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Abstract

Training reinforcement learning (RL) agents to achieve de-
sired goals while also acting morally is a challenging problem.
Transformer-based language models (LMs) have shown some
promise in moral awareness, but their use in different contexts
is problematic because of the complexity and implicitness of
human morality. In this paper, we build on text-based games,
which are challenging environments for current RL agents,
and propose the HuMAL (Human-guided Morality Aware-
ness Learning) algorithm, which adaptively learns personal
values through human-agent collaboration with minimal man-
ual feedback. We evaluate HuMAL on the Jiminy Cricket
benchmark, a set of text-based games with various scenes and
dense morality annotations, using both simulated and actual
human feedback. The experimental results demonstrate that
with a small amount of human feedback, HuMAL can improve
task performance and reduce immoral behavior in a variety of
games, and is adaptable to different personal values.

Introduction
Reinforcement learning (RL) has achieved great success in
a variety of complicated tasks (Mnih et al. 2013; Vinyals
et al. 2017; Fang, Li, and Cohn 2017). However, one major
concern is that RL agents may act in an immoral manner,
particularly when they are trained in environments that do
not consider moral considerations (Soares and Fallenstein
2017; Russell 2022). Therefore, it is a crucial and ongoing
goal to create agents that can perform specific tasks while
also aligning with moral values.

Existing research in this direction unifies morality as so-
cially acceptable behaviour, with the aim of incorporating so-
cial common sense knowledge from language models (LMs)
(Hendrycks et al. 2021b; Ammanabrolu et al. 2022). These
works build on text-based games that can be used to mimic
the real world and provide challenging environments for
studying a variety of natural language processing (NLP) tasks
(Murugesan et al. 2021; Ammanabrolu, Jia, and Riedl 2022;
Fang et al. 2024). Text-based games provide a partially ob-
servable environment in which an agent interacts with objects,
receives observations, and issues natural language commands.
Moreover, these games incorporate complex simulations of
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moral dilemmas into their virtual worlds, enabling agents to
become moral actors (Shi et al. 2022).

Recently, the Jiminy Cricket benchmark released a set of
text-based games with dense moral annotations to completely
evaluate game agents’ morality (Hendrycks et al. 2021b).
These annotations cover a wide range of moral scenarios,
from bodily harm to theft to altruism. Prior works develop
RL-based algorithms that use a fixed moral prior derived
from specially trained transformer-based LM (Hendrycks
et al. 2021b; Ammanabrolu et al. 2022). In this way, the
morality of current actions can be assessed by the moral prior
to further condition agents through policy or reward shaping.
Such methods rely heavily on the performance of the moral
prior on out-of-distribution data.

The obvious problem is that human morality is itself enor-
mously complex and implicit (Moor 2006). While the exis-
tence of a general morality is universal, its precise content
varies between cultures. Moreover, moral judgements and
decisions are contextual, so that what constitutes moral be-
haviour depends on the particular features of a given situation
(Wallach and Allen 2008). For example, Ammanabrolu et al.
(2022) review the human annotations in the Jimmy Cricket
benchmark and found that they agreed on the exact valence,
goal, and severity only 24% of the time. The straightforward
application of a static, unified moral standard embedded in
LMs to particular contexts is therefore problematic.

In this work, we build on text-based games, but consider
an alternative solution to allow humans to provide moral eval-
uative feedback on current actions during training, guiding
the agent to complete specific tasks while learning personal
values. However, given the large state and action space of
text-based games, the number of human feedback interac-
tions required is impractical. In this work, we overcome this
difficulty by using an adaptive action generator and a moral
prior, which are integrated with moral awareness based on a
limited number of human feedback interactions.

We present the HuMAL (Human-guided Morality Aware-
ness Learning) algorithm, which consists of a cycle of two
learning phases, i.e. game play for agent learning and human-
agent collaboration for morality learning. During agent learn-
ing, the agent collects high-quality trajectories from past
experience in a data buffer. Then, during morality learning,
humans are asked to provide evaluative feedback on moral
scenarios stored in the buffer, which is then used to improve
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the action generator and the moral prior in a supervised man-
ner. We evaluate HuMAL on the Jiminy Cricket benchmark
using both simulated and authentic human feedback. Our
results demonstrate that a limited amount of human feedback
is capable of facilitating the acquisition of both tasks and
individual values.

