =Tr,3 — A3Dslz(xr),

€))

where 7 = :\\ , Ty = iz are the “timescale” separation. So we

can write the Stackelberg update in “vector” form as:

Tpy1 = T — Azw(T), (10)
where
w(zy) = (Tflﬁlll(xk),T{lﬁglg(mk),ﬁglg,(mk)). (11)
So the update is equivalent to
9(z) = 2 — \3(r "Dili(z), 73 " Dala(x), D3ls(x)).  (12)

Then we can have the next results, which shows the unified
Feedback Stackelberg game can avoid saddle points almost
surely under our assumptions.

Corollary 1 (Almost Sure Avoidance of Saddle Points.):
Consider a general Feedback Stackelberg game defined by
(3, 1,22, x3,11,l2,13), where [; : R™ — R is twice differen-
tiable loss. Player 1 is the leader to Player 2 and Player 3;
Player 2 is the follower to Player 1 and leader to Player 3;
and Player 3 is the follower to Player 1 and Player 2. Suppose
that w is L-Lipschitz with 7 > 1,75 > 1 and that A3 < 1/L.
The Stackelberg learning dynamics converge to saddle points
of & = —w(x) on a set of measure zero.

To prove Corollary 1, we first show that the update rule g
is a diffeomorphism.

Lemma 1: Consider a game defined by (3, z1, zo, x3,11,l2),
where [; : R™ — R is twice differentiable loss. Suppose that
w is L-Lipschitz with A3 < 1/L. The Stackelberg update
g(x) = = — As(r7 Dyl (x), 75 ' Daly (), Dsls(z)), where
71 >T0>1and 7 = i—f, Ty = % The Stackelberg update g
is a diffeomorphism.

Proof. The game Jacobian for the Stackelberg update is
given by:

Di(Dili(z)) 7 Da(Dila(x)) 3 Ds(Dili(x))
J = 1(A 2l2(2)) (A 2l2(2)) %D3(AD212($))
Dy (Dsl3(x)) (D 3())  Ds(Dsls(x))

Now, observe that Dg = I — A3.J(x). Then, denote p(A) as
the spectral radius of a matrix A, and we know that p(A) <
||A|| for any square matrix A. We also have a assumption
sup,cpm ||J(z)|l2 < L < oo, which implies that w satisfies
the Lipschiz condition on R™. Therefore,

p(A3J(x)) < |[AsJ(x)||2
< Az sup |[|J()]|2
weR™ (14)
< AL

< 1.

Due to the spectral radius is the maximum absolute value of the
eigenvalues, the above derivation implies that all eigenvalues of
AsJ(x) have an absolute value less than 1. So D, is invertible,
the implicit function theorem [15] implies that g is a local
diffeomorphism.

Lemma 2: Given a small enough )\, and g(z) £ z+ \w(z) is
a map R™ — R™, where w is a L-Lipschitz map with AL < %
from R™ to R™. Then g is a injective and surjective map from
R™ — R™.



Proof. Firstly, we prove that g is a injective map. Consider
x # y and suppose g(z) = g(y) so that y — z = A3(w(y) —

According to the assumption w satisfies the Lipschiz
condition on R™, we have ||w(y) — w(z)|l2 < Llly — ||
Then o — ylls < LXglly — 2l < |ly — «fl2 due to
lz=yll2 < |[As(w(y) —w(z)||2- It goes against our assumption.
So g is injective.

Then we show that g is a surjective map. We only need to
prove that for R large enough, Bro) C g(Bag©))-

Let ||w(0)|| = A, and we have |lw(z) —w(y)|| < L|lz —y||.
Then

lo@)l >lla(z) — gO)] - 9(0)] (15)
—Jl + Mwl@) —wO)] — lgO)]  (6)
>[la]l - Mw(@) - w(©)] - [« (7
>(1 = L)z — A (18)

2
>2jaf) - 4 (19)
>1 ). 20)

The line (19) is under the assumption A\3L < % and the line
(20) is under the assumption ||z|| > 6A. Donate 0Bsg as the
boundary of Byg, and we have g(0Bsgr) C R™ \ Bg.

We assert that B C g(Bsg). If B C g(Bag) is not
true, then there exists zo € B%,x¢ ¢ g(Bag) due to g is
a continuous map. Bag and g(Bsg) are closed set, so there
exists € > 0 such that B.(zo) ¢ g(Bag).

