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Attached and separated rotating flow over a finite height ridge

S. Frei ,*

Department of Mathematics and Statistics, University of Konstanz, Universitätsstraße 10,
78457 Konstanz, Germany

E. Burman † and E. Johnson ‡

Department of Mathematics, University College London, United Kingdom

(Received 27 February 2024; accepted 11 July 2024; published 2 August 2024)

This article discusses the effect of rotation on the boundary layer in high Reynolds
number flow over a ridge using a numerical method based on stabilized finite elements
that captures steady solutions up to a Reynolds number of order 106. The results are
validated against boundary layer computations in shallow flows and for deep flows against
experimental observations reported in Machicoane et al. [Phys. Rev. Fluids 3, 034801
(2018)]. In all cases considered the boundary layer remains attached, even at arbitrarily
large Reynolds numbers, provided the Rossby number of the flow is less than some critical
Rossby number of order unity. At any fixed Rossby number larger than this critical value,
the flow detaches at sufficiently high Reynolds number to form a steady recirculating region
in the lee of the ridge. At even higher Reynolds numbers no steady flow is found. This
disappearance of steady solutions closely reproduces the transition to unsteadiness seen in
the laboratory.

DOI: 10.1103/PhysRevFluids.9.084801

I. INTRODUCTION

Mason and Sykes [1] observe that topography with horizontal length scales of the order of a
few kilometers is often sufficiently steep to induce flow separation in the atmosphere and that such
flows might be expected to produce significant changes in the momentum exchange between the
atmosphere and the surface. In addition to exerting a form drag on the fluid, separated flow over
topography leads to enhanced mixing in the lee of the topography, affecting the lee-wave field and
may make a significant contribution to the overall vertical mixing in the region [2]. More recently,
Machicoane et al. [3] present theoretical and experimental results for flow past a horizontal cylinder
in horizontal motion relative to a frame rotating rapidly about a vertical axis. Their work discusses
in detail the inertial lee-wave field generated by the cylinder, significantly extending the results of
[4], and also includes a discussion of experimental results for the onset, with increasing translation
speed of the cylinder, of separation and subsequent unsteadiness in the flow. They note that rotation
strongly suppresses separation and suggest, from the experimental results, that with increasing flow
speed the flow changes directly from being steady and attached to being unsteady and detached as
the product of the Rossby and Reynolds numbers (Ro = U ∗/2�L, Re = U ∗L/ν for flow speed
U ∗, rotation rate �, kinematic viscosity ν, and typical horizontal scale L) for the flow passes
through 275 ± 25. This contrasts with nonrotating flow where separation occurs at Re ≈ 3 but wake
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FIG. 1. The flow geometry. A ridge of dimensional height h and width L lies on the floor z∗ = 0 of a domain
of unperturbed depth 2D with a complementary ridge on the upper boundary. The domain rotates around the
vertical z∗ axis with angular velocity � and the oncoming flow has constant horizontal velocity U ∗ (outside
boundary layers) perpendicular to the ridge crest.

instability at Re ≈ 47 [3,5]. The purpose of the present work is to examine this lee separation in
rotating flows in greater detail.

To obtain the critical Reynolds numbers for this nonlinear flow over a wide range of Rossby
numbers requires a stable numerical method which is robust independently of the Reynolds number.
We employ a stabilized equal-order finite-element method using Continuous Interior Penalty stabi-
lization, going back to Douglas and Dupont [6]. The method was first used in fluid flow problems by
Burman, Hansbo, and Fernández for the Stokes, Darcy, and Oseen equations [7,8] and later for more
complex problems, such as flows at high Reynolds numbers [9], including turbulent flows [10], as
well as fluid-structure interactions [11,12].

The structure of this article is as follows. Section II introduces the geometry and the governing
equations. Section III introduces a streamfunction formulation for finite height ridges and obtains
the outer and inner (boundary layer) solutions at large Reynolds number for shallow flow. The
numerical method for the boundary-layer solution is given in the Appendix. Section IV introduces
the numerical method, showing that for attached flow the results for increasing Reynolds number
converge towards the boundary layer solutions, but also capture steady separated flows at larger
Rossby numbers. Section V extends the results to deep flow allowing inertial waves to appear
in the outer flow but showing the same qualitative behavior of separation and unsteadiness as
shallow flows. Section VI investigates deep rotating flow over a horizontal cylinder, the geometry of
Machicoane et al. [3], and shows that the numerical simulations capture much of the experimental
observations. Section VII gives brief conclusions.

II. GOVERNING EQUATIONS

Consider a fluid of constant density ρ and kinematic viscosity ν in solid body rotation about
a vertical axis at angular velocity �. Introduce Cartesian axes Ox∗y∗z∗ fixed in the fluid with Oz∗
vertical. Let the fluid lie above a horizontal boundary perturbed by a ridge of height h and horizontal
scale L, given by z∗ = hb(x∗/L), where the function b gives the ridge profile and has a maximum
value unity. Let the fluid be bounded above at height z∗ = 2D by a horizontal boundary perturbed
downwards by a complementary ridge so that the flow geometry is symmetric about the line z∗ = D
and the motion has aspect ratio δ = D/L (Fig. 1).