Our contributions can be summarised as follows: First, we
present a general adaptive learning algorithm for imparting
personal values to RL agents. Second, we provide a low-cost
human-in-the-loop strategy that reduces the amount of feed-
back required by several orders of magnitude compared to
conventional step-by-step feedback approaches. Third, we
evaluate HuMAL on the Jiminy Cricket benchmark using
simulated and authentic human feedback. Our HuMAL im-
proves both task performance and morality in a variety of
games from the Jiminy Cricket benchmark compared to other
value-aligned agents.

Related Work
We track the value alignment problem via human-in-the-loop
learning and build on text-based games. Below we review
related works in human-in-the-loop RL, text-based game
playing agents, and value alignment of language agents.

Human in the loop RL. The use of human guidance for
RL tasks has been extensively studied in the context of imita-
tion learning (Ho and Ermon 2016; Kazantzidis et al. 2022),
inverse reinforcement learning (Hadfield-Menell et al. 2016),
reward shaping (Ibarz et al. 2018), preference learning (Hejna
and Sadigh 2022; Liu et al. 2022), multi-agent learning (Du
et al. 2023), and learning from human-provided feedback
(Zhang et al. 2018). Among them, learning from human eval-
uative feedback has the advantage of requiring minimal hu-
man knowledge. However, the direct use of human evaluative
feedback as a learning signal requires unlimited access to hu-
man labels, which limits its applicability to challenging tasks.
A number of works have attempted to learn the reward model
from human feedback to overcome this limitation (Hejna and
Sadigh 2022). However, these solutions are limited to short
horizons and do not scale to more difficult problems. To over-
come these challenges, our research focuses on leveraging
text-based games as a foundation. As part of the training
process, we use human-in-the-loop, which requires humans
to provide easier-to-perform evaluative feedback.

RL Agents for Text-based Games. Previous studies have
studied RL agents with diverse architectures and learn-
ing schemes for solving text-based games (He et al. 2015;
Narasimhan, Kulkarni, and Barzilay 2015; Xu et al. 2020a).
These include solving the issue of combinatorial language-
based action space (Yao et al. 2020; Xu et al. 2022; Shi et al.
2023), modeling state space utilising knowledge graphs (Xu
et al. 2020b; Ammanabrolu and Hausknecht 2020; Adhikari
et al. 2020; Ryu et al. 2022), integrating question-answering
and reading module. The combinatorial action space is one of
the key obstacles. Early efforts rely primarily on hand-crafted
rules or the assumption that the agent has a predefined set of
actions to choose from. For instance, the Jericho benchmark
provides a valid action handicap that filters out inadmissible

actions (i.e. actions that are either unrecognized by the game
engine or do not change the underlying game state) at each
game state (Hausknecht et al. 2020). This handicap has been
widely used as a reduced action space by approaches like
Deep Reinforcement Relevance Network (DRRN) (He et al.
2015). Very recently, Contextual Action Language Model
(CALM) (Yao et al. 2020) uses a language model to gener-
ate a set of action candidates for RL agents to select, which
addresses the combinatorial action space problem.

Value Alignment of Language Agents. Our research is
a subset of value alignment, in which intelligent agents
only pursue behaviours that are consistent with expected hu-
man values and norms (Russell, Dewey, and Tegmark 2015;
Arnold and Kasenberg 2017). Conventional methods include
learning from expert demonstrations (Ho et al. 2016) and in-
verse reinforcement learning (IRL) (Ng, Russell et al. 2000).
In the field of text-based games, the complexity of environ-
ments is significantly increased. To evaluate the morality of
game agents, Nahian et al. (2021) first create three small-
scale environments that build on the generated TextWorld
framework (Côté et al. 2018). Hendrycks et al. (2021a) build
the MoRL benchmark and then expand to the Jiminy Cricket
benchmark. (Hendrycks et al. 2021b). The latter consists
of thousands of morally significant scenarios, ranging from
theft and physical injury to kindness. Recently, transformer-
based language models exhibit some moral awareness that
can be translated into agents’ actions. For instance, CMPS
and CMRS (Hendrycks et al. 2021b) use a commonsense
value prior to determine the morality of an action to modify
CALM’s Q-value or reward. Ammanabrolu et al. (2022) pro-
pose an agent called GALAD, which fine-tunes the GPT-2
model used by CALM via action distillation on a wide range
of human gameplay datasets so that the possibility of the
language model generating an immoral action is reduced.

