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Abstract

Health data often give rise to complex survival outcomes, which cannot be dealt

with using traditional methods without incurring a loss of crucial information. We

consider four such cases, motivated by different clinical settings, and present, for

each, a general and flexible modelling framework, with the aim of achieving a better

understanding of disease patterns and more accurate predictions.

We first focus on diseases which manifest through multiple organs, resulting

in dependent time-to-events. We propose a copula-based framework for the joint

modelling of bivariate survival outcomes, specified as flexible functions of time and

the covariates of interest, with a mixed censoring scheme.

When interest lies in the progression of a disease, multi-state processes represent

a powerful modelling approach. For the second case, we consider a continuously

observed process, and propose a unified framework that exploits the simplification

implied by the exact knowledge of the times-to-events. It combines the flexible

specification of each transition, with a simulation-based approach to compute the

transition probabilities, posing no limitations on the processes supported.

When constant monitoring of the process is not possible, existing models do

not allow the information contained in the intermittently-observed data thus limiting

the specifications supported to be fully exploited. The third framework proposed

overcomes this challenge by exploiting a novel development, i.e. a closed-form

expression for the local curvature information of the transition probability matrix,

and supports flexible modelling for virtually any type of process.

Finally, we develop an approach to model two dependent multi-state processes.

This is motivated by clinical applications which give rise to two (or more) associated
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diseases, making the modelling of their joint progression of interest.

The frameworks described are implemented in the R packages GJRM and

flexmsm and are exemplified through case studies based on clinical data.



Impact Statement

The present doctoral thesis delivers actionable frameworks to flexibly model complex

survival outcomes, with a focus on bivariate and multi-state time-to-events. This

is motivated by the increasing interest there is in adequately modelling disease

pathways, with the aim of improving the accuracy of predictions and of gaining a

better understanding of the data patterns.

Existing literature lacks the generality warranted by the settings explored, both

in terms of the methodology as well as of the supporting software. Often only

standard settings are supported, thus failing to reflect the features of real-world

data (e.g. mixed censoring schemes). General and openly accessible software is

rarely provided, making the dissemination and applicability of proposed methods

challenging.

To address these issues, each chapter proposes novel statistical methodology,

tackling a specific setting. Due to the challenging nature of the problems considered,

ample space is left for future developments, some of which are discussed. In addition

to this, some of the results presented (e.g. the closed form expression of the second

derivative of the transition probability matrix), can also be of use in other research

areas, which can thus benefit from the advances described. Further, the model

presented in the final chapter sets the foundation for the joint modelling of multi-

state survival processes and thus leaves ample space for further extensions, both

computational and methodological.

To support the straightforward use of these frameworks by applied users, we

provide openly accessible general software for each. The tools are exemplified using

real-world data to provide a starting point for the end-user to adapt them to their own
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setting. In fact, the rise of personalised medicine, with the aim to customise medical

decisions and interventions to the individual person, has prompted the development

of modelling tools which support the inclusion of information on the individual risk

factors, to quantify their impact on the unfolding over time of the event of interest.

These tools will aid subject-matter experts in being able to answer questions such as

”what is the expected amount of time a patient will spend in remission” or ”what is

the probability that a patient will be treatment-free a given number of times?”.

The impact of the present thesis is, therefore, brought about via different

channels. The theoretical developments discussed have been, and will continue to

be, communicated through research papers submitted to top statistical journals and

will be presented at national and international conferences. This will also provide

the basis for collaborations with academics and non-academics. From a practical

viewpoint, the tools proposed are implemented in the R packages GJRM and flexmsm,

which are thoroughly documented, as per the standards upheld by CRAN. We, then,

intend on expanding the exemplification of the packages through a tutorial-based

paper that uses a running applied example to communicate how our methods can be

used in practice.
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Chapter 1

Introduction

Some key questions arising in fields as diverse as medicine, biology, public health,

epidemiology, engineering, economics and demography can be conveniently formu-

lated in terms of survival problems (Klein & Moeschberger, 2006). This has the

twofold advantage of leading to an intuitive interpretation, centred around the time

to occurrence of the event of interest, while allowing for a methodologically sound

handling of the units for which the event itself is not observed, a common feature of

real-world data, obtained through the notion of censoring.

While the statistical tools we will present are applicable to all these disciplines,

our focus is on clinical applications. Here interest lies, for example, in assessing the

time to death from a certain cause, the duration of response to treatment, the time to

recurrence or development of a disease. The expansion of health registry data has

implied an increasing interest towards combinations of two or more of the above,

leading to complex survival outcomes, along with a heightened focus towards the

proper handling of censored events and event times, often occurring in registry data.

The rise of personalised medicine, with the aim to tailor medical decisions and

interventions to the individual person, has prompted the development of flexible

models, which can capture multifaceted patterns within the data, by supporting the

exploration of a variety of time and covariate effects. In this way, one can obtain

more accurate predictions, which adequately take into account the diversity of patient

features, hence better characterising disease evolution.

The aim of this thesis is to present general tools for the flexible modelling
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of complex survival outcomes, with a focus on bivariate and multi-state time-to-

events, expanding the possibilities currently allowed in the literature, both in terms

of methodology and of supporting software. This work has lead to the publication of

two papers, with a third currently under review, the expansion of the R package GJRM

(Marra & Radice, 2024) and the development of the R package flexmsm (Eletti et al.,

2023a). The thesis is structured as a collection of articles and, as such, each chapter

is self-contained in regard to its notation and in the layout of the setting. We are

aware that this choice comes at the cost of some redundancies, however it benefits of

better clarity. The chapters that use published material are duly noted in the UCL

Research Paper Declaration forms included above.

Chapter 2 is based on Petti et al. (2022) and explores the setting where disease

manifests through multiple organs, resulting in dependent time-to-events. Interest

lies in accounting for their dependent nature, since not doing so would lead to

biased estimates, while modelling the survival outcomes in a way that retains the

interpretability on the individual organ level and that allows quantification of the

strength of the dependence. To achieve this, we propose a copula-based framework

for the joint modelling of bivariate survival outcomes, specified as flexible functions

of time and covariates through a link-based additive model. The copula parameter is

also specified as a flexible function of covariates, thus allowing investigation of the

impact of patient characteristics on the strength of association between the disease

manifestations in the two organs. Importantly, to reflect the nature of real health

registry data, the framework supports mixed censoring, i.e. each survival outcome

can take on a left-, right- and/or interval-censoring scheme. The method developed

has been incorporated in the R package GJRM and is illustrated using data from the

Age-Related Eye Disease Study. The analysis aims to quantify the effect of clinical

risk factors on the joint risks of Age-related Macular Degeneration progression as

well as to predict the progression profiles of patients with different characteristics.

An extensive simulation study provides evidence on the empirical effectiveness of

the proposed approach in recovering true covariate effects and baseline functions.

When interest lies in the progression of a disease rather than on a single outcome,
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multi-state processes provide a powerful modelling approach. Each manifestation of

the disease is, in fact, represented by a ”state” and the unfolding over time of this

chain of events is captured by a collection of time-dependent intensity functions, each

associated with a ”transition” between a pair of states. If the time-to-events are known

exactly, the estimation of the multi-state model can be broken down into that of a set

of traditional survival models, one for each transition. Chapter 3, which is based on

Eletti et al. (2023b), focuses on this case and provides a unified framework which

combines a flexible link-based additive modelling approach for the specification

of each transition intensity, supported in practice by the R package GJRM, with a

general simulation-based method for the computation of the predicted transition

probabilities, implemented in the R package mstate. The transition probabilities

are key quantities for the interpretation of multi-state processes, since they provide

an intuitive way to quantify the unfolding over time of the disease in terms of the

probability of observing the process at a specific stage in a given time, conditional

on a chosen starting point. Crucially, modelling takes place on the scale of the

survival function, thus providing the quantities needed for the computation of the

transition probabilities without the need for further intermediate steps, since the

simulation-based approach requires transition-specific cumulative intensity estimates.

Care was needed here to ensure the monotonicity of the transition-specific survival

functions, which is elegantly embedded in the model design matrix. These choices

ensure the seamless integration between the modelling and prediction as well as the

overall computational efficiency of the framework. We exemplify its usage through a

case study on breast cancer patients from the Rotterdam Breast Cancer Study, where

we explored the effects of risk factors, such as progesterone level and the number of

positive nodes, in a more general and flexible manner than previously possible in the

literature.

Chapter 4, based on a submitted paper, addresses the case where constant

monitoring of the multi-state process is infeasible, giving rise to various forms of

censoring of the time-to-events and/or of the states occupied. This lack of knowledge

makes the setting methodologically and practically challenging. Existing models do
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not allow full exploitation of the information contained in the intermittently-observed

data, since they rely on the seminal paper by Kalbfleisch & Lawless (1985), which

provides closed-form expressions for up to first order information only. In practice,

this is insufficient to support the complexity of the setting, particularly given the

degree of flexibility desired for the transition intensity models, which determine how

the process unfolds and thus represent the core of the multi-state model. For this

reason, existing literature is characterised either by basic parametric forms for the

transition intensities or by works that propose flexible models, but only for simple

process structures. We provide a closed-form expression for the local curvature

information of the transition probability matrix. Such novel development allows one

to model any type of process while supporting flexible time and covariate effects

on the transition intensities, which are specified by means of spline-based additive

predictors. The methodology is implemented in the R package flexmsm and is

exemplified via two case studies. The first focuses on the postoperative recovery of

heart transplant recipients, where the possible outcomes are remaining in a healthy

state, onset of Cardiac Allograft Vasculopathy, i.e. a disease of the arterial walls,

and death. The second study focuses on cognitive decline in a population of elder

individuals who took part in the English Longitudinal Study of Ageing. Cognitive

aptitude is measured using a memory-based test and each score is represented by

a state in a five-state process, with forward and backward transitions, to reflect

the patterns of cognitive decline and improvement observable in the data. In both

case studies, our framework allows for model specifications and process structures

which were not supported by the former state-of-the-art, thus leading to novel insight

compared to existing analyses.

Chapter 5 builds on the previous developments and sets the foundation for the

modelling of multiple dependent multi-state survival processes. This is motivated

by cases in which a disease affects paired organ systems or where multiple disease

manifestations stem from a common underlying condition. For example, in oph-

thalmology, damage caused by diabetic retinopathy - a progressive eye disease in

diabetic patients - can occur in either or both eyes and the disease course in one
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eye is expected to be linked with that in the other. To gain a proper understanding

of the disease mechanism, it is necessary to model simultaneously the temporal

patterns of disease progression of both eyes and assess the influence of risk factors.

In this chapter we propose to capture the dependence structure tying two multi-state

processes through a copula-based model, which allows us to retain the interpretability

of the marginal processes, while modelling each process by means of the framework

proposed in Chapter 4. This work is at an early stage and further developments are

currently under way, however what we propose is already more general compared to

the current state-of-the-art. We exemplify our approach through a toy example based

on simulated data.

In the above frameworks, estimation relies on an approach proposed in Marra

& Radice (2020), carefully adapted here to each setting. This combines a computa-

tionally efficient and stable penalised maximum likelihood optimisation algorithm,

with an integrated automatic multiple smoothing parameter selection algorithm.

Tests carried out with alternative standard approaches have proven that these are

insufficient to support the complexity of the models considered. In contrast, the

method proposed makes an adequate use of the information contained in the data,

thus ensuring that the modelling potential is fully exploited in practice.

Chapter 6 provides a general discussion and outlines some avenues for further

research, some of which are currently under investigation.



Chapter 2

Copula Link-Based Additive Models

for Bivariate Time-to-Event

Outcomes with General Censoring

Scheme

2.1 Introduction

Bivariate survival outcomes arise frequently in many research areas such as health

and epidemiology. For example, bivariate survival data are often used in clinical

trials studying diseases concerning paired organs, where the outcomes of interest

are measured on the same individual. The main feature of survival data is censoring.

For instance, bivariate interval censoring occurs when the events are not precisely

observed due to intermittent assessment times and are indeed only known to belong to

intervals. When individuals do not experience the two events at their last assessment

times, the event statuses are undefined (bivariate right censoring). If some individuals

have already experienced both events at the times they enter the study then the data are

bivariate left-censored. Sometimes various types of censoring arise simultaneously.

This would be the case when, e.g., a disease occurs in one of the paired organs

between two consecutive visits and the condition does not occur in the other organ

by the end of the study. The aim of this paper is to introduce a flexible regression
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modelling framework that can handle bivariate survival data under any censoring

mechanism.

Several approaches for modelling bivariate censored data have been proposed.

The literature is vast and here we mention a handful of works. Some of them are

based on the frailty technique (e.g., Chen et al., 2009, 2014; Martins et al., 2019;

Wen & Chen, 2013; Wang et al., 2015; Zhou et al., 2017; Zeng et al., 2017). Others,

based on copulae and hence more relevant to this paper, are Barthel et al. (2018),

Cook & Tolusso (2009), Hu et al. (2017), Kwon et al. (2021), Lo et al. (2020), Marra

& Radice (2020), Romeo et al. (2018), Sujica & Van Keilegom (2018), Sun & Ding

(2021a) and Wang et al. (2008). These works are not as general and versatile as our

proposal. In fact, our modelling framework allows for: a) any bivariate combination

of censoring types, whether left-, right-, interval-, or non-censored; b) the exploration

of a wide array of dependence structures via copulae; c) all model parameters to

be specified as functions of flexible covariate effects via the penalised regression

spline methodology (e.g., Wood, 2017); d) the margins of the copula to be modelled

via transformations of the survival functions, which give rise to link-based models

with the proportional hazards and odds models being particular cases (e.g., Liu et al.,

2018); e) the baseline survival functions to be modelled by means of monotonic

P-splines which are theoretically advantageous and computationally tractable (e.g.,

Pya & Wood, 2015). Prior to this work, there were no such models (and related

fitting procedures) available in the literature nor software implementations.

Despite the complexity of the proposed model, in that it allows for many layers

of structure, there is no price to pay in terms of usability and interpretability. In

fact, the model has been incorporated in the newly-revised software package GJRM

(Marra & Radice, 2024), written for the programming language R (R Development

Core Team, 2022), which significantly eases the use of the framework. An additional

benefit is that post estimation functions have been extended and integrated within

GJRM to allow any user to produce interpretable results. Parameter estimation relies

on an extension of the stable and fast algorithm presented in Marra & Radice (2020)

which is based on a simultaneous penalised maximum likelihood approach with
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integrated automatic multiple smoothing parameter selection. The proposed model

together with fast and reliable software implementation represents a significant

advance in modelling bivariate survival data. An interesting feature of the proposal

is that it is very flexible and at the same time parametric. Sir David R. Cox, among

others, has encouraged the broader use of parametric models for empirical modelling

(e.g., Reid, 1994). In that spirit, our modelling framework enables a large amount of

exploration via many and diverse functional structures which may help to uncover

new patterns and trends in the data.

The potential of the approach is illustrated via a simulation study as well

as using data from the Age-Related Eye Disease Study (AREDS), a multi-center

randomised clinical trial exploring the development and progression of age-related

macular degeneration (AMD), sponsored by the National Eye Institute (Group, 1999).

The analysis aims to quantify the effect of clinical risk factors on the joint risks of

AMD progression as well as to predict the progression profiles of AMD patients

with different characteristics.

This chapter is organised as follows. Section 2.2 discusses various details of

the proposed model. Section 2.3 introduces the model log-likelihood and explains

how to perform parameter estimation, whereas Section 2.4 shows some inferential

results. In Section 2.5, data from the AREDS are analysed and the main findings

presented. Section 2.6 concludes the paper with a discussion. Supplementary

Material A provides more details on the log-likelihood construction, reports the

analytical expressions for the score and Hessian matrix, discusses the findings of a

simulation study, and illustrates the use of GJRM on the AREDS data.

2.2 The Model

Let us consider the pair of survival times (T1i,T2i), a vector of covariates xi, for

i = 1,2, . . . ,n where n represents the sample size, and a generic parameter vec-

tor δδδ ∈ RW of dimension W . We assume that T1i and T2i have marginal survival

functions written as Sv(tvi|xvi;βββ v) = P(Tvi > tvi|xvi;βββ v) ∈ (0,1), for v = 1,2, and a

joint survival function expressed as S(t1i, t2i|xi;δδδ ) = P(T1i > t1i,T2i > t2i|xi;δδδ ). The
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survival functions are linked via a copula as follows

S(t1i, t2i|xi;δδδ ) =C (S1(t1i|x1i;βββ 1),S2(t2i|x2i;βββ 2);m{η3i(x3i;βββ 3)}) ,

where δδδ
T = (βββT

1 ,βββ
T
2 ,βββ

T
3 ), x1i, x2i and x3i are vectors of covariates, which can be

sub-vectors of or equal to xi, with associated coefficient vectors βββ 1 ∈RW1 , βββ 2 ∈RW2

and βββ 3 ∈ RW3 , W = W1 +W2 +W3, C : (0,1)2 → (0,1) is a uniquely defined 2-

dimensional copula function with coefficient θi = m{η3i(x3i;βββ 3)} modelling the

potentially varying dependence of (T1i,T2i) across observations, η3i(x3i;βββ 3) ∈R is a

predictor which includes generic additive covariate effects, and m is a monotonic and

differentiable one-to-one transformation function ensuring that the restriction on the

space of the parameter being considered is not violated. A similar specification has

been previously adopted; see, e.g., Emura et al. (2021), Geerdens et al. (2018) and

Marra & Radice (2020). The copulae implemented in GJRM are reported in Table 2.1,

which also shows the relation between θ and the Kendall’s τ ∈ [−1,1]. If a copula

can only account for positive dependence (e.g., Gumbel) then its counter-clockwise

rotated versions can also be obtained (Brechmann & Schepsmeier, 2013).

The marginal survival functions can be written as

gv [Sν(tvi|xvi;βββ )] = ηvi(tvi,xvi; fv(βββ v)), (2.1)

where gv : (0,1) → R is a monotone and twice continuously differentiable link

function with bounded derivatives, ηvi(tvi,xvi; fv(βββ v)) ∈ R is an additive predictor

which models the baseline hazard and several types of covariate effects, and fv(βββ v)

has the role of imposing a monotonicity constraint when evaluating the baseline

function of time contained in the additive predictor (see the next section). Equation

(2.1) can also be written as S(tvi|xvi;βββ v) = Gv {ηvi(tvi,xvi; fv(βββ v))}, where Gv is an

inverse link function. The cumulative hazard and hazard functions are defined as

Hv(tvi|xvi;βββ v) =− log [Gv {ηvi(tvi,xvi; fv(βββ v))}], and

hv(tvi|xvi;βββ v) =−G′
v {ηvi(tvi,xvi; fv(βββ v))}

Gv {ηvi(tvi,xvi; f(βββ v))}
∂ηvi(tvi,xvi; fv(βββ v))

∂ tvi
, (2.2)
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respectively, where G′
v {ηvi(tvi,xvi; fv(βββ v))}= ∂Gv {ηvi(tvi,xvi; fv(βββ v))}/∂ηvi(tvi,xvi; fv(βββ v)).

Table 2.2 displays the functions g, G and G′ implemented in GJRM.

Table 2.2: Link functions implemented in GJRM. Φ and φ are the cumulative distribution
and density functions of a univariate standard normal distribution.

Model Link g(S) Inverse link g−1(η) = G(η) G′(η)
Prop. hazards ("PH") log{− log(S)} exp{−exp(η)} −G(η)exp(η)

Prop. odds ("PO") − log
( S

1−S

) exp(−η)
1+exp(−η) −G2(η)exp(−η)

probit ("probit") −Φ−1(S) Φ(−η) −φ(−η)

2.2.1 Predictor specification

The key difference between ηvi(tvi,xvi; fv(βββ v)), for v = 1,2, and η3i(x3i;βββ 3), where

in the latter f3 is the identity vector function, is that the two former predictors must

include smooth functions of times tvi which can be treated as regressors. In fact, the

construction of the design matrices for the three additive predictors follows the same

philosophy. We, therefore, consider a generic ην i (ν = 1,2,3), where the dependence

on the covariates and parameters is momentarily dropped, an overall covariate vector

zν i containing xν i and tν i when ν = 1,2, and z3i = x3i. For simplicity, the dimensions

of z1i and z2i are assumed to be W1 and W2.

An additive predictor can be defined as

ην i = βν0 +
Kν

∑
kν=1

sνkν
(zνkν i), i = 1, . . . ,n, (2.3)

where βν0 ∈ R is an overall intercept, zνkν i denotes the kth
ν sub-vector of the com-

plete vector zν i and the Kν functions sνkν
(zνkν i) represent generic effects which

are chosen according to the type of covariate(s) considered. Each sνkν
(zνkν i) can

be represented as a linear combination of Jνkν
basis functions bνkν jνkν

(zνkν i) and

regression coefficients fνkν jνkν
(βνkν jνkν

) ∈ R, that is (e.g., Wood, 2017)

Jνkν

∑
jνkν

=1
fνkν jνkν

(βνkν jνkν
)bνkν jνkν

(zνkν i). (2.4)

The above formulation implies that the vector of evaluations {sνkν
(zνkν 1), . . . ,sνkν

(zνkν n)}T
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can be written as Zνkν
fνkν

(βββ νkν
) with fνkν

(βββ νkν
)= ( fνkν 1(βνkν 1), . . . , fνkν Jνkν

(βνkν Jνkν
))T

and design matrix Zνkν
[i, jνkν

] = bνkν jνkν
(zνkν i). Therefore, equation (2.3) can be

written as

ηηην = βν01n +Zν1fν1(βββ ν1)+ . . .+ZνKν
fνKν

(βββ νKν
),

where 1n is an n-dimensional vector made up of ones, or in a more com-

pact way as ηηην = Zν fν(βββ ν), where Zν = (1n,Zν1, . . . ,ZνKν
) and fν(βββ ν) =

(βν0, fν1(βββ ν1)
T, . . . , fνKν

(βββT
νKν

))T. Note that smooth functions are subject to center-

ing identifiability constraints (Wood, 2017). Each βββ νk has an associated quadratic

penalty λνkν
βββ
T
νkν

Dνkν
βββ νkν

which has to be used during model fitting to enforce

specific properties on the kth
ν function, such as smoothness. Smoothing parame-

ter λνkν
∈ [0,∞) controls the trade-off between fit and smoothness, whereas Dνkν

depends on the choice of the basis functions. For example, for a cubic regression

spline, Dνkν
is given by the integrated square second derivative of the basis functions,

i.e.
∫

dνkν
(zνkν

)dνkν
(zνkν

)Tdzνkν
with the jth

νkν
element of dνkν

(zνkν
) defined as

∂ 2bνkν jνkν
(zνkν

)/∂ z2
νkν

. P-splines are, instead, characterised by a difference penalty

applied directly to the parameters, to control function wiggliness. When second

differences are assumed, Dνkν
is a tridiagonal matrix with -1 on the upper and lower

diagonals, Dνkν
[ι , ι ] = 1 for ι = 1,Jνkν

and Dνkν
[ι , ι ] = 2 for ι = 2, . . . ,Jνkν

− 1.

The overall penalty can be defined as βββ
T
ν Dνβββ ν , where Dν = diag(0,λν1Dν1, . . . ,

λνKν
DνKν). The above formulation allows for many types of flexible covariate

effects (e.g., non-linear, random, spatial, interactions). In fact, several definitions of

basis functions and penalty terms are supported in GJRM which are based on Wood

(2017). The time effects are instead modelled using the monotonic P-spline approach

which will guarantee that the estimated survival functions are monotonically decreas-

ing or equivalently that the hazard functions are positive. To avoid redundancies, we

refer the reader to Chapter 3, Section 3.3.2, for a detailed description of how this is

done.
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2.2.2 Remarks

When working with interval-censored observations, the implementation of the model

set up needs to account for the information contained in the lower and upper bounds

of the censoring intervals. Therefore, for each margin, two distinct design matrices

(based on the two bounds) and hence additive predictors are required. The covariates

and parameter vector βββ v used in their construction will be the same.

In equation (2.2), ∂ηvi(tvi,xvi; fv(βββ v))/∂ tvi is required. Based on the results

of the previous paragraph, ηvi(tvi,xvi; fv(βββ v)) can be written as Zvi(tvi,xvi)
Tfv(βββ v)

which means that the quantity of interest can be calculated as

lim
ε→0

{
Zvi(tvi + ε,xvi)−Zvi(tvi − ε,xvi)

2ε

}T

fv(βββ v) = Z′T
vi fv(βββ v),

where Z′
vi can be conveniently obtained by finite differencing. In practice, ε is

set to small value and the limit is approximated by the ratio. Through extensive

experimentation we found this approach to work well and to not be sensitive to the

exact choice of ε .

Formulation (2.4) requires a value for Jνkν
. This is especially relevant when

modelling the effects of continuous covariates. As explained by Vatter & Chavez-

Demoulin (2015), among others, all that is required is to set Jνkν
to an arbitrary value

that allows for enough flexibility in estimating the related smooth term; penalisation

during model fitting will then ensure that a good balance between fit and parsimony

is achieved.

The general model formulation introduced in the previous two sections yields

the proportional hazards and odds models as special cases; for details on this, we

refer the reader to, e.g., Liu et al. (2018) whose developments are based on the same

conceptual survival modelling framework adopted here. Other important benefits are

that quantities such as hv(tvi|xvi;βββ v) can be directly obtained without the need for

numerical integration, and that time-dependent effects can be easily incorporated in

the model via terms like svkv(tvi)xvkvi.
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2.3 Parameter Estimation

Let Tvi denote the true event time, for v = 1,2. In the case of censoring, Tvi is only

known to lie within the interval (Lvi,Rvi), where Lvi and Rvi represent left and right

censoring times. If Lvi = 0 then the ith observation for the v margin is defined as left-

censored. When Rvi = ∞, the observation is classified as right-censored. If Lvi and

Rvi take on finite distinct non-zero values then the observation is interval-censored.

Exact observations relate to the case Lvi = Rvi. Since we are dealing with a bivariate

response, there will be sixteen possible censoring combinations to account for; these

can be characterised through the indicator functions γIvi and γUvi , where γIvi takes

value 1 if the ith observation is interval-, right- or left-censored and 0 otherwise.

Similarly, γUvi is 1 if the ith observation is uncensored and 0 otherwise.

ℓ(δ ) = γU1iγU2i

n

∑
i=1

log f (t1i, t2i)+ γI1iγI2i

n

∑
i=1

logP(T1i ∈ (l1i,r1i],T2i ∈ (l2i,r2i])

+ γU1iγI1i

n

∑
i=1

log
[ r2i∫

l21

f (t1i,y)dy
]
+ γI1iγU1i

n

∑
i=1

log
[ r1i∫

l1i

f (y, t2i)dy
]

= γU1iγU2i

n

∑
i=1

log
[

∂ 2

∂ t1i∂ t2i
C{G1(η1i(t1i)),G2(η2i(t2i));θi}

]
+ γI1iγI2i

n

∑
i=1

log
[
C{G1(η1i(l1i)),G2(η2i(l2i));θi}−C{G1(η1i(l1i)),G2(η2i(r2i));θi}

−C{G1(η1i(r1i)),G2(η2i(l2i));θi}+C{G1(η1i(r1i)),G2(η2i(r2i));θi}
]

+ γU1iγI1i

n

∑
i=1

log
[

∂

∂ t1i

(
C{G1(η1i(t1i)),G2(η2i(r2i));θi}

−C{G1(η1i(t1i)),G2(η2i(l2i));θi}
)]

+ γI1iγU1i

n

∑
i=1

log
[

∂

∂ t2i

(
C{G1(η1i(r1i)),G2(η2i(t2i));θi}

−C{G1(η1i(l1i)),G2(η2i(t2i));θi}
)]

.

The case of interval censoring incorporates both right and left censoring. So, if the

ith observation for the v margin is right-censored then rvi = ∞. If it is left-censored

then lvi = 0. The terms of the above log-likelihood have been derived as follows:
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• T1i interval-censored and T2i interval-censored:

P(l1i < T1i < r1i, l2i < T2i < r2i) = P(T1i < r1i,T2i < r2i)−P(T1i < l1i,T2i < r2i)

−P(T1i < r1i,T2i < l2i)+P(T1i < l1i,T2i < l2i)

= F(r1i,r2i)−F(l1i,r2i)−F(r1i, l2i)+F(l1i, l2i)

= S(l1i, l2i)−S(l1i,r2i)−S(r1i, l2i)+S(r1i,r2i)

=C{G1(η1i(l1i)),G2(η2i(l2i));θi}−C{G1(η1i(l1i)),G2(η2i(r2i));θi}

−C{G1(η1i(r1i)),G2(η2i(l2i));θi}+C{G1(η1i(r1i)),G2(η2i(r2i));θi}.

Recall that, using the above formulation, all scenarios deriving from any

combination of right-, left- and interval-censored bivariate outcomes can be

produced.

• T1i uncensored and T2i uncensored (in this case, t1i = r1i = l1i and t2i = r2i =

l2i):

f (t1i, t2i) =
∂ 2

∂ t1i∂ t2i
F(t1i, t2i) =

∂ 2

∂ t1i∂ t2i
[1−S(t1i)−S(t2i)+S(t1i, t2i)]

=
∂ 2

∂ t1i∂ t2i
C{G1(η1i(t1i)),G2(η2i(t2i));θi}.

• T1i uncensored and T2i interval-censored (the “swapped” case can be trivially

derived by switching the subscripts where required):

r2i∫
l2i

f (t1i,y)dy =

r2i∫
0

f (t1i,y)dy−
l2i∫

0

f (t1i,y)dy =
∂

∂ t1i
F(t1i,r2i)−

∂

∂ t1i
F(t1i, l2i)

=
∂

∂ t1i
[1−S1(t1i)−S2(r2i)+S(t1i,r2i)]−

∂

∂ t1i
[1−S1(t1i)−S2(l2i)+S(t1i, l2i)]

=
∂

∂ t1i
[C{G1(η1i(t1i)),G2(η2i(r2i));θi}−C{G1(η1i(t1i)),G2(η2i(l2i));θi}] .

As above, the right- and left-censored cases can be easily worked out.
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The reader is referred to Supplementary Material-Section A for the more explicit

version of the log-likelihood. As explained in Section 2.2.1, quadratic penalties

have to be employed during model fitting to calibrate the trade-off between fit and

smoothness. Therefore, we maximise

ℓp(δδδ ) = ℓ(δδδ )− 1
2

δδδ
TSδδδ ,

where ℓp is the penalised log-likelihood, S = diag(D1,D2,D3), D1, D2 and D3 are

overall penalties that take the form specified in Section 2.2.1 and include λλλ 1, λλλ 2 and

λλλ 3. The smoothing parameters can be collected in the vector λλλ = (λλλT
1 ,λλλ

T
2 ,λλλ

T
3 )

T.

Model fitting is challenging in this context because of the non-linear depen-

dence of fv(βββ v) on βββ v, the requirement of estimating λλλ automatically, and the need

for providing a stable and fast implementation that is computationally solid and

practically usable. To this end, we employ the stable and fast trust region algorithm

presented in Marra & Radice (2020) which is based on a simultaneous penalised max-

imum likelihood approach with integrated automatic multiple smoothing parameter

selection. A major challenge with the implementation of this algorithm is that the

analytical score vector and Hessian matrix of ℓ(δδδ ) are required. Given the generality

and complexity of the model, deriving such quantities has been a rather tedious and

time-consuming task; these are given in Sections B and C of the Supplementary

Material, and have been thoroughly checked and verified numerically. Starting values

for the marginal survival models are obtained by combining the use of the shape

constrained smoothing approach of Pya & Wood (2015) with the procedure detailed

in Liu et al. (2018). An initial value for the copula parameter is worked out by using

a transformation of the empirical τ between the responses. The simulation study

in Supplementary Material-Section D supports the empirical effectiveness of the

estimation framework. Briefly, several sample sizes (n = 300,1000,1500 and 2000)

are considered as well as both mild (62.86% and 44.98%) and high (84.82% and

77.13%) censoring levels. Overall, the modelling framework performs consistently

well, even for the lowest sample size. The parametric effects and smooth effects

were properly recovered in all of the scenarios considered, exhibiting both low
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bias and RMSE. The estimation of the quantities related to the copula dependence

parameter is more challenging and shows some bias when compared to the other

model parameters, although performance is still deemed satisfactory. As expected,

parameter estimation is more difficult in the presence of high censoring, due to the

loss of information implied by censoring itself. Note, however, that both of these

challenging settings improve markedly as the sample size increases.

The number of parameters in the model can be quantified using the notion of

number of effective degrees of freedom (ed f ). The ed f for a model containing only

unpenalised terms would clearly be equal to W , whereas that for a penalised model

can be written as W −ζ , where ζ = tr
{
(−HHH +S)−1 S

}
and HHH is the Hessian matrix.

This shows the role that λλλ (contained in S) plays in determining the model ed f ,

which indeed is a value in the range [W −ζ ,W ]. The definition of the ed f of a single

smooth or penalised term follows the same logic and has a value smaller than or

equal to Jνkν
.

2.4 Inference

Inferential results can be borrowed from known theory for general penalised

likelihood-based models. Specifically, at convergence, reliable confidence intervals

for any linear or non-linear function of δδδ are obtained by exploiting the Bayesian

large sample approximation (e.g., Wahba, 1983; Wood et al., 2016) δ
·∼N (δ̂ ,Vδδδ ),

where δ̂ = argmax
δ

ℓp(δδδ ) and Vδδδ = (−HHH(δ̂δδ ) + S)−1. One view of the smooth-

ing process is that the penalty employed during fitting imposes the belief that the

true function is more likely to be smooth than wiggly. This belief can be ex-

pressed in a Bayesian manner by defining a prior distribution on function wiggliness

fδ ∝ exp
(
−1/2δ

TSδ

)
. The reason for adopting a Bayesian viewpoint when it

comes to inference in penalised models is that the Bayesian covariance matrix gives

close to across-the-function frequentist coverage probabilities, while the frequentist

covariance matrix −(HHH(δ̂δδ )−S)−1HHH(δ̂δδ )(HHH(δ̂δδ )−S)−1 does not. The problem with

constructing confidence intervals for the smooth terms in a model is the smoothing

bias, which has to be corrected in order to obtain confidence intervals with good
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properties. It turns out that the Bayesian confidence intervals include a component

accounting for bias, as elaborated by Wood (2017, Section 6.10, see also references

therein), thus explaining the good coverage properties achieved by them and thus the

reason we use them for inference.

Intervals for nonlinear functions of δδδ can be conveniently obtained via posterior

simulation (see, e.g., Marra & Radice (2020) for an example. P-values for the terms

in the model can be reliably obtained by using the results summarised in Wood (2017,

Section 6.12) which are based on Vδδδ . Note that for the parametric (unpenalised)

terms in the model, the corresponding entries in S (contained in Vδδδ ) are equal to

zero. This would be equivalent to using the classical frequentist result, based on

−HHH(δ̂δδ ), for such terms.

2.5 Application to AREDS data

The proposed approach is applied to a dataset from the AREDS available through

the R package CopulaCenR (Sun & Ding, 2021b), which includes 629 Caucasian

participants. The event of interest is the progression to late-AMD disease, which is

the most common cause of blindness in developed countries (Swaroop et al., 2009).

Due to intermittent assessment times (every 6 months up to the first 6 years and

every 1 year thereafter), the exact time when each eye progressed to late-AMD

is only known to lie in a certain interval. More specifically, less than half of the

subjects developed late-AMD in both eyes (bivariate interval-censored); around 20%

of the subjects developed late-AMD in one eye and did not develop late-AMD in

the other eye before the end of the study (mixed interval- and right-censored); more

than one third of the subjects did not develop late-AMD in both eyes (bivariate

right-censored).

The dataset contains three covariates potentially related with AMD progression:

SevScaleBL for baseline AMD severity score (a factor variable with values between

4 and 8 with a higher value indicating more severe AMD), ENROLLAGE for baseline

age (a numeric variable), and rs2284665 for a genetic variant (a factor variable with

levels 0, 1 and 2 which represent GG, GT and TT, respectively).
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For the marginal equations, the smooth functions of ENROLLAGE and the time

variables were represented using penalised thin plate regression splines with second

order penalty (Wood, 2017) and monotonic penalised B-splines (see Section 2.2.1),

respectively. The number of bases used for each smooth was 10; increasing this

value did not lead to visible changes in the estimated curves. The remaining variables

entered the predictors of the marginals linearly. All link functions shown in Table

2.2 were considered in the modelling. For both margins, PO was found to yield the

smallest AIC and BIC. As for the copula, we started off with the Gaussian and then,

based on the (negative or positive) sign of the dependence, we tried out alternative

specifications that were consistent with this initial finding. Using a 2.60-GHz Intel(R)

Core(TM) computer running Windows 10, the average computing time to fit a model

was about 9 seconds and the length of the model parameter vector was 43. Using

the AIC and BIC, where, in their construction, the model ed f was used in place of

the number of model parameters, the chosen model is based on the Plackett copula

with PO margins. The R code used to fit the models, and to produce all the numerical

and visual summaries commented below can be found in Supplementary Material-

Section A. Using the second and third best copulae did not change the conclusions

of the analysis.