Then we can define ¢ : Bag — 9Bgr. If |jg(z)]] <
R,¢(z) = y, we have y = z9 + a(g(z) — o) for @ > 0.
So lyll = R. I [lg@)]| > R, d(x) = A5 R. Then ¢
is a continuous map from Bsp — OBp and the degree of
¢ : Bap — 0Bpg is 1. This is because ¢|sp,, is homotopic
to ﬁR. However, it is impossible because the assumption
xo & g(Bag) is illegal. So Br C g(Bag), and g is a surjective
map.

Therefore, the inverse of g is well-defined and since g is a
local diffeomorphism on R™. G~! is smooth on R™. Thus, g
is a diffeomorphism.

Remark the proof in [13], which shows that the set of initial
points that finally converges to the saddle points has measure
zero. Therefore, we have proved that the Stackelberg learning
dynamics converge to saddle points of & = —w(x) on a set of
measure zero. |

III. MAFENN FRAMEWORK FOR CHANNEL EQUALIZATION

As we all know that the main target of wireless commu-
nication systems is to provide high efficiency and reliable
signal transmissions. With the rapid development of ML in
the recent years, one way to improve the ML enabled wireless
communications is to rely on priori models to enhance the
interpretability of the neural network models and abstract
more accuracy information from the systems [16]. In this
paper, focused on DL enabled wireless communication modules
which can originally be realized by feedforward structure DL
neural networks, such as source coding/decoding, channel
coding/decoding, channel equalization, resource allocations, the

MAFENN framework is proposed to provide high-level intelli-
gence with an additional feedback learning agent. MAFENN
is designed with additional capability to rethink the high-level
features and improve the noise cancellation or error correcting.
This capability is really suitable for DL-based solutions for
wireless communications to further improve signal recovery
and transmission performance. In addition, the multi-agent
structure can solve complicated issues with downstream tasks
after rethink processing, such as decoding after signal recovery
in equalization to be illustrated in this section. The possible
other applications include source/channel coding/decoding, UE
section, channel allocation, MCS selection and beam selection,
which can be abstracted as classification problems. More
possibilities will be explored in our future studies and we
believe that our proposed algorithm can be applied to more
wireless communication issues.

In this section, we propose a novel network based on the
MAFENN framework for equalizer to overcome ISI in wireless
communications and further improve the decoding success
probability. We firstly introduce the current challenges of
the state-of-art equalization methods in Section III-A. Then
formulate the adaptive channel equalization problem to a
conditional probability distribution learning in Section III-B.
Finally, the detailed components of the MAFENN framework
based equalizer are described in Section III-C.

A. Related Work and Challenges

Before DL was widely used, conventional equalization meth-
ods were usually divided into two categories, i.e., linear and
nonlinear equalization. Zero-forcing equalizers (ZF), Minimum
mean-square error equalizers (MMSE), least mean square
equalizer (LMS) and recursive least squares equalizer (RLS)
[17][18] are commonly used in the linear equalization. However,
linear equalization cannot solve the problem well when channel
distortion is severe. Nonlinear equalizers are usually proposed
like the maximum likelihood symbol detection (MLSD) assisted
equalizer, the maximum likelihood sequence estimation (MLSE)
[19] assisted equalizer and DFE, as mentioned in [5]. When
the channel has a deep spectral null in its bandwidth, the
performance of linear equalization will be very poor because
the equalizer will set a high gain at the frequency of the spectral
null, which will enhance the additional noise in the frequency
band. DFE was proposed to overcome this limitation. It consists
of two parts: the forward filter and the feedback filter, which
counteract the ISI caused by the previous symbols and post
symbols respectively. Li et al. further proposed an adaptive
decision feedback equalizer using error feedback, which not
only improves the performance, but also weakens the error
propagation in [20]. In recent years, to further conquer the
nonlinearity in high-speed channels and the large delay spread
in the underwater acoustic channels, the enhancement DFE
based equalization methods are proposed in [21] and [22].