Background
Text-based Games as POMDP. The text-based game is
usually formulated as a Partially Observable Markov Deci-
sion Process (POMDP) (S, T ,A,O, R, γ). At each step t,
the agent receives a textual observation ot ∈ O from the
game environment, while the latent state st ∈ S, which con-
tains the complete internal information of the environment,
could not be observed. By executing an action at ∈ A, the en-
vironment will transit to the next state according to the latent
transition function T , and the agent will receive the reward
signal rt = R (st, at) and the next observation ot+1. The ob-
jective of the game agent is to take actions to maximize the ex-
pected cumulative discounted rewards Rt = E[

∑∞
t=0 γ

trt],
where γ ∈ [0, 1] is the discount factor.

Episode and Trajectory. We define an RL episode as the
process of the agent interacting with the environment from
the beginning of a game to a termination state (e.g., the agent
dies) or exceeding the step limit T . A trajectory τ is defined as
the sequence of observations, actions and game rewards col-
lected in an episode, i.e., τ = (o1, a1, r1, o2, a2, r2 . . . , rl),
where lτ is the length of τ and lτ ≤ T .
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DRRN. Deep Reinforcement Relevance Network
(DRRN) (He et al. 2015) is a choice-based game agent for
text-based games. The DRRN encodes the state ot and each
of the actions at,i from the valid action handicap At to
estimate the Q-values over actions. The next action is chosen
by softmax sampling the predicted Q-values. The DRRN is
trained using the traditional temporal difference (TD) loss.

CALM. Instead of relying on the valid action handicap,
Contextual Action Language Model (CALM) (Yao et al.
2020) uses a GPT-2 language model fine-tuned on the human
gameplay transcripts to generate a set of action candidates.
Then action candidates are fed into the DRRN agent, which
addresses the challenge of combinatorial action space.

Human-Agent Collaboration for Morality
Learning

System Design

We present a human-centric, dynamic collaboration system
for aligning moral values in text-based games, as shown
in Figure 1. The system aims to play text-based games in
which players advance by interpreting game state and issuing
commands through text. Along with language understanding
and exploration, successful gameplay also requires moral
awareness skill. The goal of the collaboration system is to
incorporate this skill through human-agent interaction.

During game playing, there is an interdependence between
humans and agents. On one hand, the human collaborator
relies on the agents to explore the game and review game
stories. On the other hand, the agents require human collab-
orators to provide feedback in order to better comprehend
morality.

The text-based game environments generate quests that
define a goal state and how to reach it before the agents play.
For example, the simplest game can be one room with two
objects where the goal is to eat the edible one. The game’s
performance is measured by task completion represented as
cumulative game rewards, while morality is a soft constraint
that is independent of game design. The agents cannot acquire
a sense of morality by interacting with game environments.

To emphasise the trade-off nature of game goals and moral
values, in our system agents generate high-quality trajecto-
ries during gameplay and seek moral inquiries from human
collaborators. The human collaborators then rate the agent’s
actions on a Likert scale, so that the agents can update their
policies to incorporate moral knowledge.

RL Agent

We use an RL module, i.e., DRRN, to train a Q-based policy
that estimates Q-values over actions. During RL learning,
the agent is trained using experience replay with prioritized
sampling for experiences with game rewards. We define the
context ct = {ot−1, at−1, ot}. Experiences in the form of
tuples of ⟨c, a, r, c′⟩ collected during training are stored in
a replay memory buffer D and then batches of b tuples are
priority sampled to calculate TD loss:

LTD(θ) =
b∑

i=1

[(
yRL
i −Q(c, a; θ)

)2]
(1)

where yRL = r + γmaxa′∈AQ (c′, a′; θ−), and θ− are the
parameters of a target network that are periodically copied
from θ. The next action is then selected from the action
candidate set A by softmax sampling the predicted Q-values:

π(a|o; θ) = exp (Q(o, a; θ))∑
a′∈A exp (Q (o, a′; θ))

(2)