Left Eye Right Eye
Parametric Eff. Estimate (Std.error) Pr(> |z|) Estimate (Std.error) Pr(> |z|)
(Intercept) -18.0368(4.39) 4.09e-05 -33.2811 (10.89) 0.002246
ENROLLAGE - - 0.0364 (0.01) 0.011592
SevScale5 0.6707 (0.24) 0.00556 0.8187 (0.25) 0.001365
SevScale6 1.0049 (0.22) 6.90e-06 1.2957 (0.23) 4.81e-07
SevScale7 1.9255 (0.23) < 2e-16 2.4270 (0.25) < 2e-16
SevScale8 2.8208 (0.31) < 2e-16 3.2793 (0.32) < 2e-16
rs22846651 0.3269 (0.16) 0.04966 0.4589 (0.16) 0.006467
rs22846652 0.6058 (0.23) 0.00927 0.7874 (0.22) 0.000481

Table 2.3: AREDS data. Parameters estimates, standard errors and p-values obtained from
fitting the model using gjrm(). Note: the full output of the R model summary is
reported. It is clear that the p-values relating to the categorical variables do not
have a meaningful interpretation, these are only included for completeness.

The model parameters estimates are reported in Table 2.3. The estimated

regression coefficients of SevScaleBL, which are 0.67, 1.00, 1.93, 2.82 in the
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equation for the left eye and 0.82, 1.21, 2.43, 3.28 in that for the right eye, imply, as

expected, that the subjects with higher baseline AMD severity score have a higher risk

than the subjects with lower baseline AMD severity score. As for the genetic variant,

rs2284665, the estimated parameters are 0.33 and 0.61 for the left eye equation,

and 0.46 and 0.79 for the right one. This is consistent with the interpretation that

participants with TT genotype group have the highest risk of developing the disease,

followed by participants with GT genotype group.

Figure 2.1 shows the estimated functional forms for the effect of ENROLLAGE

and times of the selected model. Note that the smooth function for ENROLLAGE in

the second equation has not been reported as the effect was linear (ed f = 1), which

indeed indicates that there is a constantly increasing risk associated with age. As

for the first equation, the estimated smooth function confirms this increasing trend.

Also, since there are few subjects who are younger than 60 and older than 80, the

point-wise intervals are larger at lower and higher age values. The plots for the

time variables exhibit increasing monotonic trends, suggesting again that the risk

increases with time.
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Figure 2.1: AREDS data. Baseline risks and smoothed effect of baseline age (ENROL-
LAGE), for the first equation only. 95% point-wise intervals are based on the
result mentioned in Section 2.3. The rug plot, at the bottom of each graph,
shows the values of the considered variable. The number in brackets in the
y-axis caption of each plot represents the ed f of the respective estimated smooth
function.

The estimated Kendall’s τ is 0.36, with 95% confidence interval (0.304,0.408),

which implies moderate dependence in AMD progression between the two eyes.

Given the capabilities of the proposed modelling framework, we also specified a
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model where the dependence parameter is expressed as a flexible function of the

covariates. This feature can help understand how and which covariates modify the

strength of the dependence across observations. In this case, however, the coefficients

were found not to be significant (see Supplementary Material-Section E). It is worth

noting that such specifications are likely to be more successful in finding covariate

patterns when the number of observations is higher than that available for this study.

Using the chosen model, we produced joint survival functions under several

scenarios. The left panel of Figure 2.2 displays the joint progression-free probability

contours for subjects who are 69 years old, with AMD severity score equal to

6 for both eyes, but with different rs2284665 genotypes. The middle panel of

Figure 2.2 shows the joint progression-free probability contours for subjects who

are 69 year old, with GT genotype, but with different severity scores (4, 6 and

8). Finally, the right panel of the figure plots the joint progression-free probability

contours for GT genotype subjects, with AMD severity score equal to 6 in both

eyes, but different ages (56, 69 and 81). In the left panel, it can be clearly seen

that the three genotype groups are separated, with the GG group having the largest

progression-free probabilities. In the middle panel, the difference between the three

AMD severity groups is rather pronounced, with the highest AMD severity group

having the smallest progression-free probabilities. Finally, the right panel shows

how the progression-free probabilities are higher for younger subjects as compared

to older subjects. The scenarios considered here illustrate how valuable the proposed

modelling framework is in characterising and identifying AMD patients at a higher

risk of developing late-AMD. Of course, several other scenarios can be considered

and other quantities of interest worked out. For example, one could be interested in

visualising conditional and marginal survival probabilities.

2.6 Discussion

We have introduced a copula link-based additive model for bivariate time-to-event

outcomes under various types of censoring mechanisms. Model fitting is based

on the simultaneous estimation of all model parameters and relies on a penalised
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Figure 2.2: AREDS data. Joint progression-free probability contours for progression to
late-AMD disease (in years) in the left and right eyes, under different scenarios.
In left panel, age is set to 69, and AMD severity score to 6 for both eyes. In the
middle panel, age is set to 69, and genotype to GT. In the right panel, genotype
is set to GT, and AMD severity score to 6 in both eyes.

maximum likelihood approach with integrated stable and efficient automatic multiple

smoothing parameter selection. Inferential results are also readily available. All

developments have been integrated within the R package GJRM whose modularity

allows for easy inclusion of potentially any parametric link marginal function and

copula. The proposed approach makes a significant contribution in applied statistics

as it is methodologically flexible, computationally sound and practically usable.

Although the literature in this area is reasonably ample, to the best of our

knowledge, only Sun & Ding (2021a) provided a methodological framework together

with software for modelling bivariate censored data. Unlike their copula approach,

which allows the margins to be specified through semi-parametric transformation

models, the baseline survival functions to be modelled using Bernstein polynomials

and the dependence between events to be captured via one-parameter and two-

parameter copulae, our proposal permits to specify all model parameters (including

the dependence parameter) as flexible functions of covariate effects, model the
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baseline survival functions by means of monotonic P-splines which are theoretically

and computationally advantageous, and conveniently characterise the marginals via

links of the survival functions. Methodologically speaking, both approaches have

been conceived to handle any combination of censoring mechanisms as well as

have two different sets of regression coefficients for the marginal survival functions.

However, from a computational point of view, the implementation provided by Sun

& Ding (2021a) does not simultaneously support all possible bivariate combinations

of censoring types and forces the two set of regression parameters to be the same.

Future research will focus on extending the approach to more than two

event times (e.g., multi-morbidity) exploring, for instance, the use of multivariate

Archimedean copulae, mixtures of powers, pair-copulae constructions, the multivari-

ate Gaussian and Student’s t distributions, and the composite likelihood approach

(see, e.g., the supplementary material of Filippou et al., 2019, and references therein,

which illustrates succinctly these ideas in a different context). Other potentially in-

teresting extensions would be to account for informative and/or dependent censoring

(e.g., Dettoni et al., 2020) as well as consider the case of excess hazard modelling

(Eletti et al., 2022).



Chapter 3

A Spline-Based Framework for the

Flexible Modelling of Continuously

Observed Multistate Survival

Processes

3.1 Introduction

When considering multistate processes for the modelling of life-history data, a par-

ticularly advantageous setting is that in which transition times are known exactly, i.e.

the process is continuously observed. In this case, in fact, the overall model likeli-

hood can be decomposed into the product of likelihoods referring to each specific

transition only. Estimation then becomes equivalent to fitting one standard survival

model for each transition, considering only the subset of the data relevant to that

transition and including left-truncation times if the transition at hand can only happen

once another has occurred. This is referred to as separate estimation (Putter et al.,

2007; Putter, 2011; Crowther & Lambert, 2017). An important practical implication

of this is that existing tools can be used to fit the transition-specific models. In partic-

ular, we propose to model each transition intensity through the general link-based

additive modelling framework by Eletti et al. (2022), implemented in the R package

GJRM (Marra & Radice, 2024). This modelling framework allows for the inclusion of
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virtually any type of covariate effects (including time-dependent effects) using any

type of smoother (e.g., thin plate and cubic splines, and tensor products). Importantly,

the use of shape constrained P-splines (SCOPs) to model time effects permits to

approach the multiple univariate survival models directly on the survival scale, rather

than on the hazards scale (which would require expensive numerical integration),

while retaining a high degree of modelling flexibility. Specifically, SCOPs, developed

by Pya & Wood (2015), extending the penalised B-splines discussed in the seminal

work of Eilers & Marx (1996), elegantly embed the monotonicity required for the

survival functions within the construction of the survival functions themselves, thus

enabling very efficient parameter estimation. The exploration of different forms

of dependence on past history also becomes considerably easier when the exact

transition times are known. Indeed, assuming a semi-Markov process, the most

common relaxation considered in the literature, rather than a Markov process, the

most commonly made assumption, implies no further methodological difficulty.

When dealing with life-history data, one is often interested in assessing the

effects of specific risk-factors on the probability of transitioning between states.

When the process is assumed to be time-dependent and/or not-Markov, the computa-

tion of the transition probabilities is a nontrivial task. Two main approaches can be

identified in the literature to address this problem and are detailed in Supplementary

Material B.1. We adopt a simulation-based approach which allows one to compute

the transition probabilities by simulating a number of paths through the assumed

multistate process and counting the number of individuals experiencing each tran-

sition (Iacobelli & Carstensen, 2013; Touraine et al., 2016). This is appealing due

its aptness at supporting any type of multistate process and was proposed in Fiocco

et al. (2008) and implemented, amongst others, in the R package mstate (Putter

et al., 2020), whose tools can be seamlessly integrated with the estimation approach

implemented in the R package GJRM.

The remainder of the chapter is organised as follows. In Section 3.2, the

mathematical setting of multistate survival processes is described, while Section

3.3 introduces the modelling framework. Sections 3.4, 3.5 and 3.6 discuss model
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estimation, the extraction of the transition probabilities and inference respectively.

In Section 3.7, the Rotterdam Breast Cancer Study is introduced to exemplify

the proposed framework. Finally, Section 3.8 provides some concluding remarks

alongside directions of future work.

3.2 Mathematical setting of multistate survival

processes

A continuous-time discrete-state stochastic process is a family of random variables

{Z(t), t ∈ T } with some indexing set given by T = [0,∞) in the survival setting. The

set of all values that the process takes S := {z : Z(t) = z, t ∈ T } ⊆ {0,1,2, ...} is

called the state space, where Z(t) denotes the state occupied at time t. A p×1 vector

of left-continuous, time-dependent covariates is represented by X(t). The history

of the process, including the evolution of the covariates vector, is denoted by Ft =

{Z(u),X(u),0 ≤ u ≤ t}. The transition intensities and the transition probabilities are

then the two key quantities associated with the process. The former represent the

rates of transition to a state s for an individual who is currently in another state r,

formally

q(rs)(t | Ft−) = lim
∆t↓0

P(Z(t +∆t−) = s | Z(t−) = r,Ft−)

∆t
, r ̸= s,

with q(rs)(t | Ft−) = 0 if r is an absorbing state and q(rr)(t | Ft−) =− ∑
s ̸=r

q(rs)(t | Ft−).

The matrix with (r,s) element given by q(rs)(t | Ft−) for every r,s ∈ S is called

transition intensity matrix or generator matrix and we will denote it by Q(t | Ft−).

Similarly, we define the transition probability matrix associated with the time interval

[u, t] as the matrix with (r,s) element given by P(Z(t) = s | Z(u) = r,Fu−) and denote

this by P(u, t | Fu−). It is common to simplify the dependence on past history and

time by assuming either a Markov or a semi-Markov process. The former implies

that the probability of being in a given state at a given future time only depends on

the current state occupied (Ross et al., 1996). The latter assumes that the future state

only depends on the history of the process through the current state and through
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time since entry to the current state (Pyke, 1961). Note that we will consider only

homogeneous semi-Markov processes, as defined in Yang & Nair (2011). The more

general case of time-dependent semi-Markov process is out of the scope of this

work. Exact knowledge of the transition times, as in our setting, allows for both

assumptions to be modelled in an equally straightforward manner. The time for

intermediate transitions will just need to be re-defined to be the time from entry to

the current state.

3.3 Flexible transition-specific modelling

When a multistate process is continuously observed, each transition time can viewed

as a standalone time-to-event and can thus be modelled through traditional survival

analysis. It is well know that survival analysis can be undertaken on different

scales. One such option is to model transformations of the survival function using

generalised survival models, a class that was first introduced by Younes & Lachin

(1997). Subsequent works further developed this approach (e.g., Royston & Parmar,

2002; Liu et al., 2018), each allowing for more modelling flexibility and ensuring

the monotonicity of the survival function in different ways. More recently Marra &

Radice (2020) proposed a generalised survival modelling framework which elegantly

embeds the monotonicity of the survival function within the model design matrix by

exploiting the properties of P-splines (see Section 3.3.2). We adopt this approach and

thus describe it in the following in the context of transition-specific modelling. The

model follows that described in Chapter 2 for a single marginal survival function.

Here we adapt it to the context of transition-specific modelling.

Let A = {(r,s) | r ̸= s ∈ S,q(rs)(ti) ̸= 0} be the set of transitions and N rep-

resent the sample size. For individual i = 1, . . . ,N and for (r,s) ∈ A, let H(rs)(·)

be the cumulative hazard for the transition r → s defined in terms of the transition

intensity q(rs)(·) as H(rs)(ti | xi;β
(rs)) =

ti∫
0

q(rs)(u | xi;β
(rs))du. Then we will have

a conditional transition-specific survival function denoted by S(rs)(ti | xi;β
(rs)) =

exp
{
−H(rs)(ti | xi;β

(rs))
}
∈ (0,1), where xi represents a generic vector of patient

characteristics that has an associated regression coefficient vector β
(rs) ∈ Rw, where
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w is the length of β
(rs). A link-based additive transition-specific survival model can

then be written as

g(rs)
{

S(rs)(ti | xi;β
(rs))

}
= η

(rs)
i (ti,xi; f(β (rs))), (3.1)

where g(rs) : (0,1) → R is a monotone and twice continuously differentiable

link function with bounded derivatives, hence invertible, which determines the

scale of the analysis, η
(rs)
i (ti,xi; f(β (rs))) ∈ R is an additive predictor which in-

cludes a baseline function of time and several types of covariate effects and

f(β (rs)) is a vector function of β
(rs) through which the monotonicity required for

the survival functions is imposed (see Section 3.3.2). Rearranging (3.1) yields

S(rs)(ti | xi;β
(rs)) = G(rs)

{
η
(rs)
i (ti,xi; f(β (rs)))

}
, where G(rs) is an inverse link func-

tion. Note that modelling directly on the survival scale implies a considerable

advantage in this context (see Section 3.5). The cumulative transition-specific hazard

is then H(rs)(ti | xi;β
(rs)) = − log

[
G(rs)

{
η
(rs)
i (ti,xi; f(β (rs)))

}]
and the transition

intensity function is defined as

q(rs)(ti | xi;β
(rs)) =−

G(rs)′
{

η
(rs)
i (ti,xi; f(β (rs)))

}
G(rs)

{
η
(rs)
i (ti,xi; f(β (rs)))

} ∂η
(rs)
i (ti,xi; f(β (rs)))

∂ ti
, (3.2)

where G(rs)′
{

η
(rs)
i (ti,xi; f(β (rs)))

}
= ∂G(rs)

{
η
(rs)
i (ti,xi; f(β (rs)))

}
/∂η

(rs)
i (ti,xi; f(β (rs))).

Table 2.2 in Chapter 2 lists the functions g(rs), G(rs) and G(rs)′ available in the R

package GJRM.

3.3.1 Additive predictor

Dropping the dependence on covariates and on parameters for the sake of simplicity,

the additive predictor is defined as

η
(rs)
i = β

(rs)
0 +

K(rs)

∑
k=1

s(rs)
k (zki), i = 1, . . . ,n, (3.3)
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where β
(rs)
0 ∈ R is an overall intercept, zki denotes the kth sub-vector of the com-

plete vector zi and the K(rs) functions s(rs)
k (zki) denote effects which are chosen

according to the type of covariate(s) considered. The observations made in Chapter

2 will then hold here as well. In particular, these functions can be expressed as

a linear combination of basis functions bk(zki) = (b(rs)
k1 (zki), . . . ,b

(rs)
kJk

(zki))
T and

regression coefficients f(rs)
k (β

(rs)
k ) = ( f (rs)

k1 (β
(rs)
k1 ), . . . , f (rs)

kJk
(β

(rs)
kJk

))T ∈ RJk , that is

s(rs)
k (zki) = bk(zki)

Tf(rs)
k (β

(rs)
k ) (e.g., Wood, 2017). We can then write (3.3) com-

pactly as η
(rs)
i = Z(rs)T

i f(rs)(β (rs)), where Z(rs)
i = (1,b1(z1i)

T, . . . ,bK(rs)(zK(rs)i)
T)T

and f(rs)(β (rs)) = (β
(rs)
0 , f(rs)

1 (β
(rs)
1 )T, . . . , f(rs)

K(rs)(β
(rs)
K(rs))

T)T. The derivative with re-

spect to time required in (3.2) can be expressed as ∂η
(rs)
i (ti,xi; f(rs)(β (rs)))/∂ ti =

Z(rs)
i (ti,xi)

′Tf(rs)(β (rs)) where, depending on the type of spline basis employed,

Zi(ti,xi)
′ = lim

ε→0

Z(rs)
i (ti+ε,xi)−Z(rs)

i (ti−ε,xi)
2ε

can be calculated either by a finite-

difference method or analytically. Each β
(rs)
k has an associated quadratic penalty

λ
(rs)
k β

(rs)T
k D(rs)

k β
(rs)
k , used in fitting, whose role is to enforce specific properties

on the kth function, such as smoothness, with matrix D(rs)
k depending only on the

choice of the basis functions. The smoothing parameter λ
(rs)
k ∈ [0,∞) controls

the trade-off between fit and smoothness, and hence determines the shape of the

estimated smooth function. The overall penalty can be defined as β
(rs)TS(rs)

λ
(rs)β

(rs),

where S(rs)
λ
(rs) = diag(0,λ (rs)

1 D(rs)
1 , . . . ,λ

(rs)
K(rs)D

(rs)
K(rs)) is a block diagonal matrix where

each block is given by the kth penalty, and where λ
(rs) = (λ

(rs)
1 , . . . ,λ

(rs)
K(rs))

T is the

transition-specific overall smoothing parameter vector. Depending on the types

of covariate effects one wishes to model, several definitions of basis functions are

possible, e.g. thin plate, cubic and P- regression splines, tensor products, Markov

random fields, random effects, Gaussian process smooths. These are handled

automatically within the software proposed. We refer the reader to Section 3.7 for

practical examples of the effects mentioned above and to Wood (2017) for the other

available options.

3.3.2 Imposing monotonicity by means of SCOPs

When modelling life-history data through multistate processes, one is often interested

in making statements in terms of the probabilities of transitioning from one state to
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another for specific combinations of risk-factors. In Section 3.5, it will be shown

that we compute these by first extracting the transition-specific cumulative hazards

at various time points. Direct modelling of the survival functions thus allows us to

obtain the transition probabilities more cheaply, as we drop the intermediate step

of having to first integrate the transition intensities. The only caveat is that one

needs to ensure the survival functions are monotonically decreasing. Liu et al. (2018)

propose to do this by means of a penalty applied to the hazard function such that the

associated coefficient is iteratively doubled until the estimated hazard functions of

all individuals are not negative. We employ a more theoretically founded approach.

Indeed, in the proposed framework the properties of P-splines are exploited to

elegantly embed the monotonicity within the construction of the survival functions

themselves, while allowing for the flexible modelling of the time effect.

Let s(rs)(ti) = ∑
J(rs)

j=1 f (rs)
j (β

(rs)
j )b(rs)

j (ti), where the b(rs)
j (·) are B-spline basis

functions of at least second order built over the interval [a,b], based on equally

spaced knots, and the f (rs)
j (β j)

(rs) are spline coefficients. Given the link func-

tions listed in Table 2.2, we need s(rs)′(ti) ≥ 0. Eilers & Marx (1996) combined

B-spline basis functions with discrete penalties in the basis coefficients to produce

the popular P-spline smoothers. Then Pya & Wood (2015) proposed shape con-

strained P-splines through a mildly nonlinear extension of these P-splines, with

corresponding novel discrete penalties, thus allowing the development of efficient

and stable model estimation frameworks, such as the one proposed. In particular, a

sufficient condition for s(rs)′(ti)≥ 0 over [a,b] is that f (rs)
j (β

(rs)
j )≥ f (rs)

j−1(β
(rs)
j−1),∀ j.

Indeed, given a function η(x) = a0 +∑
m
j=1 a jB j(x,q), where B j(x,q) are the bases

for a (q+ 1)th order B-spline, m is the number of basis functions, ∂η(x)/∂x =

1
h ∑

m−1
j=1 (a j+1 − a j)B j(x,q− 1) with h the distance between equally spaced knots

and so a j+1 ≥ a j implies ∂η(x)/∂x ≥ 0 since B j(x,q− 1) ≥ 0 (Leitenstorfer &

Tutz, 2006). Such condition can be imposed by defining the vector function

f(rs)(β (rs)) = Σ

{
β
(rs)
1 ,exp(β (rs)

2 ), . . . ,exp(β (rs)
J(rs))

}T
, where Σ[ι1, ι2] = 0 if ι1 < ι2

and Σ[ι1, ι2] = 1 if ι1 ≥ ι2, with ι1 and ι2 denoting the row and column entries of Σ,

and β
(rs)T = (β

(rs)
1 ,β

(rs)
2 , . . . ,β

(rs)
J(rs)) is the parameter vector to estimate. Crucially, in
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practice Σ is absorbed into the design matrix containing the B-spline basis functions

Z, hence allowing the constraint to be elegantly embedded within the construction of

the model design matrix itself. Finally, in a smoothing context, we are interested in

having a penalty on the smooth function to control its ”wiggliness”. Eilers & Marx

(1996) introduced the notion of directly penalising the difference in the basis coeffi-

cients of a B-splines basis, which is used with a relatively large number of basis func-

tions to avoid underfitting. The adaptation to the shape-constrained case is straightfor-

ward as it implies penalising the squared differences between adjacent β
(rs)
j , starting

from β
(rs)
2 , using D(rs) = D(rs)∗TD∗ where D(rs)∗ is a (J(rs)−2)× J(rs) matrix made

up of zeros except that D(rs)∗[ι , ι +1] =−D(rs)∗[ι , ι +2] = 1 for ι = 1, . . . ,J(rs)−2.

The penalty is zeroes when all the β
(rs)
j after β

(rs)
1 are equal so that the f (rs)

j (β
(rs)
j )

form a uniformly increasing sequence and s(rs)(ti) is an increasing straight line. As a

result, the proposed penalty shares the basic feature of smoothing towards a straight

line, but in a manner that is computationally convenient for constrained smoothing.

3.4 Estimation

Since each likelihood contribution refers to a specific transition only and every

transition is exactly observed if and only if it occurs, it can be shown (see Supple-

mentary Material B.2) that the overall model log-likelihood can be broken down into

the sum of the log-likelihoods associated with each transition, which are functions

only of the parameters relating to that transition, i.e. ℓ(θ) = ∑(r,s)∈A ℓ(rs)(β (rs)),

where θ = {β
(rs) | (r,s) ∈ A} is an overall model parameter vector. Re-writing the

log-likelihood in this way, rather than as a sum of contributions associated with

each observation time, is more convenient as it breaks down the estimation task

into a number of traditional survival problems, one for each transition. It is pre-

cisely to each of these transition-specific models that the framework developed in

Eletti et al. (2022) is applied. Briefly, as the model allows for a high degree of

flexibility, to prevent over-fitting, the log-likelihood is augmented with a penalty

term ℓ
(rs)
p (β (rs)) = ℓ(rs)(β (rs))− 1

2β
(rs)TS(rs)

λ
(rs)β

(rs) where S(rs)
λ
(rs) is an overall penalty

term defined in Section 3.3. The estimation framework then combines a carefully
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structured trust region algorithm which uses the analytical expressions of the gra-

dient and Hessian of the log-likelihood and properly chosen starting values with a

general automatic multiple smoothing parameter selection algorithm based on an

approximate AIC measure.

3.5 Prediction on the transition probabilities scale
While estimation can be carried out entirely by-passing the computation of the

transition probabilities, one is often interested in making statements in terms of the

probability of transitioning from one state to another given a specific combination

risk-factors. We choose the simulation-based approach proposed in Fiocco et al.

(2008), which we briefly describe in the following. Let r be the starting state, entered

at time tr = 0, and tmax the maximum follow-up time. Then

• Let B be the set of states that can be reached from state r. If B is empty, stop.

Otherwise, for s ∈ B, let H(rs)(t) be the cumulative transition-specific hazard

function for transition r → s and H(r·)(t) = ∑
s∈B

H(rs)(t) refer to the event of

leaving state r.

• Sample t∗ from H(r·)(t)−H(r·)(tr). This refers to the conditional distribution

of leaving state r given that the process is known to be in state r until time tr

thus ensuring that the sampled time t∗ > tr.

• If t∗ < tmax, select the next state s with probability dH(rs)(t∗)/dH(r·)(t∗),

which provides a weight for the specific transition r → s out of state r for

each s ∈ B at the given time t∗, and set the new starting points for the next

iteration, r = s and tr = t∗. Otherwise, stop: a full path through the process

was obtained.

This is repeated to obtain M paths through the multistate model and to compute

the transition probabilities by counting the number of paths for which each event

occurred. The approach is implemented in the function mssample() of the R pack-

age mstate and is straightforward to use given the estimated transition-specific
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cumulative hazards, provided by the hazsurv.plot() function of the R package

GJRM.

It should be noted that computing the transition probability matrix is a non-

trivial problem, as it entails solving the so-called Kolmogorov forward differential

equations, which in general do not have a closed-form solution. The advantage of

the simulation-based method proposed here is that it allows us to circumvent this

issue, while retaining a great degree of generality. In fact, it applies to both Markov

and semi-Markov processes, with any number of states and transition types.

3.6 Inference

One view of the smoothing process is that the penalty employed during fitting im-

poses the belief that the true function is more likely to be smooth than wiggly. This

belief can be expressed in a Bayesian manner through the form of a prior distribu-

tion on β
(rs), i.e. f

β (rs) ∝ exp
{
−β

(rs)TS(rs)
λ
(rs)β

(rs)/2
}

. This leads to the Bayesian

large sample approximation β
(rs) ·∼N (β̂

(rs)
,V

β
(rs)), where V

β
(rs) =−Hp(β̂

(rs)
)−1;

using V
β
(rs) gives close to across-the-function frequentist coverage probabilities

because it accounts for both sampling variability and smoothing bias, a feature

that is particularly relevant at finite sample sizes (Wood et al., 2016). Following

Pya & Wood (2015), we then consider the Taylor series expansion of f(rs)(β (rs))

around f(rs)(β̃
(rs)

). This gives f(rs)(β (rs))− f(rs)(β̃
(rs)

)≈ diag(E(rs))
(
β
(rs)− β̃

(rs))
,

where E(rs)[k jk ] = 1 if f (rs)
k jk

(β
(rs)
k jk

) = βk jk
and exp(β (rs)

k jk
) otherwise, showing that

f(rs)(β (rs))− f(rs)(β̃
(rs)

) is approximately a linear function of β
(rs). Combining this

with the result above we have that f(rs)(β (rs))
·∼ N (f(rs)(β̃

(rs)
),Vf(rs)(β (rs))

) where

Vf(rs)(β (rs))
= diag(E(rs))V

β
(rs) diag(E(rs)), since linear functions of normally dis-

tributed random variables follow normal distributions. Confidence intervals for

linear functions of the model coefficient can then be obtained using this result. P-

values for the smooth components in the model are derived by adapting the result

discussed in Wood (2017) and using Vf(rs)(β (rs))
as covariance matrix. For nonlinear

functions of the model coefficients, e.g. the transition-specific cumulative hazard

functions, instead, the intervals can be conveniently obtained by posterior simula-
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tions, hence avoiding computationally expensive parametric bootstrap or frequentist

approximations, for instance.

3.7 Primary breast cancer modelling case study

To illustrate what the proposed approach adds compared to the existing literature,

we consider the case study described in Crowther & Lambert (2017) which is

based on data from 2892 patients with primary breast cancer for which the time

to relapse and/or the time to death is known. See, e.g., Sauerbrei et al. (2007) for

further details on the Rotterdam Breast Cancer Study from which the data origi-

nated. The code used to produce this analysis can be found in the public repository

https://github.com/AlessiaEletti/ContinObsMultistateProcesses.

All patients begin in the initial post-surgery state, 1518 patients experience

relapse, 195 die without relapse and 1075 die after experiencing relapse. A Markov

illness-death model (IDM, see Figure B.1 in Supplementary Material B.3) will thus

be used to model the data. As an aside, note that an attempt assuming a semi-Markov

process was also made but this was not supported by the data according to the AIC

values found for the fitted models.

As there are three transitions in the assumed IDM, three survival models will be

fitted. For transitions which can occur only given that another transition has already

taken place, i.e. the transition 2 → 3 in this case, one must account for the fact that

the patient is at risk only after entering the new starting state, i.e. state 2. As long as

this is done, each transition can be treated as a separate survival problem. The time

at which the individual entered state 2 thus becomes the left-truncation time for the

new transition 2 → 3.

To clarify how the separate estimations are carried out, recall that longitudinal

survival data are characterised by multiple observations through time of at least

one quantity of interest for the same individual. Typically the data are formatted

in the so-called stacked (or long) form, i.e. each row represents a single time point

per subject. In particular, each subject will have at least v rows, where v is the

number of possible transitions exiting the initial state. Here, v = 2 as there are two
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ways of exiting state 1, i.e. going in state 2 or 3. A start and a stop time will then

indicate, respectively, the first time after which the patient becomes at risk of the

given transition and the time at which the transition itself occurred. The start time

for transitions exiting the first state is 0, as is usually the case here. If the patient

transitions to an intermediate state, u rows will be added, where u is the number

of transitions exiting the intermediate transition state reached. Here, u = 1, as the

only possible transition out of state 2 is 2 → 3, where 3 is an absorbing state. When

estimating q(12)(·), all of the rows relating to this transition are included in the

estimation. Since every patient will at least have one row for each transition exiting

the first state, this implies that the entire population is included. The same is true for

q(13)(·), for which the rows relating to the 1→ 3 transition will be used for estimation.

The two resulting separate datasets can then be treated as traditional survival data

with uncensored and right censored observations and with the event of interest given

by the transition to the new state, i.e. state 2 for the former and state 3 for the latter.

When estimating q(23)(·), only individuals who have transitioned to state 2 at some

point are included in the estimation. The data are then treated as traditional survival

data with left-truncated uncensored and left-truncated right censored observations

and where the event of interest is the transition to the absorbing state 3. We refer the

reader to Supplementary Material B.4 for further details on the format of the data in

this setting.

The dataset contains information on the age of the patient at primary surgery (in

years), tumour size (divided into 3 classes: ≤ 20, 20−50 and > 50 mm), number

of positive nodes, progesterone levels (in fmol/L) and whether or not the patient

was on hormonal therapy. These are all included as covariates. We then include a

time-dependent effect for the progesterone level, as this has been found to be relevant

in the reference paper, and include age, the progesterone level and the number of

positive nodes nonlinearly, as supported by existing literature. Importantly, our

framework allows for the exploration of these effects in a more general and flexible

manner than previously possible in the literature thanks to the use of splines. In

contrast, for instance, Sauerbrei & Royston (1999) modelled the number of positive
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nodes nonlinearly by using fractional polynomials with the degrees set heuristically.

Similarly, in Crowther & Lambert (2017) the time-dependent effect is captured by a

single interaction coefficient between time and the progesterone level . In particular,

for (r,s) ∈ {(1,2),(1,3),(2,3)}, we specify the transition-specific models

η
(rs)
i (ti,xi; f(β (rs))) = β

(rs)
0 + s(rs)

0 (log(ti))+β
(rs)
1 Isizei=20−50 +β

(rs)
2 Isizei>50 +β

(rs)
3 hormoni

+ s(rs)
1 (agei)+ s(rs)

2 (nodesi)+ s(rs)
3 (pri)+ s(rs)

4 (log(ti),pri),

where s(rs)
0 (log(ti)) is a monotonic P-spline of the logarithm of time which ensures

the monotonicity of the survival function associated with this transition, as explained

in Section 3.3.2; s(rs)
1 (agei), s(rs)

2 (nodesi) and s(rs)
3 (pri) are thin-plate splines, while

s(rs)
4 (log(ti),pri) is a pure smooth interaction between time and the progesterone

level, i.e. a time-dependent effect. In regard to the penalty associated with a

nonlinear term, e.g., s1(agei), this takes the form of the quadratic penalty defined

above with Dk given by the integrated square second derivative of the basis functions,

i.e.
∫

dk(zk)dk(zk)
Tdzk with the jthk element of dk(zk) defined as ∂ 2bk jk(zk)/∂ z2

k .

The penalty associated with the time-dependent effect is, instead, more complex

as it entails combining two penalties (see Wood, 2017, Chapter 5). Finally, note

that for parametric effects the spline representation simplifies to s(rs)(hormoni) =

β
(rs)
3 hormoni. No penalty is typically assigned to parametric effects, hence the

associated quadratic penalty is D = 0. Note that in cases such as those in which the

categorical variable has many levels with some with few observations, it may be

advisable to set the penalty as the identity matrix. In this way, a ridge penalty is

imposed and it may help avoid that the parameters associated with the more sparse

categories are weakly or nonidentified.

The estimated covariate effects for each transition are reported in Table 3.1. For

the first transition, for instance, they are in line with our expectations: the larger

the size of the tumor the higher the risk of experiencing relapse, while hormonal

therapy has a beneficial effect. In Figure 3.1 we report the estimated transition

intensities with their 95% confidence intervals as functions of time for a 54 year

old patient with tumour size ≥ 50 mm, 10 positive nodes, progesterone level of 3
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Estimate Std. Error Pr(> |z|)

Transition 1 → 2

(Intercept) -10.630 1.198 < 1e−4
size20-50 0.284 0.059 < 1e−4
size>50 0.477 0.089 < 1e−4
hormon -0.318 0.085 2e−4

Transition 1 → 3

(Intercept) -12.543 2.585 < 1e−4
size20-50 0.153 0.162 0.344
size>50 0.390 0.236 0.098
hormon -0.135 0.236 0.567

Transition 2 → 3

(Intercept) -2.915 1.023 0.004
size20-50 0.139 0.072 0.053
size>50 0.259 0.101 0.010
hormon -0.015 0.098 0.881

Table 3.1: Model estimates, standard errors and p-values for the three transitions. Note:
the full output of the R model summary is reported. It is clear that the p-values
relating to the categorical variables do not have a meaningful interpretation, these
are only included for completeness.

and under hormonal therapy. We find, for instance, that the risk of experiencing

relapse for this profile increases for approximately 2.5 years after surgery, then it

decreases and plateaus over time. In Figure 3.2 we report the plots of the smooths

and of the tensor interaction for the transition health → relapse. These show that

the data particularly support nonlinear effects for the age and the number of positive

nodes. For instance, the latter exhibits an increasing trend up to about 12 nodes,

followed by a plateau. The time-dependence of the progesterone level effect is

also clear from the surface representing the smooth interaction, with low levels of

progesterone associated with a decreasing risk of experiencing relapse over time and,

conversely, high levels of progesterone associated with an increasing trend for the

risk of experiencing relapse over time. Any additional complexity not supported by

the data is then suppressed automatically through the estimation of the smoothing

parameter, rather than requiring the user to make restrictive and potentially arbitrary

choices a priori. This can be seen in the plots of the smooths of the remaining two

transitions, reported in Figures B.2 and B.3 of Supplementary Material B.3. The plot

of the smooth of age for the health → death transition, for instance, shows that the

data actually supported a linear effect for this term.

As mentioned above, interest usually lies in making statements in terms of the
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Figure 3.1: Fitted transition intensities and 95% confidence intervals (CIs) for a 54 year
old patient under hormonal therapy with tumour size ≥ 50 mm, 10 nodes and
progesterone level of 3, over 20 years. The vertical dashed line marks the
smallest observed time: the transition intensities estimated at smaller times are
extrapolations, thus explaining the wide CIs in the first section of the third plot.
The width of the CIs in the final portion of the middle plot can be explained by
the scarcity of observations in the final times, as shown by the rug plot. The
width of the confidence intervals should also be related to the different range of
values in each plot.

probabilities of transitioning between states thus, in Figure 3.3, we report stacked

transition probability plots. Representing the probabilities in this stacked manner

is a common way of quickly providing an overview of how risk evolves over time,

however the uncertainty of the estimates cannot be easily portrayed. For this reason,

in Figure 3.4, we report the predicted probabilities with their 95% confidence inter-

vals for the individual corresponding to the top-left panel, i.e. a 54 year old patient

under hormonal therapy, progesterone level of 3, 20 positive nodes and tumour size

≤ 20 mm. Note that the computation of the transition probabilities already entails

a simulation, thus the process of obtaining confidence intervals for it will result in

two nested simulations. The computational burden of this is not prohibitively high,

however. Here, they are obtained by using 100 simulated cumulative hazards for

each of the three transitions, over 100 distinct time points, and M = 10000 simulated

paths through the process, which is a larger number of paths than typically needed.

This required approximately 37 minutes using a laptop with Windows 10 (2.20

GHz processor, 16 GB RAM, 64-bit). Details on this, on how the model fitting is

carried out and how the plots reported in this section were obtained can be found in
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Figure 3.2: Smooth of log-time (top left), smooth of age (top middle), smooth of the number
of positive nodes (top right), smooth of the progesterone level (bottom left) and
smooth interaction between log-time and progesterone level (bottom right) for
the transition health → relapse.

Supplementary Material B.3.