In the traditional methods, for either linear or nonlinear
methods, the complexity of equalization depends on the
channels and may be very high in practical communication
environments, where multiple reflections, multiple refractions,
scattering, etc., exist. In these environments, the traditional



equalizers have huge computational cost, e.g., tracking complex
CSI and matrix operations to update the fitter parameters.
Moreover, the performance of the traditional methods also
decrease in complex tasks such as nonlinear systems, systems
with increased parameters and parameters are not independent.
With the rapid development of ML in wireless communication
fields, ML-based equalizers were proposed for ISI suppression
and signal distortion for the simplicity of modeling and strong
fitting ability. Gibson et al. proposed an adaptive equalizer using
a neural network architecture based on the multilayer perception
(MLP) to combat ISI in linear channels with white Gaussian
noise [23]. Following this work, Gibson et al. further applied
the MLP-based equalizer to nonlinear channels with colored
Gaussian noise, which demonstrated that the bit error rate
(BER) performance of MLP-based equalizer is close to that of
the optimal equalizer [24]. With the aid of DL, Ye et al. jointly
designed channel equalization and decoding, and demonstrated
the robust performance under various channel conditions,
including a time-varying frequency selective channel that
generates severe ISI [25]. Following this work, in [26], the DL
neural network structure was utilized to recover data symbols
conveyed in OFDM principles. When the feedback mechanism
is considered in DL, many feedback-based ML algorithms were
proposed to solve the channel equalization problem [5]-[7]. The
main ideas of them have briefly been introduced in Section I.
As we know, a recurrent neural network (RNN) can ideally
implement the inverse of a finite memory system, with the result
that it can substantially model a nonlinear infinite memory filter
in principle. Therefore, some RNN-based equalizers, e.g., [27],
[28] and [29], were proposed to solve equalization problems.
In RNN, feedback loops are involved to represent sequence
processing of different samples. However, for each sample
data input, no additional feedback processing is involved to
introduce additional learnable agents to reprocess the disturbed
data and improve the feature expression.

Although many methods based on feedback mechanisms
assisted ML algorithms have been applied in the field of
equalization, most of these methods only use the structural
characteristics of the feedback mechanism to leverage the
knowledge of wireless channel conditions and the passed
information. These methods lack enough intelligent learning
ability from feedback data, thus the performance improvement
needs to be further explored in complex situations. Our pro-
posed MAFENN framework has stronger feedback capabilities
and more intelligence, which can effectively overcome these
problems. So MAFENN-E is proposed to conquer wireless
fading channels with ISI.

B. Problem Formulation and Optimization

Following our preliminary exploration of multi-agent feed-
back networks in wireless image/video transmissions in [30]
and channel equalization in [31], in this paper, we aim to
propose the MAFENN based equalizer by introducing a feed-
back agent to improve feedback learning ability on feedback
information with the theoretical support of the Feedback
Stackelberg game. Fig. 2 illustrates the model architecture.
Channel equalization can be regarded as a classification

problem, where the equalizer is constructed as a decision-
making device with the motivation to classify the transmitted
signals as accurately as possible. We assume S is the symbol
alphabet for transmitting, and the size of S is denoted as M.
The probability that the transmitted symbol z(*) = m from
the symbol alphabet S is to be determined from a training
sequence, given the finite past of the received signals

2ll), = [a@, 2070, g NED]T @1)
where N is the window length of the input signals, and the
finite past of the feedback recovered signals

NI [i(i), i(ifl)’ N

‘rfeed - 'vjj(iiK)]T7 (22)

where K is the window length of the feedback learning
signals. At the time slot 1, :%Sfe)ed includes the recovered
signals of the past K time slots and one feedback learning
signal in the current time slot ¢. Each & is reconstructed
by Feedbacker based on the output of Encoder, which is
called feedback learning process. So the input of MAFENN
equalizer is (") = op(gc,,,la)w, §:§fe)e 2)- Then the whole MAFENN
equalizer network tries to make the classification decision
by the maximum conditional probability and parametrizes
the conditional probability distribution as a function in the
following manner:

fo : RNFEFL S R™ c[1,2,..., M], (23)

which is defined as

fo(@'Y) = P(X|X,0) (24)

where 6 represents the parameter of the whole model shown
in Fig. 2 and controls the probability distribution.