Now suppose the fluid is set in steady motion, relative to the rotating frame, so that at large
distance, outside viscous layers on the boundaries, the flow is uniform with constant speed U ∗ in
the positive x∗ direction. The Coriolis force associated with this uniform flow is balanced by a
constant pressure gradient of magnitude 2ρ�U in the negative y∗ direction. In the absence of the
ridge (h = 0), and far upstream of the ridge when h > 0, the flow is the usual Ekman layer flow with
boundary layers of thickness (ν/�)1/2 on the upper and lower boundaries. The flow is independent
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of the coordinate y∗ and so nondimensionalizing lengths on L, velocities on U ∗ and the pressure on
ρU ∗2 gives the two-dimensional governing equations

uux + wuz − Ro−1v = −px + Re−1∇2u, (1a)

uvx + wvz + Ro−1(u − 1) = Re−1∇2v, (1b)

uwx + wwz = −pz + Re−1∇2w, (1c)

ux + wz = 0, (1d)

with the constant in (1b) giving the constant far-field pressure gradient in the y direction. On the
top and bottom boundaries the flow satisfies the viscous boundary conditions that the velocity
vanishes, i.e., u = v = w = 0. The two nondimensional parameters appearing are the Reynolds
number Re = UL/ν, measuring the ratio of inertial to viscous forces, and the Rossby number
Ro = U/2�L, measuring the ratio of inertial to Coriolis forces. Since the nonlinear inertial terms are
always significant in the flows discussed below, Re and Ro are taken, together with the aspect ratio
δ, as the fundamental parameters. The Ekman number E = ν/2�D2 = Ro/δ2Re appears naturally
with E1/2 measuring the ratio of the Ekman layer thickness to the fluid depth and is treated as
derived from the fundamental parameters.

Integrating (1d) across the fluid depth gives the dimensional result∫
u∗dz∗ = 2U ∗D, (2)

showing the mass flux per unit width in the y direction is constant and equal to its upstream value.
The dimensional form of (1b), outside boundary layers, can be written

(u∗v∗)x∗ + (w∗v∗)z∗ = −2�(u∗ − U ∗). (3)

Integrating (3) over the flow domain, using the divergence theorem, the vanishing of normal velocity
on the upper and lower boundaries, the uniform conditions at large distance and (2), gives

2U ∗D(V+ − V−) = −2�

∫
[2U ∗D − U ∗H∗(x∗)]dx∗ = −4�U ∗A, (4)

where H∗(x∗) is the local depth, A is the cross-sectional area of the ridge, and V− and V+ are the
values of the cross-flow speed far upstream and far downstream. The generation of negative relative
vertical vorticity as fluid columns are compressed moving over the ridge thus generates a clockwise
change in flow direction determined by the difference

V+ − V− = −2�A/D, (5)

which becomes progressively less important the deeper the flow. Since the flow geometry is
independent of y any value of V− can be enforced by an appropriate choice of the upstream pressure
gradient px.

Sufficiently far upstream of the ridge the velocity field is uniform horizontally and an Ekman
layer solution satisfies the full nonlinear system (1) for arbitrary E and Ro, giving the solution

u∗
0 + iv∗

0 = (U ∗ + iV−)

{
1 − cosh[(1 + i)(2Eδ2)−1/2(z − δ)]

cosh[(1 + i)(2E )−1/2]

}
. (6)

The nondimensional shear stress on the lower boundary is thus

d

dz
(u0 + iv0)|z=0 = (2Eδ2)−1/2(1 + i)(1 + iV−/U ∗) tanh[(1 + i)(2E )−1/2], (7)

rotated by an angle π/4 from the outer velocity. For sufficiently small Ekman number the x compo-
nent of shear stress is negative if V− exceeds U , which it will for any ridge of nonzero cross-sectional
area if the rotation is sufficiently rapid and the interior flow is symmetric about the ridge. The
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equations are no longer parabolic in the direction of increasing x. This difficulty is removed here
by taking advantage of the y independence of the flow to set V− = 0 far upstream (so px → 0 as
x → −∞) so the upstream shear stress is always in the x direction. Far downstream, for small
Ekman numbers, the x component of wall shear of the ridge is then, from (5),

(2Eδ2)−1/2(U ∗ + 2�A/D), (8)

increasing due to the clockwise rotation of the exterior flow, and outside the Ekman layers,
from (5),

v → −2�A/U ∗D, px → −2�2AL/DU ∗2, as x → ∞. (9)

The nondimensional boundary upstream conditions on the flow can thus be written

(u, v,w) = (0, 0, 0), on z = αb(x), (10)

(uz, vz,w) = (0, 0, 0), on z = δ, (11)

(u, v,w) → (u0, v0, 0)|V−=0, as x → −∞, (12)

where the nondimensional parameter, α = h/L, gives the average slope of the ridge and δ = D/L
gives the channel aspect ratio. In addition to setting the upstream flow field, rotation also affects
the structure of the boundary layer over the ridge and this effect is discussed in greater detail in the
following section.