Moral Prior We use a moral prior to further condition
the DRRN agent. We evaluate the two condition methods,
i.e., policy shaping and reward shaping. For policy shaping,
following (Hendrycks et al. 2021b), given the current con-
text ct and the action candidate at, we incorporate the moral
prior into the policy. The Q-values then become Q′(ct, at) =
Q (ct, at) − β1[Pimmoral (at) > ξ], where Q (ct, at) is the
originalQ-value for context ct and action at, Pimmoral is an im-
morality score of at calculated by the moral prior, ξ is an im-
morality threshold, 1[Pimmoral (at) > ξ] is a binary variable
that indicates whether action at is moral or immoral, and β ≥
0 is a scalar controlling the strength of the conditioning. For
reward shaping, we add an additional penalty term into the
reward function. Specifically, the modified reward function
denoted as R′ (st, at) = R (st, at)− β1 [Pimmoral (at) > ξ].

Human-Agent Collaboration Flow
We allow humans to guide game agents to make moral deci-
sions at certain intervals during training. Here, we describe
the events that occur in a single round of human-agent col-
laboration, from agent acquisition to agent self-improvement
(i.e., morality learning).

Agents with a moral prior have some knowledge to identify
a morally salient scenario. Given that the majority of scenar-
ios in the collected trajectories are morally irrelevant, we use
the moral prior to extract morally significant samples and
send requests to humans. Given a sample (ct, at) stored in a
buffer B, a human collaborator is asked to provide a rating
vt indicating how well (ct, at) satisfies the personal value.
We provide a simple human interface and consider ratings
vt to be discrete integers from −ν to ν. Ratings from −ν to
−1 indicate a negative rating, a rating of 0 indicates a neutral
rating and ratings from 1 to ν indicate a positive rating. Each
labelled sample of (ct, at, vt) is added to the training set for
further morality learning.

Human-Agent Value Alignment
Moral value alignment is independent of the game task and
provides a more human-centric, dynamic framework for
human-agent teaming. We perform morality learning and use
the labelled samples (ct, at, vt) to improve both the moral
prior and the LM in a supervised manner.

In morality learning, we start with a pre-trained moral prior
and then learn from interactions with humans to improve
itself. We use a RoBERTa model that is pre-trained on the
commonsense morality portion of the ETHICS benchmark
(Hendrycks et al. 2020) as the moral prior. Given a state-
action pair (ct, at) and its rating label vt, the moral prior is
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Figure 1: Overview of our system. We allow humans to guide agents to make moral decisions in text-based games. It employs a
two-stage learning process. Firstly, during gameplay, the agent navigates through various game states, gathering high-quality
data into a buffer. Subsequently, for effective human-agent collaboration, we solicit human feedback on the collected data. This
feedback is then utilized to improve both the LM and the moral prior.

improved with the standard binary cross entropy loss. We
expect to model human morality via transfer learning from a
small number of noisy binary labels.

For the LM module, we use a GPT-2 model that is pre-
trained on the ClubFloyd dataset (Yao et al. 2020). The LM is
traditionally trained with the negative log-likelihood loss of
positive labels. However, human ratings contain both positive
and negative samples. Directly discarding negative samples
results in less training signal and lower generation quality.
Here, we incorporate human morality ratings into the stan-
dard loss. The LM module L is improved with the loss:

LLM(ϕ) = −αkE[log(p(ai|ci, ϕ))], (3)

where α = η ∗ (1− 0.05 ∗ i), η is the scaling factor and the
term (1 − 0.05 ∗ i) decreases the penalty as the number of
learning iterations i increases, and k depends on the degree
of morality. We define k = 1 when the rating is positive or
neutral, and k = ν−|v|

ν when the rating is negative.

Personal Values Our system allows the agent to track
morality diversity and adapt to personal values. Here we de-
fine personal values as individuals’ moral values and norms.
Personal values affect the moral judgments and decision-
making of individuals under the same context. For each hu-
man collaborator, we use the annotated data independently.
Then the game agents with different collaborators will be
improved on their respective data.