Specifically, as shown in Fig. 2, Encoder maps the input
#() to a latent space to obtain a hidden variable z(*). Different
from the feedforward network that directly sends z(*) to the
downstream network to obtain the result, we send the hidden
variable z(") into a designed Feedbacker. Feedbacker tries
to reconstruct the original clean signal Z(*) from the hidden
variable z(*), which aims to remove the preliminary interference.
After a certain number of feedback learning cycles, we feed
the hidden variable z(*) to the downstream neural network, i.e.,
Processor, to output the predicted class y(*) of the input z(¥),
All the tightly cooperated three components form a multi-agent
DL system to eliminate ISI.

For the problem solving with our proposed Feedback
Stackelberg model, we use the cross-entropy loss function
and mean squared error (MSE) loss function to measure error
of prediction by feedback conditional probability learning. The
cross-entropy loss function is given by

n M

lo= == 373" allogu,

i=1 m=1

(25)

where M is the size of S, n is the number of data set, 7(¥)
also means the ground truth class of itself, y* = fp(&(*) is
the output of whole framework, and y¢, is the probability that
the i-th data belongs to the m-th category. In fact, z, & are
complex numbers in the system, which are equivalent to a
category in the QSPK modulation mode. But for simplicity, we
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Fig. 2: Model architecture of MAFENN-E with the three-player Feedback Stackelberg game.

also denote Z, & as the corresponding category in cross-entropy
loss function. The MSE loss function is given by:

n

S

i=1

(26)

where z is the output of Feedbacker. [; is designed as the
combination of f2 and fs, where § is a discount constant.

L =1+ Bls. 27

Like other Stackelberg games [13], the leader begins the
game by announcing its decision. Each follower executes its
policies after with the full knowledge of its superior players.
Then we can assume that the follower chooses the best response
to the leader’s action. Then the leader is aware of this, and
can utilize this information when updating its parameters. So
the leader aims to solve the optimization problem as below:

min

e l1($1,$2,$3)7

’
s.t. 2 € arg min la(71, 79, 73),
THEX2

(28)

s.t. x5 € arg min lg(xl,xg,x;,).
T4E€AX3

We noticed that [, in the above formula contains x3, which
is not involved in the definition of l5. This is because we
considered that Player 3 has an implicit effect on Player 2
during optimization. As shown in Eq. (28) and Fig. 2, Player
3 (Processor) just need to optimize itself according to other
leaders’ actions as a follower to others. Furthermore, Player
2 (Feedbacker) optimizes itself based on the best response of
Player 3 and action of Player 1. As the top leader, Player 1
(Encoder) could update itself under the best response of Player
2 and Player 3.

C. MAFENN Equalizer Components

Based on the above formulation, MAFENN-E is proposed,
and the detail network is shown in Fig. 2. The Encoder agent
is a 4-layer pipelined neural network, in which the first part is
a CNN and the subsequent part is a RNN. The original inputs
are windowed raw received symbol sequences in which every
symbol is constructed by the In-Phase and Quadrature (IQ)
parts. We assume the window length to be N thus the input

for the forward part is a N x 2 matrix which is suitable for 2-
dimensional convolution operation. The Feedbacker agent will
output a (K + 1) x 2 matrix, where K represents the feedback
signals of the past K slots, and 1 represents the temporary
feedback value of the current slot. After concatenating the
original input and feedback output, we get a (N + K + 1) x 2
input matrix. After the entire retrospect process is over, the
signal window slides one step forwards.

The input is firstly sent to the Encoder agent composed of
a CNN part and a Long Short-Term Memory (LSTM) part
to extract features that are beneficial to equalization. In the
CNN part, three convolutional layers and Relu activate layers
are used to learn matched filters. The convolutional layers
consist of a rectangular grid of neurons, where each neuron
takes inputs from a rectangular section of the previous layer.
The weights for this rectangular grid are the same for each
neuron in the convolutional layer, moreover, they specify the
convolutional filter. After each convolutional layer, a Relu
activate layer is concatenated to allow complex relationships in
the data to be learned. Then, we feed the learned features into
a subsequent layer for temporal modeling by utilizing LSTM
cells, which specifies the RNN part. Basically, the LSTM
layer learns temporal dependency by memorizing the previous
internal state and adding it to the current state at every single
time step, and this is what the recurrent means. The weight
parameters of the LSTM layer are shared across the time steps.
Finally, the Encoder agent outputs latent variable z, which is
a 128-dimensional vector.