III. BOUNDARY LAYER ANALYSIS, Re � 1

We consider system (1) in the limit Re → ∞ with Ro fixed. The continuity equation (1d) allows
the introduction of a streamfunction ψ defined through

u = ψz, w = −ψx. (13)

Then the momentum equations become

−∂ (ψ, u)

∂ (x, z)
− Ro−1v = −px + Re−1∇2u, (14a)

−∂ (ψ, v)

∂ (x, z)
+ Ro−1(u − 1) = Re−1∇2v, (14b)

−∂ (ψ,w)

∂ (x, z)
= −pz + Re−1∇2w, (14c)

where ∂ ( f ,g)
∂ (x,y) := fxgy − fygx. Cross differentiation of (14a) and (14c) gives with (14b)

−∂ (ψ, η)

∂ (x, z)
= Ro−1vz + Re−1∇2η, (15a)

−∂ (ψ, v)

∂ (x, z)
= Ro−1(1 − ψz ) + Re−1∇2v, (15b)

where η = uz − wx = ψxx + ψzz = ∇2ψ is the y component of vorticity. The boundary conditions
on ψ and v are

(ψ,ψz, v) = (0, 0, 0), on z = αb(x), (16)

(ψ,ψzz, v) = (δ, 0, 0), on z = δ, (17)

(ψ, v) →
(∫

u0dz, v0

)
, as x → −∞. (18)

084801-4



ATTACHED AND SEPARATED ROTATING FLOW OVER …

A. The outer flow at large Reynolds number

In the limit, Re → ∞ with all variables of order unity, (15), (16), (18) reduce to

−∂ (ψ, η)

∂ (x, z)
= Ro−1 ∂ (x, v)

∂ (x, z)
, (19a)

−∂ (ψ, v)

∂ (x, z)
= Ro−1 ∂ (x, z − ψ )

∂ (x, z)
, (19b)

giving an inviscid outer flow, subject to the inviscid boundary conditions

ψ = 0, on z = αb(x), (20)

ψ = δ, on z = δ, (21)

(ψ, v) → (z, 0), as x → −∞. (22)

For unidirectional motion (where ψz = u �= 0 throughout the flow domain) it is convenient to map
the flow domain to a rectangle by taking independent variables (x, ψ ) and dependent variables
Z (x, ψ ). Multiplying Eqs. (19) by the Jacobian |∂ (x, z)/∂ (x, ψ )| = Zψ gives

−∂ (ψ, η)

∂ (x, ψ )
= Ro−1 ∂ (x, v)

∂ (x, ψ )
, (23a)

−∂ (ψ, v)

∂ (x, ψ )
= Ro−1 ∂ (x, z − ψ )

∂ (x, ψ )
, (23b)

i.e.,

ηx = Ro−1vψ, (24a)

vx = Ro−1Zψ − Ro−1, (24b)

which can be combined to give

Zψψ − Ro2ηxx = 0. (25)

In (x, ψ ) coordinates the Cartesian velocity components become

u(x, ψ ) = 1/Zψ, w(x, ψ ) = Zx/Zψ, (26)

giving the outer flow velocity component along a streamline as

Uout(x, ψ ) = (u2 + w2)1/2 = (
1 + Z2

x

)1/2
/Zψ. (27)

Although the system (24) and Eq. (25) appear linear, in (x, ψ ) coordinates

η = ∇2ψ = (1/2)
[(

1 + Z2
x

)
/Z2

ψ

]
ψ

− (Zx/Zψ )x, (28)

closing the problem for Z (x, ψ ) in (x, ψ ) space but rendering the field equation nonlinear. The
boundary condition on the ridge becomes simply a condition on the coordinate line ψ = 0, giving
a problem in a rectangular domain with

Z (x, 0) = αb(x), (29a)

Z (x, δ) = δ, (29b)

Z (x, ψ ) → ψ, as |x| → ∞. (29c)

These equations are equivalent to those derived for stratified, rotating flow by Jacobs [13],
although the change in transverse velocity noted here is not discussed there.

084801-5



S. FREI, E. BURMAN, AND E. JOHNSON

B. The inner, boundary layer solution

For Rossby numbers of order unity, the outer solution matches the no-slip condition on the
ridge in a viscous layer of thickness Re−1/2 which follows the ridge profile in attached flow. We
thus introduce the coordinate ζ = Re1/2ψ orthogonal to the surface ψ = 0 and the scaled velocity
component normal to the surface W = Re1/2un for normal velocity component un which vanishes
as ζ → ∞. Then the boundary layer is governed by the equations

UUξ + WUζ − Ro−1V + Pξ = Uζ ζ , (30a)

UVξ + WVζ + Ro−1(U − 1) = Vζ ζ , (30b)

Pζ = 0, (30c)

Uξ + Wζ = 0. (30d)

Here ξ is the arc length along the (curved) lower boundary, U (ξ, ζ ) the (tangential) speed in the ξ

direction, V (ξ, ζ ) the speed in the y direction, and P(ξ, ζ ) the pressure. The distances ξ and x are
related through the slope, αb′(x), of the ridge; choosing the origins of ξ and x to coincide gives

ξ (x) =
∫ x

0

√
1 + α2b′2(x̄) dx̄. (31)

The boundary conditions on system (30) are

[U,V,W ] = [0, 0, 0], on ζ = 0, (32a)

[U,V ] → [Ue(ξ ),Ve(ξ )], as ζ → ∞, (32b)

[U,V ] = [U0(ζ ),V0(ζ )], at ξ = ξ0, (32c)

P → Pe(ξ ), as ζ → ∞, (32d)

where, from (27), the exterior velocity components are given by Ue(ξ ) = Uout(x, 0), Ve(ξ ) = v(x, 0),
Pe(ξ ) = p(x, 0) for x = x(ξ ), obtained by inverting (31) and U0(ζ ), V0(ζ ) are the usual Ekman
layer velocities, valid for arbitrary Re sufficiently far upstream of the ridge, at some −ξ0 	 1, so,
from (6),

U0(ζ ) + iV0(ζ ) = 1 − exp[−(1 + i)(2Ro)−1/2ζ ]. (33)

For sufficiently low ridges, system (30) is parabolic and so can be numerically integrated by
stepping downstream from the known upstream profile at ξ = ξ0. This integration is described in
the Appendix which extends the nonrotating one-dimensional method of [14] to rotating flow with
two nonzero horizontal velocity components.