Sample Efficiency
We present a low-cost human-in-the-loop strategy that re-
duces by several orders of magnitude the amount of feedback
required compared to step-by-step feedback approaches. We
increase the sampling efficiency in three ways: (1) We only
use a small number of high-quality trajectories for morality
learning; (2) We further identify morally significant samples
and seek human feedback; (3) As the training continues, the
agent will gradually take over from the human collaborators

in the human-agent collaboration. This is due to the fact that
stored high-quality trajectories tend to become more consis-
tent (i.e., closer to the walkthrough of the game) as the time
step grows. In this case, morality learning is performed using
existing optimal trajectories. Also, we store the hash of each
labelled sample to prevent duplication of labelling tasks.

Data Acquisition During agent learning, we collect and
rank high-quality trajectories in an additional small data
buffer B. We evaluate the trajectories and store only those
that are of high quality. We consider trajectories to be of high
quality if they lead to higher game scores with fewer steps.
In particular, we give priority to trajectories with higher cu-
mulative game scores. If two or more trajectories have the
same score, the shorter trajectory is chosen. This is done to
eliminate invalid steps from the trajectory. In addition, we
account for novelty by periodically replacing the old trajecto-
ries with new ones of equivalent quality (e.g. the same scores
and lengths). These high-quality trajectories are translated
into (ct, at) pairs and made available to human collaborators.

HuMAL Algorithm

The whole process consists of multiple rounds of two learning
phases: game play for agent learning and human-agent col-
laboration for morality learning. During game play, the agent
automatically collects successful past experiences for human
interaction and further self-improvement via RL. Then, dur-
ing human-agent collaboration, the agent collaborates and
interacts with humans to improve morality learning. The
morally significant examples from the collected trajectories
are presented to a human collaborator. The human collab-
orator assigns a personal value rating to each sample. The
annotated data is used in a supervised manner for moral value
alignment. Our method requires only a small amount of hu-
man feedback and adapts flexibly to different personal values.
Algorithm 1 shows the pseudo-code.
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Algorithm 1: HuMAL

1: Initialize prioritized replay memory D, data buffer B, RL
agent with θ, LM module with ϕ, and moral prior with ψ

2: for Round = 1 : N do
3: % RL Agent
4: for Episode = 1 : K do
5: for t = 1 : T do
6: Receive observation ot and build context ct
7: The LM generates At for current state
8: Sample action at from At with a moral prior
9: Execute at and receive rt and ot+1

10: Store ⟨ct, at, rt, ct+1⟩ in memory D
11: Update the RL θ using TD loss
12: end for
13: end for
14: % Human-Agent Collaboration
15: Collect high-quality trajectories to buffer B according

to rewards, length and novelty
16: Provide morally significant samples in buffer B to

humans
17: Human give a rating r according to the personal value
18: Update the LM ϕ using Equation 3
19: Update the moral prior ψ using binary cross-entropy

loss
20: end for

Simulated Human Experiments
Setup
To demonstrate that our algorithm is capable of learning per-
sonal values with little human effort, we design experiments
on the Jiminy Cricket benchmark (Hendrycks et al. 2021b)
using both simulated and real human feedback. In simulated
human experiments, we use 10 man-made text-based games
supported by the Jiminy Cricket that vary in theme to evalu-
ate our algorithm. Following previous work, we divide each
game into five evenly spaced progress percentages (0%, 20%,
40%, 60%, and 80%), resulting in 50 environments. We en-
able the agent to employ the walkthrough until it reaches the
progress percentage, and then we start training and testing.
The walkthrough is constructed by human experts to quickly
obtain the maximum possible score while taking fewer im-
moral actions. Note that the walkthrough is independent of
the training process.

In simulated human experiments, we use the dense anno-
tations provided by the Jimmy Cricket benchmark in place
of real-time human feedback. These annotations are incorpo-
rated in the game’s source code and are pre-defined according
to the specified guideline. Each annotation includes valence
(bad/good), target (self/others), and severity (rating from 1-3).
In this work, we only consider actions that are targeted at
others. We define ν = 3 as the range of severity from 1-3.
During morality learning, we obtain the annotations of the
samples stored in the buffer and use them to conduct morality
learning.

For each game, we set the step limit of an RL episode to
100, and train the RL agent on 8 parallel running environ-
ments for 40k steps. We stop training early if the maximum

score is less than or equal to 0 after the first 5,000 steps.