The intuition of applying CNN and RNN as the main part
of the Encoder agent is that CNN and RNN have different
properties and different functions in many recovery processes
in radio communication systems. We use the CNN to leverage
the shift-invariant properties to learn the variance of mixing,
rotation, time shifting and learn matched filters to reduce
temporal variations. RNN is effective in dealing with time-
dependent data and can capture the sequential information
presented in the input data. Moreover, RNN can ideally
implement the inverse of a finite memory system, with the
result that can substantially model a nonlinear infinite memory
filter.

Subsequently, the output of the Encoder agent will be fed to
the Feedbacker agent, which consists of two linear layers and



a Relu activate layer. The Feedbacker agent aims to recover
the original signal from the latent variable z and output a
2-dimensional variable. The output of the Feedbacker agent
at the current slot and the output of the past K slots are
concatenated with the original input and fed to a new round
of feedback learning. After the feedback learning finished,
the final latent variable is sent to the Processor agent, which
consists of two parts, one Relu layer and a Softmax activation
function to derive the outputs for the last layer. In this sense,
the MAFENN framework based nerual network is trained to
solve a M-class decision problem given tremendous (z(*), (")
instances known as the training dataset.

IV. SIMULATION RESULTS

In this section, we train the network of MAFENN-E equalizer
with eleven million randomly generated digital signals. Those
signals are modulated with the QPSK modulation, and we
randomly select ten million as training dataset and one million
as validation dataset. Our training environment is a DELL
graphical work station running Ubuntu 18.04 with NVIDIA
GeForce GTX 2080Ti graphical card drived by CUDA 10.0.

Before we conduct two sets of experiments to demonstrate
the performance of our proposed network, three experiments
are designed firstly to optimize the framework hyperparameters,
e.g., the length of the feedback signal, the number of feedback
cycles and different splicing forms of the original input and
output of the Feedbacker agent. Then, we compare the SER
performance among our proposed MAFENN-E based equalizer
and other techniques. In the first set of experiments, the network
is trained in linear multipath channels. In the second set of
experiments, we test the framework in nonlinear multipath
channels. It is worth noting that the learning dynamics involved
in the convergence proof in Section II-D is not explicitly applied
in our experiments due to the high time and computational
complexity via such as Quasi Newton methods as in [32]. We
follow the optimization sequence described in Eq. (28), which
emulates the update process of natural Stackelberg game, so we
have reason to believe that the learning dynamics mentioned
are implicitly applied in the training process. In addition, our
code is available in GitHub !.

A. Framework Hyperparameter Optimization

Recalling the network of MAFENN-E consists of three
agents as shown in Fig. 2, each framework hyperparameter
of such a complex multi-agent system is important for the
performance of the entire network. We use grid search to
perform framework hyperparameter optimization, which is
simply an exhaustive searching through a manually specified
subset of the hyperparameter space. Before that, some of the
framework hyperparameters should be manually determined
to avoid a timeless searching, for example, the length of the
original signal sequences N is set as 12 according to the
experiment result of the prior work [33]. In addition, the
splicing forms of the original input and the Feedbacker output,
the number of cycles of feedback learning and the window

Uhttps://github.com/liyang619/MAFENN_TRANS_2022

length of the Feedbacker output are important factors that
determine the performance of the MAFENN-E equalization
network. All those optimization experiments are designed in
nonlinear multipath channel, which will be introduced in the
next subsection in details.
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Fig. 3: Mean validation error vs. the number of feedback cycles in
MAFENN-E when SNR=28dB.

We use SER to reflect the validation error since it is
a significant metric of channel equalizers and each of our
experiments was repeated 10 times. Fig. 3 shows the mean
and standard deviation of the results when SNR = 30 dB.
Standard errors are represented in the figure by the error bars
attached to each column. The chart indicates the number of
feedback cycles has lower bounds for the error rate about
2 x 1075, In Fig. 3, the network becomes a feedforward
network when the number of feedback cycles is zero. While
for MAFENN-E, the error rate with only one feedback cycle is
also three orders of magnitude lower than that without feedback
learning. With the rise of the number of feedback cycles, the
error rate is close to an order of magnitude decline again. When
the number of feedback cycles goes to 5, the error rate does
not decrease but really fluctuates, indicating that the feedback
learning has converged under the current set. So in the above
experiments, considering the balance of time complexity and
experimental performance, we set the number of feedback
cycles to 5.