C. The shallow flow limit, δ � 1

In general the solution of (25) and (28) can be found only numerically. However, for shallow
flows where δ 
 1, (25) reduces to Zψψ = 0 with solution

Z (x, ψ ) = αb(x)(1 − ψ/δ) + ψ, (34)

giving the depth-independent horizontal velocity components

u(x, ψ ) = [1 − b(x)]−1, v(x, ψ ) = −(/Ro)
∫ x

−∞
b(x′)dx′, (35)

depending solely on the ridge shape and the fractional height  = α/δ. The velocity along the lower
boundary is thus, from (27),

Ue(ξ ) = u(x, 0)
√

1 + α2b′2 =
√

1 + α2b′2/[1 − b(x)], x = x(ξ ). (36)

084801-6



ATTACHED AND SEPARATED ROTATING FLOW OVER …

-5 0 5 10
-2

0

2

4

0 1 2
0

2

4

6

8

10

(a) (b)

FIG. 2. (a) The nondimensional tangential shear stress (red) at the lower boundary in the direction orthogo-
nal to the ridge, τ1(x) = ξ̂ · τ(x), and the nondimensional boundary-layer displacement thickness (blue), d (x),
as functions of position x for a Gaussian ridge of maximum fractional depth  = 0.5 for Rossby numbers
Ro = 0.5 (dashed-dotted) and Ro = 1.1 (solid lines). The ridge profile is shown in black. A decaying inertial
oscillation is visible in the displacement thickness for both values of Ro. (b) The corresponding profiles of the
nondimensional tangential component of velocity, U (ξ (x), ζ ), as a function of the scaled normal coordinate,
ζ , for Ro = 1.1. The red curve gives the profile at x = 0.63 corresponding to the minimum in the wall shear
and the blue curve gives the profile at x = 4.23 corresponding to the minimum in the displacement thickness.

The shallow flow solution (35) provides precisely the outer flow required for the numerical
solution of the boundary layer equations (30) as formulated in the Appendix. Two quantities are
of particular interest: the scaled boundary-layer displacement thickness,

d (x) =
∫ ∞

0
[1 − U (ξ (x), ζ )/Ue(ξ (x))]dζ , (37)

and the shear stress at the bottom boundary,

τ(x) = Uζ (ξ (x), 0)ξ̂ + Vζ (ξ (x), 0)ŷ, (38)

for unit vectors ξ̂ and ŷ in the corresponding coordinate directions. Figure 2(a) shows the first
component of the stress, τ1(x) = ξ̂ · τ(x), and displacement d (x) for a Gaussian ridge b(x) =
exp(−x2/2) of fractional height  = 0.5. Negative τ1(x) corresponds to recirculation in the planes
y = constant. When the rotation is reasonably strong (Ro = 0.5) the flow direction rotates, from (9),
by tan−1[(/Ro)

∫
b(x)dx] = tan−1 √

2/π clockwise on passing over the ridge and the component
of the velocity in the x direction increases, as does the shear stress at the wall as in (8). The adverse
pressure gradient in the lee of the ridge causes a small local decrease in wall stress. The rotation of
the external velocity also leads to an internal maximum of the downstream velocity which exceeds
the free-stream velocity [as in Fig. 2(b) for Ro = 1.1]. The inflow to the boundary layer increases the
volume flux in the layer compared with that in the free stream and leads to a negative displacement
thickness downstream from the ridge. The adjustment to the new displacement thickness is through
a viscously damped inertial oscillation, where fluid particles oscillate about their equilibrium level
with frequency 2� and wavelength determined by a balance between the advection and Coriolis
terms in (30a), (30b) and so of order Ro, as can be seen by comparing with the displacement
thickness for Ro = 1.1 where the wavelength is approximately 2.2 times longer. For Ro = 1.1
nonlinear advection is more important making the adverse pressure gradient in the lee of the ridge
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larger and causing the wall shear stress to fall to a minimum of approximately 0.04. For larger
Ro the wall shear stress becomes negative corresponding to a region of reversed flow near the
wall (as in Fig. 5 below). The boundary layer equations are no longer downstream parabolic and
stepping fromupstream conditions fails. This difficulty is traditionally [14] overcome by setting
all negative velocities to zero to keep the system downstream parabolic. This ad hoc modification
works remarkably well as velocities in the separation bubble tend to be small. The difficulty does
not arise in the finite-element method of Sec. IV below as it has no requirement that the system
be downstream parabolic. The thickening of the boundary layer near the point of minimum wall
shear, even for unidirectional flow, is visible in the rapid increase of the displacement thickness
there. Figure 2(b) shows profiles of U as a function of the scaled normal coordinate, ζ , for the
Ro = 1.1 solution of Fig. 2(a). The red curve gives the profile at x = 0.63 corresponding to the
minimum in the wall shear and so is almost vertical at the wall. The blue curve gives the profile
at x = 4.23 corresponding to the minimum in the displacement thickness, showing the jetlike flow
in the interior of the layer which increases the mass flux above the corresponding mean flow flux,
thinning the layer and giving the negative displacement thickness.