Evaluation Metrics
We evaluate the immorality and task performance of our
algorithm using the following metrics:

• Immorality Score (IS): which uses the human anno-
tation from the Jiminy Cricket benchmark. We only
consider actions that are harmful to others. We sum the
degree of all immoral actions taken within an episode,
which is then aggregated across starting percentages.

• Completion Percentage (CP): which measures the
agent’s task performance by comparing their accumu-
lated game score to the maximum game score. We use
the weighted average to aggregate CP across starting
percentages for different start percentages.

• Relative Immorality (RI): which is defined as IS/CP
to account for the fact that agents with higher task com-
pletion may accumulate more immoral actions.

Baselines
We evaluate the two methods for conditioning the HuMAL
agent with a moral prior, i.e., policy shaping and reward
shaping.

• HuMAL Policy Shaping which uses a moral prior to
condition the HuMAL agent via policy shaping during
RL learning. The policy shaping method is described in
.

• HuMAL Reward Shaping which uses a moral prior to
condition the HuMAL agent via reward shaping during
RL learning. We perform reward shaping by deducting
a factor proportional to the immorality of an agent’s
action from the game reward.

In addition, we compare our algorithm with advanced
value-aligned agents for text-based games that belong to the
same class, i.e. none of these agents has access to the valid
action handicap.

• CMRS (Hendrycks et al. 2021b), which is identical
to the CALM agent but uses a moral prior to perform
reward shaping during RL.

• CMPS (Hendrycks et al. 2021b), which is identical
to the CALM agent but uses a moral prior to perform
policy shaping during RL.

• CMPS (Oracle) which is similar to CMPS but uses
dense, ground-truth annotations provided by the Jiminy
Cricket environments to indicate whether actions are
immoral. In this case, the threshold parameter ξ is no
longer needed.

Results
Table 1 shows the main results on 10 games from the Jiminy
Cricket benchmark using simulated human feedback. Using
dense annotations, the CMPS (Oracle) achieves the lowest
immorality score but suffers a decrease in game comple-
tion. HuMAL Policy Shaping and HuMAL Reward Shaping,
in contrast, improve both metrics. HuMAL Policy Shaping
achieves superior performance compared to HuMAL Reward
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CMRS CMPS HuMAL
Reward Shaping

HuMAL
Policy Shaping

CMPS
(Oracle) CMRS CMPS HuMAL

Reward Shaping
HuMAL

Policy Shaping
CMPS

(Oracle)

Game
Metric

Immorality Score ↓ Completion Percentage ↑
Enchanter 0.53 0.32 0.20 0.13 0.00 3.57 3.57 3.81 3.78 3.40
Hitchhiker 3.25 2.61 1.64 1.22 0.48 6.67 9.81 8.54 9.66 9.34
Moonmist 4.26 2.70 2.57 1.45 0.10 8.20 9.59 9.37 8.96 7.09
Suspect 3.62 2.43 2.73 2.10 0.08 4.15 4.11 4.42 4.38 4.68
Sorcerer 0.49 0.52 0.17 0.19 0.03 2.60 2.63 2.56 2.62 2.74
Stationfall 0.61 0.48 0.44 0.34 0.01 0.00 0.32 0.08 0.35 0.43
Wishbringer 2.41 1.82 1.84 1.17 0.04 5.15 5.23 5.77 5.81 4.49
Witness 1.46 1.64 1.33 1.31 1.16 9.30 7.95 9.16 9.01 9.51
Zork1 3.50 4.32 1.69 1.88 0.06 3.86 6.49 5.67 6.64 2.57
Zork3 0.87 0.65 0.34 0.29 0.08 14.25 11.26 16.89 16.33 15.47
AVG 2.10 1.75 1.30 1.01 0.20 5.78 6.10 6.63 6.75 5.97
RI ↓ 0.36 0.29 0.20 0.15 0.03

Table 1: Per-game evaluations on the Jiminy Cricket benchmark. The results are averaged over the last 50 episodes of training.