3.8 Discussion
In this work we show how one can use existing tools to flexibly model multistate

survival processes relating to continuously observed life-history data. In particu-

lar, we consider the survival estimation framework described in Eletti et al. (2022)

and implemented in the R package GJRM which allows us to model virtually any

type of covariate effect, including time-dependent ones. Direct modelling of the

survival functions implies a considerable gain in efficiency when it comes to com-

puting the transition probabilities of interest, which in turn are obtained through
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Figure 3.3: Stacked representation of estimated transition probabilities (dark grey: post-
surgery; grey: relapse; light grey: death) for each combination of nodes (0, 10
and 20) and tumour sizes (≤ 20, (20,50) and ≥ 50) considered in a 54 year old
patient under hormonal therapy with progesterone level of 3.

a simulation-based approach able to support any type of multistate process. Ef-

ficient modelling on the survival scale is achieved through shape constrained P-

splines, developed by Pya & Wood (2015), building upon the work done in Eilers

& Marx (1996). We exemplify our approach on data from the Rotterdam Breast

Cancer Study and provide the code used for the analysis in the public repository

https://github.com/AlessiaEletti/ContinObsMultistateProcesses.

With regard to directions of future work, we are interested in integrating the computation

of the transition probabilities and the extraction of its confidence intervals directly within

the GJRM package, so as to minimise the amount of user-written code needed and thus

further simplify the use of these models by the practitioner. Similarly, for the visualisation

tools available for the estimated transition probabilities. As the Markov assumption is quite

common, we are also interested in implementing the method based on the numerical solution

of the differential equations tying the transition probabilities to the intensities as well as to
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Figure 3.4: Estimated transition probabilities (left: post-surgery; middle: relapse; right:
death) for the top-left pane in Figure 3.3.

implement our own simulation-based approach within the GJRM package, so that the user has

all necessary instruments in the same place and the need for user-written code is reduced to

the minimum.



Chapter 4

A General Estimation Framework for

Multi-State Markov Processes with

Flexible Specification of the

Transition Intensities

4.1 Introduction
With the increase in the availability of longitudinal survival data, continuous-time multi-state

Markov models have established themselves as powerful tools to model the progression of

a phenomenon, while accounting for background information recorded for each individual

throughout the follow-up period; see Yiu et al. (2017), Williams et al. (2020) and Gorfine

et al. (2021) for some examples. In many applications, a non-homogeneous Markov process

is assumed, i.e. the risks of moving across states depend on the current state and on time.

This is typically addressed by employing parametric functional forms for the transition

hazards, but some examples of more flexible (e.g., spline-based) specifications can be found

as well (e.g., Cook & Lawless, 2018; Joly et al., 2002; Mariano Machado et al., 2021; Titman,

2011; Van Den Hout, 2016).

Constant monitoring of the progression of a phenomenon of interest is often not possible

since it may be too expensive or altogether not feasible due to the nature of the event of

interest. When this is the case, the process is only observed at a fixed set of times and is thus

said to be intermittently observed or interval-censored. The lack of knowledge of the times in
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which the transitions occurred represents a methodological challenge. The literature on the

subject is vast, however existing computational methods for fitting non-homogeneous multi-

state Markov models in such setting have mainly been based on the estimation approach

developed by Kalbfleisch & Lawless (1985), which relies on approximating the information

matrix using the analytical score of the log-likelihood. The advantage of this method is

that, in principle, it permits a great degree of generality by allowing for any number of

states, forward and backward transitions, and any type of functional form for the transition

intensities. However, only simpler models are supported in practice, with the most commonly

used implementation provided via the R package msm (Jackson, 2019). Yet, convergence

failures occur when the number of states and covariates increases; this can be attributed

to the absence of the analytical information matrix which would provide valuable exact

curvature information exploitable in model fitting. Based on Kalbfleisch & Lawless (1985),

Mariano Machado et al. (2021) introduced an approach that allows to fit models that are

more flexible than those considered in msm. The authors carried out comparisons with two

currently available implementations and found their estimation approach to be superior in

terms of empirical performance and modelling flexibility. However, Mariano Machado et al.

(2021) only provided a bespoke code for the simple and well-known three-state Illness-Death

Model (IDM). When applied to the CAV study, this approach was found to be too restrictive

for the estimation of covariate effects. Another implementation is given via the R package

nhm (Titman, 2023). Here, the transition probabilities are obtained as numerical solutions

of the differential equations that ties them to the transition intensities (Titman, 2011). This

package is as general as msm but it additionally supports the use of an unpenalized smooth

function of time. When applied to the CAV data, convergence could only be achieved for a

model with log-linear effects. For the cognitive study, no model could be fitted.

To widen significantly the scope of non-homogeneous multi-state Markov models,

we propose an analytical expression for the local curvature information of the transition

probability matrix. This allows us to introduce a modelling framework which is general

and flexible, and that is applicable to far more complex empirical problems than those

previously explorable in the literature. Specifically, the proposal allows for any type of

multi-state process, with several states and various combinations of observation schemes

(e.g., intermittent, exactly observed, censored), and for the transition intensities to be flexibly

modelled through additive predictors. Parameter estimation is carried out by adapting to
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this context the stable and efficient estimation algorithm of Marra & Radice (2020) which

can fully exploit the newly derived analytical observed information matrix. To allow for

reproducible and transparent research, the framework is implemented in the R package

flexmsm (Eletti et al., 2023a) which is very easy and intuitive to use; for instance, time

and covariate effects of multi-state Markov models can be flexibly specified using the same

syntax as that for generalised additive models in R (Wood, 2017).

In Section 4.2, we introduce the mathematical setting of multi-state Markov models and

describe the regression spline-based approach employed for modelling the transition intensi-

ties. The penalised log-likelihood is presented in Section 4.3, while parameter estimation and

how this is intertwined with the problem of computing the transition probabilities from the

transition intensities are discussed in Section 4.4. This section also presents the closed-form

expressions for the transition probability matrix and its first and second derivatives, which are

needed to compute the analytical likelihood, gradient and Hessian exploited in estimation.

Section 4.5 describes how inference is carried out. Section 4.6 illustrates the potential

of the proposal via a classical study, based on the IDM, that aims at modelling the onset

of cardiac allograft vasculopathy, and a more complex one, about cognitive decline, which

requires the use of a five-state process with both forward and backward transitions as well

as an absorbing death state. Section 4.7 concludes the paper with some directions of future

research. On-line Supplementary Materials C.1, C.2 and C.3 provide details on the log-

likelihood contributions, the R package flexmsm and the algorithm employed for parameter

estimation. Supplementary Material C.4 illustrates the empirical effectiveness of the proposal

via two simulation studies. Supplementary Material C.5 contains a list of the mathematical

symbols used and their meaning.

4.2 Multi-state processes with flexible transition

intensities

We recover part of the notation introduced in Chapter 3 for multi-state processes and adapt

it to our current setting, i.e. intermittently observed Markov processes. Let {Z(t), t > 0}

be a continuous-time Markov process, S = {1,2, . . . ,C} its discrete state space, where C

is the total number of states, and A = {(r,r′) | r ̸= r′ ∈ S,∃ r → r′} the set of transitions.

The transition intensity function, i.e. the instantaneous rate of transition to a state r′ for an
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individual who is currently in another state r, is defined as follows

q(rr′)(t) = lim
h↓0

P(Z(t +h) = r′ | Z(t) = r)
h

, r ̸= r′,

with q(rr′)(t) = 0 if r is an absorbing state and q(rr)(t) = − ∑
r ̸=r′

q(rr′)(t). The matrix with

(r,r′) element given by q(rr′)(t) for every r,r′ ∈ S is called transition intensity matrix or

generator matrix and can be denoted with Q(t). Similarly, the transition probability matrix

associated with the time interval (t, t ′) is defined as the matrix with (r,r′) element given by

p(rr′)(t, t ′) = P(Z(t ′) = r′ | Z(t) = r) and can be denoted with P(t, t ′). Here, we assume a

time-dependent process as opposed to the rather restrictive time-homogeneous process (i.e.,

Q(t) = Q ∀t > 0) often adopted in the literature for mathematical convenience.

The intensity for transition r → r′, with r ̸= r′, is generally represented using the

proportional hazards specification, where the baseline intensity is typically specified using the

exponential or Gompertz distribution (Van Den Hout, 2016). A more flexible representation

for the transition intensity is

q(rr′)(tι) = exp
[
η
(rr′)
ι (tι ,xι ;β

(rr′))
]
, (4.1)

where tι and xι are the time and the vector of characteristics for observation ι respectively,

β
(rr′) is the associated regression coefficient vector and η

(rr′)
ι (tι ,xι ;β

(rr′)) ∈ R is an additive

predictor, discussed in detail in the following section, which includes a baseline smooth

function of time and several types of covariate effects. Note that, in contrast to the settings of

Chapters 2 and 3, here the additive predictor is defined on the log-intensities scale, making

unnecessary the monotonicity constraint introduced for the former. It follows that tι and xTι
can be treated in the same way.

4.2.1 Additive predictor
For simplicity, the dependence on covariates and parameters has been dropped when dis-

cussing the construction of η
(rr′)
ι . Also, since tι can be treated as a covariate, we define the

overall vector x̃ι = (tι ,xTι )T.

An additive predictor allows for various types of covariate effects and is defined as

η
(rr′)
ι = β

(rr′)
0 +

K(rr′)

∑
k=1

s(rr′)
k (x̃kι), ι = 1, . . . , ň, (4.2)
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where ň is the sample size, β
(rr′)
0 ∈R is an overall intercept, x̃kι denotes the kth sub-vector of

the complete vector x̃ι and the K(rr′) functions s(rr′)
k (x̃kι) represent effects which are chosen

according to the type of covariate(s) considered. For example, if we were interested in mod-

elling a time-dependent effect of the covariate ageι , then x̃ιk would be the vector (ageι , tι)T

and s(rr′)
k (ageι , tι) the corresponding joint effect. Each s(rr′)

k (x̃kι) can be represented as a lin-

ear combination of J(rr′)
k known basis functions b(rr′)

k (x̃kι) =

(
b(rr′)

k1 (x̃kι), . . . ,b
(rr′)

kJ(rr′)
k

(x̃kι)

)T

and regression coefficients β
(rr′)
k =

(
β
(rr′)
k1 , . . . ,β

(rr′)

kJ(rr′)
k

)T

∈ RJ(rr′)
k , that is s(rr′)

k (x̃kι) =

b(rr′)
k (x̃kι)

Tβ
(rr′)
k (e.g., Wood, 2017). The above formulation implies that the vector of

evaluations
{

s(rr′)
k (x̃k1), . . . ,s

(rr′)
k (x̃kň)

}T
can be written as X̃(rr′)

k β
(rr′)
k , where X̃(rr′)

k is the

design matrix whose ι th row is given by b(rr′)
k (x̃kι)

T for ι = 1, . . . , ň. This allows the pre-

dictor in equation (4.2) to be written as η(rr′) = β
(rr′)
0 1ň + X̃(rr′)

1 β
(rr′)
1 + . . .+ X̃(rr′)

K(rr′)β
(rr′)
K(rr′) ,

where 1ň is an ň-dimensional vector made up of ones. This can also be represented

in a more compact way as η(rr′) = X̃(rr′)
β
(rr′), where X̃(rr′)

= (1n, X̃
(rr′)
1 , . . . , X̃(rr′)

K(rr′)) and

β
(rr′) =

(
β
(rr′)T
0 ,β

(rr′)T
1 , . . . ,β

(rr′)T
K(rr′)

)T
. Each β

(rr′)
k has an associated quadratic penalty

λ
(rr′)
k β

(rr′)T
k D(rr′)

k β
(rr′)
k , used in fitting, whose role is to enforce specific properties on the

kth function, such as smoothness. Matrix D(rr′)
k only depends on the choice of the ba-

sis functions. Smoothing parameter λ
(rr′)
k ∈ [0,∞) has the crucial role of controlling the

trade-off between fit and smoothness and hence it determines the shape of the correspond-

ing estimated smooth function. The overall penalty can be defined as β
(rr′)TS(rr′)

λ
(rr′)β

(rr′),

where S(rr′)

λ
(rr′) = diag(0,λ (rr′)

1 D(rr′)
1 , . . . ,λ

(rr′)
K(rr′)D

(rr′)
K(rr′)) and λ

(rr′) = (λ
(rr′)
1 , . . . ,λ

(rr′)
K(rr′))

T is the

transition-specific overall smoothing parameter vector. Note that smooth functions are sub-

ject to centering (identifiability) constraints which are imposed as described in Wood (2017).

Several definitions of basis functions and penalty terms are supported by flexmsm; these

include thin plate, cubic and P-regression splines, tensor products, Markov random fields,

random effects, and Gaussian process smooths (see Wood (2017) for details).

An example of predictor specification is η
(rr′)
ι = β

(rr′)
0 + s(rr′)

1 (tι)+β
(rr′)
2 sexι . Paramet-

ric effects usually, but not exclusively, relate to binary and categorical variables such as

sexι . The spline representation introduced above thus simplifies to s(rr′)
2 (sexι) = β

(rr′)
2 sexι .

No penalty is typically assigned to parametric effects, hence the associated penalty is 0.

However, there might be instances where some form of regularisation is required in which

case a suitable penalisation scheme can be employed (e.g., Wood, 2017, Section 5.8). To

explore a potentially nonlinear effect of tι , s(rr′)
1 (tι) is specified as b(rr′)

1 (tι)Tβ
(rr′)
1 , where
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b(rr′)
1 (tι) are cubic regression spline bases, for example. In this case, the penalty is defined as

β
(rr′)T

1 D(rr′)
1 β

(rr′)
1 =

∫ u
J(rr′)
1

u1

(
∂ 2

∂ t2 s(rr′)
1 (u)

)2

du,

where u1 and u
J(rr′)

1
are the locations of the first and last knots. For a smooth term in one

dimension, such as s(rr′)
1 (tι), the specific choice of spline definition (e.g., thin plate, cubic)

will not have an impact on the estimated curve. As for J(rr′)
1 , or more generally J(rr′)

k , this is

typically set to 10 since such value offers enough flexibility in most applications. However,

analyses using larger values can be attempted to assess the sensitivity of the results to

J(rr′)
k . Regarding the selection of knots, these can be placed evenly throughout (or using the

percentiles of) the values of the variable the smooth term refers to. For a thin-plate regression

spline only J(rr′)
k has to be chosen. See Wood (2017) for a thorough discussion.

As mentioned previously, our framework poses no limits on the types of splines that can

be employed for specifying the transition intensities. For instance, as illustrated in Section

4.6.1, two-dimensional splines can be used to incorporate time-dependent effects. This would

take the form of an interaction term involving, e.g., ageι and the time variable through the

smooth term s(rr′)
k (ageι , tι). Here we have two penalties, one for each of the arguments of the

smooth function. These are summed after being weighted by smoothing parameters, which

serve the purpose of controlling the trade-off between fit and smoothness in each of the two

directions, thus allowing for a great degree of flexibility (Wood, 2017, Section 5.6).

4.3 Penalised log-likelihood

Let N be the number of statistical units, ni the number of times the ith unit is observed,

0 = ti0 < ti1 < · · · < tini the follow-up times, zi0,zi1, . . . ,zini the (possibly unobserved, i.e.

censored) states occupied, and ň = ∑
N
i=1(ni −1) the sample size. If Li j(θ) is the likelihood

contribution for the jth observation of the ith unit and θ = {β
(rr′) | (r,r′) ∈ A} the model

parameter vector, then the log-likelihood is

ℓ(θ) =
N

∑
i=1

ni

∑
j=1

log(Li j(θ)) , (4.3)
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where we have

Li j(θ) =



p(zi j−1zi j)(ti j−1, ti j), if zi j is an interval censored state

exp
[ ti j∫

ti j−1

q(zi j−1zi j−1)(u)du
]

q(zi j−1zi j)(ti j), if zi j is an exactly observed state

∑
c∈S̃⊂S

p(zi j−1c)(ti j−1, ti j), if zi j is a censored state

C
∑

c=1
c̸=zi j

p(zi j−1c)(ti j−1, ti j)q(czi j)(ti j), if zi j is an exactly observed death state

.

That is, the likelihood contribution for a given observation will depend on the nature of the

states between which the transition occurred and the way in which it was observed. Note that,

in the last contribution type, q(czi j)(ti j) may depend on a time-dependent covariate whose

value at the time of death ti j may be unknown. One way to address this is to assume that the

value of this covariate in ti j is the same as the the one observed in the previous follow-up

time ti j−1. Supplementary Material C.1 provides details on each contribution type, whereas

Supplementary Material C.2 describes the use of the R package flexmsm in such a general

context.

To calibrate the trade-off between parsimony and complexity, we augment the objective

function (4.3) with a quadratic penalty term. This results in the penalised log-likelihood

ℓp(θ) = ℓ(θ)− 1
2

θ
TSλ θ , (4.4)

where Sλ = diag
(
{S(rr′)

λ
(rr′) | (r,r′) ∈ A}

)
which is a block diagonal matrix where each block

is given by the transition-specific penalty matrix S(rr′)

λ
(rr′) , and λ = {λ

(rr′) | (r,r′) ∈ A} is the

overall multiple smoothing parameter vector. Both S(rr′)

λ
(rr′) and λ

(rr′) are defined for a generic

transition (r,r′) in Section 4.2.1.

4.4 Stable estimation through exact local curvature

information
Building a general and flexible multi-state Markov modelling framework hinges on the

availability of the analytical information matrix of the transition probability matrix, for

which we propose a version here. Parameter estimation is achieved by adapting to our setting
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the stable and efficient approach proposed in Marra & Radice (2020), which combines a trust

region algorithm with automatic multiple smoothing parameter selection. The trust region

method is known to perform better than its line search counterparts and has certain optimal

convergence properties as long as the analytical observed information matrix is provided

(Chapter 4, Nocedal & Wright, 2006). As for the smoothing parameters, we employ a general

and fast estimation framework which removes the need for computationally expensive grid

search-based methods and ad-hoc optimisers (see Supplementary Material C.3 for details).

From (4.3), the wth element of the gradient vector g(θ) and the (w,w′) element of the Hessian

matrix H(θ), for w,w′ = 1, . . . ,W with W = ∑(r,r′)∈A

(
1+∑

K(rr′)
k=1 J(rr′)

k

)
, are defined as

∂

∂θw
ℓ(θ) =

N

∑
i=1

ni

∑
j=1

Li j(θ)
−1 ∂

∂θw
Li j(θ),

∂ 2

∂θw∂θw′
ℓ(θ) =

N

∑
i=1

ni

∑
j=1

(
Li j(θ)

−1 ∂ 2

∂θw∂θw′
Li j(θ)−Li j(θ)

−2 ∂

∂θw
Li j(θ)

∂

∂θw′
Li j(θ)

)
,

where
∂Li j(θ)

∂θw
is given by



∂

∂θw
p(zi j−1zi j)(ti j−1, ti j), if zi j is an interval censored state

exp
( ti j∫

ti j−1

q(zi j−1zi j−1)(u)du
)[

∂

∂θw
q(zi j−1zi j)(ti j) if zi j is an exactly observed state

+q(zi j−1zi j)(ti j)
ti j∫

ti j−1

∂

∂θw
q(zi j−1zi j−1)(u)du

]
,

∑
c∈S̃⊂S

∂

∂θw
p(zi j−1c)(ti j−1, ti j), if zi j is a censored state

C
∑

c=1
c ̸=zi j

∂

∂θw
p(zi j−1c)(ti j−1, ti j)q(czi j)(ti j) if zi j is an exactly observed death state

+p(zi j−1c)(ti j−1, ti j)
∂

∂θw
q(czi j)(ti j),

,
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and
∂ 2Li j(θ)

∂θw∂θw′
is given by



∂ 2

∂θw∂θw′
p(zi j−1zi j)(ti j−1, ti j), if zi j is an interval censored state

∂

∂θw
Li j(θ)

ti j∫
ti j−1

∂

∂θw′
q(zi j−1zi j−1)(u)du if zi j is an exactly observed state

+exp
( ti j∫

ti j−1

q(zi j−1zi j−1)(u)du
)[

∂ 2q(zi j−1zi j)(ti j)

∂θw∂θw′

+
∂

∂θw′
q(zi j−1zi j)(ti j)

ti j∫
ti j−1

∂

∂θw
q(zi j−1zi j−1)(u)du

+q(zi j−1zi j)(ti j)
ti j∫

ti j−1

∂ 2q(zi j−1zi j−1)(u)
∂θw∂θw′

du
]
,

∑
c∈S̃⊂S

∂ 2

∂θw∂θw′
p(zi j−1c)(ti j−1, ti j), if zi j is a censored state

C
∑

c=1
c ̸=zi j

∂ 2

∂θw∂θw′
p(zi j−1c)(ti j−1, ti j)q(czi j)(ti j) if zi j is an exactly observed death state

+
∂

∂θw
p(zi j−1c)(ti j−1, ti j)

∂

∂θw′
q(czi j)(ti j)

+
∂

∂θw′
p(zi j−1c)(ti j−1, ti j)

∂

∂θw
q(czi j)(ti j)

+p(zi j−1c)(ti j−1, ti j)
∂ 2

∂θw∂θw′
q(czi j)(ti j),

.

The quantities needed for parameter estimation are the C ×C dimensional matrices

P(ti j−1, ti j), ∂P(ti j−1, ti j)/∂θw and ∂ 2P(ti j−1, ti j)/∂θw∂θw′ for w,w′ = 1, . . . ,W .

4.4.1 Computation of the transition probability matrix and its

first and second derivatives

Given the transition intensity matrix Q(t), the transition probability matrix is the solution of

the Kolmogorov forward differential equations ∂P(t, t ′)/∂ t ′ = P(t, t ′)Q(t ′), which are not

in general tractable. To tackle this, we employ the commonly adopted piecewise-constant

approximation approach. As for the time grid over which such approximation is defined, we

let it coincide with the observation times of the dataset at hand; this allows for satisfactory

estimation of the model parameters at a contained computational cost. To investigate the

performance of the piecewise-constant approximation, for example, Van Den Hout (2016)

designed a simulation study where this approach is compared against a continuous-time-
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based estimation approach. The study showed that the former can lead to good results as long

as the time between observations is not too long relative to the volatility of the multi-state

process. Further, in the simulation study described in Supplementary Material C.4.1, the

effect of the length of the gap occurring between two successive observations is explored.

We found that the performance of our method decreased as the time gap increased, but

the negative effect was only sensible for time grids with a four year or larger gap. The

follow-up times found in applications tend to be denser than this, thus the piecewise-constant

approximation can be safely assumed. In the case of particularly sparse follow-up times, it is

possible to improve the piecewise-constant approximation by embedding the grid defined by

the observation times in a finer grid (see e.g., Van den Hout & Matthews, 2008).

For each individual i = 1, . . . ,N, let the observed follow-up times ti0 < ti1 < · · ·< tini

define the extremities of the intervals over which the transition intensities are assumed to

be constant. The convention is to assume that the transition intensities remain constant on

the value taken in the left extremity of each time interval. Then, for t ∈ [ti j, ti j+1), with

j = 0,1, . . . ,ni − 1, making explicit the dependence on the model parameters, we have

Q(t;θ) = Q j(θ) and

P(ti j, ti j+1) = P(ti j+1 − ti j) = exp[(ti j+1 − ti j)Q j(θ)] =
∞

∑
ζ=0

[(ti j+1 − ti j)Q j(θ)]
ζ

ζ !
. (4.5)

It follows that computing the transition probability matrix and its derivatives entails cal-

culating a number of matrix exponentials and their derivatives. The eigendecomposition

approach popularised by Kalbfleisch & Lawless (1985) here is appealing because it provides

a closed-form solution for these power series. The availability of a closed-form expression is

crucial since solving the power series for the transition probability matrix and its derivatives

is a rather involved process, due to the matrix-multiplication being non-commutative. In

particular, the authors provide analytical expressions for P(ti j−1, ti j) and ∂P(ti j−1, ti j)/∂θw,

but not for ∂ 2P(ti j−1, ti j)/∂θw∂θw′ , which is needed to derive the observed information

matrix, and only when the eigenvalues of the transition intensity matrix are distinct. Much of

the literature on interval-censored multi-state process followed this work and thus relies on

up to first order information only.

A lesser known and so far unexploited result is that by Kosorok & Chao (1996), who

provide a closed-form solution for ∂ 2P(ti j, ti j+1)/∂θw∂θw′ . From this work it also emerged
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that the derived expressions do not require the eigenvalues of the transition intensity matrix

to be distinct, which was not noted in Kalbfleisch & Lawless (1985) and the subsequent

literature relying on this seminal paper.

In the following we report the full compact expressions of P(ti j, ti j+1), ∂P(ti j, ti j+1)/∂θw

and ∂ 2P(ti j, ti j+1)/∂θw∂θw′ . For simplicity, we will drop the dependence on i, j and θ and

define δ t = ti j+1 − ti j.

Let Q = AΓA−1 be the eigendecomposition of the transition intensity matrix, which is

constant over the generic time interval of length δ t, with A the matrix of eigenvectors and

Γ = diag[γ1, . . . ,γC] the diagonal matrix containing the eigenvalues. Then

P(δ t) = Adiag(exp
[
γ1δ t

]
, . . . ,exp

[
γY δ t

]
)A−1, (4.6)

∂

∂θw
P(δ t) = AUwA−1, (4.7)

∂ 2

∂θw∂θw′
P(δ t) = A(Ǔww′ + U̇ww′ + U̇w′w)A−1, (4.8)

where Uw = G(w) ◦E and Ǔww′ = G(ww′) ◦E, with E[l,m] = exp[γlδ t]−exp[γmδ t]
γl−γm

when γl ̸= γm

and E[l,m] = δ teγlδ t when γl = γm, G(w) = A−1 ∂Q
∂θw

A, G(ww′) = A−1 ∂ 2Q
∂θw∂θw′

A and

U̇ww′ [l,m] =
Y

∑
y=1

G(w)
ly G(w′)

ym



eγlδ t − eγyδ t

(γl − γy)(γy − γm)
− eγlδ t − eγmδ t

(γl − γm)(γy − γm)
, γl ̸= γy ̸= γm

teγlδ t

γl − γm
− eγlδ t − eγmδ t

(γl − γm)2 , γl = γy ̸= γm

eγlδ t − eγmδ t

(γl − γm)2 − teγmδ t

γl − γm
, γm = γy ̸= γl

teγlδ t

γl − γy
− eγlδ t − eγyδ t

(γl − γy)2 , γl = γm ̸= γy

1
2

δ t2eγlδ t , γl = γm = γy

,

where G(w)
lm is the (l,m) element of matrix G(w). U̇w′w is obtained in the same way as U̇ww′

but with w and w′ swapped wherever they appear. We refer the reader to Kalbfleisch &

Lawless (1985) for the proofs of (4.6) and (4.7) and to Kosorok & Chao (1995) for the proof

of (4.8).

Note that ∂Q/∂θw and ∂ 2Q/∂θw∂θw′ are matrices whose (r,r′) elements are given,

respectively, by ∂q(rr′)(ti j)/∂θw and ∂ 2q(rr′)(ti j)/∂θw∂θw′ for w,w′ = 1, . . . ,W . Further, the
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first derivatives of the transition intensity matrix are already available from the computation

of the first derivatives of the transition probabilities, hence only second derivatives have to be

computed anew. Matrices A, A−1 and Γ also need to be computed only once, when obtaining

matrix P.

Regarding the implementation of the quantities of interest, the number of operations

grows quickly as ni, N, C and W increase. Specifically, Q (and its eigendecomposition),

∂Q/∂θw, ∂ 2Q/∂θw∂θw′ , P, ∂P/∂θw and ∂ 2P/∂θw∂θw′ , for w,w′ = 1, . . . ,W , have to be

computed ∑
N
i=1 ni −N times and then combined. To reduce computational cost, the proposed

implementation exploited the upper-triangle form of the above mentioned matrices and the

presence of structural zero-values in them. We also exploited parallel computing to obtain the

log-likelihood, analytical score and information matrix more quickly; the overall run-time

of the algorithm can be cut by a factor proportional to the number of cores in the user’s

computer.

4.5 Inference
To obtain confidence intervals, instead of using the classically derived frequentist covariance

matrix −H−1
p (θ)H(θ)H−1

p (θ), we follow Wood et al. (2016) and employ the Bayesian large

sample approximation θ
·∼N (θ̂ ,Vθ ), where Vθ =−Hp(θ̂)

−1 with θ̂ the estimated model

parameter and Hp(θ)=H(θ)−Sλ the penalised Hessian. Using Vθ gives close to across-the-

function frequentist coverage probabilities because it accounts for both sampling variability

and smoothing bias, a feature that is particularly relevant at finite sample sizes and that is

not shared by the frequentist covariance matrix. Note that applying the Bayesian approach

to the modelling framework discussed in this paper follows the notion that penalisation in

estimation implicitly assumes that wiggly models are less likely than smoother ones, which

translates into the following prior specification for θ , fθ ∝ exp
{
−θ

TSλ θ/2
}

.

Intervals for linear functions of the model coefficients, e.g. smooth components, can be

obtained using the result just shown for θ . For nonlinear functions of the model coefficients,

intervals can be conveniently obtained by posterior simulation. For example, to derive the

(1−α)100% intervals for the (r,r′) transition intensity, the following procedure can be

employed:

1. Draw nsim random vectors β
(1,rr′),β (2,rr′), . . . ,β (nsim,rr′) from N (β̂ (rr′),V

β
(rr′)), where

β̂
(rr′) is the estimated model parameter.
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2. Calculate nsim simulated realisations of the quantity of interest, such as q(rr′)(t).

For fixed x and t, one would obtain q(rr′)
sim = (q(1,rr′),q(2,rr′), . . . ,q(nsim,rr′))T using

β
(1,rr′),β (2,rr′), . . . ,β (nsim,rr′) respectively.

3. Using q(rr′)
sim , calculate the lower, α/2, and upper, 1−α/2, quantiles.

A small value of nsim = 100 typically gives accurate results, whereas α is usually set to

0.05. Note that the distribution of nonlinear functions of the model parameters need not be

symmetric. Intervals for the transition probabilities can be obtained by applying the above

procedure to the Q matrices and then deriving the corresponding P matrices, as explained in

Section 4.4.1.

P-values for the terms in the model can be reliably obtained by using the results

summarised in Wood (2017, Section 6.12), which are based on −Hp(θ)
−1. Model building

can be aided using tools such as the Akaike information criterion (AIC, Akaike, 1998),

defined as −2ℓ(θ)+2ed f , where the log-likelihood is evaluated at the penalised parameter

estimates and the effective degrees of freedom are given by ed f = tr(O), with tr(·) the trace

function and O =
√

−H(θ)(−Hp(θ))
−1√−H(θ) (Marra & Radice, 2020). An alternative

measure that can be used for model selection is the Bayesian information criterion (BIC,

Schwarz, 1978), which penalises the log-likelihood by adding the number of effective degrees

of freedom multiplied by the logarithm of the sample size. The BIC, however, requires

the observations in the sample to be independent, an assumption that does not hold for

longitudinal data. It follows that computing the BIC in this setting is not as straightforward

as computing the AIC. The literature generally proposes to use the number of individuals,

while recognising that this leads to a very conservative measure. Jones (2011) developed a

method to compute an ”effective sample size”, whose minimum and maximum values are

respectively the number of individuals and the number of observations, which can be used in

the computation of the BIC. Adapting this approach to our setting is out of the scope of the

work so we rely only on the AIC in the following, but it may represent an avenue of future

work.

4.6 Case studies
The proposal is illustrated through two case studies. The first one uses flexible IDMs to

model the onset of cardiac allograft vasculopathy (CAV), a deterioration of the arterial walls

in heart transplant patients. The second one aims at modelling cognitive decline in the
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English Longitudinal Study of Ageing (ELSA) population through a flexible five-state model

with both forward and backward transitions as well as an absorbing death state. Note that

more parsimonious models than those described below can be fitted as well. In the following

analyses, however, we focus on transition intensity specifications with a high degree of

flexibility since, thus far, these could not be explored.

4.6.1 CAV case study

The heart transplant monitoring data used here are openly accessible from the R package msm.

The dataset contains 2846 observations, relating to 622 patients, and is about angiographic

(approximately yearly) examinations of heart transplant recipients where the grade of CAV

(not present, mild/moderate or severe) is recorded. The additional time event of death is also

registered and known exactly (within one day). It follows that the likelihood contributions

involved here are those relating to interval censored living states and to exactly observed

absorbing states. Available baseline covariates include age of the donor (dage) and primary

diagnosis of ischaemic heart disease (IHD, pdiag) which are known to be major risk factors

for CAV onset. In line with Mariano Machado et al. (2021), we remove eight individuals for

which the principal diagnosis is not known and exclude observations which occurred beyond

15 years from the transplant. The resulting dataset contains ∑
N
i=1 ni = 2803 observations of

N = 614 patients. We consider flexible IDMs where the states are (1) health (2) CAV onset

(mild/moderate or severe) and (3) death. A diagram representing the process is displayed

in Figure 4.1 while Table 4.1 reports the number of observations available for each pair of

states in the dataset. Note that the sum of these counts provides the sample size, ň = 2189.

Figure 4.1: Diagram of the possible IDM dis-
ease trajectories.

state 1 state 2 state 3
state 1 1314 223 136
state 2 0 411 105
state 3 0 0 0

Table 4.1: Number of observations for each
pair of states in the CAV dataset.

The most flexible IDM considered in the literature for the CAV case study is based on
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Mariano Machado et al. (2021)

q(rr′)(ti j) = exp
[
β
(rr′)
0 + s(rr′)

1 (ti j)+β2dagei +β3pdiagi

]
, (4.9)

for (r,r′) ∈ {(1,2),(1,3),(2,3)}, where t is the time since transplant, the smooth term is

represented by a cubic regression spline with 10 basis functions and second order penalty, and

β2 and β3 are covariate effects which are constrained to be equal across the three transitions,

hence the lack of superscript. Model fitting was conducted using the bespoke R code provided

by Mariano Machado et al. (2021) which took 3.5 days to reach convergence, on a laptop

with Windows 10, Intel 2.20 GHz core, 16 GB of RAM and eight cores. The resulting AIC

was 2931.7. No justification was provided for setting β
(rr′)
2 = β2 and β

(rr′)
3 = β3 which may

be too restrictive to estimate adequately the effects of dage and pdiag.

Using the proposed methodology, we considered the more general specification

q(rr′)(ti j) = exp
[
β
(rr′)
0 + s(rr′)

1 (ti j)+β
(rr′)
2 dagei +β

(rr′)
3 pdiagi

]
, (4.10)

which produced an AIC of 2915.2. The run-time of flexmsm was 59 minutes. Using different

spline definitions and increasing J(rr′)
1 did not lead to tangible empirical differences. Note

that employing an approximation of the Hessian, based on first order derivatives, led to

convergence failures when fitting the above model as well as those considered at the end of

this section. This finding is supported by the simulation study in Supplementary Material

C.4.1.1 which shows that basing parameter estimation on an approximate information matrix

leads to convergence issues. The study also demonstrates the empirical effectiveness of the

proposed approach.

Table 4.2 reports the effects for dage and pdiag, and their standard errors, resulting

from models (4.9) and (4.10). As the table shows, the constrained coefficients are, roughly

speaking, the averages of the respective unconstrained ones. In this case, setting restrictions

does not allow one to uncover the differing effects of the risk factors in the different trajecto-

ries. Specifically, the model (4.10) results indicate that dage and pdiag increase the risks of

moving from state 1 to state 2 and from state 1 to state 3, and that these variables do not play

a role in the transition 2 → 3. The curve estimates for the s(rr′)
1 (ti j) (not reported here) were

similar across the two models.

Figure 4.2 shows the estimated transition intensities, and 95% intervals, when dage is
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dage pdiag

1 → 2 0.023 (0.006) 0.414 (0.132)
1 → 3 0.040 (0.011) 0.341 (0.255)
2 → 3 −0.016 (0.009) 0.002 (0.178)

1 → 2,1 → 3,2 → 3 0.018 (0.004) 0.274 (0.096)

Table 4.2: Estimated covariate effects and related standard errors (between brackets) for
donor age (dage) and principal diagnosis of IHD (pdiag) obtained using the
proposed model fitted by flexmsm (first three lines) and the constrained model
of Mariano Machado et al. (2021) fitted using the related bespoke R code.

equal to 26 years and pdiag is equal to 1 (i.e., the principal diagnosis is IHD). The risk of

moving from state 1 to state 2 increases until about 7 years since transplant; after that the

situation is uncertain. The risk for the transition 1 → 3 is fairly low and constant until about

10 years, after which it starts increasing steeply. For transition 2 → 3, the risk increases

overall. As expected, the intervals are wide when the data are scarce. The same exercise

can be repeated for different combinations of dage and pdiag. It should be noted that

the CAV dataset provided in the R package msm does not indicate the amount of follow-up

that occurred after the last angiogram for patients who survived. The stark upward trends

exhibited by the estimated intensity functions for the transitions into the death state can be

explained as an artifact of this. Titman (2008), in fact, noted that if censored subjects are

taken out at their censoring time but patients who die are left as under observation until the

final follow-up time, then the observed prevalence in the death state will be systematically

overestimated.

Estimated transition intensities provide valuable information about the risks of moving

across states. However, interpretation is more intuitive and easier when transition probabil-

ities are considered. Setting dage = 26 and pdiag = 1 and assuming yearly piecewise

constant transition intensities, the estimated five-year transition probabilities can be obtained

by exploiting the Chapman-Kolmogorov equations (Cox & Miller, 1977). These allow

us to write P̂(0,5) = P̂(0,1)× P̂(1,2)× ·· · × P̂(4,5), where the probabilities over each

sub-interval are obtained using the corresponding transition intensity matrix, i.e. Q̂(t), for

t = 0,1, . . . ,4 respectively. The resulting estimated transition probability matrix and 95%
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Figure 4.2: Estimated transition intensities obtained with flexmsm for q(12)(·), q(13)(·)
and q(23)(·) (from left to right) when dage = 26 and pdiag = 1, with 95%
intervals derived as detailed in Section 4.5. The ‘rug plot’, at the bottom of each
graph, shows the empirical distribution of the transition times. Because we are
dealing with an intermittent observation scheme, the time intervals have been
represented by plotting the right extremity of each observed interval (the left
extremity or mid-point could have been equivalently chosen). Recall that the
aim of the rug plot is to highlight regions where the occurrence of a specific
transition is rare, hence explaining the width of the intervals across sections.

intervals (obtained through the method detailed in Section 4.5) are

P̂(0,5) =


0.48 (0.42,0.53) 0.29 (0.24,0.34) 0.23 (0.19,0.29)

0 0.51 (0.35,0.63) 0.49 (0.37,0.64)

0 0 1

 .