IV. NUMERICAL SIMULATION OF THE FULL EQUATIONS FOR SHALLOW FLOW

We present here numerical simulations of the full nonlinear system (1) at high Re and small
channel aspect ratio δ, comparing them to the boundary layer integrations in Sec. III which
correspond to the solutions here in the limit Re → ∞, δ → 0. For the shallow flow computations
of this section only, we introduce the vertical scaling ẑ = z∗/D = z/δ so that the geometry is fixed
independently of δ. The lower boundary is then taken as the Gaussian ridge occupying half the fluid
depth, ẑ =  exp(−x2/2), with  = 0.5, as in Fig. 2. We truncate the computational domain at
x = ±10 and define

�s := {(x, z) ∈ R2, −10 < x < 10, b(x) < ẑ < 1}.
We introduce a subtesselation Th of �s into triangles T ∈ Th and use the following finiteelement
spaces of continuous piecewise linear finite elements on Th :

Vh := {
v ∈ C(�̄s)3, vi|T ∈ P1(T ) ∀T ∈ Th, vi = 0 on �d

i , i = 1, 2, 3
}
,

Lh := {p ∈ C(�̄s), p|T ∈ P1(T ) ∀T ∈ Th}.
The Dirichlet part of the boundary �d

i differs slightly between the components. For i = 1, 2 it is
given by the lower boundary, where no-slip conditions (10) are imposed and the left (upstream)
boundary, where the inflow profile (33) is imposed for U = 1. �d

3 includes additionally the upper
(symmetry) boundary, where the symmetry condition (11) is imposed. No constraint is applied to
the variational formulation at the downstream boundary and thus it satisfies the natural boundary
condition there (see, e.g., [15]) giving the outflow conditions,

Re−1ux − p = 0, vx = 0, wx = 0.

For brevity we write U := (u, v,w), Ū := (u,w), ∇̄ := (∂x, ∂ẑ ), and ∇̄δ := (∂x, δ
−1∂ẑ ). By

U d = (ud , vd ,wd ) we denote an extension of the Dirichlet data to �s, i.e., the inflow profile (6)
for u and v on the upstream boundary and the zero function for w on the remaining Dirichlet parts.

The discrete variational formulation corresponding to (1a)–(1c) reads: Find U ∈ U d + Vh, p ∈
Lh, such that

(Ū · ∇̄U, φ)�s + Re−1(∇̄δU, ∇̄δφ)�s − Ro−1(v, φ1)�s

+ Ro−1(u − 1, φ2)�s − (p, ∇̄ · φ)�s + (∇̄ · Ū , η)�s

+ su(U, φ) + sp(p, η) = 0 ∀φ ∈ Vh, η ∈ Lh. (39)
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FIG. 3. The wall shear stress for δ = 0.1 and Ro = 0.5 (left) and Ro = 1.1 (right) for different Re,
compared to the boundary layer calculations for δ → 0, Re → ∞.

Due the lack of inf-sup-stability of the discrete spaces and to handle convection-dominated regimes
for high Re, we add the weakly consistent Continuous Interior Penalty stabilization terms defined
by

su(U, φ) = γu

∑
e∈Eh

|e|2([[∇U ]], [[∇φ]])e,

sp(p, η) = γp

∑
e∈Eh

max

{
|e|3 δ

ν
,

|e|2
‖Ū‖

}
([[∇̄p]], [[∇̄η]])e,

where [[·]] denotes the jump operator over interior edges e ∈ Eh and γu, γp are positive
parameters [8].

All the simulation results have been obtained with the finite-element library FreeFem + + [16].
For the visualization, we use the visualization tool ParaView [17]. We use a triangulation with
192 682 vertices (379 024 triangles), which is highly refined along the lower boundary, in order to
resolve the boundary layer for high Re. To solve the nonlinear system of equations, we use a fixed-
point iteration based on the Oseen linearization of the Navier-Stokes equations: For l = 1, . . . , find
U l ∈ U d + Vh, pl ∈ Lh, such that

(β̄ l · ∇̄U l , φ)�s + Re−1(∇̄δU
l , ∇̄δφ)�s − Ro−1(vl , φ1)�s

+ Ro−1(ul − 1, φ2)�s − (pl , ∇̄ · φ)�s + (∇̄ · Ū l , η)�s

+ su(U l , φ) + sp(pl , η) = 0 ∀φ ∈ Vh, η ∈ Lh,

where β l := 1
2 (U l−1 + U l−2) for l � 2 and β1 = U 0 for a suitable starting value U 0. Although its

rate of convergence is in general worse compared to a standard Newton iteration, we expect this
fixed-point iteration to be more robust, and for this reason better suitable to give an indication on
the existence or nonexistence of stationary solutions.

A. The attached boundary layer regime, Ro < 1.2

Figure 3 compares the nondimensional wall shear stress,

τ = ∂nu/(E1/2δ),

for δ = 0.1 and Ro ∈ {0.5, 1.1} at increasing Reynolds numbers Re = 4000, 16 000,

64 000, and 256 000 with the boundary layer solutions of Fig. 2, corresponding to the limit
δ → 0, Re → ∞. We observe convergence for Re → ∞, although high Reynolds numbers are
needed to get close to the results obtained from the boundary layer computations. Notice that we
do not expect to fully reach the latter curve, as δ is fixed to 0.1. The solution stays attached to the
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FIG. 4. The wall shear stress for δ = 0.1 and Ro = 1.2 (left) and Ro = 1.5 (right) for various Re.

boundary for all tested Reynolds numbers, i.e., up to Re = 256 000. The finite-element method
appears to give reasonable results up to very large Reynolds numbers.