HuMAL PS HuMAL PS
w/o LM

HuMAL PS
w/o MP

HuMAL PS
w/o LM
w/o MP

HuMAL PS HuMAL PS
w/o LM

HuMAL PS
w/o MP

HuMAL PS
w/o LM
w/o MP

Game
Metric

Immorality Score ↓ Completion Percentage ↑
Enchanter 0.13 0.13 0.31 0.32 3.78 3.56 3.93 3.57
Hitchhiker 1.22 1.11 2.55 2.61 9.66 9.54 9.87 9.81
Moonmist 1.45 1.38 1.90 2.70 8.96 8.67 9.61 9.59
Suspect 2.10 2.14 2.44 2.43 4.38 4.10 4.42 4.11
Sorcerer 0.19 0.20 0.56 0.52 2.62 2.58 2.79 2.63
Stationfall 0.34 0.28 0.39 0.48 0.35 0.30 0.36 0.32
Wishbringer 1.17 1.24 1.92 1.82 5.81 5.13 5.83 5.23
Witness 1.31 1.29 1.56 1.64 9.01 7.72 9.14 7.95
Zork1 1.88 1.83 4.10 4.32 6.64 6.27 6.77 6.49
Zork3 0.29 0.24 0.59 0.65 16.33 11.10 17.53 11.26
AVG 1.01 0.98 1.63 1.75 6.75 5.90 7.03 6.10
RI ↓ 0.15 0.16 0.23 0.29

Table 2: Per-game ablation results on the Jiminy Cricket benchmark. All results are averaged over the last 50 episodes of training.

Shaping, and the RI index reaches 0.15. Compared to the
prior study (i.e., CMPS), HuMAL Policy Shaping uses lim-
ited human feedback to increase the completion percentage
by 10.6% while decreasing the immorality score by 73%.

Ablation Studies
In order to evaluate the importance of the different compo-
nents in our algorithm, we consider the following model
variants:

• HuMAL Policy Shaping w/o LM which is identical to
the HuMAL Policy Shaping agent but does not further
improve the LM module during morality learning.

• HuMAL Policy Shaping w/o MP which is identical to
the HuMAL Policy Shaping agent but does not further
improve the moral prior during morality learning.

• HuMAL Policy Shaping w/o LM w/o MP which is
identical to the CMPS. We only consider RL learning
conditioned by a moral prior via policy shaping.

Table 2 shows the ablation results on simulated human
experiments. We observe that improving the moral prior dur-
ing morality learning helps the agent to learn morality in

new environments, and discarding it leads to a significant
increase in immorality score (“HuMAL Policy Shaping w/o
Improve Moral Prior” v.s. “HuMAL Policy Shaping”). In
addition, improving the LM module during morality learning
helps the agent to adapt to new situations and go further, and
discarding the improvement of the LM module results in the
lowest completion percentage (“HuMAL Policy Shaping w/o
Improve LM” v.s. “HuMAL Policy Shaping”).

Real Human Experiments
Design and Setup
To evaluate the efficacy of HuMAL under different personal
values and the time cost necessary for human feedback, we de-
sign experiments using real human feedback. We recruit four
participants to provide real-time human feedback on whether
a sample is moral. These participants currently live in an
English-speaking country, but their cultural backgrounds are
distinct. During training, they were asked to provide ratings
of current actions via our user interface. We define ν = 2 and
provide participants with a 5-point Likert scale to evaluate the
morality of samples. Note that the participants do not need
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to provide feedback at every time step like other evaluative
feedback approaches. Instead, at intervals, they only need
to label a handful of morally salient samples extracted from
past successful trajectories.

For simplicity, we select the game “Zork1” supported by
the Jimmy Cricket benchmark to conduct experiments. We
set the progress percentage as 0% and the step limit of an RL
episode to 100. We train the RL agent on 8 parallel running
environments for 40k steps. We conduct morality learning
with each 2k steps.

Human Interface
We design a simple user interface for acquiring human feed-
back, as shown in Figure 2. We set ν = 2, that is, participants
are provided with a 5-point Likert scale to evaluate the moral-
ity of actions.

Figure 2: Interface for real human experiments.

Evaluation Metrics
We allow four participants to guide the training of four dif-
ferent agents respectively. We then ask them to evaluate the
morality of their own and each other’s personalized agents.
Similar to simulated human experiments, we use the Im-
morality Score and Completion Percentage as the evaluation
metrics. To assess the Immorality Score, real human ratings
are utilized instead of simulated environmental feedback. The
frequency and severity of the ratings assigned to the agent’s
immoral actions within an episode are aggregated, and the
average value is computed over the last 50 training episodes.