In the proposed MAFENN framework, the output of the
Feedbacker agent and the original input of the Encoder agent
need to be combined and sent to the Encoder agent. The
combination forms are crucial for the Encoder agent to extract
the feature. We proposed two different combination forms. One
is replacement, and the other is concatenation. The replacement
method means that the original input data of the Encoder agent
will be replaced by the output data of the Feedbacker agent.
The concatenation method means that the original input data of
the Encoder agent and the output data of the Feedbacker agent
are concatenated together as the new input data of the Encoder
agent, as shown in Fig. 4. We evaluated the SER performance of
different combination methods in the SNR range from 0 dB to
30 dB. Each of our experiments was repeated 10 times, and the
mean and standard deviation were shown in Fig. 4 in the form
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Fig. 4: Mean SER comparison of different input combination forms.

of error bar. The solid blue line represents SER performance of
the concatenation method and the dotted red line represents that
of the replacement method. When the SNR value is greater than
10 dB, the SER perforamnce of the concatenation method starts

to be significantly better than that of the replacement method.

The SER performance of the concatenation method gains more
than 3 dB when SER = 10~°. So the concatenation method
is more optimal in the channel equalization problem.
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Fig. 5: Mean SER vs. the window length of the feedback signal
sequence in MAFENN-E when SNR=28dB

The selection of the length of the Feedbacker agent output
window K is also critical to the performance of the network. We
selected 10 different window lengths from 0 to 9, to test which
length is optimal. The result is shown in Fig. 5, and each value

represents the mean of our 10 times repeated experimental value.

The value O represents that the network just have the current

Feedbacker output without any passed feedback information.

When the length is 6, the SER value curve reaches the lowest
point. When the length is greater than 6, the SER performance
no longer decreases but gradually increases. So K = 6 is the
optimal window length of the Feedbacker agent.

B. Experiment results in linear multipath channels

In the first set of experiments, we evaluate the performance
in linear channels with ISI and additive white Gaussian noise

(AWGN). The impulse response is given in z-transform notation
by:

H(z) = (0.0410 + j0.0109) + (0.0495 + j0.0123) - =
+ (0.0672 + j0.0170) - =2 + (0.0919 + j0.0235) - 2~
+ (0.7920 + j0.1281) - 2~ + (0.3960 + j0.0871) - 2~
+ (0.2715 + j0.0498) - z~® + (0.2291 + j0.0414) - 2~
+ (0.1287 + j0.0154) - 25 + (0.1032 + j0.0119) - 2~

(29)

This channel was proposed in [34]. We evaluate the SER
performance of our MAFENN-E, RLS equalizer, MLP equalizer
[35], CRNN equalizer [33] and two feedback mechanism
assisted DL based equalizers, i.e., MAFENN-MLP equalizer
and FB-CRNN equalizer. Besides, we also conduct a two-
player Stackelberg game to model a forward equalizer network
based on [13] for comparison, which is named as Implicit
Learning Dynamics in Stackelberg Game (ILDSG). In the MLP-
MEFENN equalizer, a feedback learning agent is integrated into
the MLP based equalizer networks. the FB-CRNN equalizer
just adds a simple feedback path from the output to the
input. All those equalizers are trained with the same training
dataset, and same hyperparameters. Considering the higher
computational complexity of nonlinear equalizers as analyzed
in Section III-A, more linear equalization technologies are
used in practical wireless communication systems, including
ZF, MMSE, LMS and RLS, etc. In order to further reduce
the computational complexity of ZF and MMSE, consider
using iterative algorithms, such as LMS and RLS. RLS is
prior to LMS on fast convergence speed, high estimation
accuracy and good stability, and has strong adaptability to
non-stationary signals. The experimental results in [36] [37]
show that the performance of RLS is close to MMSE, while the
convergence speed is higher. Therefore, this paper compares
the RLS algorithm in the traditional schemes for clarification,
and focuses more on comparing the performance of a variety
of artificial intelligence equalization algorithms. First of all,
we compare the convergence speed with and without the
Stackelberg game optimization. As shown in Fig. 6, the solid
blue line represents the convergence curve of the symbol
decoding accuracy in the first 4000 steps with the Stackelberg
game optimization, and the orange dashed line is the counterpart
non-game optimized convergence curve. The simulation results
show that the game-optimized MAFENN system converges
faster and has a higher accuracy rate.