For instance, given a healthy starting point, there is a 29% chance of developing CAV five

years after the transplant procedure occurred. Similarly, there is a 23% chance of dying

within the same time frame, given the same starting point.

We also assessed the possible presence of nonlinear effects of dage. This was achieved

by replacing β
(rr′)
2 dagei with s(rr′)

2 (dagei) in model (4.10), where the smooth terms were

represented as for s(rr′)
1 (ti j); the effects were found to be linear. Finally, to illustrate the

generality of the proposal, we considered the specification

q(rr′)(ti j) = exp
[
β
(rr′)
0 + s(rr′)

1 (ti j)+ s(rr′)
2 (dagei)+ s(rr′)

3 (ti j,dagei)+β
(rr′)
4 pdiagi

]
,

where s(rr′)
3 (ti j,dagei) is a tensor product interaction between dage and time whose marginals
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are cubic regression splines. Here, the main effects and their interaction are modelled

separately, thus leading to more flexibility in determining the complexity of the effects

(Wood, 2017, Section 5.6.3). Figure 4.3 shows the results for transition 1 → 2. In the left

panel, we report the estimated transition intensity surface, which is a bivariate function of

time and dage. This plot can be read by sectioning the surface, with respect to either of

the two arguments, and assessing how the resulting curve varies with respect to the other

covariate. In the right panel, we report two sections of the surface obtained by fixing dage

at 26 and 56 years, along with their 95% confidence intervals. The scarcity of data for the

two sections helps to explain the wide confidence intervals, particularly past a certain point.

For this reason, we will focus the interpretation on the first few years since the transplant

took place. One can see that the risk of developing CAV is almost three times higher with a

56 year old donor than it is with a 26 year old donor right after the transplant, and remains

higher overall in the following few years. This is in line with expectations that older donors

are associated with higher chances of disease occurrence.
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Figure 4.3: Left panel: estimated transition intensity surface, obtained with flexmsm when
including a time-dependent effect of the donor age. Right panel: sections of
the estimated transition intensity surface at dage= 26 (black) and dage= 56
(grey), along with their respective 95% confidence intervals (black and grey
dashed lines, respectively).

Supplementary Material C.4.1 discusses a simulation study based on the IDM. The



4.6. Case studies 85

results support the empirical effectiveness of the proposed modelling framework and the

related implementation in flexmsm.

4.6.2 ELSA case study
The ELSA collects data from people aged over 50 to understand all aspects of ageing in

England. More than 18000 people have taken part in the study since it started in 2002,

with the same people re-interviewed every two years, hence giving rise to an intermittently

observed scheme. ELSA collects information on physical and mental health, wellbeing,

finances and attitudes around ageing, and tracks how these change over time. The data can

be downloaded from the UK Data Service by registering and accepting an End User Licence.

For this study, interest lies in assessing cognitive function in the older population. This

is measured through the score obtained on a test in which participants are asked to remember

words in a delayed recall from a list of ten, with the score given by the number of words

remembered. In line with Mariano Machado et al. (2021), we use a random sample of

N = 1000 individuals from the full population, leading to 4597 observations, and create four

score groups to obtain a five-state process with the fifth state given by the occurrence of

death (which is an exactly observed absorbing state). The intermediate states are given by

{10,9,8,7}, {6,5}, {4,3,2} and {1,0} words remembered, respectively. Both forward and

backward transitions are allowed between the intermediate states to account for possible

improvements or fluctuations through the years in the cognitive function of the participants.

In fact, although interest lies mostly in cognitive decline, the opposite trend is also observed

as shown in Table 4.3. A diagram representing the assumed process is reported in Figure

4.4. Further, 221 participants die during the observation period. The time scale is defined by

subtracting 49 years to the age of the individuals. A potential drawback of this analysis is

that the quantity defining the states, i.e. the number of words recalled, is a noisy measure,

which has the potential to lead to classification error. Future work will focus on extending

the current approach to support hidden Markov models (Jackson et al., 2003), which provide

a way to handle misclassification such as the one which may arise in this setting.

The most flexible five-state model considered in the literature for the ELSA data is

based on Mariano Machado et al. (2021)

q(rr′)(ti j) =


exp
[
β
(rr′)
0 + s(rr′)

1 (ti j)
]

for (r,r′) ∈ {(1,2),(2,3),(2,5),(3,4),(3,5),(4,5)}

exp
[
β
(rr′)
0

]
for (r,r′) ∈ {(1,5),(2,1),(3,2),(4,3)}

,

https://www.elsa-project.ac.uk/
https://beta.ukdataservice.ac.uk/datacatalogue/series/series?id=200011
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Figure 4.4: Diagram of the possi-
ble five-state process dis-
ease trajectories.

state 1 state 2 state 3 state 4 state 5
state 1 225 194 58 5 11
state 2 209 600 384 54 46
state 3 59 383 732 152 94
state 4 8 42 117 154 70

Table 4.3: Number of observations for each
pair of states in the ELSA dataset.

where each smooth term is represented by a cubic regression spline with J(rr′)
1 = 5 and second

order penalty, and upper bounds for the smoothing parameters were set at exp(20). The

authors justify the specifications for the q(rr′)(ti j) and the other settings by arguing that the

limited information across the age range is probably what causes algorithmic convergence

failures in more general models.

Using the proposed methodology, we considered the general specification

q(rr′)(ti j) = exp
[
β
(rr′)
0 + s(rr′)

1 (ti j)
]

for (r,r′) ∈ A, (4.11)

with J(rr′)
1 = 10 cubic regression spline bases instead. Figure 4.5 shows the estimated

transition intensities, and related 95% intervals, obtained with flexmsm. As expected,

the instantaneous risks of dying are overall smaller than the risks of experiencing further

cognitive impairment. As the starting stage reflects more advanced decline, the risk of

transitioning to a worse stage becomes a progressively flatter function of time. This shows

that once the individuals in the population reach a stage of cognitive impairment, they will

typically stay there for the rest of the observation period. Note that there is added value

from having modelled the backward transitions through smooth functions of time. For

example, we find that the instantaneous chance of improving back to state 3 from a state

of cognitive impairment of level 4 decreases considerably faster through time than that of

returning to state 1 from state 2. This is in line with expectations as the intermediate stages

of cognitive health, i.e. stages 2 and 3, are by far the most frequently observed, with 72% of

the population that is still alive at the end of the observation period found in these categories.

The wide 95% intervals for transitions 1 → 5 and 2 → 5 can be explained by observing,

from Table 4.3, that these transitions are characterised by the lowest number of observations.
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Model (4.11) is general in that no prior assumptions are made with regard to the way each

transition depends on time. Instead, they are all defined through flexible functional forms by

means of splines. The proposed estimation approach then suppresses any complexity not

supported by the data, resulting in final estimated shapes which may be either flat, linear or

non-linear. This avoids the need for setting manual constraints or enforcing ad-hoc fixes.

We also quantified the effects of two commonly investigated risk factors: sex (0 for

male and 1 for female) and higherEdu (0 if the individual has had less than 10 years of

education and 1 otherwise) as extracted from the ELSA datasets. This was achieved by

simply including β
(rr′)
2 sexi j and β

(rr′)
3 higherEdui j in (4.11). We found, for example, that

older people with a higher level of education have better memory function, although this

does not protect them from cognitive decline as they age (e.g., Cadar et al., 2017). Overall,

the effect of sex was found not to be significant.

In Figure 4.6, we present transition probability plots over 10 years for a 60 year old

male with less than 10 years of education. We observe, e.g., that for such individual with

stage 2 cognitive health and higherEdu= 0, the probability of reaching stage 3 by the age

of 65 is approximately 40.3%, with 95% interval (33.3%,44.7%).

Finally, supplementary Material C.4.2 discusses a simulation study based on a five-state

process. The results show our framework’s ability to recover the true underlying transition

intensities in a context which strays from the traditionally explored IDM.

4.7 Discussion
We propose a general framework for multi-state Markov modelling that allows for different

types of process, with several states and various observation schemes, and that supports

time-dependent flexible transition intensities with any type of covariate effects. This is

motivated by the interest in modelling the evolution through time of diseases, with the aim

of making statements on their course given specific scenarios or risk factors. The degree of

flexibility allowed for the specification of the transition intensities determines the extent to

which we can explore and describe the different factors influencing the evolution of a disease.

Previous methodological developments have mainly focused on simple parametric forms

and time-constant transition intensities, which can be attributed to the lack of an estimation

framework capable of supporting more realistic specifications. Attempts addressing this have

not been backed by adequate estimation procedures and software implementations.
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The key contribution of the paper is the development of an approach that implements

and exploits the knowledge of the exact local curvature information. Access to this source

of information has allowed us to introduce a modelling framework that has unlocked a host

of processes and specifications which were not previously attainable, as demonstrated via

the two case studies on cardiac allograft vasculopathy and cognitive decline. To support

applicability and reproducibility, we also introduced the R package flexmsm, which is easy

and intuitive to use.

Future work will look into further improving the run-time required for model fitting.

We are also interested in exploring transformations alternative to the exponential, to enhance

the flexibility allowed by the framework. Note that we have assumed a Markov process

throughout. Checking whether this property was appropriate for the data considered in this

paper was outside of the scope of this work. Future efforts will look into goodness-of-fit tests

(e.g., Titman, 2009) as well as the possibility of extending the current model to relax the

Markov assumption. There is, however, theoretical and empirical evidence that assuming the

Markov property when the true underlying process is non-Markov will still lead to a model

that performs well and that has desirable properties. Using right censored data from a general

multi-state model which is not Markov, for example, Datta & Satten (2001) show that the

Nelson–Aalen estimator for the integrated transition hazard of a Markov process consistently

estimates a population quantity even when the underlying process is not Markov. They also

show that the Aalen–Johansen estimators of the stage occupation probabilities constructed

from these integrated hazards via product integration are consistent for a general multi-

state model that is not Markov. Using landmarking, consistency was proven for transition

probabilities too (Putter & Spitoni, 2018). More recently, Nießl et al. (2023) extended these

results to include multi-state data subject to left-truncation as well and provided a rigorous

proof of consistency of the Aalen-Johansen estimator for state occupation probabilities, on

which also correctness of the landmarking approach hinges, correcting and simplifying the

earlier results.

Finally, there are circumstances which give rise to multiple dependent multi-state

processes, such as the analysis of the evolution of a disease in paired organ systems. In these

cases, interest lies in jointly modelling the evolution through time of these events, as the

course of one is expected to affect the course of the others. Existing approaches rely on very

simple specifications for the marginal processes and restrictive dependence structures among
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them. The framework proposed in this article will serve as the foundation for the flexible

modelling of joint multi-state processes.



Chapter 5

Copula-Based Modelling of Multiple

Dependent Multi-State Processes

5.1 Introduction
In the life sciences, interest lies in describing how a phenomenon will unfold over time, while

accounting for factors with the potential to influence its course. Diseases, for example, exhibit

multiple phases, depending on the degree of severity or the appearance or disappearance

of specific symptoms. Modelling the sequence of events observed in the individuals of a

population, then, allows us to predict the disease’s evolution for a given set of features. This

includes the worsening of their condition under different treatment strategies or, in health

economics, the long-term costs connected to a specific health policy.

There are circumstances that give rise to interconnected phenomena, e.g. when a

disease is expressed in multiple organ systems or locations. When this is the case, there is

interest in modelling their evolution jointly, since the progression of one is expected to affect

the progression of the others. Multi-state processes provide a powerful way of handling these

complex settings: each phenomenon can be represented by a single process, whose states

are given by the stages of the phenomenon; their joint evolution can, then, be described by

linking the processes together, and modelling this system of linked processes. The aim is

to make statements on the future course of a single phenomenon, while accounting for the

effect that the evolution of the others has on the former.

This is the case for the progression of damage in the left and right sacroiliac joints in

patients with Psoriatic Arthritis (Cook & Lawless, 2018). The extent of damage is assessed

based on the analysis of radiographic images and by assigning a discrete score, from 0 to



5.1. Introduction 93

3, to the degrees of damage found. Each sacroiliac joint can be represented by a four-state

progressive process and one may be interested in answering questions such as: ”how does

the fact that the left sacroiliac joint transitioned from stage 2 to stage 3 affect the probability

of the right joint experiencing a similar worsening in the degree of damage?”.

In patients with lupus nephritis, the estimated glomerular filtration rate (eGFR) and

the urine protein content (PU) are of interest in the treatment and management the disease

(O’Keeffe et al., 2018). Movements by patients among the eGFR and PU levels can be

represented by two three-state processes, where the states are based on clinically defined

thresholds, with both forward and backward transitions, since improvement may occur. Evi-

dence has been found that the two processes are associated, with a higher rate of transitioning

from state 1 to state 2 for the glomerular filtration rate process when the proteinuria process

is in state 2 versus when it is in state 1.

Another example stems from paired organ systems, such as retinopathy in diabetic

patients or age-related macular degeneration, both of which are diseases affecting the eyes.

Cook & Lawless (2014), for example, use the so-called Early Treatment Diabetic Retinopathy

Study (ETDRS) scores to obtain a joint measure of retinopathy severity in the eyes. In

particular, they group the scores into five levels and model disease progression using a

five-state process. A more granular analysis may consider separate scores for each eye and

model them as two associated processes. Nephropathy, a disease involving the kidneys,

is also often found in diabetic patients, and is of vascular nature, as is retinopathy. This

common origin motivates the interest in modelling the progression of the two diseases jointly.

In particular, kidney disease progression can be represented through a three-state process

in which each state reflects a level from the so-called KDIGO score, measuring the degree

of severity of the diseases (Lintu et al., 2022). The resulting five- and three-state processes

can then be modelled jointly to gain novel insight on the progression of the two related

conditions.

Recent studies have also attempted to answer questions on the relationship between

mental health and disease, such as disentangling the role of marital quality on average

glycemic levels among adults 50 years and older in the UK (Ford & Robitaille, 2023). The

quality of marital life is assessed by defining scores based on the answers given to survey

questions on spouse support and strain. The average glycemic levels are summarised by

testing for hemoglobin HbA1c levels in the blood and the states defining this process can
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be obtained by discretising these levels into three states: healthy, prediabetic, diabetic. The

relation between the two can thus be modelled dynamically by means of two dependant

multi-state processes, hence better characterising, e.g., the effect of spousal support on

long-term prediction of type 2 diabetes, which is connected to glycemic health.

Examples that stray from the life sciences include, for example, the systems reliability

literature, where jointly modelling the lifetimes of components belonging to the same system

ensures better reliability design and analysis (Eryilmaz, 2014). Components that are used

in the same environment and/or share the same load are, in fact, expected to affect their

respective lifetimes, making an independence assumption inappropriate.

In the literature, the three main approaches used to account for dependence between

multi-state processes are: (a) random effects; (b) intensity based models; (c) copulae. In (a),

between-process dependence is modelled through specifying transition intensities condition-

ally on shared or correlated random effects. For example, Cook et al. (2004) considered the

analysis of dependent progressive multi-state processes with a discrete multivariate random-

effects distribution used to account for correlation. O’Keeffe et al. (2011) extend this to

allow the use of gamma-distributed random effects. An important drawback of this approach

is that the interpretation of time and/or covariate effects may be limited, as these are typically

assumed to be conditional on random effects. In fact, although the conditional processes

are assumed to be Markov, the marginal processes obtained by integrating out the random

effects lose the Markov property. In approach (b), the state occupied at a given time by one

process is included as a (time-dependent) covariate in the transition intensity equations of

the other process, and vice-versa (Cook & Lawless, 2014), offering more freedom when

specifying dependence structures. However, interpretation of effects can be problematic and

it is not possible to quantify the strength of the dependence among processes through well

defined quantities (e.g., correlation or association parameters). In (c), multi-state processes

are linked through a copula function. This permits substantial modelling flexibility for both

the usual interpretation of time and covariate effects and for several types of associations

amongst the transitions of the processes.

In this chapter, we extend the work by Diao & Cook (2014), laying the foundation

for more general modelling of dependent multi-state survival processes. In particular, each

process is modelled by means of the flexible framework described in Chapter 4, and a number

of copulae (see Chapter 2, Table 2.1 for the available options) can be chosen to specify the
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association between the two processes. To contain the computational cost of this complex

setting, estimation is based on a composite likelihood, built using the ”construction method”

(Varin, 2008), as described in Section 5.2. In Section 5.3 we exemplify the approach using

simulated data which recreates the setting explored in the reference work, i.e. two dependent

progressive three-state processes. What we present here is only preliminary work, further

developments are needed to achieve the full intent of the proposal. These next steps are

detailed in Section 5.4.

5.2 Composite likelihood based estimation

Let {Z(1)(t), t > 0} and {Z(2)(t), t > 0} be two intermittently observed continuous-time

multi-state Markov processes, each defined as in Chapter 4, with S(ν) = {1,2, . . . ,C(ν)}

the discrete state space of process ν = 1,2, where C(ν) is an absorbing state. Let N be the

number of statistical units, n(ν)i the number of times process ν is observed for the ith unit,

0 = t(ν)i0 < t(ν)i1 < · · ·< t(ν)ini
its follow-up times, and z(ν)i0 ,z(ν)i1 , . . . ,z(ν)ini

its observed states. Let

ℓν(θ ν) be the log-likelihood associated with process ν , where θ ν is the model parameter

vector, C : (0,1)2 → (0,1) a uniquely defined 2-dimensional copula function with coefficient

φ , and ψ = (θ1
T,θ2

T,φ)T the overall parameter vector for the joint model. Following Diao

& Cook (2014), we define the following composite likelihood

CL(ψ) = exp

(
ℓ1(θ1)+ ℓ2(θ2)+

n

∑
i=1

DMi(θ1,θ2;φ)

)
, (5.1)

where DMi(θ1,θ2;φ) represents the contribution of the ith unit to the dependence model

(DM) capturing the association between the two processes. In particular DMi(θ1,θ2;φ) =

P
(

T (ν)

C(ν) ∈ (tini−1, tini ] ,ν = 1,2;ψ

)
, i.e. it is the joint probability that the times of the tran-

sitions into the absorbing states, i.e. T (ν)

C(ν) , are in the observed censoring intervals for both

processes. Note that we are assuming that the dependence involves only the transition times

into the absorbing states. This is motivated by the fact that, in the case study presented in

the reference work, interest lies in the transitions into the last states for both processes, due

to the clinical meaning that these states have. Alternative approaches would be to model

the association in the first transition times, as done in Jiang & Cook (2020), or to model

dependence in the sojourn time in a particular state. The assumption considered here provides

a meaningful and tractable starting point for the development of our general framework as,
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to date, there are no approaches to flexibly model multiple dependant multi-state processes.

Future work will focus on generalising the specification of the dependence structure. Care

will be needed in this case, as it will imply a significant increase in the complexity of the

model. As we are using copulae to express the dependence between the processes, the ith

contribution of the dependence model DMi(θ1,θ2;φ) is given by

C(F1(t
(1)
ini−1),F2(t

(2)
ini−1);φ)+C(F1(t

(1)
ini

),F2(t
(2)
ini

);φ) if (z(1)ini
,z(2)ini

) are absorbing states

−C(F1(t
(1)
ini−1),F2(t

(2)
ini

);φ)−C(F1(t
(1)
ini

),F2(t
(2)
ini−1);φ),

C(F1(t
(1)
ini

),F2(t
(2)
ini−1);φ)−C(F1(t

(1)
ini

),F2(t
(2)
ini

);φ), if only z(2)ini
is an absorbing state

C(F1(t
(1)
ini−1),F2(t

(2)
ini

);φ)−C(F1(t
(1)
ini

),F2(t
(2)
ini

);φ), if only z(1)ini
is an absorbing state

C(F1(t
(1)
ini

),F2(t
(2)
ini

);φ), if (z(1)ini
,z(2)ini

) are not absorbing states

where Fν(t) = 1− p(ν ,1C)(0, t) is the marginal survivor function of the entry time to the

absorbing state C(ν) and p(ν ,1C)(0, t) is the (1,C) element of the transition probability matrix

P(ν)(0, t) of process ν , in the time interval (0, t). As discussed in Chapter 4, computing

the transition probabilities for a general time-dependent multi-state process is a non-trivial

task. Here, we exploit the Chapman-Kolmogorov equation to obtain Fν(t
(ν)
ini−1) and Fν(t

(ν)
ini

)

respectively by

P(ν)(0, tini−1) =
ni−1

∏
j=1

P(ν)(ti j−1, ti j),

P(ν)(0, tini) = P(ν)(0, tini−1)×P(ν)(tini−1, tini).

(5.2)

Note that the terms P(ν)(ti j−1, ti j) need be computed for the contributions to the log-likelihood

ℓν(θν) as well, thus, at the cost of storing these matrices, they are already available for the
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dependence model. The analytical gradient of the composite log-likelihood then follows

∂

∂ψ
CL(ψ) =


∂

∂θ1
ℓ1(θ1)+

∂

∂θ1

n
∑

i=1
log(DMi(θ1,θ2;φ))

∂

∂θ2
ℓ2(θ2)+

∂

∂θ2

n
∑

i=1
log(DMi(θ1,θ2;φ))

∂

∂φ

n
∑

i=1
log(DMi(θ1,θ2;φ))

 , (5.3)

where ∂/∂θνℓν(θν) is the gradient associated with the marginal process ν , obtained using

the framework described in Chapter 4. When (z(1)ini
,z(2)ini

) are both absorbing states, the ith

contribution to the first derivative of the DM term is defined as follows

∂

∂θ1
log(DMi(θ1,θ2;φ)) = DMi(θ1,θ2;φ)−1

·
[

∂C(F1(t
(1)
ini−1),F2(t

(2)
ini−1);φ)

∂F1(t
(1)
ini−1)

∂F1(t
(1)
ini−1)

∂θ 1
+

∂C(F1(t
(1)
ini

),F2(t
(2)
ini

);φ)

∂F1(t
(1)
ini

)

∂F1(t
(1)
ini

)

∂θ 1

−
∂C(F1(t

(1)
ini−1),F2(t

(1)
ini

);φ)

∂F1(t
(1)
ini−1)

∂F1(t
(1)
ini−1)

∂θ 1
−

∂C(F1(t
(1)
ini

),F2(t
(2)
ini−1);φ)

∂F1(t
(1)
ini

)

∂F1(t
(1)
ini

)

∂θ 1

]
,

similar expressions will hold for ∂/∂θ2 log(DMi(θ ;φ)). For the cases where z(1)ini
or

z(2)ini
are not absorbing states, the expressions of the derivatives are special cases of the

above. The terms ∂C(F1(t),F2(t ′);φ)/∂F1(t) are copula densities, whose form will de-

pend on the copula function chosen. The derivatives of the marginal survivor functions

∂Fν(t)/∂θ ν =−∂ p(ν ,1C)(0, t)/∂θ ν , for t = tini−1 and t = tini respectively, follow from (5.2)

and the application of the chain rule

∂

∂θ ν

P(ν)(0, tini−1) =
ni−1

∑
j=1

P(ν)(0, ti j−1)

(
∂

∂θ ν

P(ν)(ti j−1, ti j)

)
P(ν)(ti j, tini−1),

∂

∂θ ν

P(ν)(0, tini) =

(
∂

∂θ ν

P(ν)(0, tini−1)

)
P(ν)(tini−1, tini)+P(ν)(0, tini)

(
∂

∂θ ν

P(ν)(tini−1, tini)

)
,

where the terms that span over more than a single time-interval are, in turn, computed

by repeatedly applying the Chapman-Kolmogorov equation to the stored set of matrices

P(ν)(ti j−1, ti j). The derivatives ∂/∂θ νP(ν)(ti j−1, ti j) need be computed for the contributions

to the gradient ∂/∂θνℓν(θν), thus, at the cost of storing these matrices, they are already

available for the gradient of the DM.

Note that, following Diao & Cook (2014), the full likelihood arising from intermittent
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inspection of a joint multi-state process fixed inspection times is given by

L(ψ) = P(T (ν)
c ∈ (l(ν)c ,r(ν)c ];c = 1, . . . ,C(ν)−1;ν = 1,2;ψ), (5.4)

where, for process ν = 1,2, T (ν)
c represents the c → c+ 1 transition time and (l(ν)c ,r(ν)c ]

represent the left and right end points of the censoring interval for this transition. The

likelihood in (5.4) is obtained by computing 2× (C(ν)−1)−dimensional integrals over the

joint density. In the setting considered here, C(ν) = 3 and the joint density, expressed in

terms of one of the possible copula-based decompositions, is given by

f (t;ψ) = f (t(1)1 , t(1)2 ;θ1) · c(F1(t
(1)
2 ),F2(t

(2)
2 )) · f (t(2)1 , t(2)2 ;θ2)

· c(F(t(1)1 | t(1)2 ),F(t(2)2 | t(1)2 )) · c(F(t(1)2 | t(2)2 ),F(t(2)1 | t(2)2 ))

· c(F(t(1)1 | t(1)2 , t(2)2 ),F(t(2)1 | t(1)2 , t(2)2 )),

where t(ν)c are the (unobserved) realisations of T (ν)
c , c(·, ·) indicates the copula density

function and where we are omitting the copula parameters for simplicity. Integrals of

this function over the four-dimensional cube defined by the (observed) censoring intervals

{(l(ν)c ,r(ν)c ]}c=1,2
ν=1,2 are required to compute the full joint likelihood. It follows that the likeli-

hood involves computationally demanding high-dimensional integration, particularly when

the number of processes or the number of states increases. For this reason, we adopt a

composite likelihood-based approach, where it is not necessary to specify the full joint

process for estimation. In fact, the use of composite likelihood enables some simplification

in the model specification and increases the robustness to model misspecification.

We exemplify the proposed method on a toy example based on simulated data. Estima-

tion is carried out through the algorithm described in the previous chapters, which combines

a trust region algorithm with an automatic multiple smoothing parameter selection algorithm,

adapted to this novel setting. The objective function is the composite log-likelihood defined

in (5.1) and the analytical gradient defined in (5.3) is provided. The Hessian is computed

numerically as the Jacobian of the analytical gradient. This has been found to be more

accurate, in practice, than the numerical Hessian obtained from the log-likelihood. Ideally,

the analytical Hessian should be provided to the estimation algorithm, as done in the previous

chapters. Due to its complex structure, more work is needed to derive and implement it. In

the toy example presented in Section 5.3, the numerical Jacobian can be obtained efficiently
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and can thus be used. As discussed in Chapter 4, this will in general be insufficiently accurate

and too computationally expensive to support real-world data applications and/or non-trivial

process structures. However, this is a first step that allows us to test simple versions of joint

multi-state models, thus setting the foundations for the generalisation of the flexible frame-

work proposed here. Work for this is currently underway and relies upon these preliminary

results.

5.3 Toy example
We assume two intermittently observed progressive time-homogeneous three-state Markov

processes, where state 1 represents a “normal” condition, state 2 represents an “abnormal”

condition, and state 3 represents the absorbing state of “organ damage”. Figure 5.1 represent

our setting graphically, highlighting the association between the absorbing states. The

Figure 5.1: Two dependent progressive three-state processes. The association is present in
the absorbing states and is captured via a copula-based approach.

observations are simulated as described in Diao & Cook (2014). N = 1000 individuals are

observed at ten common inspection times, evenly spaced over the time interval (0,1]. For

process ν , the time-constant intensity of the transition r → r′ is defined as

q(ν ,rr′) = exp
[
β
(ν ,rr′)
0 + x β

(ν ,rr′)
1

]
,

where x is a binary covariate observed at the baseline time for each individual. For simplicity,

the parameters are set to be equal across the two processes which is equivalent to assuming

that the processes are clustered, and they are chosen under the following constraints: (i)

exp
(

β
(ν ,23)
0

)
= 1.5exp

(
β
(ν ,12)
0

)
, i.e. the baseline transition rate out of state 2 is 1.5 times of

that out of state 1; (ii) the joint probability that the processes are in the respective absorbing
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states, when the binary covariate is null, is P
(
Z(1)(1) = 3,Z(2)(1) = 3;x = 0

)
= 0.4; (iii) the

binary covariate x has the effect of mildly increasing the risk of transition from state 1 to state

2; (iv) the binary covariate x has the effect of moderately increasing the risk of transition

from state 2 to state 3. These constraints give β
(ν ,12)
0 = log(1.8148), β

(ν ,23)
0 = log(2.7221),

β
(ν ,12)
1 = log(1.25) and β

(ν ,23)
1 = log(1.4). For the association model, we assume a Clayton

copula with a strong dependence, in particular Kendall’s τ = 0.8, giving the copula parameter

φ = 8.

Under this setting and using the method described in Section 5.2, we are able to retrieve

the true underlying parameters, as shown in Table 5.1. The small discrepancies can be

explained by the loss of efficiency implied by the use of the composite log-likelihood in

place of the full log-likelihood of the joint model. We expect these to improve with the use of

the exact Hessian, as this provides more accurate second order information of the objective

function. Alternative definitions of the composite likelihood can also be explored and may

lead to an improved performance, as shown in the reference work.

Finally, note that at the maximum likelihood estimates ψ̂ , the maximum in the absolute

value of gradient vector is of the order of 10−6, while the smallest eigenvalue of the Jacobian

is strictly positive and far from zero (≈ 102), thus ensuring that a true maximum of the

objective function has been found.

Process 1 Process 2
True Estim. True Estim.

β
(ν ,12)
0 0.596 0.685 0.596 0.619

β
(ν ,12)
1 0.223 0.164 0.223 0.258

β
(ν ,23)
0 1.001 0.983 1.001 1.086

β
(ν ,23)
1 0.336 0.403 0.336 0.241

True Estim.
log(φ) 2.079 2.121

Table 5.1: True and estimated parameters for the data generating process of the two depen-
dent three-state processes.

When handling two associated multi-state processes, interest lies, for example, in

making statements on the future course of a single phenomenon, while accounting for the

effect that the evolution of the other has on the former. This can be quantified through

a conditional probability such as P(Z(1)(t) = 3 | Z(t0)), i.e. the probability that the first
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process has a high degree of severity given the states occupied by both processes at the

beginning of the observation period. Here Z(t) = (Z(1)(t),Z(2)(t)) and t0 is the starting time.

Similarly, one may be interested in the joint probability of observing ”organ damage”, i.e.

P
(
Z(1)

(
t(1)
)
= 3,Z(2)

(
t(2)
)
= 3;x

)
where t(1) and t(2) are the times in the corresponding

process, given the patient characteristics. For example, this is meaningful in individuals

with Psoriatic Arthritis (PsA), since one of the New York criteria (Moll & Wright, 1973) for

diagnosis of ankylosing spondylitis, a complication of PsA, is satisfied if
(
Z(1)(t),Z(2)(t)

)
=

(3,3), where each process represents one sacroiliac joint and state 3 here represents the most

severe degree of damage. In Figure 5.2, using the running toy example considered in this

section, we plot the joint probability of observing ”organ damage” in the two processes as a

bivariate function of time, while setting the binary covariate x to 0 and 1 (left and right pane,

respectively). The two surfaces obtained in this way, confirm the effect of x as being that

of increasing the risk of transitioning towards later stages, as per the true data generating

process. Sections of the joint probability surface can, in turn, be interpreted as conditional

probabilities of one process being in state 3, given that the other process was observed in this

last state at a given time. This viewpoint provides insight on how disease will develop in one

process, when the history of the other process is known and accounted for.
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Figure 5.2: Joint probability of observing organ damage in both processes, i.e.
P
(
Z(1)

(
t(1)
)
= 3,Z(2)

(
t(2)
)
= 3;x

)
. In the left pane x = 0, in the right pane

x = 1.
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5.4 Discussion

This chapter lays the foundation for a more general and flexible approach to the modelling of

dependent multi-state processes. In contrast to the reference work from Diao & Cook (2014),

in fact, the transition intensities can be specified through a flexible additive predictor-based

model, which allows for virtually any type of time and covariate effects. The code, available

upon request, is based on the general modelling approach discussed in Chapter 4, which

supports time-dependent processes and poses no limitations on the number of states or on

the types of transitions allowed. The dependence model, in turn, can be obtained via any

of the copulae listed in Chapter 2, Table 2.1. In the reference work, estimation is based

on a two-stage approach and a general purpose optimiser which relies on the analytical

expression of the model log-likelihood alone is used. A two-stage estimation approach

may make the fitting problem easier to deal with, in exchange for some loss in efficiency.

However, the use of the composite likelihood, in place of the full joint likelihood, already

implies a loss of efficiency, thus making the two-stage approach inapt at supporting more

complex model structures. The estimation algorithm proposed in this chapter, thus, relies

on a simultaneous approach which uses the analytical expression of the gradient, as well

as second order information of the objective function. Through extensive experimentation

we have found that the latter is needed to achieve model identification, and more accurate

inference, in such challenging settings.

Through a toy example, based on simulated data, we have shown that the proposed

framework adequately recovers the parameters of the true data generating process. This

represents a preliminary experiment and relies on second order information provided by

the Jacobian of the analytical gradient, which we have found to be more accurate than the

numerical Hessian obtained from the objective function. This approximation is sufficient to

identify the basic setting explored here and in the reference work. In general, the analytical

expression of the Hessian is warranted, as this allows us to achieve the optimal convergence

rate known to hold for the trust region algorithm when the exact Hessian is employed and

provides crucial information on the objective function.

Future work will thus entail deriving the analytical expression of the Hessian and

implementing it. The developed code will be integrated in the R package flexmsm to provide

the end-user with a host of tools for (multiple) multi-state survival modelling. Further, the

investigation of a case study where interest lies in the joint modelling of retinopathy and
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nephropathy in diabetic patients is currently under way. These diseases are both vascular in

nature and are thus expected to be associated. The use of the modelling framework developed

in Chapter 4 for the individual processes, combined with the approach described here, will

allow us to investigate the impact of time and of potential risk factors in a more flexible way

than currently allowed in the literature, while modelling the dependence between the two

conditions. The aim is to achieve a deeper understanding of disease course. For example,

the level of HbA1c level, i.e. the amount of blood sugar attached to the hemoglobin, has

been identified as a risk factor from the related literature, but has only ever been included

log-linearly in models.

From a methodological perspective, future efforts will focus on generalising the de-

pendence structure, both in terms of the number of processes supported as well as the in

way the processes are associated to one another. For the former aim, we will investigate

the methods discussed in Chapter 2 in the context of multi-state event times, including

multivariate Archimedean copulae, pair-copulae constructions, the multivariate Gaussian

and Student’s t distributions. In regard to the latter aim, one may be interested in modelling

associations between transition times which are different from the absorbing times. The

choice of where the links between the processes should be placed is far from trivial. It can

be motivated by the subject matter expert or it can be inferred by the data. Future efforts will

go towards developing an approach for the latter, where a general dependence structure is

defined as a starting point and links which are not supported by the data are dropped at a

later step.

The additional generality sought will imply an increase in the computational burden

of the framework, which is already intrinsically high. Interest thus lies in investigating

alternative ways to handle this methodological and computational challenge, thus providing

ample space for future developments.

Overall, there are numerous avenues for future research in the area of joint multi-

state modelling and they are motivated by the high clinical relevance of improving our

understanding of associated disease pathways.



Chapter 6

General Conclusions and Future

Research

In the present thesis, we propose four general frameworks, tied together by a number of

common themes, for the modelling of complex survival outcomes.

At the core of each, there is the flexible modelling of the time-to-events by means of

splines-based additive predictors. This allows us to specify a variety of time and covariate

effects, thus enabling us to uncover the complex dynamics of the unfolding over time of the

events of interest.

Through extensive practical experimentation, we recognised the importance of support-

ing the flexible modelling of the complex survival outcomes through a carefully designed

estimation algorithm, which makes an optimal use of the information provided in the data.

Time-to-event data is, in fact, inherently characterised by a systematic lack of information,

due to censoring. This, combined with the complexity of the model structure, implies an

increase in the methodological and practical difficulty of the optimisation problem. We thus

propose a stable and efficient penalised likelihood based estimation approach, which relies

on the use of the analytical expressions of the gradient and of the Hessian.

We then recognised the need for general software supporting each of the methodological

developments proposed, and the lack thereof in the literature. This provides the end-user

with the tools necessary to define, fit and visualise the output of the flexible models for each

of the composite survival outcomes discussed.

On a high level, there is a common thread connecting the four frameworks. Chapter

2 proposes as copula-based approach to modelling two dependent time-to-events, while
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retaining the interpretability and flexibility of the marginal model specifications. Chapters 3

and 4 move the focus from traditional survival outcomes, where a single event is of interest,

to multi-state survival outcomes, addressing the cases in which the transition times are known

exactly (or censored) and in which they are only known to lie within a certain interval (or

censored), respectively. Finally, Chapter 5, building on the previous chapters, proposes a

copula-based framework to model to two dependent multi-state survival processes, each of

which are flexibly defined.