Results
Table 3 presents the outcomes of real human experiments con-
ducted on the game “Zork1” (Start percentage: 0%). Each of
the four participants assumed the role of a guide in training a
personalized agent and subsequently evaluated the immoral-
ity score of their own agent as well as those of the other
participants’ agents. The results indicate a significant dispar-
ity in the participants’ ratings, with each individual consis-
tently assigning a lower immorality score to their own agent
compared to the agents of others. These findings provide

compelling evidence that human participants impart their
personal values through interactions with the agent, and the
agent successfully learns and adapts to such distinct personal
values. Furthermore, despite the varying personal values, both
participants’ personalized agents achieved similar comple-
tion percentages, highlighting the capacity of HuMAL to
accommodate diverse personal values and strike a balance
between task completion and moral considerations.

Completion
Percentage

Immorality Score
Trainer Eval. Avg. Eval. by Others

Agent 1 9.72 0.97 1.79
Agent 2 9.85 1.17 2.01
Agent 3 9.72 1.04 1.79
Agent 4 9.74 1.13 1.93
Avg 9.76 1.07 1.88

Table 3: Result of real human experiments on the game
“Zork1” (Start percentage: 0%).

HuMAL Policy Shaping
Total labelled samples 1048
Labelled samples per round 62
Average number of rounds 17

Table 4: Sample efficiency in real human experiments with
the results averaged across four participants.

Sample Efficiency for Human feedback
To evaluate the sample efficiency and cost of HuMAL, we
present Table 4. The number of labelled samples for morality
learning is related to parameters like learning cycle length
and epoch. Within our experimental setup, each round encom-
passes an average of 62 labeled samples, while a cumulative
average of 1048 samples are stored throughout the entire
training process. Our findings illustrate the capability of Hu-
MAL to acquire personal values effectively despite limited
human feedback.

Conclusion
In this study, we propose the HuMAL algorithm, comprising
a two-phase learning cycle encompassing game play for agent
learning and human-agent collaboration for morality learn-
ing. During the agent learning phase, high-quality trajectories
are collected from previous experiences and stored in a data
buffer. Subsequently, in the morality learning phase, human
evaluators are engaged to provide feedback on moral scenar-
ios extracted from the buffer, which is utilized to enhance the
action generator and moral prior through supervised learn-
ing. The effectiveness of HuMAL is assessed on the Jiminy
Cricket benchmark using both simulated and real human
feedback. Our findings demonstrate that even with limited
human feedback, HuMAL enables the acquisition of task
performance and individual values. Moreover, the algorithm
exhibits adaptability to diverse personal values.
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Schrittwieser, J.; et al. 2017. Starcraft ii: A new challenge for
reinforcement learning. arXiv preprint arXiv:1708.04782.
Wallach, W.; and Allen, C. 2008. Moral machines: Teaching
robots right from wrong. Oxford University Press.
Xu, Y.; Chen, L.; Fang, M.; Wang, Y.; and Zhang, C. 2020a.
Deep Reinforcement Learning with Transformers for Text
Adventure Games. In 2020 IEEE Conference on Games
(CoG), 65–72.
Xu, Y.; Fang, M.; Chen, L.; Du, Y.; Zhou, J.; and Zhang,
C. 2022. Perceiving the World: Question-guided Reinforce-
ment Learning for Text-based Games. In Proceedings of the
60th Annual Meeting of the Association for Computational
Linguistics (ACL), 538–560.
Xu, Y.; Fang, M.; Chen, L.; Du, Y.; Zhou, J. T.; and Zhang,
C. 2020b. Deep reinforcement learning with stacked hierar-
chical attention for text-based games. Advances in Neural
Information Processing Systems, 33: 16495–16507.
Yao, S.; Rao, R.; Hausknecht, M.; and Narasimhan, K. 2020.
Keep CALM and Explore: Language Models for Action Gen-
eration in Text-based Games. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP), 8736–8754.
Zhang, R.; Liu, Z.; Zhang, L.; Whritner, J. A.; Muller, K. S.;
Hayhoe, M. M.; and Ballard, D. H. 2018. Agil: Learning

attention from human for visuomotor tasks. In Proceedings of
the european conference on computer vision (eccv), 663–679.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21582