In Fig. 7(a), we provide the SER performance of those
methods with regard to different SNR conditions from 0 dB to
30 dB. Each of our experiments was repeated 10 times, and
the mean and standard deviation were shown in Fig. 7(a). After
the SNR value is greater than 8 dB, the SER performance of
our proposed method has obvious gains compared to that of
the other methods. Our method has about 2 dB gains over
RLS when SER = 1073. When SER = 10~*, our method
gains more than 0.5 dB compared to FB-CRNN, which just
uses a feedback loop in the CRNN method. It’s worth noting
that when SNR goes from 14 dB to 16 dB, the performance of
MLP-MAFENN is better than that of the CRNN method. The
performance of ILDSG is just a little better than that of the
MLP equalizer when SNR is less than 14dB. When SNR goes
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Fig. 6: Comparison of the convergence speed with and without the
Stackelberg game optimization in training

from 14 dB to 16 dB, the performance of the ILDSG equalizer
gradually overtakes that of the CRNN equalizer but is still
worse than that of MLP-MAFENN. These results show that our
framework is a model with better learning and generalization
ability, which can achieve good results in different networks.
Besides,

C. Experiment results in nonlinear multipath channel

In the second sets of experiments, we perform the evaluation
in nonlinear multipath channels. The nonlinearities in the
communication system are mainly caused by amplifiers and
mixers, which can be modeled by a nonlinear function g(-).
The associated impulse response is the same with Eq. (29) and
the nonlinear distortion function, as used in [38], is given as
follows:

lg(v)| = |v] +0.2[v]* = 0.1|v|* 4 0.5 cos(m|v]). (30)

where v is the signal after being transmitted through the linear
channel.

The SNR performance is plotted in Fig. 7(b). Each of our
experiments was repeated 10 times, and the mean and standard
deviation were shown in Fig. 7(b). Similar to the experiments
in linear channels, we compare the SER performance of our
MAFENN, RLS equalizer, MLP equalizer, ILDSG equalizer,
CRNN equalizer, MAFENN-MLP equalizer, and FB-CRNN
equalizer. When SER = 10~°, the performance of our method
obtains more than 5 dB gains compared to the FB-CRNN
method. When SN R = 30 dB, the SER performance of our
proposed equalizer is nearly an order of magnitude compared to
the FB-CRNN method and more than four orders of magnitude
compared to the RLS equalizer, which shows the MAFENN
framework has better performance than the traditional feedback
mechanism. The performance of ILDSG equalizer is the worst
network-based method in nonlinear channels. After adding
our MAFENN feedback framework in the MLP method, the
MAFENN-MLP also gains more than 1 dB compared to
MLP equalizer. Compared to the linear channel case, our
experimental results have a greater improvement, which also
shows that our framework has stronger ability to face more
complex channel environment.
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Fig. 7: Performance comparison of the mean QPSK SER of the
proposed MAFENN-E and other equalizers

V. CONCLUSION

In this paper, we propose a multi-agent game theory based
feedback structure, i.e., MAFENN. With the three fully cooper-
ative agents, the MAFENN framework have stronger feedback
learning ability and more intelligent for denoising and key
information abstraction. We further formulate our MAFENN
framework to a three-player Feedback Stackelberg game, and
prove that the framework can converge to the Stackelberg
equilibrium. Then we propose an analytical formulation of
channel equalization as a conditional probability distribution
learning and feedback learning problems, which can be solved
by our MAFENN framework. Based on the formulation,
we further propose MAFENN-E to recover and decode the
transmitted signaling in wireless multipath fading channels with
linear and nonlinear distortions. We compared the performance
of our proposal with that of the RLS, MLP, ILDSG, MAFENN-
MLP, and FB-CRNN equalizers. The experimental results show
the SER performance of our proposed network outperforms
that of the other methods, and is robust in either linear and



nonlinear channels. As feedback mechanisms have been widely
used in wireless communications to improve the estimation
accuracy and scheduling performance. In the future, we will
further explore our MAFENN framework to solve more
problems in wireless communications such as radio resource
allocation, coding/decoding to take advantage of intelligent
feedback networks. Moreover, the further research may focus
on integrating feedback agents into more neural networks with
complicated structures, and try to build different mathematical
models and solve the convergence problem.
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