The bivariate survival events discussed in Chapter 2 often arise in clinical trials studying

diseases concerning paired organs, where the outcomes of interest are measured on the

same individual and are therefore associated. Ignoring this dependence leads to biased

estimates and thus an improper understanding of the disease mechanism. Interest also lies in

quantifying the strength of the dependence, an aim which is supported by the straightforward

interpretation of the copula dependence parameter. In this work we propose to model the

(possibly mixed-censored) time-to-events and the copula parameter by means of additive

predictors. In this way, smooth effects of time and of the risk factors of interest can be

modelled for both the individual disease manifestations as well as the strength of their

association, which can thus vary as a function of patient characteristics. Future research will

focus on extending the approach to more than two event times (e.g., multi-morbidity), to

accounting for informative and/or dependent censoring, as well as to considering the case of

excess hazard modelling, all of which are of practical interest to subject matter experts.

Chapters 3 and 4 are motivated by longitudinal health data where each individual

may experience multiple disease manifestations, and potentially death. Here, interest lies

in predicting the disease trajectory given the patient characteristics at baseline as well as

dynamically over time. Multi-state models represent a versatile and powerful tool to do so,

as they allow each stage to be specified as a separate state and then capture the path through

the collection of states by means of the transition intensities, which are specified as flexible

functions of time and of the covariates of interest. Crucially, the cases where the time-to-

events are known exactly and where the process is observed only intermittently require

vastly different methodological treatments. This motivated the development of two separate

frameworks and related software implementations. In this way, the end-user can benefit from

the strengths of each setting without paying the costs of the other. For each observation

scheme, we have provided a different approach to compute the transition probabilities, a key
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quantity for the interpretation of the multi-state model due its more intuitive scale compared

to the transition intensities, whose computation is not trivial. The exact information available

in the continuously observed setting implies that both the Markov and the semi-Markov

assumption can be made, with no changes in the model specification except for the time-scale,

which needs to be reset at each transition in the latter case. To reflect this generality also in

the computation of the transition probabilities, we proposed a simulation based approach,

which can be used in the same manner regardless of the time-scale chosen. In contrast to this,

the loss of information, in which we incur when the process is only intermittently observed,

implies a considerable methodological difficulty which is usually handled in the literature

by assuming the process is Markov. Further, in this case, the transition probabilities are

needed for estimation as well, and thus need to be computed in a far more efficient way. This

motivated the tedious derivation of the closed form expression of the second derivatives of

the transition probability matrix, which was not available in the literature, thus far, but which

was a necessary element to adequately support estimation in this complex case. Future work

in the continuously observed setting will focus on improving the integration between the

software supporting the flexible modelling of the transition intensities and the computation of

the predicted transition probabilities. We are also interested in implementing, for this setting,

an alternative general approach to compute the transition probabilities which is based on

numerically solving the Kolmogorov differential equations. In the context of intermittently

observed processes, the most relevant when it comes to health registry data, we are interested

in improving the scalability of the framework, through computational improvements (e.g.

the use of C++) and/or theoretical results. Other potentially interesting directions include

experimenting with relaxations of the Markov property; investigating alternative ways to

compute the transition probability matrix, such as through Padé or Taylor expansion based

approximation (this has partially been explored, but has not been included in the present work

due its inferior performance compared to the closed form expressions); adding diagnostic

tools to better understand convergence failures (the previous point provides one such tool, as

it would allows the user to carry out sensitivity analyses on the computation of the transition

probability matrix).

Chapter 5 recovers the motivation at the base of Chapter 2 and extends it the case

of multi-state survival outcomes, which are modelled using the framework developed in

Chapter 4. This reflects the more complex case where interest lies in modelling multiple
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degrees of severity of two interdependent diseases, rather than two dependent outcomes.

For example, the score-based classification of the stages of retinopathy and nephropathy

lends itself naturally to being represented through a multi-state process. These are two

diseases which arise as a consequence of diabetes and are expected to be related due to

both being vascular complications. Interest then lies in modelling the unfolding of each,

while accounting for how the progression of retinopathy may affect the progression of

nephropathy, and vice versa. This is a complex setting, with multiple methodological and

practical challenges. In this work, we have begun to explore it in a simple but representative

setting, with two three-state processes linked together through the transition times into

their respective absorbing states. In this way, we provide a foundation for an approach

that is more general than that currently available in the literature. Future work will focus

on exploring alternative dependence structures, beyond that of tying the absorbing times

together, and in extending the work to accommodate more than two processes, to reflect

diseases affecting multi-organ systems such as Psoriatic Arthritis, which affects the joints.

Investigating solutions to contain the computational burden of this complex setting is also of

interest, particularly when extending it to support more general structures.

Overall, the future work in the field of complex survival outcomes is motivated by

the needs sparking from health registry data and clinical applications, particularly those of

improving the accuracy of predictions and available tools for the analysis of disease patterns.

Several computational and methodological challenges arise due to the multiple levels of

difficulty characterising this problem, which thus warrants and provides a fertile ground for

statistical innovation and the development of novel computational solutions.
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Supplementary Material A

A.1 Log-likelihood

The more explicit version of the log-likelihood is

ℓ(δ ) =
n

∑
i=1

γU1iγU2i log
[

∂ 2C{G1(η1i(t1i)),G2(η2i(t2i))}
∂G1(η1i(t1i))∂G2(η2i(t2i))

·G′
1(η1i(t1i)) ·G′

2(η2i(t2i))

· ∂η1i(t1i)

∂ t1i
· ∂η2i(t2i)

∂ t2i

]
+ γR1iγR2i log

[
C{G1(η1i(r1i)),G2(η2i(r2i))}

]
+ γL1iγL2i log

[
1−G1(η1i(l1i))−G2(η2i(l2i))+C{G1(η1i(l1i)),G2(η2i(l2i))}

]
+ γI1iγI2i log

[
C{G1(η1i(l1i)),G2(η2i(l2i))}−C{G1(η1i(l1i)),G2(η2i(r2i))}

−C{G1(η1i(r1i)),G2(η2i(l2i))}+C{G1(η1i(r1i)),G2(η2i(r2i))}
]

+ γU1iγR2i log
[
− ∂C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂ t1i

]
+ γR1iγU2i log

[
− ∂C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))
·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂ t2i

]
+ γU1iγL2i log

[(
∂C{G1(η1i(t1i)),G2(η2i(l2i))}

∂G1(η1i(t1i))
−1
)
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂ t1i

]
+ γL1iγU2i log

[(
∂C{G1(η1i(l1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))
−1
)
·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂ t2i

]
+ γU1iγI2i log

[(
∂C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))
− ∂C{G1(η1i(t1i)),G2(η2i(l2i))}

∂G1(η1i(t1i))

)
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂ t1i

]
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+ γI1iγU2i log
[(

∂C{G1(η1i(r1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))

− ∂C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))

)
·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂ t2i

]
+ γR1iγL2i log

[
G1(η1i(r1i))−C{G1(η1i(r1i)),G2(η2i(l2i))}

]
+ γL1iγR2i log

[
G2(η2i(r2i))−C{G1(η1i(l1i)),G2(η2i(r2i))}

]
+ γR1iγI2i log

[
C{G1(η1i(r1i)),G2(η2i(l2i))}−C{G1(η1i(r1i)),G2(η2i(r2i))}

]
+ γI1iγR2i log

[
C{G1(η1i(l1i)),G2(η2i(r2i))}−C{G1(η1i(r1i)),G2(η2i(r2i))}

]
+ γL1iγI2i log

[
G2(η2i(l2i))−G2(η2i(r2i))+C{G1(η1i(l1i)),G2(η2i(r2i))}

−C{G1(η1i(l1i)),G2(η2i(l2i))}
]

+ γI1iγL2i log
[

G1(η1i(l1i))−G1(η1i(r1i))+C{G1(η1i(r1i)),G2(η2i(l2i))}

−C{G1(η1i(l1i)),G2(η2i(l2i))}
]
.

Derivation of each term

For v = 1,2, i = 1, ...,n, we define the following set of dummy variables:

γUvi =


1, if the i-th obs. is uncensored

0, otherwise
γLvi =


1, if the i-th obs. is left-censored

0, otherwise

γRvi =


1, if the i-th obs. is right-censored

0, otherwise
γIvi =


1, if the i-th obs. is interval-censored

0, otherwise

In the bivariate case the log-likelihood function is made up of sixteen terms corresponding to

the following combinations of the indicator terms:

The derivation of each of these terms follows:
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Uncens Left-cens Right-cens Interval-cens
Uncens γU1i γU2i γU1i γL2i γU1i γR2i γU1i γI2i

Left-cens γL1i γU2i γL1i γL2i γL1i γR2i γL1i γI2i

Right-cens γR1i γU2i γR1i γL2i γR1i γR2i γR1i γI2i

Interval-cens γI1i γU2i γI1i γL2i γI1i γR2i γI1i γI2i

• T1i uncensored and T2i uncensored (in this case t1i = r1i = l1i and t2i = r2i = l2i):

f (t1i, t2i) =
∂ 2

∂ t1i∂ t2i
F(t1i, t2i)

=
∂ 2

∂ t1i∂ t2i
[1−S(t1i)−S(t2i)+S(t1i, t2i)] =

=
∂ 2

∂ t1i∂ t2i
C{G1(η1i(t1i)),G2(η2i(t2i))}=

=
∂ 2C{G1(η1i(t1i)),G2(η2i(t2i))}

∂G1(η1i(t1i))∂G2(η2i(t2i))
·G′

1(η1i(t1i)) ·G′
2(η2i(t2i)) ·

∂η1i(t1i)

∂ t1i
· ∂η2i(t2i)

∂ t2i
.

• T1i right-censored and T2i right-censored:

P(T1i > r1i,T2i > r2i) = S(r1i,r2i) =C{G1(η1i(r1i)),G2(η2i(r2i))}.

• T1i left-censored and T2i left-censored:

P(T1i < l1i,T2i < l2i) = F(l1i, l2i) = P(T1i < l1i)− [P(T2i > l2i)−S(l1i, l2i)] =

= 1−S1(l1i)−S2(l2i)+S(l1i, l2i) =

= 1−G1(η1i(l1i))−G2(η2i(l2i))+C{G1(η1i(l1i)),G2(η2i(l2i))}.

• T1i uncensored and T2i right-censored (the swapped case can be trivially derived by
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switching the subscripts where required):

+∞∫
r2i

f (t1i,y)dy =
+∞∫
0

f (t1i,y)dy−
r2i∫

0

f (t1i,y)dy =

= f1(t1i)−
∂

∂ t1i
F(t1i,r2i) = f1(t1i)−

∂

∂ t1i
[1−S1(t1i)−S2(t2i)+S(t1i,r2i)] =

= f1(t1i)− f1(t1i)−
∂

∂ t1i
S(t1i,r2i) =− ∂

∂ t1i
C{G1(η1i(t1i)),G2(η2i(r2i))}=

=−∂C{G1(η1i(t1i)),G2(η2i(r2i))}
∂G1(η1i(t1i))

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂ t1i
.

• T1i interval-censored and T2i interval-censored:

P(l1i < T1i < r1i, l2i < T2i < r2i) =

= P(T1i < r1i,T2i < r2i)−P(T1i < l1i,T2i < r2i)−

−P(T1i < r1i,T2i < l2i)+P(T1i < l1i,T2i < l2i) =

= F(r1i,r2i)−F(l1i,r2i)−F(r1i, l2i)+F(l1i, l2i) =

= [1−S1(r1i)−S2(r2i)+S(r1i,r2i)]− [1−S1(l1i)−S2(r2i)+S(l1i,r2i)]+

− [1−S1(r1i)−S2(l2i)+S(r1i, l2i)]+ [1−S1(l1i)−S2(l2i)+S(l1i, l2i)] =

= S(l1i, l2i)−S(l1i,r2i)−S(r1i, l2i)+S(r1i,r2i) =

=C{G1(η1i(l1i)),G2(η2i(l2i))}−C{G1(η1i(l1i)),G2(η2i(r2i))}+

−C{G1(η1i(r1i)),G2(η2i(l2i))}+C{G1(η1i(r1i)),G2(η2i(r2i))}.

• T1i right-censored and T2i left-censored (the swapped case can be trivially derived by

switching the subscripts where required):

P(T1i > r1i,T2i < l2i) = P(T2i < l2i)−P(T1i < r1i,T2i < l2i) = F2(l2i)−F(r1i, l2i) =

= 1−S2(l2i)− [1−S1(r1i)−S2(l2i)+S(r1i, l2i)] =

= G1(η1i(r1i))−C{G1(η1i(r1i)),G2(η2i(l2i))}.

• T1i uncensored and T2i left-censored (the swapped case can be trivially derived by



A.1. Log-likelihood 112

switching the subscripts where required):

l2i∫
0

f (t1i,y)dy =
∂

∂ t1i
F(t1i, l2i) =

=
∂

∂ t1i
[1−S1(t1i)−S2(l2i)+S(t1i, l2i)] =

=− ∂

∂ t1i
G1(η1i(t1i))+

∂

∂ t1i
C{G1(η1i(t1i)),G2(η2i(l2i))}=

=−G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂ t1i
+

∂C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂ t1i
=

=

[
∂C{G1(η1i(t1i)),G2(η2i(l2i))}

∂G1(η1i(t1i))
−1
]
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂ t1i
.

• T1i uncensored and T2i interval-censored (the swapped case can be trivially derived by

switching the subscripts where required):

r2i∫
l2i

f (t1i,y)dy =
r2i∫

0

f (t1i,y)dy−
l2i∫

0

f (t1i,y)dy =

=
∂

∂ t1i
F(t1i,r2i)−

∂

∂ t1i
F(t1i, l2i) =

=
∂

∂ t1i
[1−S1(t1i)−S2(r2i)+S(t1i,r2i)]−

∂

∂ t1i
[1−S1(t1i)−S2(l2i)+S(t1i, l2i)] =

=
∂

∂ t1i
C{G1(η1i(t1i)),G2(η2i(r2i))}−

∂

∂ t1i
C{G1(η1i(t1i)),G2(η2i(l2i))}=

=

[
∂C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))
− ∂C{G1(η1i(t1i)),G2(η2i(l2i))}

∂G1(η1i(t1i))

]
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂ t1i
.

• T1i right-censored and T2i interval-censored (the swapped case can be trivially derived

by switching the subscripts where required):

P(T1i > r1i, l2i < T2i < r2i) =

= P(T2i < r2i)−P(T2i < l2i)−P(T1i < r1i,T2i < r2i)+P(T1i < r1i,T2i < l2i) =

= F2(r2i)−F2(l2i)−F(r1i,r2i)+F(r1i, l2i) =

= 1−S2(r2i)−1+S2(l2i)− [1−S1(r1i)−S2(r2i)+S(r1i,r2i)]+

+[1−S1(r1i)−S2(l2i)+S(r1i, l2i)] =

= S(r1i, l2i)−S(r1i,r2i) =

=C{G1(η1i(r1i)),G2(η2i(l2i))}−C{G1(η1i(r1i)),G2(η2i(r2i))}.
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• T1i left-censored and T2i interval-censored (the swapped case can be trivially derived

by switching the subscripts where required):

P(T1i < l1i, l2i < T2i < r2i) = F(l1i,r2i)−F(l1i, l2i) =

= [1−S1(l1i)−S2(r2i)+S(l1i,r2i)]− [1−S1(l1i)−S2(l2i)+S(l1i, l2i)] =

= S2(l2i)−S2(r2i)+S(l1i,r2i)−S(l1i, l2i) =

= G2(η2i(l2i))−G2(η2i(r2i))}

+C{G1(η1i(l1i)),G2(η2i(r2i))}−C{G1(η1i(l1i)),G2(η2i(l2i))}.
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Notation

In order to provide more concise and readable expressions of the derivatives of the log-

likelihood, the following quantities have been defined.

D1;γU1i γU2i
=

∂ 2C{G1(η1i(t1i)),G2(η2i(t2i))}
∂G1(η1i(t1i))∂G2(η2i(t2i))

D2;γU1i γU2i
= G′

1(η1i(t1i))

D3;γU1i γU2i
= G′

2(η2i(t2i))

D4;γU1i γU2i
=

∂η1i(t1i)

∂ t1i

D5;γU1i γU2i
=

∂η2i(t2i)

∂ t2i

DγR1i γR2i
=C{G1(η1i(r1i)),G2(η2i(r2i))}

DγL1i γL2i
=

[
1−G1(η1i(l1i))−G2(η2i(l2i))+C{G1(η1i(l1i)),G2(η2i(l2i))}

]
DγI1i γI2i

=

[
C{G1(η1i(l1i)),G2(η2i(l2i))}−C{G1(η1i(l1i)),G2(η2i(r2i))}+

−C{G1(η1i(r1i)),G2(η2i(l2i))}+C{G1(η1i(r1i)),G2(η2i(r2i))}
]

D1;γU1i γR2i
=

∂C{G1(η1i(t1i)),G2(η2i(r2i))}
∂G1(η1i(t1i))

D2;γU1i γR2i
=−G′

1(η1i(t1i))

D3;γU1i γR2i
=

∂η1i(t1i)

∂ t1i

D1;γR1i γU2i
=

∂C{G1(η1i(r1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))

D2;γR1i γu2i
=−G′

2(η2i(t2i))

D3;γR1i γU2i
=

∂η2i(t2i)

∂ t2i

D1;γU1i γL2i
=

(
∂C{G1(η1i(t1i)),G2(η2i(l2i))}

∂G1(η1i(t1i))
−1
)

D2;γU1i γL2i
= G′

1(η1i(t1i))

D3;γU1i γL2i
=

∂η1i(t1i)

∂ t1i

D1;γL1i γU2i
=

(
∂C{G1(η1i(l1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))
−1
)
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D2;γL1i γU2i
= G′

2(η2i(t2i))

D3;γL1i γU2i
=

∂η2i(t2i)

∂ t2i

D1;γU1i γI2i
=

(
∂C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))
− ∂C{G1(η1i(t1i)),G2(η2i(l2i))}

∂G1(η1i(t1i))

)
D2;γU1i γI2i

= G′
1(η1i(t1i))

D3;γU1i γI2i
=

∂η1i(t1i)

∂ t1i

D1;γI1i γU2i
=

(
∂C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))
− ∂C{G1(η1i(l1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))

)
D2;γI1i γU2i

= G′
2(η2i(t2i))

D3;γI1i γU2i
=

∂η2i(t2i)

∂ t2i

DγR1i γL2i
= G1(η1i(r1i))−C{G1(η1i(r1i)),G2(η2i(l2i))}

DγL1i γR2i
= G2(η2i(r2i))−C{G1(η1i(l1i)),G2(η2i(r2i))}

DγR1i γI2i
=C{G1(η1i(r1i)),G2(η2i(l2i))}−C{G1(η1i(r1i)),G2(η2i(r2i))}

DγI1i γR2i
=C{G1(η1i(l1i)),G2(η2i(r2i))}−C{G1(η1i(r1i)),G2(η2i(r2i))}

DγL1i γI2i
=

[
G2(η2i(l2i))−G2(η2i(r2i))+C{G1(η1i(l1i)),G2(η2i(r2i))}+

−C{G1(η1i(l1i)),G2(η2i(l2i))}
]

DγI1i γL2i
=

[
G1(η1i(l1i))−G1(η1i(r1i))+C{G1(η1i(r1i)),G2(η2i(l2i))}+

−C{G1(η1i(l1i)),G2(η2i(l2i))}
]

First derivatives with respect to β 1

∂D1;γU1i γU2i

∂β1
=

[
∂ 3C{G1(η1i(t1i)),G2(η2i(t2i))}

∂G1(η1i(t1i))2∂G2(η2i(t2i))
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

]
∂D2;γU1i γU2i

∂β1
=

[
G′′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

]
∂D4;γU1i γU2i

∂β1
=

[
∂ 2η1i(t1i)

∂ t1i∂β1

]
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∂DγR1i γR2i

∂β1
=

{
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

}
∂DγL1i γL2i

∂β1
=

{
−G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
+

+
∂C{G1(η1i(l1i)),G2(η2i(l2i))

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

}
∂DγI1i γI2i

∂β1
=

{
∂C{G1(η1i(l1i)),G2(η2i(l2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
+

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1
+

− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1
+

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

}
∂D1;γU1i γR2i

∂β1
=

∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}
∂G1(η1i(t1i))2 ·G′

1(η1i(t1i) ·
∂η1i(t1i)

∂β1

∂D2;γU1i γR2i

∂β1
=

[
−G′′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

]
∂D3;γU1i γR2i

∂β1
=

∂ 2η1i(t1i)

∂ t1i∂β1

∂D1;γR1i γU2i

∂β1
=

∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

∂D1;γU1i γL2i

∂β1
=

∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))2 ·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

∂D2;γU1i γL2i

∂β1
= G′′

1(η1i(t1i))
∂η1i(t1i)

∂β1

∂D3;γU1i γL2i

∂β1
=

∂ 2η1i(t1i)

∂ t1i∂β1

∂D1;γL1i γU2i

∂β1
=

∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

∂D1;γU1i γI2i

∂β1
=

[
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))2 ·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂β1
+

− ∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))2 ·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

]
∂D2;γU1i γI2i

∂β1
=

[
G′′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

]
∂D3;γU1i γI2i

∂β1
=

[
∂ 2η1i(t1i)

∂ t1i∂β1

]
∂D1;γI1i γU2i

∂β1
=

{
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G1(η1i(r1i))∂G2(η2i(t2i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G1(η1i(l1i)∂G2(η2i(t2i))

·G′
1(η1i(l1i) ·

∂η1i(l1i)

∂β1

}
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∂DγR1i γL2i

∂β1
=

{
G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

}
∂DγL1i γR2i

∂β1
=

{
− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

}
∂DγR1i γI2i

∂β1
=

{
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

}
∂DγI1i γR2i

∂β1
=

{
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i))

∂η1i(r1i)

∂β1

}
∂DγL1i γI2i

∂β1
=

{
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

}
∂DγI1i γL2i

∂β1
=

{
G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
−G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
+

+
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

}

First derivatives with respect to β 2

∂D1;γU1i γU2i

∂β2
=

∂ 3C{G1(η1i(t1i)),G2(η2i(t2i))}
∂G1(η1i(t1i))∂G2(η2i(t2i))2 ·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

∂D3;γU1i γU2i

∂β2
= G′′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

∂D5;γU1i γU2i

∂β2
=

∂ 2η2i(t2i)

∂ t2i∂β2

∂DγR1i γR2i

∂β2
=

{
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

}
∂DγL1i γL2i

∂β2
=

{
−G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2
+

+
∂C{G1(η1i(l1i)),G2(η2i(l2i))

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

}
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∂DγI1i γI2i

∂β2
=

{
∂C{G1(η1i(l1i)),G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2
+

− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
1(η2i(l2i)) ·

∂η2i(l2i)

∂β2
+

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

1(η2i(r2i)) ·
∂η2i(r2i)

∂β2

}
∂DγU1i γR2i

∂β2
=

{
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

}
∂D1;γR1i γU2i

∂β2
=

[
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))2 ·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

]
∂D2;γR1i γU2i

∂β2
=

[
−G′′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

]
∂D3;γR1i γU2i

∂β2
=

∂ 2η2i(t2i)

∂ t2i∂β2

∂D1;γU1i γL2i

∂β2
=

∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

∂D1;γL1i γU2i

∂β2
=

[
∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))2 ·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

]
∂D2;γL1i γU2i

∂β2
=

[
G′′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

]
∂D3;γL1i γU2i

∂β1
=

[
∂ 2η2i(t2i)

∂ t2i∂β2

]
∂D1;γU1i γI2i

∂β2
=

{
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2
+

− ∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

}
∂D1;γI1i γU2i

∂β2
=

[
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))2 ·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2
+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))2 ·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

]
+

∂D2;γI1i γU2i

∂β2
= G′′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

∂D3;γI1i γU2i

∂β2
=

∂ 2η2i(t2i)

∂ t2i∂β2

∂DγR1i γL2i

∂β2
=

{
− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

}
∂DγL1i γR2i

∂β2
=

{
G′

2(η2i(r2i))
∂η2i(r2i)

∂β2
− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

}
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∂DγR1i γI2i

∂β2
=

{
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G2(η2i(l2i)
·G′

2(η2i(l2i) ·
∂η2i(l2i)

∂β2
+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

}
∂DγI1i γR2i

∂β2
=

{
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2
+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

}
∂DγL1i γI2i

∂β2
=

{
G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2
−G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2
+

+
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2
+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

}
∂DγI1i γL2i

∂β2
=

{
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2
+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
2(η2i(l2i) ·

∂η2i(l2i)

∂β2

}

First derivatives with respect to β 3

∂D1;γU1i γU2i

∂β3
=

{
∂ 3C{G1(η1i(t1i)),G2(η2i(t2i))}

∂G1(η1i(t1i))∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}
∂DγR1i γR2i

∂β3
=

{
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}

∂DγL1i γL2i

∂β3
=

{
∂C{G1(η1i(l1i)),G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}
+

∂DγI1i γI2i

∂β3
=

{
∂C{G1(η1i(l1i)),G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3
+

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3
+

− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
+

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}



A.1. Log-likelihood 120

∂D1;γU1i γR2i

∂β3
=

{
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}
∂D1;γR1i γU2i

∂β3
=

{
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}
∂D1;γU1i γL2i

∂β3
=

{
∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}
∂D1;γL1i γU2i

∂β3
=

{
∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}
∂D1;γU1i γI2i

∂β3
=

{
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3
+

− ∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

}
∂D1;γI1i γU2i

∂β3
=

{
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3
+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

}
∂DγR1i γL2i

∂β3
=

{
− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}
∂DγL1i γR2i

∂β3
=

{
− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}
∂DγR1i γI2i

∂β3
=

{
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3
+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

}
∂DγI1i γR2i

∂β3
=

{
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3
+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

}
∂DγL1i γI2i

∂β3
=

{
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3
+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

}
∂DγI1i γL2i

∂β3
=

{
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3
+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

}
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Second derivatives with respect to β 1

∂ 2D1;γU1i γU2i

∂β1∂β1
T =

{
∂ 4C{G1(η1i(t1i)),G2(η2i(t2i))}

∂G1(η1i(t1i))3∂G2(η2i(t2i))

(
G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

)2

+

+
∂ 3C{G1(η1i(t1i)),G2(η2i(t2i))}

∂G1(η1i(t1i))2∂G2(η2i(t2i))
·G′′

1(η1i(t1i))

(
∂η1i(t1i)

∂β1

)2

+

+
∂ 3C{G1(η1i(t1i)),G2(η2i(t2i))}

∂G1(η1i(t1i))2∂G2(η2i(t2i))
·G′

1(η1i(t1i)) ·
∂ 2η1i(t1i)

∂β1∂β1
T

∂ 2D2;γU1i γU2i

∂β1∂β1
T =

{
G′′′

1 (η1i(t1i)) ·
(

∂η1i(t1i)

∂β1

)2

+G′′
1(η1i(t1i)) ·

∂ 2η1i(t1i)

∂β1∂β1
T

}
∂ 2D4;γU1i γU2i

∂β1∂β1
T =

∂ 3η1i(t1i)

∂ t1i∂β1∂β1
T

∂ 2DγR1i γR2i

∂β1∂β1
T =

{
∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G1(η1i(r1i))2

(
G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G1(η1i(r1i))
·G′′

1(η1i(r1i)) ·
(

∂η1i(r1i)

∂β1

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂ 2η1i(r1i)

∂β1∂β1
T

}
+

∂ 2DγL1i γL2i

∂β1∂β1
T =

{
−G′′

1(η1i(l1i)) ·
(

∂η1i(l1i)

∂β1

)2

−G′
1(η1i(l1i)) ·

∂ 2η1i(l1i)

∂β1∂β1
T +

+
∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))

∂G1(η1i(l1i))2 ·
(

G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(l2i))

∂G1(η1i(l1i))
·G′′

1(η1i(l1i)) ·
(

∂η1i(l1i)

∂β1

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(l2i))

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂ 2η1i(l1i)

∂β1∂β1
T

}
∂ 2DγI1i γI2i

∂β1∂β1
T =

{
∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))}

∂G1(η1i(l1i))2 ·
(

G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(l2i))}

∂G1(η1i(l1i))
·G′′

1(η1i(l1i)) ·
(

∂η1i(l1i)

∂β1

)2

+
∂C{G1(η1i(l1i)),G2(η2i(l2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂ 2η1i(l1i)

∂β1∂β1
T +

− ∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G1(η1i(l1i))2 ·

(
G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G1(η1i(l1i))

·G′′
1(η1i(l1i)) ·

(
∂η1i(l1i)

∂β1

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂ 2η1i(l1i)

∂β1∂β1
T +

− ∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G1(η1i(r1i))2 ·

(
G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

)2

+
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− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G1(η1i(r1i))

·G′′
1(η1i(r1i)) ·

(
∂η1i(r1i)

∂β1

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂ 2η1i(r1i)

∂β1∂β1
T +

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G1(η1i(r1i))2 ·
(

G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G1(η1i(r1i))
·G′′

1(η1i(r1i)) ·
(

∂η1i(r1i)

∂β1

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂ 2η1i(r1i)

∂β1∂β1
T

}
∂ 2D1;γU1i γR2i

∂β1∂β1
T =

{
+

∂ 3C{G1(η1i(t1i)),G2(η2i(r2i))}
∂G1(η1i(t1i))3 ·

(
G′

1(η1i(t1i) ·
∂η1i(t1i)

∂β1

)2

+

+
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))2 ·G′′
1(η1i(t1i) ·

(
∂η1i(t1i)

∂β1

)2

+

+
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))2 ·G′
1(η1i(t1i) ·

∂ 2η1i(t1i)

∂β1∂β1
T

}
∂ 2D2;γU1i γR2i

∂β1∂β1
T =

{
−G′′′

1 (η1i(t1i)) ·
(

∂η1i(t1i)

∂β1

)2

−G′′
1(η1i(t1i)) ·

∂ 2η1i(t1i)

∂β1∂β1

}
∂ 2D3;γU1i γR2i

∂β1∂β1
T =

∂ 3η1i(t1i)

∂ t1i∂β1∂β1
T

∂ 2D1;γR1i γU2i

∂β1∂β1
T =

{
∂ 3C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂G1(η1i(r1i))2 ·
(

G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

)2

+

+
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂G1(η1i(r1i))
·G′′

1(η1i(r1i)) ·
(

∂η1i(r1i)

∂β1

)2

+
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂ 2η1i(r1i)

∂β1∂β1

}
∂ 2D1;γU1i γL2i

∂β1∂β1
T =

{
+

∂ 3C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))3 ·

(
G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

)2

+
∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}

∂G1(η1i(t1i))2 ·G′′
1(η1i(t1i)) ·

(
∂η1i(t1i)

∂β1

)2

+

+
∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}

∂G1(η1i(t1i))2 ·G′
1(η1i(t1i)) ·

∂ 2η1i(t1i)

∂β1∂β1
T

}
∂ 2D2;γU1i γL2i

∂β1∂β1
T =

{
G′′′

1 (η1i(t1i)) ·
(

∂η1i(t1i)

∂β1

)2

+G′′
1(η1i(t1i))

∂ 2η1i(t1i)

∂β1∂β1
T

}
∂ 2D3;γU1i γL2i

∂β1∂β1
T =

∂ 3η1i(t1i)

∂ t1i∂β1∂β1
T
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∂ 2D1;γL1i γU2i

∂β1∂β1
T =

{
+

∂ 3C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(l1i))2 ·

(
G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

)2

+

+
∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂G1(η1i(l1i))
·G′′

1(η1i(l1i)) ·
(

∂η1i(l1i)

∂β1

)2

+

+
∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂ 2η1i(l1i)

∂β1∂β1
T

}
∂ 2D1;γU1i γI2i

∂β1∂β1
T =

{
∂ 3C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))3 ·
(

G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂β1

)2

+

+
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))2 ·G′′
1(η1i(t1i)) ·

(
∂η1i(t1i)

∂β1

)2

+

+
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))2 ·G′
1(η1i(t1i)) ·

∂ 2η1i(t1i)

∂β1∂β1
T +

− ∂ 3C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))3 ·

(
G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

)2

+

− ∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))2 ·G′′

1(η1i(t1i)) ·
(

∂η1i(t1i)

∂β1

)2

+

− ∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))2 ·G′

1(η1i(t1i)) ·
∂ 2η1i(t1i)

∂β1∂β1
T

}
∂ 2D2;γU1i γI2i

∂β1∂β1
T =

{
G′′′

1 (η1i(t1i)) ·
(

∂η1i(t1i)

∂β1

)2

+G′′
1(η1i(t1i)) ·

∂ 2η1i(t1i)

∂β1∂β1
T

}
∂ 2D3;γU1i γI2i

∂β1∂β1
T =

∂ 3η1i(t1i)

∂ t1i∂β1∂β1
T

∂ 2D1;γI1i γU2i

∂β1∂β1
T =

{
∂ 3C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G1(η1i(r1i))2∂G2(η2i(t2i))
·
(

G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

)2

+

+
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G1(η1i(r1i))∂G2(η2i(t2i))
·G′′

1(η1i(r1i)) ·
(

∂η1i(r1i)

∂β1

)2

+

+
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G1(η1i(r1i))∂G2(η2i(t2i))
·G′

1(η1i(r1i)) ·
∂ 2η1i(r1i)

∂β1∂β1
T +

− ∂ 3C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G1(η1i(l1i)2∂G2(η2i(t2i))

·
(

G′
1(η1i(l1i) ·

∂η1i(l1i)

∂β1

)2

− ∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G1(η1i(l1i)∂G2(η2i(t2i))

·G′′
1(η1i(l1i) ·

(
∂η1i(l1i)

∂β1

)2

− ∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G1(η1i(l1i)∂G2(η2i(t2i))

·G′
1(η1i(l1i) ·

∂ 2η1i(l1i)

∂β1∂β1
T

}
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∂ 2DγR1i γL2i

∂β1∂β1
T =

{
G′′

1(η1i(r1i)) ·
(

∂η1i(r1i)

∂β1

)2

+G′
1(η1i(r1i)) ·

∂ 2η1i(r1i)

∂β1∂β1
T +

− ∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G1(η1i(r1i))2 ·

(
G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G1(η1i(r1i))

·G′′
1(η1i(r1i)) ·

(
∂η1i(r1i)

∂β1

)2

− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂ 2η1i(r1i)

∂β1∂β1
T

}
∂ 2DγL1i γR2i

∂β1∂β1
T =

{
− ∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G1(η1i(l1i))2 ·
(

G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G1(η1i(l1i))

·G′′
1(η1i(l1i)) ·

(
∂η1i(l1i)

∂β1

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂ 2η1i(l1i)

∂β1∂β1
T

}
∂ 2DγR1i γI2i

∂β1∂β1
T =

{
∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G1(η1i(r1i))2 ·
(

G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G1(η1i(r1i))
·G′′

1(η1i(r1i)) ·
(

∂η1i(r1i)

∂β1

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂ 2η1i(r1i)

∂β1∂β1
T +

− ∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G1(η1i(r1i))2 ·

(
G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

)2

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G1(η1i(r1i))

·G′′
1(η1i(r1i)) ·

(
∂η1i(r1i)

∂β1

)2

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂ 2η1i(r1i)

∂β1∂β1
T

}
∂ 2DγI1i γR2i

∂β1∂β1
T =

{
∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G1(η1i(l1i))2 ·
(

G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′′

1(η1i(l1i)) ·
(

∂η1i(l1i)

∂β1

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂ 2η1i(l1i)

∂β1∂β1
T +

− ∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G1(η1i(r1i))2 ·

(
G′

1(η1i(r1i))
∂η1i(r1i)

∂β1

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G1(η1i(r1i))

·G′′
1(η1i(r1i))

(
∂η1i(r1i)

∂β1

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i))

∂ 2η1i(r1i)

∂β1∂β1
T

}
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∂ 2DγL1i γI2i

∂β1∂β1
T =

{
∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G1(η1i(l1i))2 ·
(

G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′′

1(η1i(l1i)) ·
(

∂η1i(l1i)

∂β1

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂ 2η1i(l1i)

∂β1∂β1
T +

− ∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))

∂G1(η1i(l1i))2 ·
(

G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))

∂G1(η1i(l1i))
·G′′

1(η1i(l1i)) ·
(

∂η1i(l1i)

∂β1

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂ 2η1i(l1i)

∂β1∂β1
T

}
∂ 2DγI1i γL2i

∂β1∂β1
T =

{
G′′

1(η1i(l1i)) ·
(

∂η1i(l1i)

∂β1

)2

+G′
1(η1i(l1i)) ·

∂ 2η1i(l1i)

∂β1∂β1
T +

−G′′
1(η1i(r1i)) ·

(
∂η1i(r1i)

∂β1

)2

−G′
1(η1i(r1i)) ·

∂ 2η1i(r1i)

∂β1∂β1
T +

+
∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G1(η1i(r1i))2 ·
(

G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G1(η1i(r1i))
·G′′

1(η1i(r1i)) ·
(

∂η1i(r1i)

∂β1

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂ 2η1i(r1i)

∂β1∂β1
T +

− ∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G1(η1i(l1i))2 ·

(
G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G1(η1i(l1i))

·G′′
1(η1i(l1i)) ·

(
∂η1i(l1i)

∂β1

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂ 2η1i(l1i)

∂β1∂β1
T

}

Second derivatives with respect to β 1 and β 2

∂ 2D1;γU1i γU2i

∂β1∂β2
T =

∂ 4C{G1(η1i(t1i)),G2(η2i(t2i))}
∂G1(η1i(t1i))2∂G2(η2i(t2i))2 ·G′

2(η2i(t2i) ·
∂η2i(t2i)

∂β2
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

∂ 2DγR1i γR2i

∂β1∂β2
T =

∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G1(η1i(r1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
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∂ 2DγL1i γL2i

∂β1∂β2
T =

∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))