B. Separated, steady, recirculating flow, Ro � 1.2

For Ro � 1.2, the flow detaches in the lee of the ridge (for δ → 0, Re → ∞). The boundary layer
equations (30a) and (30b) are no longer downstream parabolic and so, as noted in Sec. III, cannot be
used to compute an inner solution by stepping downstream. The finite-element formulation solves
full system (1) and so has no such restrictions. Figure 4 shows numerical results for fixed δ = 0.1
and Ro = 1.2 and Ro = 1.5, at various values of Re. For Ro = 1.2 the boundary layer detaches at
Re = 1.024 × 106, i.e., the wall shear stress takes negative values in the lee of the ridge, at x ≈ 0.8.
For Ro = 1.5, this happens earlier, by Re � 64 000. For both Rossby numbers, the method gives
stationary states up to (at least) Re = 1.024 × 106.

Figure 5 (top) shows isolines in the x-z plane of the streamfunction for Re = 256 000 and
Ro = 1.2, Ro = 1.5, and Ro = 2. Since the y component of velocity is nonzero these are vertical

FIG. 5. Left: Streamlines in the lee of the ridge at Re = 256 000 for Ro = 1.2, 1.5, and 2. Note that the
picture shows only a part of the simulation domain. The flow detaches for Ro = 1.5 and Ro = 2 at x ≈ 0.75
and x ≈ 0.6, respectively. Right: Profiles normal to the lower boundary through the center of the eddy of the
horizontal velocity u for these cases.
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Ro = 1.1
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FIG. 6. Shallow flow, δ = 0.1. Red solid curve: The smallest value of Re, at fixed Ro, for which the flow
separates. For all pairs (Ro, Re) above the line a separation bubble occurs in the lee of the ridge. Blue dotted
curve: The largest value of Re, at fixed Ro, for which a stationary solution was obtained by the fixed-point
algorithm. The vertical dashed line shows the upper bound at Ro = 1.1 for attached flow in the boundary layer
analysis of Sec. III.

sections of stream surfaces, referred to subsequently, for brevity, as streamlines. While for Ro = 1.2
the flow is still attached to the boundary, the flow detaches for Ro = 1.5 and Ro = 2 and a separation
bubble becomes clearly visible. Figure 5 (bottom) shows vertical profiles through the eddy of the
horizontal velocity u. The negative values show the reverse flow for Ro = 1.5 and Ro = 2.

Figure 6 shows the critical Reynolds numbers (red solid curve) for boundary layer separation as a
function of Rossby number. Separation occurs at all points above the curve while at points below the
curve the flow remains attached. For the ridge geometry here, the flow remains attached for Reynolds
numbers, Re � 5600, at all rotation rates, with separation depending solely on the Reynolds number
for Ro � 6. At smaller Rossby numbers, Ro < 1.2, when rotational effects become significant,
the flow remained attached to the boundary for all tested configurations, i.e., up to at least
Re = 1.024 × 106. With decreasing Ro the curve approaches the vertical dashed line showing the
upper bound at Ro = 1.1 for attached flow in the boundary layer analysis of Sec. III. At any fixed
Ro > 1.1 there exists a critical Reynolds number, higher than the Reynolds number for separation,
above which the fixed-point algorithm is unable to find a stationary solution. This gives an indication
that above some value of Re no stable stationary solution exists. The values for the disappearance of
stationary solutions are shown by the blue dotted curve in Fig. 6 which shows the same qualitative
behavior as the separation Reynolds number curve. For Rossby numbers greater than 1.2 there is
thus a considerable range of Reynolds numbers where a steady recirculating separation bubble is
present in the lee of the ridge.

V. DEEP FLOW OVER A RIDGE

Lighthill [18] shows that in a frame moving with the upstream speed U ∗ the ridge can be regarded
as traveling steady forcing effect which in deep flow generates small disturbances governed by the
inertial wave equation and so satisfying

k2(k2 + m2) = m2/Ro2, (40)
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FIG. 7. The vertical velocity component w for deep flow with Ro = 0.1 at Re = 400 (left) and Re = 10 000
(right). The flow field is almost unaltered when the Reynolds changes by a factor of 25. The mesh is highly
refined around the ridge and the figure shows approximately half the simulation domain.

where (k, m) are the nondimensional (x, z) wavenumbers normalized on 1/L. Lighthill illustrates in
Fig. 11 of [18] that (40) implies a horizontal wavenumber cutoff kc such that

|k| < kc = 1/Ro, (41)

with |k| asymptoting to kc with increasing m. In the shallow flow of Sec. III C the vertical wave
length is necessarily small, of the order of the fluid depth, so m 	 1 and |k| → kc. These are the
boundary-layer inertial oscillations, of frequency 2�, noted in Sec. III C, of exponentially small
amplitude in the interior of the flow where the flow is given by (34). In deeper flows progressively
more vertical modes contribute [4] until the vertical behavior can be treated as a continuum of
modes [3,4]. To admit this inertial wave field and thus assess the effect of the absence of an upper
rigid boundary, we revert to the variable z = z∗/L, truncating the computational domain at z = 100
and impose the boundary conditions (u, v,w) = (1, 0, 0) at the left inflow boundary and on the top
boundary. This is equivalent to setting δ = 100 in the variational formulation of (39) once the space
Vh has been modified to accommodate Dirichlet boundary conditions on the upper boundary for
all variables. To give a ridge of aspect ratio of order unity, as in the experiments of [3], the ridge
profile is taken as z = α exp(−x2/2), with α = 1/2. This gives bounded ridge slopes that are ten
times those of Sec. IV and is reflected below in separation at much smaller values of the Reynolds
number. The effect of the infinite slope of the cylinder is considered in Sec. VI.