∂G1(η1i(l1i))∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

∂ 2DγI1i γI2i

∂β1∂β2
T =

∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G1(η1i(l1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G1(η1i(l1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
+

− ∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G1(η1i(r1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
+

+
∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G1(η1i(r1i))∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

∂ 2D1;γU1i γR2i

∂β1∂β2
T =

∂ 3C{G1(η1i(t1i)),G2(η2i(r2i))}
∂G1(η1i(t1i))2∂G2(η2i(r2i)

·G′
2(η2i(r2i) ·

∂η2i(r2i)

∂β2
·G′

1(η1i(t1i) ·
∂η1i(t1i)

∂β1

∂ 2D1;γR1i γU2i

∂β1∂β2
T =

∂ 3C{G1(η1i(r1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))2∂G1(η1i(r1i))

·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

∂ 2D1;γU1i γL2i

∂β1∂β2
T =

∂ 3C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))2∂G2(η2i(l2i))

·G′
2(η2i(l2i))

∂η2i(l2i)

∂β2
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

∂ 2D1;γL1i γU2i

∂β1∂β2
T =

∂ 3C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))2∂G1(η1i(l1i))

·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

∂ 2D1;γU1i γI2i

∂β1∂β2
T =

∂ 3C{G1(η1i(t1i)),G2(η2i(r2i))}
∂G1(η1i(t1i))2∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1
+

− ∂ 3C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))2∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

∂ 2D1;γI1i γU2i

∂β1∂β2
T =

∂ 3C{G1(η1i(r1i)),G2(η2i(t2i))}
∂G1(η1i(r1i))∂G2(η2i(t2i))2 ·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β1
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
+

− ∂ 3C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G1(η1i(l1i)∂G2(η2i(t2i))2 ·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2
·G′

1(η1i(l1i) ·
∂η1i(l1i)

∂β1

∂ 2DγR1i γL2i

∂β1∂β2
T =−∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G1(η1i(r1i))∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

∂ 2DγL1i γR2i

∂β1∂β2
T =−∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G1(η1i(l1i))∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

∂ 2DγR1i γI2i

∂β1∂β2
T =

∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G1(η1i(r1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
+

− ∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G1(η1i(r1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

∂ 2DγI1i γR2i

∂β1∂β2
T =

∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G1(η1i(l1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
+

− ∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G1(η1i(r1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2
·G′

1(η1i(r1i))
∂η1i(r1i)

∂β1
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∂ 2DγL1i γI2i

∂β1∂β2
T =

∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G1(η1i(l1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))

∂G1(η1i(l1i))∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

∂ 2DγI1i γL2i

∂β1∂β2
T =

∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G1(η1i(r1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G1(η1i(l1i))∂G2(η2i(l2i)

·G′
2(η2i(l2i) ·

∂η2i(l2i)

∂β2
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

Second derivatives with respect to β 1 and β 3

∂ 2D1;γU1i γU2i

∂β1∂β3
T =

∂ 4C{G1(η1i(t1i)),G2(η2i(t2i))}
∂G1(η1i(t1i))2∂G2(η2i(t2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

∂ 2DγR1i γR2i

∂β1∂β3
T =

∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G1(η1i(r1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

∂ 2DγL1i γL2i

∂β1∂β3
T =

∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))

∂G1(η1i(l1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

∂ 2DγI1i γI2i

∂β1∂β3
T =

∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G1(η1i(l1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G1(η1i(l1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
+

− ∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G1(η1i(r1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
+

+
∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G1(η1i(r1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

∂ 2D1;γU1i γR2i

∂β1∂β3
T =

∂ 3C{G1(η1i(t1i)),G2(η2i(r2i))}
∂G1(η1i(t1i))2∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(t1i) ·
∂η1i(t1i)

∂β1

∂ 2D1;γR1i γU2i

∂β1∂β3
T =

∂ 3C{G1(η1i(r1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(r1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

∂ 2D1;γU1i γL2i

∂β1∂β3
T =

∂ 3C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))2∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

∂ 2D1;γL1i γU2i

∂β1∂β3
T =

∂ 3C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(l1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
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∂ 2D1;γU1i γI2i

∂β1∂β3
T =

∂ 3C{G1(η1i(t1i)),G2(η2i(r2i))}
∂G1(η1i(t1i))2∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1
+

− ∂ 3C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))2∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

∂ 2D1;γI1i γU2i

∂β1∂β3
T =

∂ 3C{G1(η1i(r1i)),G2(η2i(t2i))}
∂G1(η1i(r1i))∂G2(η2i(t2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
+

− ∂ 3C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G1(η1i(l1i)∂G2(η2i(t2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(l1i) ·
∂η1i(l1i)

∂β1

∂ 2DγR1i γL2i

∂β1∂β3
T =−∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G1(η1i(r1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

∂ 2DγL1i γR2i

∂β1∂β3
T =−∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G1(η1i(l1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

∂ 2DγR1i γI2i

∂β1∂β3
T =

∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G1(η1i(r1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
+

− ∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G1(η1i(r1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

∂ 2DγI1i γR2i

∂β1∂β3
T =

∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G1(η1i(l1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
+

− ∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G1(η1i(r1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(r1i))
∂η1i(r1i)

∂β1

∂ 2DγL1i γI2i

∂β1∂β3
T =

∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G1(η1i(l1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))

∂G1(η1i(l1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

∂ 2DγI1i γL2i

∂β1∂β3
T =

∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G1(η1i(r1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G1(η1i(l1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

Second derivatives with respect to β 2 and β 3

∂ 2D1;γU1i γU2i

∂β2∂β3
T =

∂ 4C{G1(η1i(t1i)),G2(η2i(t2i))}
∂G1(η1i(t1i))∂G2(η2i(t2i))2∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

∂ 2DγR1i γR2i

∂β2∂β3
T =

∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2
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∂ 2DγL1i γL2i

∂β2∂β3
T =

∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))

∂G2(η2i(l2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

∂ 2DγI1i γI2i

∂β2∂β3
T =

∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2
+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2
+

− ∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2
+

+
∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

∂ 2DγU1i γR2i

∂β2∂β3
T =

∂ 3C{G1(η1i(t1i)),G2(η2i(r2i))}
∂G1(η1i(t1i))∂G2(η2i(r2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

∂ 2D1;γR1i γU2i

∂β2∂β3
T =

∂ 3C{G1(η1i(r1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))2∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

∂ 2D1;γU1i γL2i

∂β2∂β3
T =

∂ 3C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))∂m(η3i

) ·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

∂ 2D1;γL1i γU2i

∂β2∂β3
T =

∂ 3C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))2∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

∂ 2D1;γU1i γI2i

∂β2∂β3
T =

∂ 3C{G1(η1i(t1i)),G2(η2i(r2i))}
∂G1(η1i(t1i))∂G2(η2i(r2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2
+

− ∂ 3C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))∂m(η3i)

m′(η3i) ·
∂η3i(x3i,β3)

∂β3
· ·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

∂ 2D1;γI1i γU2i

∂β2∂β3
T =

∂ 3C{G1(η1i(r1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))2∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2
+

− ∂ 3C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))2∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

∂ 2DγR1i γL2i

∂β2∂β3
T =−∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G2(η2i(l2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

∂ 2DγL1i γR2i

∂β2∂β3
T =−∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

∂ 2DγR1i γI2i

∂β2∂β3
T =

∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(l2i) ·
∂η2i(l2i)

∂β2
+

− ∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

∂ 2DγI1i γR2i

∂β2∂β3
T =

∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2
+

− ∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2
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∂ 2DγL1i γI2i

∂β2∂β3
T =

∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2
+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

∂ 2DγI1i γL2i

∂β2∂β3
T =

∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2
+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G2(η2i(l2i)∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3
·G′

2(η2i(l2i) ·
∂η2i(l2i)

∂β2

Second derivatives with respect to β 3

∂ 2DγU1i γU2i

∂β3∂β3
T =

{
∂ 4C{G1(η1i(t1i)),G2(η2i(t2i))}

∂G1(η1i(t1i))∂G2(η2i(t2i))∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

+
∂ 3C{G1(η1i(t1i)),G2(η2i(t2i))}

∂G1(η1i(t1i))∂G2(η2i(t2i))∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i,β3)

∂β3

)2

+

+
∂ 3C{G1(η1i(t1i)),G2(η2i(t2i))}

∂G1(η1i(t1i))∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂ 2η3i(x3i,β3)

∂β3∂β3
T

}
∂ 2DγR1i γR2i

∂β3∂β3
T =

{
∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}

∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i,β3)

∂β3

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂ 2η3i(x3i,β3)

∂β3∂β3
T

}
∂ 2DγL1i γL2i

∂β3∂β3
T =

{
∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))}

∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(l2i))}

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i,β3)

∂β3

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂ 2η3i(x3i,β3)

∂β3∂β3
T

}
∂ 2DγI1i γI2i

∂β3∂β3
T =

{
∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))}

∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(l2i))}

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i,β3)

∂β3

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂ 2η3i(x3i,β3)

∂β3∂β3
T +
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− ∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))

∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i,β3)

∂β3

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))

∂m(η3i)
·m′(η3i) ·

∂ 2η3i(x3i,β3)

∂β3∂β3
T +

− ∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}
∂m(η3i)2 ·

(
m′(η3i) ·

∂η3i(x3i,β3)

∂β3

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂m(η3i)

·m′′(η3i) ·
(

∂η3i(x3i,β3)

∂β3

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂ 2η3i(x3i,β3)

∂β3∂β3
T +

+
∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}

∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i,β3)

∂β3

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂ 2η3i(x3i,β3)

∂β3∂β3
T

∂ 2DγU1i γR2i

∂β3∂β3
T =

{
∂ 3C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

+
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i,β3)

∂β3

)2

+

+
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂ 2η3i(x3i,β3)

∂β3∂β3
T

}
∂ 2DγR1i γU2i

∂β3∂β3
T =

{
∂ 3C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

+
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i,β3)

∂β3

)2

+

+
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂ 2η3i(x3i,β3)

∂β3∂β3
T

}
∂ 2DγU1i γL2i

∂β3∂β3
T =

{
∂ 3C{G1(η1i(t1i)),G2(η2i(l2i))}

∂G1(η1i(t1i))∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

+
∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i,β3)

∂β3

)2

+

+
∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂ 2η3i(x3i,β3)

∂β3∂β3
T

}
∂ 2DγL1i γU2i

∂β3∂β3
T =

{
∂ 3C{G1(η1i(l1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

+
∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i,β3)

∂β3

)2

+
∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂ 2η3i(x3i,β3)

∂β3∂β3
T

}
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∂ 2DγU1i γI2i

∂β3∂β3
T =

{
∂ 3C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

+
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′′(η3i)

(
· ∂η3i(x3i,β3)

∂β3

)2

+

+
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂ 2η3i(x3i,β3)

∂β3∂β3
T +

− ∂ 3C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))∂m(η3i)2 ·

(
m′(η3i) ·

∂η3i(x3i,β3)

∂β3

)2

+

− ∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))∂m(η3i)

·m′′(η3i) ·
(

∂η3i(x3i,β3)

∂β3

)2

+

− ∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))∂m(η3i)

·m′(η3i) ·
∂ 2η3i(x3i,β3)

∂β3∂β3
T

}
∂ 2DγI1i γU2i

∂β3∂β3
T =

{
∂ 3C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

+
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i,β3)

∂β3

)2

+

+
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂ 2η3i(x3i,β3)

∂β3∂β3
T +

− ∂ 3C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))∂m(η3i)2 ·

(
m′(η3i) ·

∂η3i(x3i,β3)

∂β3

)2

+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))∂m(η3i)

·m′′(η3i) ·
(

∂η3i(x3i,β3)

∂β3

)2

+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))∂m(η3i)

·m′(η3i) ·
∂ 2η3i(x3i,β3)

∂β3∂β3
T

}
∂ 2DγR1i γL2i

∂β3∂β3
T =

{
− ∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}

∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂m(η3i)

·m′′(η3i) ·
(

∂η3i(x3i,β3)

∂β3

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂ 2η3i(x3i,β3)

∂β3∂β3
T

}
∂ 2DγL1i γR2i

∂β3∂β3
T =

{
− ∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}

∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}
∂m(η3i)

·m′′(η3i) ·
(

∂η3i(x3i,β3)

∂β3

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}
∂m(η3i)

·m′(η3i) ·
∂ 2η3i(x3i,β3)

∂β3∂β3
T

}
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∂ 2DγR1i γI2i

∂β3∂β3
T =

{
∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}

∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i,β3)

∂β3

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂ 2η3i(x3i,β3)

∂β3∂β3
T +

− ∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}
∂m(η3i)2 ·

(
m′(η3i) ·

∂η3i(x3i,β3)

∂β3

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂m(η3i)

·m′′(η3i) ·
(

∂η3i(x3i,β3)

∂β3

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂m(η3i)

·m′(η3i) ·
∂ 2η3i(x3i,β3)

∂β3∂β3
T

}
∂ 2DγI1i γR2i

∂β3∂β3
T =

{
∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}

∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i,β3)

∂β3

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂ 2η3i(x3i,β3)

∂β3∂β3
T +

− ∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}
∂m(η3i)2 ·

(
m′(η3i) ·

∂η3i(x3i,β3)

∂β3

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂m(η3i)

·m′′(η3i) ·
(

∂η3i(x3i,β3)

∂β3

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂m(η3i)

·m′(η3i) ·
∂ 2η3i(x3i,β3)

∂β3∂β3
T

}
∂ 2DγL1i γI2i

∂β3∂β3
T =

{
∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}

∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i,β3)

∂β3

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂ 2η3i(x3i,β3)

∂β3∂β3
T +

− ∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))}
∂m(η3i)2 ·

(
m′(η3i) ·

∂η3i(x3i,β3)

∂β3

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂m(η3i)

·m′′(η3i) ·
(

∂η3i(x3i,β3)

∂β3

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂ 2η3i(x3i,β3)

∂β3∂β3
T

}
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∂ 2DγI1i γL2i

∂ 2β3∂β3
T =

{
∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}

∂m(η3i)2 ·
(

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i,β3)

∂β3

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂ 2η3i(x3i,β3)

∂β3∂β3
T +

− ∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))}
∂m(η3i)2 ·

(
m′(η3i) ·

∂η3i(x3i,β3)

∂β3

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂m(η3i)

·m′′(η3i) ·
(

∂η3i(x3i,β3)

∂β3

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂ 2η3i(x3i,β3)

∂β3∂β3
T

}

Second derivatives with respect to β 2

∂ 2D1;γU1i γU2i

∂β2∂β2
T =

{
∂ 4C{G1(η1i(t1i)),G2(η2i(t2i))}

∂G1(η1i(t1i))∂G2(η2i(t2i))3 ·
(

G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

)2

+

+
∂ 3C{G1(η1i(t1i)),G2(η2i(t2i))}

∂G1(η1i(t1i))∂G2(η2i(t2i))2 ·G′′
2(η2i(t2i)) ·

(
∂η2i(t2i)

∂β2

)2

+

+
∂ 3C{G1(η1i(t1i)),G2(η2i(t2i))}

∂G1(η1i(t1i))∂G2(η2i(t2i))2 ·G′
2(η2i(t2i)) ·

∂ 2η2i(t2i)

∂β2∂β2
T

}
∂ 2D3;γU1i γU2i

∂β2∂β2
T = G′′′

2 (η2i(t2i)) ·
(

∂η2i(t2i)

∂β2

)2

+G′′
2(η2i(t2i)) ·

∂ 2η2i(t2i)

∂β2∂β2
T

∂ 2D5;γU1i γU2i

∂β2∂β2
T =

∂ 3η2i(t2i)

∂ t2i∂β2∂β2
T

∂ 2DγR1i γR2i

∂β2∂β2
T =

{
∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))2 ·
(

G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′′

2(η2i(r2i)) ·
(

∂η2i(r2i)

∂β2

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂ 2η2i(r2i)

∂β2∂β2
T

}



A.1. Log-likelihood 135

∂ 2DγL1i γL2i

∂β2∂β2
T =

{
−G′′

2(η2i(l2i)) ·
(

∂η2i(l2i)

∂β2

)2

−G′
2(η2i(l2i)) ·

∂ 2η2i(l2i)

∂β2∂β2
T +

+
∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))

∂G2(η2i(l2i))2 ·
(

G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(l2i))

∂G2(η2i(l2i))
·G′′

2(η2i(l2i)) ·
(

∂η2i(l2i)

∂β2

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(l2i))

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂ 2η2i(l2i)

∂β2∂β2
T

}
∂ 2DγI1i γI2i

∂β2∂β2
T =

{
∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))}

∂G2(η2i(l2i))2 ·
(

G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′′

2(η2i(l2i)) ·
(

∂η2i(l2i)

∂β2

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂ 2η2i(l2i)

∂β2∂β2
T +

− ∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))2 ·

(
G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′′
2(η2i(r2i)) ·

(
∂η2i(r2i)

∂β2

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂ 2η2i(r2i)

∂β2∂β2
T +

− ∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))2 ·

(
G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′′
2(η2i(l2i)) ·

(
∂η2i(l2i)

∂β2

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂ 2η2i(l2i)

∂β2∂β2
T +

+
∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))2 ·
(

G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′′

2(η2i(r2i)) ·
(

∂η2i(r2i)

∂β2

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂ 2η2i(r2i)

∂β2∂β2
T

}
∂ 2DγU1i γR2i

∂β2∂β2
T =

{
∂ 3C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂G2(η2i(r2i))2 ·
(

G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

)2

+

+
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂G2(η2i(r2i))
·G′′

2(η2i(r2i)) ·
(

∂η2i(r2i)

∂β2

)2

+

+
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂ 2η2i(r2i)

∂β2∂β2
T

}
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∂ 2D1;γR1i γU2i

∂β2∂β2
T =

{
∂ 3C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))3 ·
(

G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

)2

+

+
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))2 ·G′′
2(η2i(t2i)) ·

(
∂η2i(t2i)

∂β2

)2

+

+
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))2 ·G′
2(η2i(t2i)) ·

∂ 2η2i(t2i)

∂β2∂β2
T

}
∂ 2D2;γR1i γU2i

∂β2∂β2
T =−G′′′

2 (η2i(t2i)) ·
(

∂η2i(t2i)

∂β2

)2

−G′′
2(η2i(t2i)) ·

∂ 2η2i(t2i)

∂β2∂β2
T

∂ 2D3;γR1i γU2i

∂β2∂β2
T =

∂ 3η2i(t2i)

∂ t2i∂β2∂β2
T

∂ 2D1;γU1i γL2i

∂β2∂β2
T =

{
∂ 3C{G1(η1i(t1i)),G2(η2i(l2i))}

∂G1(η1i(t1i))∂G2(η2i(l2i))2 ·
(

G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

)2

+

+
∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}

∂G1(η1i(t1i))∂G2(η2i(l2i))
·G′′

2(η2i(l2i)) ·
(

∂η2i(l2i)

∂β2

)2

+

+
∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}

∂G1(η1i(t1i))∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂ 2η2i(l2i)

∂β2∂β2
T

}
∂ 2D1;γL1i γU2i

∂β2∂β2
T =

{
∂ 3C{G1(η1i(l1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))3 ·
(

G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

)2

+

+
∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))2 ·G′′
2(η2i(t2i)) ·

(
∂η2i(t2i)

∂β2

)2

+

+
∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))2 ·G′
2(η2i(t2i)) ·

∂ 2η2i(t2i)

∂β2∂β2
T

}
∂ 2D2;γL1i γU2i

∂β2∂β2
T = G′′′

2 (η2i(t2i)) ·
(

∂η2i(t2i)

∂β2

)2

+G′′
2(η2i(t2i)) ·

∂ 2η2i(t2i)

∂β2∂β2
T

∂ 2D3;γL1i γU2i

∂β2∂β2
T =

∂ 3η2i(t2i)

∂ t2i∂β2∂β2
T

∂ 2D1;γU1i γI2i

∂β2∂β2
T =

{
∂ 3C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂G2(η2i(r2i))2 ·
(

G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

)2

+

+
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂G2(η2i(r2i))
·G′′

2(η2i(r2i)) ·
(

∂η2i(r2i)

∂β2

)2

+

+
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂ 2η2i(r2i)

∂β2∂β2
T +

− ∂ 3C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))2 ·

(
G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

)2

+

− ∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))

·G′′
2(η2i(l2i)) ·

(
∂η2i(l2i)

∂β2

)2

+

− ∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂ 2η2i(l2i)

∂β2∂β2
T

}
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∂ 2D1;γI1i γU2i

∂β2∂β2
T =

{
∂ 3C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))3 ·
(

G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

)2

+

+
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))2 ·G′′
2(η2i(t2i)) ·

(
∂η2i(t2i)

∂β2

)2

+

+
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))2 ·G′
2(η2i(t2i)) ·

∂ 2η2i(t2i)

∂β2∂β2
T +

− ∂ 3C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))3 ·

(
G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

)2

+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))2 ·G′′

2(η2i(t2i)) ·
(

∂η2i(t2i)

∂β2

)2

+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))2 ·G′

2(η2i(t2i)) ·
∂ 2η2i(t2i)

∂β2∂β2
2

}
∂ 2D2;γI1i γU2i

∂β2∂β2
T = G′′′

2 (η2i(t2i)) ·
(

∂η2i(t2i)

∂β2

)2

+G′′
2(η2i(t2i)) ·

∂ 2η2i(t2i)

∂β2∂β2
T

∂ 2D3;γI1i γU2i

∂β2∂β2
T =

∂ 3η2i(t2i)

∂ t2i∂β2∂β2
T

∂ 2DγR1i γL2i

∂β2∂β2
T =

{
− ∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G2(η2i(l2i))2 ·
(

G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′′
2(η2i(l2i)) ·

(
∂η2i(l2i)

∂β2

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂ 2η2i(l2i)

∂β2∂β2
T

}
∂ 2DγL1i γR2i

∂β2∂β2
T =

{
G′′

2(η2i(r2i)) ·
(

∂η2i(r2i)

∂β2

)2

+G′
2(η2i(r2i)) ·

∂ 2η2i(r2i)

∂β2∂β2
T +

− ∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))2 ·

(
G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′′
2(η2i(r2i)) ·

(
∂η2i(r2i)

∂β2

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂ 2η2i(r2i)

∂β2∂β2
T

}
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∂ 2DγR1i γI2i

∂β2∂β2
T =

{
∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G2(η2i(l2i)2 ·
(

G′
2(η2i(l2i) ·

∂η2i(l2i)

∂β2

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G2(η2i(l2i)
·G′′

2(η2i(l2i) ·
(

∂η2i(l2i)

∂β2

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G2(η2i(l2i)
·G′

2(η2i(l2i) ·
∂ 2η2i(l2i)

∂β2∂β2
T +

− ∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))2 ·

(
G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′′
2(η2i(r2i)) ·

(
∂η2i(r2i)

∂β2

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂ 2η2i(r2i)

∂β2∂β2
T

}
∂ 2DγI1i γR2i

∂β2∂β2
T =

{
∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))2 ·
(

G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′′

2(η2i(r2i)) ·
(

∂η2i(r2i)

∂β2

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂ 2η2i(r2i)

∂β2∂β2
T +

− ∂ 2C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))2 ·

(
G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′′
2(η2i(r2i)) ·

(
∂η2i(r2i)

∂β2

)2

+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂ 2η2i(r2i)

∂β2∂β2
T

}
∂ 2DγL1i γI2i

∂β2∂β2
T =

{
G′′

2(η2i(l2i)) ·
(

∂η2i(l2i)

∂β2

)2

+G′
2(η2i(l2i)) ·

∂ 2η2i(l2i)

∂β2∂β2
T +

−G′′
2(η2i(r2i)) ·

(
∂η2i(r2i)

∂β2

)2

−G′
2(η2i(r2i)) ·

∂ 2η2i(r2i)

∂β2∂β2
T +

+
∂ 2C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))2 ·
(

G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′′

2(η2i(r2i)) ·
(

∂η2i(r2i)

∂β2

)2

+

+
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂ 2η2i(r2i)

∂β2∂β2
T +

− ∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))

·
(

G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′′
2(η2i(l2i)) ·

(
∂η2i(l2i)

∂β2

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂ 2η2i(l2i)

∂β2∂β2
T

}
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∂ 2DγI1i γL2i

∂β2∂β2
T =

{
∂ 2C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G2(η2i(l2i))2 ·
(

G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′′

2(η2i(l2i)) ·
(

∂η2i(l2i)

∂β2

)2

+

+
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂ 2η2i(l2i)

∂β2∂β2
2 +

− ∂ 2C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))2 ·

(
G′

2(η2i(l2i) ·
∂η2i(l2i)

∂β2

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′′
2(η2i(l2i) ·

(
∂η2i(l2i)

∂β2

)2

+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
2(η2i(l2i) ·

∂ 2η2i(l2i)

∂β2∂β2
T

}
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A.2 Gradient

First derivative of log-likelihood with respect to β 1

∂ℓ(δ )

∂β1
=γU1iγU2i

{
D−1

1;γU1i γU2i

[
∂ 3C{G1(η1i(t1i)),G2(η2i(t2i))}

∂G1(η1i(t1i))2∂G2(η2i(t2i))
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

]
+

+D−1
2;γU1i γU2i

[
G′′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

]
+

+D−1
4;γU1i γU2i

[
∂ 2η1i(t1i)

∂ t1i∂β1

]}
+ γR1iγR2iD

−1
γR1i γR2i

{
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

}
+

+ γL1iγL2iD
−1
γL1i γL2i

{
−G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
+

+
∂C{G1(η1i(l1i)),G2(η2i(l2i))

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

}
+

+ γI1iγI2iD
−1
γI1i γI2i

{
∂C{G1(η1i(l1i)),G2(η2i(l2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
+

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1
+

− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1
+

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

}
+

+ γU1iγR2i

{
D−1

1;γU1i γR2i

∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}
∂ 2G1(η1i(t1i))

·G′
1(η1i(t1i) ·

∂η1i(t1i)

∂β1
+

+D−1
2;γU1i γR2i

[
−G′′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

]
+

+D−1
3;γU1i γR2i

∂ 2η1i(t1i)

∂ t1i∂β1

}
+ γR1iγU2iD

−1
1;γR1i γU2i

{
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

}
+

+ γU1iγL2i

{
D−1

1;γU1i γL2i

∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))2 ·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1
+

+D−1
2;γU1i γL2i

G′′
1(η1i(t1i))

∂η1i(t1i)

∂β1
+

+D−1
3;γU1i γL2i

∂ 2η1i(t1i)

∂ t1i∂β1

}
+

+ γL1iγU2i

{
D−1

1;γL1i γU2i

∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

}
+
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+ γU1iγI2i

{
D−1

1;γU1i γI2i

[
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))2 ·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂β1
+

− ∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))2 ·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

]
+

+D−1
2;γU1i γI2i

[
G′′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

]
+D−1

3;γU1i γI2i

[
∂ 2η1i(t1i)

∂ t1i∂β1

]}
+

+ γI1iγU2iD
−1
1;γI1i γU2i

{
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G1(η1i(r1i))∂G2(η2i(t2i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G1(η1i(l1i)∂G2(η2i(t2i))

·G′
1(η1i(l1i) ·

∂η1i(l1i)

∂β1

}
+

+ γR1iγL2iD
−1
γR1i γL2i

{
G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

}
+

+ γL1iγR2iD
−1
γL1i γR2i

{
− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

}
+

+ γR1iγI2iD
−1
γR1i γI2i

{
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

}
+

+ γI1iγR2iD
−1
γI1i γR2i

{
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i))

∂η1i(r1i)

∂β1

}
+

+ γL1iγI2iD
−1
γL1i γI2i

{
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

}
γI1iγL2iD

−1
γI1i γL2i

{
G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1
−G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
+

+
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1
+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

}
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First derivative of log-likelihood with respect to β 2

∂ℓ(δ )

∂β2
=γU1iγU2i

{
D−1

1;γU1i γU2i

∂ 3C{G1(η1i(t1i)),G2(η2i(t2i))}
∂G1(η1i(t1i))∂G2(η2i(t2i))2 ·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2
+

+D−1
3;γU1i γU2i

G′′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2
+

+D−1
5;γU1i γU2i

∂ 2η2i(t2i)

∂ t2i∂β2

}
+

+ γR1iγR2iD
−1
γR1i γR2i

{
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

}
+

+ γL1iγL2iD
−1
γL1i γL2i

{
−G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2
+

+
∂C{G1(η1i(l1i)),G2(η2i(l2i))

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

}
+

+ γI1iγI2iD
−1
γI1i γI2i

{
∂C{G1(η1i(l1i)),G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2
+

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2
+

− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2
+

+
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

}
+

+ γU1iγR2iD
−1
1;γU1i γR2i

{
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

}
+

+ γR1iγU2i

{
D−1

1;γR1i γU2i

[
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂ 2G2(η2i(t2i))
·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

]
+

+D−1
2;γR1i γU2i

[
−G′′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

]
+

+D−1
3;γR1i γU2i

∂ 2η2i(t2i)

∂ t2i∂β2

}
+

+ γU1iγL2iD
−1
1;γU1i γL2i

{
∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}

∂G1(η1i(t1i))∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

}
+

+ γL1iγU2i

{
D−1

1;γL1i γU2i

[
∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))2 ·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

]
+

+D−1
2;γL1i γU2i

[
G′′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

]
+D−1

3;γL1i γU2i

[
∂ 2η2i(t2i)

∂ t2i∂β2

]}
+

+ γU1iγI2iD
−1
1;γU1i γI2i

{
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2
+

− ∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

}
+
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+ γI1iγU2i

{
D−1

1;γI1i γU2i

[
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))2 ·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2
+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))2 ·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

]
+

+D−1
2;γI1i γU2i

G′′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

+D−1
3;γI1i γU2i

∂ 2η2i(t2i)

∂ t2i∂β2

}
+

+ γR1iγL2iD
−1
γR1i γL2i

{
− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

}
+

+ γL1iγR2iD
−1
γL1i γR2i

{
G′

2(η2i(r2i))
∂η2i(r2i)

∂β2
− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

}
+

+ γR1iγI2iD
−1
γR1i γI2i

{
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G2(η2i(l2i)
·G′

2(η2i(l2i) ·
∂η2i(l2i)

∂β2
+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

}
+

γI1iγR2iD
−1
γI1i γR2i

{
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2
+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

}
+

+ γL1iγI2iD
−1
γL1i γI2i

{
G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2
−G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2
+

+
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2
+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

}
+

γI1iγL2iD
−1
γI1i γL2i

{
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2
+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂G2(η2i(l2i)

·G′
2(η2i(l2i) ·

∂η2i(l2i)

∂β2

}
+
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First derivative of log-likelihood with respect to β 3

∂ℓ(δ )

∂β 3
=γU1iγU2iD

−1
1;γU1i γU2i

{
∂ 3C{G1(η1i(t1i)),G2(η2i(t2i))}

∂G1(η1i(t1i))∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β 3)

∂β 3

}
+

+ γR1iγR2iD
−1
γR1i γR2i

{
∂C{G1(η1i(r1i)),G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β 3)

∂β 3

}
+

+ γL1iγL2iD
−1
γL1i γL2i

{
∂C{G1(η1i(l1i)),G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β 3)

∂β 3

}
+

+ γI1iγI2iD
−1
γI1i γI2i

{
∂C{G1(η1i(l1i)),G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β 3)

∂β 3
+

− ∂C{G1(η1i(l1i)),G2(η2i(r2i))

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β 3)

∂β 3
+

− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β 3)

∂β 3
+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β 3)

∂β 3

}
+

+ γU1iγR2iD
−1
1;γU1i γR2i

{
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β 3)

∂β 3

}
+

+ γR1iγU2iD
−1
1;γR1i γU2i

{
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β 3)

∂β 3

}
+

+ γU1iγL2iD
−1
1;γU1i γL2i

{
∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β 3)

∂β 3

}
+

+ γL1iγU2iD
−1
1;γL1i γU2i

{
∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β 3)

∂β 3

}
+

+ γU1iγI2iD
−1
1;γU1i γI2i

{
∂ 2C{G1(η1i(t1i)),G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β 3)

∂β 3
+

− ∂ 2C{G1(η1i(t1i)),G2(η2i(l2i))}
∂G1(η1i(t1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β 3)

∂β 3

}
+

+ γI1iγU2iD
−1
1;γI1i γU2i

{
∂ 2C{G1(η1i(r1i)),G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β 3)

∂β 3
+

− ∂ 2C{G1(η1i(l1i)),G2(η2i(t2i))}
∂G2(η2i(t2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β 3)

∂β 3

}
+

+ γR1iγL2iD
−1
γR1i γL2i

{
− ∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β 3)

∂β 3

}
+

+ γL1iγR2iD
−1
γL1i γR2i

{
− ∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β 3)

∂β 3

}
+

+ γR1iγI2iD
−1
γR1i γI2i

{
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β 3)

∂β 3
+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β 3)

∂β 3

}
+
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+ γI1iγR2iD
−1
γI1i γR2i

{
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β 3)

∂β 3
+

− ∂C{G1(η1i(r1i)),G2(η2i(r2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β 3)

∂β 3

}
+

+ γL1iγI2iD
−1
γL1i γI2i

{
∂C{G1(η1i(l1i)),G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β 3)

∂β 3
+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β 3)

∂β 3

}
+

+ γI1iγL2iD
−1
γI1i γL2i

{
∂C{G1(η1i(r1i)),G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β 3)

∂β 3
+

− ∂C{G1(η1i(l1i)),G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β 3)

∂β 3

}
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A.3 Hessian

Second derivative of log-likelihood with respect to β 1

∂ 2ℓ(δ )

∂β 1∂β
T
1
=γU1iγU2i

{
(−1)D−2

1;γU1i γU2i
·
(

∂D1;γU1i γU2i

∂β 1

)2

+D−1
1;γU1i γU2i

·
∂ 2D1;γU1i γU2i

∂β 1∂β
T
1

+

(−1)D−2
2;γU1i γU2i

·
(

∂D2;γU1i γU2i

∂β 1

)2

+D−1
2;γU1i γU2i

·
∂ 2D2;γU1i γU2i

∂β 1∂β
T
1

+

(−1)D−2
4;γU1i γU2i

·
(

∂D4;γU1i γU2i

∂β 1

)2

+D−1
4;γU1i γU2i

·
∂ 2D4;γU1i γU2i

∂β 1∂β
T
1

}
+

+ γR1iγR2i

{
(−1)D−2

γR1i γR2i
·
(

∂DγR1i γR2i

∂β 1

)2

+D−1
γR1i γR2i

·
∂ 2DγR1i γR2i

∂β 1∂β
T
1

}
+

+ γL1iγL2i

{
(−1)D−2

γL1i γL2i
·
(

∂DγL1i γL2i

∂β 1

)2

+D−1
γL1i γL2i

·
∂ 2DγL1i γL2i

∂β 1∂β
T
1

}
+

+ γI1iγI2i

{
(−1)D−2

γI1i γI2i
·
(

∂DγI1i γI2i

∂β 1

)2

+D−1
γI1i γI2i

·
∂ 2DγI1i γI2i

∂β 1∂β
T
1

}
+

+ γU1iγR2i

{
(−1)D−2

1;γU1i γR2i
·
(

∂D1;γU1i γR2i

∂β 1

)2

+D−1
1;γU1i γR2i

·
∂ 2D1;γU1i γR2i

∂β 1∂β
T
1

+

(−1)D−2
2;γU1i γR2i

·
(

∂D2;γU1i γR2i

∂β 1

)2

+D−1
2;γU1i γR2i

·
∂ 2D2;γU1i γR2i

∂β 1∂β
T
1

+

(−1)D−2
3;γU1i γR2i

·
(

∂D3;γU1i γR2i

∂β 1

)2

+D−1
3;γU1i γR2i

·
∂ 2D3;γU1i γR2i

∂β 1∂β
T
1

}
+

+ γR1iγU2i

{
(−1)D−2

1;γR1i γU2i
·
(
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Second derivative of log-likelihood with respect to β 1 and β 2
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Second derivative of log-likelihood with respect to β 1 and β 3
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Second derivative of log-likelihood with respect to β 2
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Second derivative of log-likelihood with respect to β 2 and β 3
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Second derivative of log-likelihood with respect to β 3
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A.4 Simulation study

This section provides evidence on the empirical effectiveness of the proposed approach in

recovering true covariate effects and baseline functions.

Survival time T1i was generated from a proportional hazards (PH) model, in particular

it was obtained as the solution of log(− log(U1i)) = log[− logS10(t1i)]+β11x1i + s11(x2i),

where U1i is uniform in [0,1] and S10(t1i) = 0.9exp(−0.4t2.5
1i )+0.1exp(−0.1t1i). Time T2i

was generated from a proportional odds (PO) model, and it was obtained as the solution of

log
[

1−U2i
U2i

]
= log

[
1−S20(t2i)

S20(t2i)

]
+β21x1i +β22x3i, where U2i is uniform in [0,1] and S20(t2i) =

S10(t2i) = 0.9exp(−0.4t2.5
1i ) + 0.1exp(−0.1t1i). Observations were generated using the

Brent’s univariate root finding algorithm. The two survival times were joined using a

Clayton copula where the predictor for the dependence parameter was specified as η3i =

β31x1i + s31(x2i). In practice this was achieved using the conditional sampling approach. The

specification of η3 allowed dependence to vary across observations, with Kendall’s τ values

ranging approximately from 0.10 to 0.90. The smooth functions were s11(xi) = sin(2πxi),

s31(xi) = 3sin(πxi) and the parameters were defined as β11 = −1.5, β21 = 1.2, β22 = 1.2,

β31 = −1.5. Correlated covariates were generated using a multivariate standard normal

distribution with a correlation parameter ρ = 0.5, and then transformed using the distribution

function of a standard normal distribution. Covariate x1i was dichotomised by simply

rounding it. The random censoring times were generated using the lower and upper bounds

from two uniform random variables. Specifically, this was achieved by comparing such

bounds with the simulated times. Uncensored observations were obtained from a subset of

the interval- and left-censored observations, using a binomial random variable. Table A.1

shows the censoring rates for two scenarios: mild and high censoring. In the former case,

the overall percentage of censoring for the two outcomes is 62.86% and 44.98%, and in the

latter we have 84.82% and 77.13%.

Sample sizes were set to 1000,1500,2000 while the number of replicates to 1000. The

models were fitted using gjrm() in GJRM with the Clayton copula. The smooth components

of the covariates were represented using penalized low rank thin plane splines with second

order penalty and 10 basis functions, and the smooths of times using monotonic penalised

B-splines with penalty defined in Section 2.1 of the main paper, and 10 bases. For each

replicate, curve estimates were constructed using 200 equally spaced fixed values in the (0,8)

range for the monotonic functions and (0,1) otherwise.
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Mild High
II 2.29 9.01
IL 2.81 10.14
IR 1.15 2.09
IU 7.95 6.04
LI 1.60 5.47
LL 2.38 8.18
LR 0.48 0.86
LU 5.70 4.53
RI 6.46 11.98
RL 7.54 13.70
RR 4.15 4.15
RU 20.35 8.67
UI 6.06 4.58
UL 7.62 5.85
UR 2.44 1.12
UU 21.02 3.63

I L R U
Mild cens1 14.20 10.16 38.50 37.14

cens2 16.41 20.35 8.22 55.02
High cens1 27.28 19.04 38.50 15.18

cens2 31.04 37.87 8.22 22.87

Table A.1: Proportions of censoring rates by type, for two scenarios: mild and high censor-
ing. These have been obtained by averaging the censoring rates obtained over
1000 simulated datasets.

The main findings of the simulation study are summarised below:

Parametric effects:

Figures A.1 and A.2 show that overall the mean estimates are very close to the respective

true values and improve as the sample size increases, and that the variability of the estimates

decreases as the sample size grows large. The estimates for β31 (the effect of x1i contained

in the additive predictor of the copula parameter) are more variable and exhibit some bias

as compared to those of the other parameters, although the bias is somewhat negligible.

However, the situation improves as more observations are available for model fitting. This

result was completely in line with expectations and has also been documented by Romeo

et al. (2018) and Marra & Radice (2020). The latter authors investigated this issue and found

that the profile log-likelihood of the copula coefficient tends to be less sharp around the

optimum which is to be expected.
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Smooth effects:

Figures A.3 and A.4 with Tables A.2 and A.3 show that overall the true smooth functions

are recovered well by the proposed estimation method and that the results improve in terms

of bias and efficiency as the sample size increases. As expected, estimation of s31(x1i) is

more challenging, for the reasons given earlier on. However, the performance improves

dramatically as the sample size grows large. This suggests that complex model specifications

should be adopted if the information content in the data is deemed sufficient to estimate

reliably such effects.

Impact of censoring rates:

Comparing the plots of Figure A.1 (mild censoring rates) with those of Figure A.2 (high

censoring), and the bias and root mean squared error (RMSE) of Table A.2 (mild censoring

rates) with those of Table A.3 (high censoring), we see that the presence of high censoring

deteriorates the estimation performance. Moreover, the most affected parameters are those

belonging to the copula’s additive predictor. These results do not come as a surprise given

the loss of information caused by a higher level of censoring. As expected, as the sample size

increases the estimates improve considerably which is reassuring. Finally, high censoring

caused the algorithm to fail to converge for a few simulation replicates which were discarded

from the results.

Coverage probabilities for the model terms were also checked. The empirical coverages

were overall close to the respective nominal levels; for instance, for a 95% nominal level

the coverages were in the range [0.93,0.96]. The exceptions were observed for the difficult

scenario of high censoring rate and small sample size where, for the effects related to the

dependence parameter, the coverages were in the range [0.88,0.93] for a nominal level of

95%. This was expected since, as mentioned in the previous paragraphs, estimation of such

effects is more difficult. The situation improved significantly for larger sample sizes.
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Figure A.1: Linear coefficient estimates obtained by applying gjrm to bivariate survival data
with mild censoring rates. Circles indicate mean estimates, whereas vertical
bars represent estimate ranges (5%-95% quantiles). True values are denoted
with black solid lines. Black circles refer to the results obtained for n = 1000,
whereas those in dark grey and light grey are for n = 1500 and n = 2000.

Using sample sizes smaller than the ones considered here would clearly affect the

estimation performance. In fact, a small number of observations necessarily implies a limit

to the amount of modeling complexity allowed by the data (e.g. Marra & Radice, 2020). In

such a case, one would have to employ simpler model specifications as the use of splines

clearly requires the availability of more information. For example, one could assume linear

covariate effects instead of smooth (non-linear) ones. Nevertheless, following a reviewer

suggestion, we checked how far we can push the model. When setting, e.g., n at 300, we

had to discard around 30% of the replicates (those related to the non-converged models).

However, surprisingly, results were still reasonable; see Figures A.5 and A.6.
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Bias RMSE
n = 1000 n = 1500 n = 2000 n = 1000 n = 1500 n = 2000

β11 0.008 0.004 0.009 0.082 0.072 0.063
β21 0.003 0.008 0.011 0.124 0.104 0.088
β31 -0.038 -0.031 -0.031 0.209 0.161 0.139
h10 0.040 0.034 0.028 0.154 0.115 0.110
h20 0.026 0.018 0.015 0.144 0.115 0.104
s11 0.021 0.016 0.014 0.073 0.058 0.050
s31 0.087 0.060 0.045 0.279 0.196 0.146

Table A.2: Bias and root mean squared error (RMSE) obtained by applying gjrm to bi-
variate survival data with mild censoring rates. Bias and RMSE for the smooth
terms are calculated using the following expressions: Bias=n−1

s ∑
ns
i=1 | ¯̂si − si|

and RMSE=n−1
s ∑

ns
i=1

√
n−1

rep ∑
nrep
rep=1(ŝrep,i − si)2, where ¯̂si = n−1

rep ∑
nrep
rep=1 ŝrep,i, ns

is the number of equally spaced fixed values in the (0,8) or (0,1) range, and nrep

is the number of simulation replicates. The bias for the smooth terms is based on
absolute differences in order to avoid compensating effects when taking the sum.

Bias RMSE
n = 1000 n = 1500 n = 2000 n = 1000 n = 1500 n = 2000

β11 0.006 0.007 0.010 0.095 0.077 0.066
β21 0.001 0.009 0.006 0.146 0.123 0.099
β31 -0.100 -0.073 -0.055 0.344 0.259 0.204
h10 0.051 0.036 0.030 0.149 0.122 0.105
h20 0.038 0.027 0.019 0.164 0.137 0.124
s11 0.022 0.017 0.017 0.086 0.068 0.059
s31 0.075 0.044 0.036 0.379 0.254 0.190

Table A.3: Bias and root mean squared error (RMSE) obtained by applying gjrm to bivariate
survival data with high censoring rates. Further details are given in the caption
of Table A.2.

A.5 Model fitting using GJRM

The proposed modelling framework has been implemented within the R package GJRM (Marra

& Radice, 2024), which required extending the gjrm() function. This package has been

created to enhance reproducible research and to disseminate results in a straightforward

and transparent way. The function is generally very easy to use, especially if the user is

already familiar with the syntax of (generalized) linear and additive models in R. For instance,

one of the calls used for modelling data from the AREDS, available through the R package

CopulaCenR, is

eq1 <- t11 ~ s(t11, bs = "mpi") + s(ENROLLAGE) + SevScale1E + rs2284665

eq2 <- t21 ~ s(t21, bs = "mpi") + s(ENROLLAGE) + SevScale2E + rs2284665
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Figure A.2: Linear coefficient estimates obtained by applying gjrm to bivariate survival
data with high censoring rates. Further details are given in the caption of Figure
A.1.

eq3 <- ~ s(ENROLLAGE) + rs2284665

f.list <- list(eq1, eq2, eq3)

out <- gjrm(f.list, data = AREDS, surv = TRUE, BivD = "PL",

margins = c("PO", "PO"), cens1 = cens1, cens2 = cens2,

Model = "B", upperBt1 = "t12", upperBt2 = "t22")

where t11 and t12 represent the lower and upper bounds, respectively, of the time

interval where the left eye progressed to late-AMD. If t12 = NA, then the left eye

did not progress to late-AMD by the end of the study and hence the outcome is not

observed (right censoring). cens1 is a factor variable indicating the type of censoring

(in this case, either interval or right in accordance with t12). Similarly, t21 and t22

represent the lower and upper bounds of the time interval for the right eye and cens2

is the censoring indicator. AREDS is a data frame containing the variables, including

the three covariates, ENROLLAGE, SevScale1E and rs2284665, already defined in
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Figure A.5: Linear coefficient estimates obtained by applying gjrm to bivariate survival data
with mild censoring rates and n= 300. Circles indicate mean estimates, whereas
vertical bars represent estimate ranges (5%-95% quantiles). True values are
denoted with black horizontal solid lines.

Section 4 of the main paper. Model must be set to = ”B” and surv to TRUE in order to

employ a joint bivariate survival model. The possible choices for BivD and margins

are given in Section 2 of the paper, f.list is a list of equations for the survival

outcomes and the copula dependence parameter, s denotes the use of a smooth term

and argument bs specifies the type of spline basis (e.g., tp for thin plate regression

spline (the default) and mpi for monotonic P-spline). Monotonic P-splines must

always be used for the smooth terms of the time variables, otherwise the program

will produce an error message. After fitting the model, function conv.check() can

be used to check that convergence has been achieved.

conv.check(out)

Largest absolute gradient value: 2.646634e-05
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Observed information matrix is positive definite

Eigenvalue range: [0.008631199,1.983189e+13]

Trust region iterations before smoothing parameter estimation: 55

Loops for smoothing parameter estimation: 9

Trust region iterations within smoothing loops: 22

Estimated overall probability range: 0.0209511 0.9999631

Estimated overall density range: 3.687044e-05 5.944891

The function provides various information about the estimation process. Convergence

is assessed by checking that the maximum of the absolute value of the score vector

is virtually equal to 0 and that the observed information matrix is positive definite.

To obtain summary statistics, we can use summary() which works in a similar

fashion as that of (generalised) linear and additive models.

summary(out)

COPULA: Plackett

MARGIN 1: survival with -logit link

MARGIN 2: survival with -logit link

EQUATION 1

Formula: t11 ~ s(t11, bs = "mpi") + s(ENROLLAGE) + SevScale1E + rs2284665

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -18.0019 4.3929 -4.098 4.17e-05 ***

SevScale1E5 0.6709 0.2413 2.781 0.00542 **

SevScale1E6 0.9975 0.2226 4.482 7.40e-06 ***

SevScale1E7 1.9248 0.2303 8.358 < 2e-16 ***

SevScale1E8 2.8320 0.3163 8.954 < 2e-16 ***

rs22846651 0.3196 0.1667 1.918 0.05517 .

rs22846652 0.5950 0.2337 2.546 0.01090 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(t11) 6.680 7.697 1867.11 < 2e-16 ***

s(ENROLLAGE) 1.545 1.923 14.46 0.00173 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 2

Formula: t21 ~ s(t21, bs = "mpi") + s(ENROLLAGE) + SevScale2E + rs2284665

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -30.7363 10.7534 -2.858 0.004260 **

SevScale2E5 0.7855 0.2555 3.075 0.002107 **

SevScale2E6 1.1900 0.2383 4.994 5.92e-07 ***

SevScale2E7 2.4208 0.2527 9.578 < 2e-16 ***

SevScale2E8 3.2760 0.3284 9.977 < 2e-16 ***

rs22846651 0.4452 0.1689 2.635 0.008403 **

rs22846652 0.7772 0.2263 3.434 0.000595 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(t21) 7.452 8.266 3933.136 < 2e-16 ***

s(ENROLLAGE) 1.000 1.000 6.714 0.00957 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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EQUATION 3

Link function for theta: log

Formula: ~s(ENROLLAGE) + rs2284665

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.4190 0.2387 5.946 2.75e-09 ***

rs22846651 0.3915 0.3058 1.280 0.200

rs22846652 0.3023 0.4032 0.750 0.453

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(ENROLLAGE) 1 1 0.003 0.954

theta = 5.27(3.31,9.12) tau = 0.353(0.253,0.456)

n = 628 total edf = 34.7

Since the copula parameter does not seem, on this instance, to be influenced by

covariates and the effect of ENROLLAGE is linear (edf= 1) in the second margin, a

more parsimonious model, the one reported in Section 4 of the manuscript, was

specified:

eq1 <- t11 ~ s(t11, bs = "mpi") + s(ENROLLAGE) + SevScale1E + rs2284665

eq2 <- t21 ~ s(t21, bs = "mpi") + ENROLLAGE + SevScale2E + rs2284665

f.list <- list(eq1, eq2)

out <- gjrm(f.list, data = AREDS, surv = TRUE, BivD = "PL",

margins = c("PO", "PO"), cens1 = cens1, cens2 = cens2,

Model = "B", upperBt1 = "t12", upperBt2 = "t22")

summary(out)

COPULA: Plackett

MARGIN 1: survival with -logit link
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MARGIN 2: survival with -logit link

EQUATION 1

Formula: t11 ~ s(t11, bs = "mpi") + s(ENROLLAGE) + SevScale1E + rs2284665

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -18.0368 4.3965 -4.103 4.09e-05 ***

SevScale1E5 0.6707 0.2419 2.773 0.00556 **

SevScale1E6 1.0049 0.2235 4.497 6.90e-06 ***

SevScale1E7 1.9255 0.2309 8.338 < 2e-16 ***

SevScale1E8 2.8208 0.3165 8.914 < 2e-16 ***

rs22846651 0.3269 0.1665 1.963 0.04966 *

rs22846652 0.6058 0.2328 2.602 0.00927 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(t11) 6.633 7.658 1879.02 < 2e-16 ***

s(ENROLLAGE) 1.604 2.007 12.89 0.00159 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 2

Formula: t21 ~ s(t21, bs = "mpi") + ENROLLAGE + SevScale2E + rs2284665

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -33.28111 10.89158 -3.056 0.002246 **

ENROLLAGE 0.03643 0.01443 2.524 0.011592 *
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SevScale2E5 0.81869 0.25569 3.202 0.001365 **

SevScale2E6 1.20579 0.23953 5.034 4.81e-07 ***

SevScale2E7 2.42703 0.25287 9.598 < 2e-16 ***

SevScale2E8 3.27930 0.32983 9.942 < 2e-16 ***

rs22846651 0.45890 0.16852 2.723 0.006467 **

rs22846652 0.78741 0.22556 3.491 0.000481 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(t21) 7.404 8.227 3872 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

theta = 5.26(4.06,6.87) tau = 0.356(0.304,0.408)

n = 628 total edf = 31.6

Refer to Section 4 of the manuscript for the interpretation of these summaries.

Function plot() can be used to visualise results.

par(mfrow = c(1, 3), mar = c(4, 5, 2, 0) + 0.1 )

plot(out, eq = 1, scale = 0, select = 1)

plot(out, eq = 1, scale = 0, select = 2)

plot(out, eq = 2, scale = 0, select = 1)

They correspond to the three estimated smooth functions reported in Figure 1 of

Section 4.

To obtain 3D plots, such as the one reported in the left panel of Figure 2 of

Section 4 which represents the joint progression-free probability contours for subjects

who are 69 years old with AMD severity score equal to 6 for both eyes but with

different genotypes of rs2284665, the following R code chunk was used

size <- 40
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x <- y <- seq(from = 0, to = 12, length.out = size)

t11 <- rep(x = x, each = size)

t21 <- rep(x = y, times = size)

newd0 <- data.frame(t11 = t11, t21 = t21, ENROLLAGE = 69, SevScale1E = 4,

SevScale2E = 4, rs2284665 = 1)

newd1 <- data.frame(t11 = t11, t21 = t21, ENROLLAGE = 69, SevScale1E = 6,

SevScale2E = 6, rs2284665 = 1)

newd2 <- data.frame(t11 = t11, t21 = t21, ENROLLAGE = 69, SevScale1E = 8,

SevScale2E = 8, rs2284665 = 1)

res0 <- jc.probs(out, type = "joint", newdata = newd0)

res1 <- jc.probs(out, type = "joint", newdata = newd1)

res2 <- jc.probs(out, type = "joint", newdata = newd2)

z0 <- matrix(data = res0$p12, nrow = size, byrow = TRUE)

z1 <- matrix(data = res1$p12, nrow = size, byrow = TRUE)

z2 <- matrix(data = res2$p12, nrow = size, byrow = TRUE)

persp3D(x = x, y = y, z = z0, zlim = c(0, 1), box = TRUE, plot = TRUE,

theta = 50, phi = 10, expand = 1, col = "grey90",

xlab = "Years (Left)", ylab = "Years (Right)",

zlab = "Progression-free Probability", ticktype = "detailed",

facets = FALSE, bty = "b2")

persp3D(x = x, y = y, z = z1, zlim = c(0, 1), box = FALSE, plot = TRUE,

add = TRUE, theta = 50, phi = 10, expand = 1, col = "grey50",

facets = FALSE)

persp3D(x = x, y = y, z = z2, zlim = c(0, 1), box = FALSE, plot = TRUE,

add = TRUE, theta = 50, phi = 10, expand = 1, col = "grey5",

facets = FALSE)
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legend(x = 0.2, y = 0.3, legend = c("4", "6", "8"),

fill = c("grey90","grey50","grey5"), bty = "n")

The remaining 3D plots of Figure 2 were obtained by modifying the above code

accordingly.

Interaction terms can also be included in the model by using the same syntax

employed for generalised linear and additive models. One example is give below

eq1 <- t11 ~ s(t11, bs = "mpi") + s(ENROLLAGE) + ti(t11, ENROLLAGE) +

SevScale1E * rs2284665

eq2 <- t21 ~ s(t21, bs = "mpi") + ENROLLAGE * rs2284665 +

SevScale2E

f.list <- list(eq1, eq2)

out <- gjrm(f.list, data = AREDS, surv = TRUE, BivD = "PL",

margins = c("PO", "PO"), cens1 = cens1, cens2 = cens2,

Model = "B", upperBt1 = "t12", upperBt2 = "t22")

Other familiar functions such as AIC(), BIC(), predict() can be used in the usual

manner to extract the information criteria and to make prediction. Further details

can be found in the documentation of the GJRM package in R.

Following a referee suggestion, we also fitted models with alternative copulae

(here we used the second and third best ones).

outF <- gjrm(f.list, data = AREDS_formatted, surv = TRUE,

BivD = "F", margins = c("PO", "PO"),

cens1 = cens1, cens2 = cens2, Model = "B",

upperBt1 = ’t12’, upperBt2 = ’t22’)

outG180 <- gjrm(f.list, data = AREDS_formatted, surv = TRUE,

BivD = "F", margins = c("PO", "PO"),

cens1 = cens1, cens2 = cens2, Model = "B",

upperBt1 = ’t12’, upperBt2 = ’t22’)

The substantive conclusions did not change. Below, we report the summary results

from the former model.
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COPULA: Frank

MARGIN 1: survival with -logit link

MARGIN 2: survival with -logit link

EQUATION 1

Formula: t11 ~ s(t11, bs = "mpi") + s(ENROLLAGE) + SevScale1E + rs2284665

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -17.9941 4.4087 -4.081 4.47e-05 ***

SevScale1E5 0.6737 0.2435 2.767 0.00566 **

SevScale1E6 0.9966 0.2238 4.453 8.46e-06 ***

SevScale1E7 1.9478 0.2309 8.435 < 2e-16 ***

SevScale1E8 2.8656 0.3141 9.125 < 2e-16 ***

rs22846651 0.3152 0.1666 1.891 0.05859 .

rs22846652 0.5643 0.2345 2.407 0.01610 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(t11) 6.620 7.648 1849.16 < 2e-16 ***

s(ENROLLAGE) 1.591 1.988 13.97 0.00127 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 2

Formula: t21 ~ s(t21, bs = "mpi") + s(ENROLLAGE) + SevScale2E + rs2284665

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)
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(Intercept) -30.5894 10.7055 -2.857 0.004272 **

SevScale2E5 0.7991 0.2562 3.120 0.001810 **

SevScale2E6 1.2219 0.2393 5.106 3.29e-07 ***

SevScale2E7 2.4428 0.2540 9.618 < 2e-16 ***

SevScale2E8 3.2842 0.3286 9.994 < 2e-16 ***

rs22846651 0.4644 0.1690 2.747 0.006010 **

rs22846652 0.7522 0.2246 3.350 0.000808 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(t21) 7.389 8.215 3857.456 <2e-16 ***

s(ENROLLAGE) 1.000 1.000 5.993 0.0144 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 3

Link function for theta: identity

Formula: ~s(ENROLLAGE) + rs2284665

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.9658 0.5493 5.399 6.7e-08 ***

rs22846651 1.0241 0.7345 1.394 0.163

rs22846652 1.0612 1.0168 1.044 0.297

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value
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s(ENROLLAGE) 1.137 1.262 0.259 0.825

theta = 3.6(2.21,4.97) tau = 0.355(0.233,0.452)

n = 628 total edf = 34.7

A.6 R code to simulate data
The code used to simulate data in the simulation study is

datagenCopulaMixCens <- function(n, my.seed = 1){

set.seed(my.seed)

cor.cov <- matrix(0.5, 3, 3); diag(cor.cov) <- 1

cov <- rMVN(n, rep(0,3), cor.cov)

cov <- pnorm(cov)

z1 <- round(cov[, 1])

z2 <- cov[, 2]

z3 <- cov[, 3]

s11 <- function(x) sin(2*pi*x)

s31 <- function(x) 3*sin(pi*x)

beta11 <- -1.5

beta21 <- 1.2

beta31 <- -1.5

f1 <- function(t, beta, sm.fn, u, z1, z2, z3){

S_0 <- 0.9 * exp(-0.4*t^2.5) + 0.1*exp(-0.1*t^1)

exp( -exp(log(-log(S_0)) + beta*z1 + sm.fn(z2)) ) - u

}

f2 <- function(t, beta1, beta2, sm.fn, u, z1, z2, z3){

S_0 <- 0.9 * exp(-0.4*t^2.5) + 0.1*exp(-0.1*t^1)

1/(1 + exp(log((1-S_0)/S_0) + beta1*z1 + beta2*z3 )) - u



A.6. R code to simulate data 177

}

u <- runif(n, 0, 1)

t <- rep(NA, n)

for (i in 1:n){

t[i] <- uniroot(f1, c(0, 8), tol = .Machine$double.eps^0.5,

beta = beta11, sm.fn = s11, u = u[i],

z1 = z1[i], z2 = z2[i], z3 = z3[i], extendInt = "yes")$root

}

c1 <- runif(n, 0, 2)

c2 <- c1 + runif(n, 0, 6)

dataSim <- data.frame(t.true1 = t, c11 = c1, c12 = c2, t11 = NA, t12 = NA,

z1, z2, z3, cens = character(n),

surv1 = u, stringsAsFactors = FALSE)

for (i in 1:n){

if(t[i] <= c1[i]) {

dataSim$t11[i] <- c1[i]

dataSim$t12[i] <- NA # redundant but nice for clarity

dataSim$cens[i] <- "L"

} else if (c1[i] < t[i] && t[i] <= c2[i]){

dataSim$t11[i] <- c1[i]

dataSim$t12[i] <- c2[i]

dataSim$cens[i] <- "I"

} else if (t[i] > c2[i]){

dataSim$t11[i] <- c2[i]

dataSim$t12[i] <- NA # redundant but nice for clarity

dataSim$cens[i] <- "R"}
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}

%p=0.25 high

%p=0.60 mild censoring

uncens <- (dataSim$cens %in% c("L", "I")) + (rbinom(n, 1, 0.60) == 1) == 2

dataSim$t11[uncens] <- t[uncens]

dataSim$t12[uncens] <- NA

dataSim$cens[uncens] <- "U"

eta.theta <- beta31*z1 + s31(z2) # this is for Clayton

theta <- exp(eta.theta)

u2 <- runif(n, 0, 1)

u_prime <- ((u2^(-theta/(1 + theta)) - 1) * u^(-theta) + 1)^(-1/theta)

t <- rep(NA, n)

for (i in 1:n){

t[i] <- uniroot(f2, c(0, 8), tol = .Machine$double.eps^0.5,

beta1 = beta21, beta2 = beta21, sm.fn = s21, u = u_prime[i],

z1 = z1[i], z2 = z2[i], z3 = z3[i], extendInt = "yes")$root

}

dataSim$t.true2 <- t

c1 <- runif(n, 0, 2)

c2 <- c1 + runif(n, 0, 6)

dataSim$c21 = c1

dataSim$c22 = c2

for (i in 1:n){

if(t[i] <= c1[i]) {

dataSim$t21[i] <- c1[i]
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dataSim$t22[i] <- NA

dataSim$cens[i] <- paste(dataSim$cens[i], "L", sep = "")

} else if (c1[i] < t[i] && t[i] <= c2[i]){

dataSim$t21[i] <- c1[i]

dataSim$t22[i] <- c2[i]

dataSim$cens[i] <- paste(dataSim$cens[i], "I", sep = "")

} else if (t[i] > c2[i]){

dataSim$t21[i] <- c2[i]

dataSim$t22[i] <- NA

dataSim$cens[i] <- paste(dataSim$cens[i], "R", sep = "")

}

}

%p=0.25 high

%p=0.60 mild censoring

uncens <- (substr(dataSim$cens, 2, 2) %in% c("L", "I")) +

(rbinom(n, 1, 0.60) == 1) == 2

dataSim$t21[uncens] <- t[uncens]

dataSim$t22[uncens] <- NA

dataSim$cens[uncens] <- paste(substr(dataSim$cens[uncens], 1, 1), "U", sep = "")

dataSim$surv2 = u_prime

dataSim$surv.joint = u2

list(dataFull = dataSim,

dataSim = dataSim[, c(’t11’, ’t12’, ’t21’, ’t22’,

’z1’, ’z2’, ’z3’, ’cens’)])

}

Data can then be simulated and a model fitted in the following way

library(GJRM)

n <- 1000
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eq1 <- t11 ~ s(t11, bs = "mpi") + z1 + s(z2)

eq2 <- t21 ~ s(t21, bs = "mpi") + z1 + z3

eq3 <- ~ z1 + s(z2)

f.l <- list(eq1, eq2, eq3)

dataSim <- datagenCopulaMixCens(n, my.seed = 1)$dataSim

dataSim$cens <- as.factor(dataSim$cens)

dataSim$cens1 <- as.factor(substr(as.character(dataSim$cens), start = 1, stop = 1))

dataSim$cens2 <- as.factor(substr(as.character(dataSim$cens), start = 2, stop = 2))

out <- gjrm(f.l, data = dataSim, surv = TRUE, BivD = "C0",

margins = c("PH", "PO"), cens1 = cens1, cens2 = cens2,

Model = "B", upperBt1 = ’t12’, upperBt2 = ’t22’)



Appendix B

Supplementary Material B

B.1 The P matrix in the continuously observed

setting: an overview
When the process is assumed to be time-dependent, computing the transition proba-

bilities from the estimated transition intensities is a nontrivial problem since closed

form expressions of the former as functions of the latter are not available. Two main

approaches can be identified in the literature of continuously observed processes to

address this problem.

The first approach is to solve, by means of packages such as deSolve in R

(Titman, 2011), the ordinary differential equations that tie the transition probability

matrix to the transition intensity matrix, when the process is assumed to be Markov.

This method is appealing in that it provides the entire transition probability matrix in

one step and is the technique implemented in the R packages rstpm2 (Clements et al.,

2021), through the function markov msm(), and flexsurv (Jackson, 2021), through

the function pmatrix.fs(). In both cases, the main required inputs are the fitted

transition intensities. In the former case the transition intensities can be specified in a

number of ways using a handful of existing survival modelling R packages, with the

most flexible options provided by the stpm2() function present within the rstpm2

package and the survPen() function from the R package survPen (Fauvernier

et al., 2020). With regard to flexsurv, the most common parametric forms found

in survival analysis, e.g. Weibull, can be assumed for the transition intensities
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through the function flexsurvreg() as well as the Royston-Parmar model through

the function flexsurvspline(). Overall, the drawback of this approach is that

it is difficult to generalise to the case in which the process is not assumed to be

Markov, e.g. when it is semi-Markov, another common type of dependence on past

history. Confidence intervals can then be obtained by using the covariance matrix

computed from the knowledge of the first derivative of the transition probability

matrix, obtained by simultaneously solving these ODEs mentioned above and an

augmented version of them obtained by taking the derivative of the left and right

hand-side with respect to time.

The second approach, and indeed the one that we adopt, is a simulation-based

approach which allows one to estimate the transition probabilities by simulating a

number M of paths through the assumed multistate process and counting the number

of individuals experiencing each transition (Iacobelli & Carstensen, 2013; Touraine

et al., 2016). This method benefits of the generality lacking in the previous one,

i.e. both Markov and semi-Markov processes are supported, thus tying nicely with

the flexibility available for the transition-specific modelling. Indeed, it is the only

such approach which is general in this respect. It was proposed in Fiocco et al.

(2008) and implemented in the Stata package multistate (Crowther & Lambert,

2016) and in the R packages flexsurv and mstate (Putter et al., 2020). In the

following we will focus only on R packages. In particular, we will use the latter as

it can be seamlessly integrated with our estimation approach, implemented in the

R package GJRM. Indeed, this package allows the user to obtained simulation-based

estimates of the transition probability matrix at any vector of time points through

the function mssample() by providing the estimated transition-specific cumulative

hazards computed at the time points of interest. Whether the process is Markov

or semi-Markov is then simply accounted for by specifying the argument clock =

’forward’ in the former case and clock = ’reset’ in the latter. Note that the

estimated cumulative hazards can in turn be straightforwardly obtained through the

function hazsurv.plot() from the GJRM package. Confidence intervals can then be

obtained by simulation from the asymptotic distribution of the maximum likelihood
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estimates of the model parameters. This is what is done in flexsurv and mstate.

We too adopt this approach by exploiting the fact that hazsurv.plot() already has

a built-in way of simulating cumulative hazard functions given the asymptotic distri-

bution of the model parameters. These can then be used as one would with a single

cumulative hazard curve to obtain many corresponding transition probability matri-

ces and thus compute the quantiles on these, as explained in Section 3.5. For more

details on how to fit the transition intensities and then obtain transition probabilities

and the related confidence intervals for a profile of interest, we refer the reader to

Supplementary Material B.3 and to the code accessible in the public repository

https://github.com/AlessiaEletti/ContinObsMultistateProcesses, through

which the results reported in the case study from Section 3.7 can be reproduced.

As an aside, in a nonparametric setting, one may also obtain the estimated

transition probabilities through the Aalen-Johansen estimator which provides a

way to compute the product integral tying the transition probability matrix to the

matrix containing the transition-specific cumulative hazard functions, when the

process is assumed to Markov (De Wreede et al., 2010). This is one of the ap-

proaches implemented in the R package mstate. Indeed, the transition specific

cumulative hazard functions are computed through the msfit() function either

via the Aalen estimator (by specifying vartype = ’Aalen’) or the Greenwood

estimator (by specifying vartype = ’Greenwood’). These estimates are then used

in the probtrans() function to compute the transition probability matrix via the

mentioned Aalen-Johansen estimator.

B.2 Rewriting the model log-likelihood when only

exact transitions are observed
For a multistate survival process assumed to be observed continuously and for

individual i = 1, . . . ,N, where N represents the sample size, let T (rs)
i be the transition-

specific true event time. This can be either uncensored, i.e. exactly observed, or

right-censored if the transition r → s did not occur prior to the maximum follow-up

time Tmax, in which case the transition is only known to have occurred after this
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time. In either case, the time may also be left-truncated if the event it relates to is

an intermediate one, i.e one which requires the individual to have transition to the

starting state considered prior to the current observation time. Indeed, left-truncation

of survival data occurs when only individuals whose event time lies within a window

(T td
i ,∞) are observed, otherwise no information on the individuals is available and

thus the subjects are not considered for inclusion into the study. This is precisely

the case here. Indeed, given an intermediate state r, an individual is at risk of

experiencing the transition r → s at a given time only if they are in state r at that time.

In particular, if they are known to have transitioned to state r at time T td
i , then they

are at risk of the transition r → s only after this time, i.e. in the window (T td
i ,∞),

which is thus the left-truncation time associated with the transition.

We will now sketch the steps which show how one can pass from the gen-

eral overall log-likelihood associated with a Markov multistate process to the re-

formulation of it in terms of a sum of log-likelihoods, each associated with a specific

transition, when the exact transition times are known. Showing this for the semi-

Markov case is outside of the scope of this paper.

Let us assume that a random i.i.d. sample of size N and let 0 = ti0 < ti1 <

· · ·< tini be the observed transition times for individual i. At these times the process

is observed to be in states zi0,zi1, . . . ,zini . If ℓi(θ) is the likelihood contribution of

individual i, A= {(r,s) ∈ S×S | r ̸= s∧q(rs)(·) ̸= 0} is the set of the pairs of states

corresponding to allowed transitions and θ = {β
(rs) | (r,s) ∈ A} is an overall model

parameter vector, the full log-likelihood is given by

ℓ(θ) =
N

∑
i=1

ℓi(θ) =
N

∑
i=1

ni

∑
j=1

ℓi j(θ) =
N

∑
i=1

ni

∑
j=1

log(Li j),

where

Li j = exp
[∫ ti j

ti j−1

qzi j−1,zi j−1(u;x)du
]

qzi j−1,zi j(ti j;x).

We will now clarify this by specialising it to a simple example which will allow us to
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ID tstart
i tstop

i Transition Status
i 0 t12 1 → 2 1
i 0 t12 1 → 3 0
i t12 t∗ 2 → 3 0

Table B.1: ith individual in the dataset.

write out each term explicitly. In particular, we will do this for a time-homogeneous

IDM for simplicity but the same reasoning can be extended to more general contexts

as settings. Let us assume we have a dataset with the ith individual characterised

by the observed transitions described in Table B.1. The ith likelihood contribution

associated with the process at hand will have the following form

Li =

1st term︷ ︸︸ ︷
q12 exp[t12q11] ·

2nd term︷ ︸︸ ︷
p22(t∗− t12)

= q12 exp[t12q11] · exp[−(t∗− t12)q23],

(B.1)

i.e. is the product of the contributions associated with the two observation times t12

and t∗. In particular, the first term refers to the the exactly observed transition at

time t12. Recall that we assume the process stays in state 1 throughout time interval

(0, t12), hence the term q11 in the exponential, and then jumps to state 2 at time t12.

The second term, instead, refers to the fact that the process is observed to be in state

2 at time t12 and to still be in state 2 at time t∗, the maximum follow-up time. This

can be re-written in the following way

Li = q12 exp[t12q11] · exp[−(t∗− t12)q23]

= q12 exp[−t12(q12 +q13)] · exp[−(t∗− t12)q23]

= q12 exp[−t12q12] · exp[−t12q13] · exp[−(t∗− t12)q23]

= f12(t12) ·S13(t12) ·
S23(t∗)
S23(t12)

.

(B.2)

In other terms, we broke up the likelihood in the product of terms each corresponding

to specific transitions and hence which are functions of nonoverlapping sets of

parameters. The usefulness of writing the likelihood contribution as a product of

densities and survival functions associated to each transition, rather than as the
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product of transition probabilities, comes from the fact that one can then group all of

the terms relating to the transition r → s and obtain a transition specific likelihood

contribution L(rs)
i . In this way we thus have

Li = f12(t12) ·S13(t12) ·
S23(t∗)
S23(t12)

= L(12)
i ·L(13)

i ·L(23)
i ,

where each transition specific likelihood can be optimised as a standalone likelihood

associated to what then becomes a univariate survival analysis problem. Note,

further, that the left-truncation for the 2 → 3 transition is apparent in that we have a

conditional survival function.

B.3 Further details on the case study and code

1

3

2

Figure B.1: Graphical representation of the IDM assumed to model the data.

The results presented in the case study have been obtained by combining

the R packages GJRM and mstate, as mentioned above. Note, however, that a

small bug was found in the sampling function mssample() of the latter pack-

age, which thus had to be modified. To allow for the full reproducibility of

the analysis carried out this paper, we therefore not only provide the code used

for the case study, but also the modified function. In this way the code pro-

vided is entirely self contained. This can be found in the public repository

https://github.com/AlessiaEletti/ContinObsMultistateProcesses. In the fol-

lowing, instead, we report only a few code snippets to exemplify the usage of the main

functions needed for the fitting of the model through our framework, implemented in the

GJRM package, and the computation of the estimated transition probabilities via the simulation

based procedure implemented in the mstate package. In particular, the transition-specific

models are fitted using the gamlss() function from the GJRM package, as shown in the
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following code snippet for the 2 → 3 transition, so as to also show how we account for

left-truncation.

out.rd = gamlss(list(Tstop ~ s(log(Tstop), bs = ’mpi’)

+ size2 + size3 + hormon

+ s(age) + s(nodes) + s(pr_1)

+ ti(log(Tstop), pr_1)),

surv = TRUE, margin = ’PH’,

data = mex[mex$trans == 3, ],

truncation.time = ’Tstart’,

type = ’mixed’,

cens = status.factor[mex$trans == 3])

The plots of the smooths included in the three models, and reported in Figure 3.2 of Section

3.7 and in Figures B.2 and B.3 below, can be obtained by using the plot() command on the

fitted model output.