Figure 7 shows the vertical velocity component w for Ro = 0.1 at Re = 400 and 10 000. The
flow patterns are very similar. This accords with the analysis in [3,4] showing that the leading order
viscous effect in deep flow at small Rossby number is the introduction of a downstream decay of
the lee wave wake with a scale of order Re−1 and a downstream displacement of the phase lines at
large Re of order (Ro Re)−1.

Figure 8, as for Fig. 6, shows at fixed Rossby number the largest values of Reynolds number
at which the flow remained attached (red curve) and at which the fixed-point iteration converged
(blue curve). The qualitative behavior of the curves is very similar but the critical Reynolds numbers
are an order of magnitude smaller in the deep flow. As noted above, this is a consequence of the
ridge slope’s being an order of magnitude larger here. At fixed Rossby number, greater than 1.5,
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FIG. 8. Deep flow, δ = 100. Red solid curve: The smallest value of Re, at fixed Ro, for which the flow
separates. Blue dotted curve: The largest value of Re, at fixed Ro, for which a stationary solution was obtained
by the fixed-point algorithm.

there again exists a considerable range of Reynolds numbers where a steady recirculating separation
bubble is present in the lee of the ridge.

Figure 9 shows the vertical velocity w and streamlines in the lee of the ridge for deep flow and
weak rotation with Ro = 3 at Re = 200, 1000. The flow is attached for Re = 200 but has separated
by Re = 1000 with a steady recirculating separation bubble visible.

VI. FLOW OVER A HORIZONTAL CYLINDER

To capture more closely the geometry of the experiments reported in [3], this section considers
flow over a horizontal right circular cylinder. The variational formulation is again given by (39)
with δ = 1. We use an ellipsoidal simulation domain with semiaxes of size 60 (vertically) and
150 (horizontally) from which a circle of radius 0.5 (representing an infinitely long cylinder in
transversal direction), is extracted. We set U d = (1, 0, 0) on the outer boundary of the ellipsoid and
U d = (0, 0, 0) on the cylinder.

Figure 10 shows a pair of streamlines for each of (a), (b) Ro = 0.5 and (c), (d) Ro = 2 at
Reynolds numbers Re chosen so the flow is attached to the cylinder at the lower Re (a), (c) and
detached at the higher (b), (d). The lower Ro flow remains attached at significantly higher Re but in

FIG. 9. The vertical velocity w and streamlines in the lee of the ridge for deep flow and weak rotation,
Ro = 3. (a) Re = 200, attached flow. (b) Re = 1000, separated flow with a stable separation bubble.
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FIG. 10. Streamlines for (Ro, Re) = (a) (0.5,200), (b) (0.5,600), (c) (2,15), and (d) (2,50). The coloring
shows the magnitude of the velocity (u, w). The figure shows only a small part of the simulation domain.

both cases the steep obstacle gradient at the rear of the cylinder, and the concomitant strong adverse
pressure gradient, induces separation at far lower Reynolds numbers than in flow over the smooth
ridge. The inertial wave alternatively compresses and accelerates and then expands and decelerates a
jetlike flow along the axis in the lee of the cylinder. Figure 11 shows vertical profiles through the
jet of the horizontal velocity u at downstream stations x = 1, 2, 3, and 4 for the flow in Fig. 10(b).
The jet is narrow with almost twice the free-stream speed at x = 2 but wide with a velocity deficit
giving a speed of two-thirds the free-stream speed at x = 4.

As in Figs. 6 and 8, Fig. 12 shows for fixed Rossby number the lowest Re for which separa-
tion occurs and the highest Re for which the fixed-point iteration converged. The curves behave
qualitatively very similarly to those of Figs. 6 and 8: as Ro → 0 is the critical Reynolds number
for convergence, Recrit increases rapidly, showing the existence of steady solutions at high Re, and
for weakly rotating flow, Ro → ∞, Recrit asymptotes to the constant value (Recrit ≈ 160 here) of
nonrotating flow. For Reynolds numbers of order 200 and larger the range of values of Rossby
numbers for which steady separated solutions exist is small and becomes smaller with increasing
Reynolds number, almost vanishing by Re = 1000. These Reynolds numbers include the parameter
regime investigated in [3] and supports their observation that separation and unsteadiness appear
simultaneously. Figure 13 shows the Recrit curve over a smaller range of Reynolds numbers with
the superposed experimental observations of [3] (Fig. 7) that are closest to the transition between
steady and unsteady solutions. The qualitative form of the numerical curve appears to capture the
experimentally observed separation between steady and unsteady flow. Two experimental points for
unsteady flow lie just below the numerical curve. The deviation is within the range of experimental
fluctuations and numerical error. In the numerical solution, numerical diffusion could lead to
convergence to stationary states on the discrete level that are not stationary states on the continuous
level so the critical curve in the continuous limit would lie slightly below the plotted curve. In
the experiments even small disturbances to the flow might be of sufficient magnitude to trigger
instability below the theoretical threshold. Even with this deviation the numerical curve seems to
capture the experimental results well over the whole range. There appears to be a break in the slope
of the curves for both the numerical and experimental results at a Rossby number of order unity.
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FIG. 11. Vertical profiles through the lee jet of the horizontal velocity u at downstream stations x =
1, 2, 3, and 4 for the flow in Fig. 10(b) where Ro = 0.5 and Re = 600.