We then obtain the estimated transition probabilities by combining the predicted cu-

mulative hazards obtained using function hazsurv.plot() from the GJRM package with

the (modified) function mssample() from the mstate package. Indeed, the latter takes the

estimated transition-specific cumulative hazards as an input and samples paths through the

multistate model outputting either the sampled paths or the estimated transition probabilities

depending on the user choice; this is controlled by argument output. In particular, for this

application, we used M = 10000 sampled paths through the multistate model. We show this

in the following code snippet for one of the three transitions, as the others are then identical.

# 1-3 transition

pred.rd.test = hazsurv.plot(out.rd, eq = 1, t.vec = times,

newdata = newdata, type = ’cumhaz’,

plot.out = F)

CH13 = pred.rd.test$ch # 1-3 cumulative hazard

# ... (similarly for the others)

Hazprep = data.frame(time = rep(times, 3),
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Figure B.2: Smooth of log-time (top left), smooth of age (top middle), smooth of the number
of positive nodes (top right), smooth of the progesterone level (bottom left) and
smooth interaction between log-time and progesterone level (bottom right) for
the transition health → death.

Haz = c(CH12, CH13, CH23),

trans = c(rep(1, length(times)),

rep(2, length(times)),

rep(3, length(times))))

probs = mssample(Haz = Hazprep, trans = transmat, tvec = times, M = 10000)

As mentioned above, this approach allows us to model both Markov and semi-Markov

processes in the exact same way, with the only exception that a different time scale needs to

be defined for the latter. In particular, when fitting the model using function gamlss() we
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Figure B.3: Smooth of log-time (top left), smooth of age (top middle), smooth of the number
of positive nodes (top right), smooth of the progesterone level (bottom left) and
smooth interaction between log-time and progesterone level (bottom right) for
the transition relapse → death.

would reset the time at the moment of entry to each state. When calling function mssample()

to obtain the transition probabilities one needs to set argument clock = ’reset’ to specify

that the time-scale of the cumulative hazards is the duration in the present state. In this way

we are able to fully harness the flexibility allowed when the multistate process is observed

continuously through time by combining existing tools. Note that, when the process is

observed only intermittently, it becomes considerably more difficult to allow for this degree

of flexibility in the assumptions made on the dependence on time and past history. An

attempt assuming semi-Markovianity was also made but resulted in inferior AIC values, we

thus omit the results here.

We can now obtain confidence intervals for the estimated transition probabilities by
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simulation. In particular, we already have simulated transition-specific cumulative hazard

functions from the previous calls to the hazsurv.plot() function. Each of these can thus

be used as inputs to obtain the corresponding transition probabilities through the simulation-

based procedure, i.e. by iteratively repeating the computation shown in the code snippet above

for each simulated transition specific cumulative hazard. Note that the simulated transition-

specific cumulative hazard can be extracted through the command pred.rd.test$s.sim.

The quantiles of the resulting set of transition probabilities extracted in this way can thus be

computed to find the 95% confidence intervals.

Finally, the plots in Figure 4.2 can be obtained using the hazsurv.plot() function,

specifying that the curve of interest is the hazard through argument type = ’hazard’, as

shown below for the 2 → 3 transition intensity.

# Transition n. 3 (2-3)

q23 = hazsurv.plot(out.rd, eq = 1,

t.vec = seq(min(mex$Tstop), max(mex$Tstop),

length.out = 1000),

newdata = data.frame(age = 54, size2 = 0, size3 = 1,

nodes = 10, pr_1 = 3,

hormon = 1),

type = ’hazard’,

ylab = ’Relapse to Death transition intensity’,

xlab = ’Time since surgery (years)’)

In conclusion, note that when fitting the time-only model with our splines-based approach,

i.e. when the transition intensities are specified with no covariates, we indeed recover the

estimated transition-specific cumulative hazard functions reported in Crowther & Lambert

(2017). We report these in Figure B.4. These plots can be straightforwardly obtained using

function hazsurv.plot() from the R package GJRM by specifying the argument type =

’cumhaz’. It can, for instance, be seen that when no covariates are considered, the risk of

transitioning to the death state is considerably higher given that relapse occurred compared

to the relapse-free setting.
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Figure B.4: Estimated baseline cumulative hazard functions associated with the health to
relapse (left), health to death (middle) and relapse to death (right) transitions
with their 95% confidence intervals.

B.4 Further details on the continuously observed

setting
Longitudinal data are characterised by multiple observations through time of at least one

quantity of interest, for the same individual and generally come in one of two forms, referred

to as stacked (or long) and unstacked (or wide), respectively. In the unstacked (or wide) data

format, a subject’s repeated responses will be displayed in a single row, i.e. each response

is in a separate column. In the stacked (or long) data format, each row represents a single

time point per subject. So each subject will have data in multiple consecutive rows. In the

continuously observed setting, the data will typically be formatted in the latter form. In

particular, assuming an IDM like the one considered in the case study of Section 3.7, each of

the rows corresponding to a given patient will look like either of the four combinations in

Tables B.2-B.5. Note that the only type of censoring possible in this setting is right censoring,

i.e. the transition has not taken place by the maximum follow-up time. Note also that the

start time for transitions exiting the first state will usually be 0. An exception to this is had

when the first transition is itself left-truncated, e.g., as a consequence of the nature of the

phenomenon of interest. We refer the reader to the tutorial by Putter (2011) as well for

further examples on the setup for continuously observed multistate survival processes.
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trans start stop event

1 → 3 0 tmax 0
1 → 2 0 tmax 0

Table B.2: The patient does not experi-
ence any transition between
0 and tmax, the maximum ob-
served follow-up time. The
patient is right censored at
tmax for both transitions.

trans start stop event

1 → 3 0 t13 1
1 → 2 0 t13 0

Table B.3: The patient experiences a tran-
sition to the absorbing state at
time t13. Transition 1 → 3 is
thus uncensored. For transi-
tion 1 → 2 this represents a
right censoring time.

trans start stop event

1 → 3 0 t12 0
1 → 2 0 t12 1
2 → 3 t12 tmax 0

Table B.4: The patient experiences a tran-
sition to the intermediate state
at time t12 but does not transi-
tion to the following state be-
tween t12 and tmax, i.e. 1 → 2
is uncensored. For 2 → 3 t12
is a left truncation time while
tmax is a right censoring time.
For 1 → 3, t12 represents a
right censoring time.

trans start stop event

1 → 3 0 t12 0
1 → 2 0 t12 1
2 → 3 t12 t23 1

Table B.5: The patient experiences a tran-
sition to the intermediate state
at time t12 and then transitions
to the absorbing state at time
t23. Transitions 1 → 2 and
2 → 3 are thus uncensored.
For transition 2 → 3, t12 rep-
resents a left truncation time.
For transition 1 → 3, t12 rep-
resents a right censoring time.



Appendix C

Supplementary Material C

C.1 Log-likelihood contributions

This section follows Jackson et al. (2011). For a time-inhomogeneous Markov process, the

likelihood contribution for the jth observation of the ith unit can take any of the following

forms

Li j(θ) =



p(zi j−1zi j)(ti j−1, ti j), if zi j is an interval censored state

exp
[ ti j∫

ti j−1

q(zi j−1zi j−1)(u)du
]

q(zi j−1zi j)(ti j), if zi j is an exactly observed state

∑
c∈S̃⊂S

p(zi j−1c)(ti j−1, ti j), if zi j is a censored state

C
∑

c=1
c̸=zi j

p(zi j−1c)(ti j−1, ti j)q(czi j)(ti j), if zi j is an exactly observed death state

.

for i = 1, . . . ,N, j = 1, . . . ,ni, with N the total number of statistical units and ni the number

of observations for unit i and where p(zi j−1zi j)(ti j−1, ti j) = P(Z(ti j) = zi j | Z(ti j−1) = zi j−1). In

other words, each pair of consecutively observed states contributes one term to the likelihood.

Specifically, if a transition between two transient states is observed and the transition time is

interval-censored then the contribution is

Li j(θ) = P(Z(ti j) = zi j | Z(ti j−1) = zi j−1),
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If, due to the nature of the process, the transitions to some living states are exactly observed,

the contribution is

Li j(θ) = exp
[ ti j∫

ti j−1

q(zi j−1zi j−1)(u)du
]

q(zi j−1zi j)(ti j),

since the process is known to have stayed in state zi j−1 between ti j−1 and ti j and then jumped

from state zi j−1 to state zi j at exactly ti j. The first term can be explained by observing that

exp
[ ti j∫

ti j−1

q(zi j−1zi j−1)(u)du
]
= exp

[
−
∫ ti j

ti j−1
∑

c̸=zi j−1

q(zi j−1c)(u)du
]
= ∏

c ̸=zi j−1

exp
[
−
∫ ti j

0 q(zi j−1c)(u)du
]

exp
[
−
∫ ti j−1

0 q(zi j−1c)(u)du
] ,

which implies that no transition exiting state zi j−1 has occurred at time ti j given that it had

not occurred by time ti j−1 either.

If the state occupied at a given time is unknown then it is said to be censored. In this

case, the contribution to the likelihood has to account for all the possible trajectories that may

have occurred from the last known occupied state to the current observation time. Therefore,

the sum over the various probabilities is taken, which will be null if the transition is not

allowed. In particular,

Li j(θ) =
C

∑
c=1

P(Z(ti j) = c | Z(ti j−1) = zi j−1).

Finally, if the last observed state is an absorbing one then the time at which the

transition occurred is generally assumed to be known. In this case, one needs to account for

the possibility that the state occupied before the absorbing state is unknown and thus the

contribution to the likelihood is summed over the possible states occupied by the process.

The information of the exact observation time tini is included through the transition intensity

computed in that time. Here, we have

Li j(θ) =
C

∑
c=1
c ̸=zi j

p(zi j−1c)(ti j−1, ti j)q(czi j)(ti j).
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C.2 R package flexmsm
To support applicability and reproducibility, the proposed modelling framework has been

implemented in the R package flexmsm. The package is straightforward to use, especially

if the user is already familiar with the syntax of generalised linear models and generalised

additive models (GAMs) in R. The key function is fmsm(), which carries out model fitting

and inference, and is exemplified with some of its main arguments in the following code

snippet

out <- fmsm(formula = formula, data = df,

id = ID, state = state,

death = TRUE, living.exact = NULL, cens.state = -99,

sp.method = ’perf’,

constraint = NULL, parallel = TRUE, ...)

where the user specifies the model through the argument formula as a list() containing

the model specifications for the transition intensities, and the dataset has to be provided

through the argument data. This will always have at least three columns: the state column

(whose name is provided through the argument state), the column containing the unique IDs

(whose name is provided through the argument id) identifying each individual, and a column

containing the (intermittent) observation times. The arguments death, living.exact and

cens.state allow the user to specify the observation type. If the last state in the process

is an exactly observed death state then the user must specify death = TRUE; if there are

exactly observed living states then the dataset must contain an additional column with TRUE

(or 1) if the data point is exactly observed and FALSE (or 0) otherwise; the name of this

column must be passed through the argument living.exact, which defaults to NULL. If

there are any censored states then the user must specify the code used to indicate this through

the argument cens.state, which defaults to -99. The sp.method argument specifies the

method employed for multiple smoothing parameter estimation (this can be set to ’perf’

or ’efs’). The argument constraint allows the user to specify equality constraints on

the covariates. The parallel argument allows the user to exploit parallel computing, in

Windows, for the likelihood, gradient and Hessian, thus cutting the run-time of the algorithm

by factor proportional to the number of cores on the computer.

The formula is a list() object whose elements are the off-diagonal elements of

the transition intensity matrix. The order of the elements is that given by reading the Q
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matrix from the first row to the last and from left to right. The equation corresponding

to each non-zero transition intensity has to be specified with syntax similar to that used

for GAMs, with the response given by the time-to-event variable. Trivially, zero elements

have to be specified with a 0. For instance, we may consider the following model, with a

smooth effect of time t and two covariates x1 and x2, one included linearly and the other as a

time-dependant flexible effect, for a transition r → r′

q(rr′)(ti j) = exp
[
β
(rr′)
0 + s(rr′)

1 (ti j)+β
(rr′)
2 x1i j + s(rr′)

3 (x2i j)+ s(rr′)
4 (ti j,x2i j)

]
.

This will be specified, in the correct position, as part of the list

formula <- list(...,

t ~ s(t) + x1 + s(x2), ti(t, x2), # r -> r’ trans.

...)

where ... represent other possible transition-specific equations or 0s for transitions not

allowed by the process. The model specified here is only an example and many types of

effects are supported. For instance, as the above example shows, time-dependent effects are

modelled by using a tensor interaction function ti() on the covariate of interest and time.

Functions summary() and plot() can be used in the usual way to obtain post-

estimation summaries for each non-zero transition intensity and the plots of the smooths. In

the example above there is a two-dimensional spline, thus plot() will also automatically

produce a three-dimensional plot of the surface representing this time-dependent effect.

Function conv.check() allows the user to check the convergence of the fitted model

by providing information on whether the gradient is zero and the Hessian is positive definite.

It also provides information on the values taken by the Q matrix since, in practice, we have

found that particularly large values are red flags for ill-defined problems, for instance.

Prediction and plotting of the P and the Q matrices can be carried out through the

functions P.pred() and Q.pred(), respectively. For instance, the specification

P.hat <- P.pred(out, newdata = newdata, plot.P = TRUE

get.CI = TRUE, prob.lev = 0.05)

will provide an object P.hat containing the estimated transition probability matrix corre-

sponding to the time interval and profile of interest, specified through argument newdata.
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The intermediate transition probabilities corresponding to each sub-interval specified in

newdata are also provided. The 100(1−prob.lev)% confidence intervals can be obtained

by setting get.CI = TRUE. When plot.P = TRUE the transition probabilities are also

plotted as function of time over the interval considered, otherwise the plots are suppressed.

The analogous output can be obtained for the Q matrix through function Q.pred() with

similar syntax.

To exemplify the usage of the software, we report the code used to fit the models

presented in Section 4.6. We recall that the IDM specified in Section 4.6.1 is given by

q(rr′)(ti j) = exp
[
β
(rr′)
0 + s(rr′)

1 (ti j)+β
(rr′)
2 dagei j +β

(rr′)
3 pdiagi j

]
.

This can be fitted in the following way:

formula <- list(t ~ s(t, bs = ’cr’, k = 10) + dage + pdiag, # 1-2

t ~ s(t, bs = ’cr’, k = 10) + dage + pdiag, # 1-3

0, # 2-1

t ~ s(t, bs = ’cr’, k = 10) + dage + pdiag, # 2-3

0, # 3-1

0) # 3-2

fmsm.out <- fmsm(formula = formula, data = Data,

id = PTNUM, state = state, death = TRUE,

sp.method = ’perf’, parallel = TRUE)

Here bs = ’cr’ and k = 10 imply that the smooths of time are specified through cubic

regression splines with ten basis functions. We will omit this in the following to avoid

redundancies. To obtain the two-dimensional spline based model, it suffices to swap the

formula reported above with the following

formula <- list(t ~ s(t) + s(dage) + ti(t, dage) + pdiag, # 1-2

t ~ s(t) + s(dage) + ti(t, dage) + pdiag, # 1-3

0, # 2-1

t ~ s(t) + s(dage) + ti(t, dage) + pdiag, # 2-3

0, # 3-1

0) # 3-2
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For the five-state model described in Section 4.6.2, the first model explored was

q(rr′)(ti j) = exp
[
β
(rr′)
0 + s(rr′)

1 (ti j)
]
.

This can be implemented in the following way:

formula <- list(t ~ s(t) + sex + edu, # 1-2

0, # 1-3

0, # 1-4

t ~ s(t) + sex + edu, # 1-5

t ~ s(t) + sex + edu, # 2-1

t ~ s(t) + sex + edu, # 2-3

0, # 2-4

t ~ s(t) + sex + edu, # 2-5

0, # 3-1

t ~ s(t) + sex + edu, # 3-2

t ~ s(t) + sex + edu, # 3-4

t ~ s(t) + sex + edu, # 3-5

0, # 4-1

0, # 4-2

t ~ s(t) + sex + edu, # 4-3

t ~ s(t) + sex + edu, # 4-5

0, # 5-1

0, # 5-2

0, # 5-3

0) # 5-4

fmsm.out <- fmsm(formula = formula, data = ELSA.df,

id = idauniq, state = state, death = TRUE,

sp.method = ’efs’)
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C.3 Parameter estimation
The algorithm employed for model fitting is characterised by two steps. In the first step, λλλ is

held fixed at a vector of values and for a given θ
[a], where a is an iteration index, equation

(4.4) is maximised using

θ
[a+1] = θ

[a]+ arg min
e:∥e∥≤∆[a]

ℓ̆p(θ
[a]), (C.1)

where ℓ̆p(θ
[a]) = −

{
ℓp(θ

[a])+ eTgp(θ
[a])+ 1

2 eTHp(θ
[a])e

}
, gp(θ

[a]) = g(θ [a])− Sλ θ
[a],

and Hp(θ
[a])=H(θ [a])−Sλ . g(θ [a])= ∂ℓ(θ)/∂θ |

θ=θ
[a] and H(θ [a])= ∂ 2ℓ(θ)/∂θ∂θ

T|
θ=θ

[a]

are given in Section 4.4, ∥ · ∥ denotes the Euclidean norm, and ∆[a] is the radius of the trust

region which is adjusted through the iterations. The first line of (C.1) uses a quadratic

approximation of −ℓp about θ
[a] (the so-called model function) to choose the best e[a+1]

within the ball centered in θ
[a] of radius ∆[a], the trust-region. Throughout the iterations,

a proposed solution is accepted or rejected and the trust region adjusted (i.e., expanded

or shrunken) based on the ratio between the improvement in the objective function when

going from θ
[a] to θ

[a+1] and that predicted by the approximation. The use of the observed

information matrix gives global convergence guarantees due to Moré & Sorensen (1983).

Importantly, convergence to a point satisfying the second-order sufficient conditions (i.e., a

local strict minimiser) is super-linear. Near the solution, the algorithm proposals become

asymptotically similar to Newton-Raphson steps, hence benefitting from the resulting fast

convergence rate. Trust region algorithms are also generally more stable and faster compared

to in-line search methods. See Nocedal & Wright (Chapter 4, 2006) for proofs and further

details.

In the second step, at θ
[a+1], there are two options to estimate the smoothing parameter

vector: the stable and efficient multiple smoothing parameter approach adopted by Marra

& Radice (2020), and the generalised Fellner-Schall method of Wood & Fasiolo (2017).

Both techniques can be employed for fitting penalised likelihood-based models, and require

the availability of the analytical score and information matrix. In the former, the following

problem is solved

λλλ
[a+1] = arg min

λλλ

∥M[a+1]−O[a+1]M[a+1]∥2 − ň+2tr(O[a+1]). (C.2)

The idea is to estimate λλλ so that the complexity of the smooth terms not supported by
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the data is suppressed. This is formalised as E
(
∥µµµM − µ̂µµM∥2

)
= E

(
∥M−OM∥2

)
−

ň + 2tr(O), where M = µµµM + εεε , µµµM =
√
−H(θ)θ , εεε =

√
−H(θ)

−1
g(θ), O =√

−H(θ)(−H(θ)+Sλ )
−1√−H(θ), and tr(O) is defined in Section 5 of the main pa-

per. It can be proved that (C.2) is approximately equivalent to the AIC with number of

parameters given by tr(O). Iteration (C.2) is implemented via the routine by Wood (2004),

which is based on the Newton method and can evaluate in an efficient and stable manner the

terms in (C.2), their scores and Hessians, with respect to log(λλλ ).

The approach proposed in Wood & Fasiolo (2017) is based on a different principle.

The starting point is the well established stance that smoothing penalties can be viewed as

resulting from improper Gaussian prior distributions on the spline coefficients. This is also

the Bayesian viewpoint taken for the inferential result discussed in Section 4.5, and implies

the following improper joint log-density, where the dependence on the smoothing parameter

has been made explicit,

logL(θ ;λ ) = ℓ(θ)− 1
2

θ
TSλ θ +

1
2

log |Sλ |.

The idea is to develop an update for λ that maximises the restricted marginal likelihood L(λ ),

obtained integrating θ out of the likelihood L(θ ;λ ). It is, however, more computationally

efficient and equally theoretically founded to maximise the log Laplace approximation

ℓLA(λ ) = ℓ(θ̂)− 1
2

θ̂
TSλ θ̂ +

1
2

log |Sλ |−
1
2

log |−H(θ̂)+Sλ |,

where θ̂ = arg maxθ L(θ ;λ ) for a given λ . At θ
[a+1], the update for the kth element of λ

(rr′)

for all (r,r′) ∈ A is

λ
(rr′)[a+1]
k = λ

(rr′)[a]
k ×

tr
{

S−1
λ
[a]

∂Sλ

λ
(rr′)
k

∣∣∣∣
λλλ=λλλ

[a]

}
− tr
{
[−H(θ̂)+S

λ
[a] ]−1 ∂Sλ

∂λ
(rr′)
k

∣∣∣∣
λλλ=λλλ

[a]

}
θ̂
⊤
(

∂Sλ

∂λ
(rr′)
k

∣∣∣∣
λλλ=λλλ

[a]

)
θ̂

,

(C.3)

with k = 1, . . . ,K(rr′). The two steps, (C.1) and either (C.2) or (C.3), are iterated until the

algorithm satisfies the stopping rule |ℓ(θ [a+1])−ℓ(θ [a])|
0.1+|ℓ(θ [a+1])| < 1e−07, and convergence is assessed

by checking that the maximum of the absolute value of the gradient vector is numerically

equivalent to 0 and that the observed information matrix is positive definite. In practice, we
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found the two smoothing methods to yield similar smooth term estimates.
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C.4 Simulation study
To exemplify the empirical effectiveness of the proposed approach in recovering the true

values of key quantities of interest (e.g., transition intensity curves), we carried out two

simulation studies. The first one replicates that designed in Mariano Machado et al. (2021)

and uses an IDM set-up. The second study is about a five-state Markov process and serves

to illustrate the performance of the proposal in a setting that is more complex than those

supported by the methods available in the literature.

C.4.1 IDM based simulation
We consider a progressive IDM, assuming a different time-dependent shape for each of

the three allowed transitions. The time-to-events relating to transition 1 → 2 are simulated

from a log-normal distribution with location 1.25 and scale 1. This implies that the hazard

increases first and then decreases at a later time. For 1 → 3, an exponential distribution

with rate exp(−2.5) is employed. For 2 → 3, we assume a strictly increasing hazard by

simulating the time-to-events from a conditional Gompertz distribution with rate exp(−2.5)

and shape 0.1. For this transition, we have to condition on the event that the individual

transitions to state 2 to ensure that the simulated time is larger than the 1 → 2 transition time.

As in Mariano Machado et al. (2021), we simulate N = 500 trajectories (i.e., individuals)

M= 100 times.

More specifically, let Trs = Trs|u represent the time of the transition to state r′ conditional

on being in state r at time u > 0. If the state at u is 1 then the time of transition to the next

state can be obtained by taking T = min{T12,T13}. If T = T12 then the next state is 2,

otherwise the next state is 3. If the state is 2 then the time of the next state is T23. Censoring

needs to be imposed to render the data intermittently observed; we assume a yearly time-

grid spanning over 15 years, i.e. (ti0, ti1, . . . ,min{ti15,T13}) = (0,1, . . . ,min{ti15,T13}) for

i = 1, . . . ,N. The reader is referred to Van Den Hout (2016) for further details on how to

simulate intermittently-observed multi-state survival data. The transition intensities are

specified as q(rr′)(t) = exp
[
β
(rr′)
0 + s(rr′)

1 (t)
]

for (r,r′)∈ {(1,2),(1,3),(2,3)}, where s(rr′)
1 (t)

is represented using a cubic regression spline with J(rr′)
1 = 10 and second order penalty.

In line with Mariano Machado et al. (2021), Figure C.1 shows the estimated median and

true hazards as well as all the M estimated hazards. Note that the large variation observed

towards the end of the study time is due to scarceness of data at later years. Overall, the plots

show that the proposed approach is able to recover well the true transition intensity curves
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for each allowed transition, and that the performance is similar across the two methods. The

discrepancy between fitted median and true hazards for transition 1 → 2 is due to definition

of interval censoring adopted in the simulation study: the sampling design implies that the

living states are observed at intervals of one year; for the first two years after baseline, this

design does not work well.
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Figure C.1: True (black), estimated (grey, M = 100 replicates) and median estimated
(white) hazard functions for transitions 1 → 2 (left), 1 → 3 (middle) and 2 → 3
(right) obtained by flexmsm (top row) and Mariano Machado et al. (2021)
(bottom row).

We also evaluated our approach on the transition probability scale. In particular, Table

C.1 reports the true, average and median ten-year estimated transition probabilities, where

the average is taken over the M simulations. The biases are also reported and are defined as

Bias(rr′)(t) =
1
M

(
M
∑

ν=1
p(ν ,rr′)(0,10)− p(rr′)(0,10)

)
, where p(ν ,rr′)(0,10) denotes the esti-

mated ten-year probability of transitioning from state r to state r′ for the ν th simulated dataset.

Our methodology recovers well the true ten-year transition probabilities and consistently

outperforms the approach of Mariano Machado et al. (2021).
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True
flexmsm M. et al. (2021)

Mean Bias Mean Bias
p(11)(0,10) = 0.065 0.063 −0.002 0.060 0.004
p(12)(0,10) = 0.231 0.232 0.001 0.222 0.009
p(13)(0,10) = 0.704 0.705 0.001 0.718 −0.014
p(22)(0,10) = 0.245 0.242 −0.003 0.231 0.014
p(23)(0,10) = 0.755 0.758 0.003 0.769 −0.014

Table C.1: Ten-year true and average estimated transition probabilities, and bias for M=
100 replicates.

Finally, we explored the effect that the length of the gap occurring between two

successive observations has on estimation performance; it is known that when such gap

is large, identifiability issues may arise. To this end, we additionally considered two-,

three-, four- and five-yearly time-grids. As expected, the performance deteriorated as the

gap increased, with reasonable results (not reported here, but available upon request) still

attainable for two- and three-yearly time-grids.

C.4.1.1 Approximate information matrix

This section provides some evidence on the convergence performance of the proposed

approach when employing an information matrix approximated via first order analytical

derivatives. When comparing the results for the analytic Hessian based estimation (M1) and

approximate one (M2), we found that the proportions of simulated replicates M1 was better

than M2 were:

• 94.5% when analysing the total numbers of iterations for the trust region and smooth-

ing steps discussed in Section C.3;

• 81.5% when examining the log-likelihoods of M1 and M2;

• 61.5%s when comparing the gradients of M1 and M2.

Note that, in many of the simulated replicates, M2 exhibited a behavior similar to that

depicted in Figure C.2, hence highlighting the importance of exploiting in model fitting the

information provided by the analytical Hessian matrix of the log-likelihood.

Finally, we would like to point out that the model specification employed for the

simulation set up explored here is simpler than those investigated in the CAV and ELSA

studies; as mentioned in the previous section, this was done for comparability with the results
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Figure C.2: Penalized log-likelihood at each iteration of the proposed estimation approach,
based on M1 and M2, for model (4.10) in the CAV case study. The run-times
on a laptop with Windows 10, Intel 2.20 GHz processor, 16 GB of RAM and
eight cores, were 17 minutes for M1 and over 2 hours for M2.

of Mariano Machado et al. (2021). The difference in performance between M1 and M2

becomes even starker as the complexity of the model specification increases. In fact, in the

case studies, it was not possible to estimate the models of interest when basing estimation on

the approximate Hessian, because of convergence failures of the type displayed in Figure

C.2.
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C.4.2 Five-state process based simulation
We consider a progressive five-state survival process with an absorbing state, and seven

transitions whose parameters were chosen to produce intensities similar to those found in the

ELSA case study described in Section 4.6.2. In particular, we simulate the time-to-events

from (conditional) Gompertz distributions with rates and shapes provided for each transition

in Table C.2. We simulate N = 500 trajectories M= 100 times, which are observed for 40

semesters. An intermittently observation scheme is imposed by assuming that individuals

are visited every 4 semesters. The time is then brought back to the year scale. This gives

counts of pairs of consecutively observed states that are similar to those found in the ELSA

case study.

1 → 2 1 → 5 2 → 3 2 → 5 3 → 4 3 → 5 4 → 5
log(rate) −2.25 −5 −2.20 −5 −2 −5 −3

shape 0.06 0.02 0.05 0.09 0.01 0.02 0.04

Table C.2: Rates and shapes for the (conditional) Gompertz distributions generating the
transition times in the five-state process based simulation.

The transition intensities are specified as q(rr′)(t) = exp
[
β
(rr′)
0 + s(rr′)

1 (t)
]

for

(r,r′) ∈ {(1,2),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)}, where s(rr′)
1 (t) is represented using a

cubic regression spline with J(rr′)
1 = 10 and second order penalty.

In Figure C.3, we report the median estimated transition intensities obtained for the

M simulations with our framework, alongside the true curve q(rr′)(t), for each of the seven

allowed transitions. Overall, the proposed approach recovers adequately the true transition

intensity curves.

As done for the three-state simulated process, we also evaluate our approach on the

transition probabilities scale. In Table C.3, we report the true and average ten-year estimated

transition probabilities, where the average is taken over the M simulations, and the cor-

responding biases. The method is able to recover the true ten-year transition probabilities

reasonably well, exhibiting consistently small biases. This is reassuring considering the

multi-state process adopted here, which is more involved and complex that those commonly

explored and used in the literature.
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Figure C.3: True (black) and median estimated (dashed) hazard functions for each transition
in the simulated five-state process.

True Mean Bias
p(11)(0,10) = 0.229 0.192 -0.037
p(12)(0,10) = 0.318 0.300 -0.018
p(13)(0,10) = 0.230 0.255 0.025
p(14)(0,10) = 0.121 0.137 0.016
p(15)(0,10) = 0.102 0.116 0.014
p(22)(0,10) = 0.222 0.186 -0.036
p(23)(0,10) = 0.330 0.333 0.003
p(24)(0,10) = 0.294 0.299 0.006
p(25)(0,10) = 0.154 0.181 0.027
p(33)(0,10) = 0.225 0.222 -0.003
p(34)(0,10) = 0.508 0.481 -0.027
p(35)(0,10) = 0.267 0.297 0.03
p(44)(0,10) = 0.549 0.527 -0.021
p(45)(0,10) = 0.451 0.473 0.021

Table C.3: Ten-year true, average and median transition probabilities for our framework.
The order is that found when reading the transition probability matrix row-wise.

C.5 List of symbols
Covariates and functions or longer terms

• ageι covariate in model
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• Bias(rr′)(t) bias relating to the r → r′ transition at time t in the simulation study

• dagei j covariate in CAV model

• pdiagi j covariate in CAV model

• sexι covariate in model

• sexi j covariate in ELSA model

• higherEdui j covariate in ELSA model

• edf for effective degrees of freedom

• tr(·) trace function

• 1ň vector of 1s of length ň.

Latin letters

• a estimation algorithm iteration index.

• A matrix of eigenvectors.

• A set of allowed transitions

• b(rr′)
k (x̃kι) bases function vector for the kth term in the (r,r′) transition intensity.

• c indexing for likelihood contributions (censored state contribution and for exactly

observed absorbing state).

• C total number of states.

• dυ difference of knots in the construction of the cubic regression spline.

• D(rr′)
k penalty matrix for the kth term in the (r,r′) transition intensity.

• e vector in the Taylor approximation.

• E matrix found in the closed-form expressions of the first and second derivatives of

the transition probability matrix.

• E expectation function.



C.5. List of symbols 209

• fθ prior on the model parameter θ .

• G(w)
lm the (l,m) element of G(w).

• G(ww′)
lm the (l,m) element of G(ww′).

• g(θ) gradient vector.

• G(w) matrix needed for the closed form expression of ∂ 2P (transformation of first

derivative of Q matrix).

• G(ww′) matrix needed for the closed form expression of ∂ 2P (transformation of second

derivative of Q matrix).

• h infinitesimal time in the limit-based definition of the transition intensity.

• H(θ) hessian matrix.

• Hp(θ) penalized hessian matrix.

• i indexing for the statistical units when defining the likelihood. Here i = 1, . . . ,N.

• j indexing for the observations of a specific statistical unit.

• J(rr′)
k number of basis functions for the kth term in (r,r′) transition intensity.

• k indexing for overall covariate/parameter vector, with k = 1, . . . ,K(rr′).

• K(rr′) total number of terms in additive predictor η
(rr′)
i (ti,xi;β

(rr′)), excluding the

intercept.

• l indexing for the (l,m) element of the matrices needed for the closed form expression

of ∂ 2P.

• ℓLA log Laplace approximation of L(λ ).

• ℓ(θ) model log-likelihood.

• ℓp(θ) penalized log-likelihood.

• ℓ̆p(θ) second order approximation of the model log-likelihood.

• Li j(θ) likelihood contribution for jth observation of ith individual.
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• L(θ ;λ ) joint log density (used to explain efs smoothing approach).

• L(λ ) joint log density when integrating out θ (used to explain efs smoothing ap-

proach).

• m indexing for the (l,m) element of the matrices needed for the closed form expression

of ∂ 2P.

• M number of simulations in the simulation study.

• M matrix appearing in the update of the smoothing parameter.

• N total number of statistical units.

• ň total number of observations in the dataset.

• ni number of observations for the ith statistical unit with i = 1, . . . ,N.

• nsim number of simulations used to obtain confidence intervals.

• O quantity appearing in the smoothing parameter update and edf definition.

• p(rr′)(t, t ′) transition probabilities referring to time interval (t, t ′).

• p(ν ,rr′)(t, t ′) the ν th simulated transition probability referring to time interval (t, t ′),

with ν = 1, . . . ,M.

• P(t, t ′) transition probability matrix referring to time interval (t, t ′).

• P̂(t, t ′) estimated transition probability matrix referring to time interval (t, t ′).

• q(rr′)(t) transition intensity at time t.

• q(nsim,rr′) the nth
sim simulated transition intensity (for confidence interval construction).

• Q(t) transition intensity matrix at time t.

• Q̂(t) estimated transition intensity matrix at time t.

• Q j(θ) transition intensity matrix at the jth observation of a generic individual.

• r starting state.

• r′ arrival state.
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• R real numbers set.

• s(rr′)
k (x̃kι) kth smooth for the (r,r′) transition intensity.

• S state space of process.

• S(rr′)

λ
(rr′) penalty term for the (r,r′) transition intensity.

• Sλ overall penalty term.

• t and t ′ generic time.

• ti j with i = 1, . . . ,N and j = 1, . . . ,ni is the jth observed time for the ith statistical unit.

• t j used as shorthand of ti j for the generic statistical unit (i.e. when dropping i for

simplicity).

• δ t time interval in the definition of the closed form expression of P

• Trs time of the r → r′ transition

• Trs|u time of the r → r′ transition conditional on being in state r at time u

• u integration variable when integrating transition intensity.

• uυ knot for the example in the (cubic regression) smooth of time.

• Ǔww′ one of the matrices of the closed form expression of
∂ 2

∂θw∂θw′
P.

• U̇w one of the matrices of the closed form expression of
∂

∂θw
P.

• U̇ww′ one of the matrices of the closed form expression of
∂ 2

∂θw∂θw′
P.

• Vθ estimated negative inverse penalized Hessian.

• w and w′ indexing for gradient vector and Hessian, with w,w′ = 1, . . . ,W .

• W total number of parameters

• xi covariate vector (without time).

• x̃ι overall covariate vector (with time).

• x̃kι is the kth sub-vector of the overall covariate vector zi.
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• X̃(rr′)
k the design matrix corresponding to the kth term in the (r,r′) transition intensity.

• X̃(rr′) overall design matrix for the (r,r′) transition intensity.

• y indexing of the eigenvalues.

• Y number of eigenvalues.

• zi j with i = 1, . . . ,N and j = 1, . . . ,ni is the jth state occupied by the ith statistical unit.

• Z(t) multi-state process.

Greek letters

• α confidence level.

• β
(rr′)
0 intercept parameter for (r,r′) transition intensity.

• β
(rr′)
k parameter vector for the kth term in the (r,r′) transition intensity. Its length is

J(rr′)
k .

• β
(rr′) parameter vector for (r,r′) transition intensity. Its length is ∑

K(rr′)
k=1 J(rr′)

k .

• β̂
(rr′)

estimated parameter vector of β
(rr′).

• β
(nsim,rr′) the nth

sim simulated parameter vector for the (r,r′) transition intensity.

• γy the yth eigenvalue, with y = 1, . . . ,Y .

• Γ matrix of eigenvalues.

• δ t time interval in the definition of the closed form expression of the transition

probability matrix (and its derivatives).

• ∆[a] radius of the trust region at the ath iteration.

• ε quantity appearing in the smoothing parameter update.

• ζ indexing for the series representing the exponential.

• η
(rr′)
ι (tι ,xι ;β

(rr′)) additive predictor.

• η(rr′) overall additive predictor for the (r,r′) transition intensity.
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• θ overall parameter vector.

• θ̂ estimated overall parameter vector.

• θ
[a] overall parameter vector at the ath iteration of the estimation algorithm.

• ι indexing of the observations when defining the additive predictor. Here i = 1, . . . , ň.

• κ indexing for the summations appearing in the proof of the ∂ 2P expression.

• λ
(rr′)
k smoothing parameter for the kth term in the (r,r′) transition intensity.

• λ
(rr′) smoothing parameter vector in the (r,r′) transition intensity. It’s length is K(rr′).

• λ overall smoothing parameter vector.

• µM and µ̂M quantity appearing in the smoothing parameter update.

• ν indexing for simulated probabilities to compute the bias in the simulation study.

• ρ indexing for the summations appearing in the proof of the ∂ 2P expression.
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