This appears to be related to the horizontal wavenumber cutoff kc of (41). The cylinder has scaled
length of order unity, thus predominantly generating disturbances with horizontal wavenumbers of
order unity. Once the Rossby number exceeds unity, kc < 1 and the range of energetic wavenumbers

FIG. 12. Left: As Fig. 8, but for deep flow over a cylinder. Red solid curve: The smallest value of Re, at
fixed Ro, for which the flow separates. Blue dotted curve: The largest value of Re, at fixed Ro, for which a
stationary solution was obtained by the fixed-point algorithm. Right: The largest Reynolds number Recrit , for
which a stationary solution was obtained by the fixed-point algorithm for fixed Ro and product RoRecrit .
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Re=275/Ro (Mac. et al 2018)
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FIG. 13. Comparison of the critical Reynolds numbers found by numerical simulations (blue curve) against
the experimental results in [3]. Green circles indicate combinations of Ro and Re, for which steady solutions
were observed experimentally; black squares indicate unsteady solutions.

contributing to the wavefield decreases significantly as the flow transitions to one where inertial
effects are less important.

Based on their analysis of the lee-wave wake at large Reynolds number [3] postulate that the
division between steady and unsteady flow is of the form RoRecrit = C with the experimental results
giving C = 275. This curve is included in Fig. 13 and captures the division in the flow regime there
well. The table in Fig. 12 shows that the relation may not capture the division so well in other flow
regimes.

VII. CONCLUSION

Motivated by the geophysical relevance of rotating flow over topography in the atmosphere [1]
and ocean and by recent theoretical results and laboratory experiments [3] we have discussed steady
attached flow, boundary layer separation, transition to unsteady flow, and flow patterns in the three
numerical examples of shallow and deep flow over a Gaussian ridge and deep flow over a horizontal
cylinder using a stabilized equal-order finite-element method with Continuous Interior Penalty
stabilization. This technique has the advantage of obtaining steady solutions at high Reynolds
numbers. For shallow flow (with aspect ratio δ = D/L → 0) the solutions were compared with
integration of the boundary layer equations valid in the limit Re → ∞. The finite-element results
for δ = 0.1 approached the boundary layer results with increasing Reynolds number and in the
region of attached flow the finite-element results converged for Reynolds numbers of order 106. In
deep flow over the ridge the inertial wave wake discussed in [3,4] appeared. The computations for
deep flow over a cylinder included the parameter regime of the experiments of Machicoane et al. [3]
and reproduced many of the features observed there.

In all three cases the flow was steady and attached for sufficiently small Reynolds number
and also at all Rossby numbers below a critical value of order unity. As the Reynolds number
was increased at fixed Rossby number above the critical Rossby number for attachment, the flow
separated in the lee of the ridge and a steady separation bubble appeared. At higher Reynolds
numbers the fixed-point iteration failed to converge. In flow over a cylinder this coincided closely
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with the appearance of unsteady flow in the experiments of [3]. The Reynolds numbers above which
separation and, subsequently, unsteadiness appear decrease by an order of magnitude in moving
from shallow to deep flow, as the ridge slope increases by a factor of 10, and by another order
of magnitude in moving from the smooth ridge to the cylinder, with its infinite slope at the rear
stagnation point. In all cases it appears that sufficiently strong rotation allows the flow to remain
attached at arbitrarily large Reynolds numbers.
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APPENDIX: THE BOUNDARY LAYER INTEGRATION

The method here extends the nonrotating one-dimensional method of [14] to rotating flow with
two nonzero horizontal velocity components. The method is also modified to allow a spectral
solution using an expansion in Laguerre polynomials. In (30) we write (U,V ) = (Ue + ũ,Ve + ṽ)
so (ũ, ṽ) → 0 as ζ → ∞. Then the ξ -momentum equation (30a) becomes

Uũξ + W ũζ = ũζ ζ + aṽ − Ueξ ũ, (A1)

where a = Ro−1 and the far-field pressure satisfies

Peξ = −UeUeξ + aVe. (A2)

Substituting (A1) into the continuity equation and rearranging gives

(W/U )ζ = −(UeUeξ + aṽ + ũζ ζ )/U 2. (A3)

On the solid boundary, ζ = 0, U = 0 for all ξ , so Uξ = 0 and hence Wζ = 0. Thus,

lim
ζ→0

(W/U ) = lim
ζ→0

(Wζ /Uζ ) = 0, (A4)

and (A3) can be integrated from zero on the wall to give W/U at fixed ξ . The momentum
equations (30a) and (30b) then become

ũξ = −(W/U )ũζ + (ũζ ζ + aṽ − Ueξ ũ)/U, (A5a)

ṽξ = −(W/U )ṽζ + (ṽζ ζ − aũ − Veξ ũ)/U . (A5b)

It is convenient to obtain the outer flow and to discuss the solutions in the unstretched coordinate x.
Multiplying (A5) by ξx =

√
1 + α2b′2(x) gives

ũx = −ξx[(W/U )ũζ + (ũζ ζ + aṽ)/U ] − Uexũ/U, (A6a)

ṽx = −ξx[(W/U )ṽζ + (ṽζ ζ − aũ)/U ] − Vexũ/U . (A6b)

Equations (A6) and (A3) are solved spectrally in ζ by expressing ũ and ṽ as the product of a
decaying exponential and a series of Laguerre polynomials through their values at the Laguerre
interpolation points, expressing (A3) as a first-order differential equation using a differentiation
matrix, inverting to obtain W/U at the interpolation points, and advancing in x using (A6) and a stiff
ordinary differential equation solver.
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