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A formal formulation for reputation is presented as a time series of daily sentiment assessments. Projections of

reputation time series are made using three methods that replicate the distributional and auto-correlation prop-
erties of the data: ARIMA, a Copula fit, and Cholesky decomposition. Each projection is tested for goodness-
of-fit with respect to observed data using a bespoke auto-correlation test. Numerical results show that Cholesky
decomposition provides optimal goodness-of-fit success, but overestimates the projection volatility. Express-
ing reputation as a time series and deriving predictions from them has significant advantages in corporate risk

control and decision making.

1 INTRODUCTION

The title gives the flavour of this study in the order
of its words. Reputation is derived from Sentiment
as a Time Series which is used for Prediction. The
sequence starts with wanting to know about product
and company performance.

There has been a huge increase since year 2000
in interest in and progress with the analysis of peo-
ples views on products and services, fuelled by tech-
nological advances (Liu, 2015). Increased develop-
ment of the internet, the rise of on-line media (both
social and ’traditional’ - newspapers and broadcast-
ing), has made it possible for consumers to formulate
their own views on products and services in advance
of making a decision on purchase or use. Fundamen-
tal to such decision making is the concept of reputa-
tion. Informally, reputation is “’the opinion that peo-
ple in general have about someone or something, or
how much respect or admiration someone or some-
thing receives, based on past behaviour or character”
(Cambridge, 2023). The same reference gives an in-
formal definition for sentiment: “a thought, opinion,
or idea based on a feeling about a situation, or a way
of thinking about something”. We will give formal
definitions for both in Section 3.4. The informal defi-
nitions are, however, remarkably close to the ideas we
wish to convey formally. We will distinguish between
reputation, sentiment and opinion, and link them in a
formal way.
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The purpose of this paper is to predict how the
reputation of a corporate body may develop in the
future. Reputation is expressed as a time series, to
which time series methods apply naturally. However,
reputation time series express distinct characteristics
which makes it difficult to apply standard methods
without some degree of conditioning. In particular,
they are highly auto-correlated, are subject to rapid
reversals in profile (they look ’spiky’), exhibit high
volatility, and are not always stationary. Others
have sparse, or almost no sentiment expression.
Reputation time series are built using expressions
of sentiment, so an initial discussion sets out formal
definitions for sentiment and reputation.

We consider predicted reputation because there is
some evidence that “reputation means money” (Cole,
2012), (Weber-Shandwick, 2020). On that basis,
reputation was quantified in terms of share price in
(Mitic, 2024). Specifically, impaired reputation can
lead to effects such as loss of profit, share price re-
duction, and reduced ability to attract and retain staff.
These, and similar reports are not quantified in a
transparent way, but nevertheless convey the message
that a positive reputation matters. Consequently, pre-
dicting future reputation also matters.

1.1 Reputation Time Series example

In this section we show an example of a reputation
time series. Figure 1 shows Toyota’s reputation for



the first 6 months of 2023, and a simple exponential
smoothed version of it. The plot shows time, mea-
sured in days, on the horizontal axis, and numerical
expressions of sentiment on the vertical axis on a
scale -100 to +100. The trace shows that during that
period, Toyota’s reputation was entirely negative.
To see why, would require detailed analysis of each
sentiment value, but a major contributor was the
change of Toyota’s leadership. That news was widely
reported in the financial press at the time. A typical
example, which is part of a longer article, appeared
in a Reuters report on 26 January 2023. !

Reactions to Akio Toyoda stepping down as Toyota
CEO. TOKYO, Jan 26 (Reuters) - Toyota Motor
Corp (7203.T) said on Thursday that Akio Toyoda
will step down as president and chief executive to
become chairman from April 1, ...

Figure 1 shows the date 26th January 2023. Inter-
estingly, reputation improved after that date, perhaps
indicating that the news was received positively, al-
though that rise did not last long. The reputation trace
shows typical features: peaks and troughs in a macro-
structure, with a micro-structure of much smaller vari-
ations. Toyota’s autocorrelation structure is shown in
Figure 2. The plot shows typical features of signifi-
cant autocorrelations at high lags, with some positive
and negative regions.
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Figure 1: Toyota reputation January-June 2023. Data
source: Penta Group.

2 RELATED WORK

Reputation time series as described in Section 3.4
are a natural extension of much earlier work on
opinion, sourced by survey. The first prominent
example of a survey was a correct prediction of

Uhttps://www.reuters.com/business/autos-
transportation/toyota-leader-akio-toyoda-step-down-
president-chief-executive-2023-01-26/
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Figure 2: Toyota autocorrelation: 100 lags

the 1936 US Presidential election by the Gallup
Company (founded in 1935) (Gallup and Rae,
1968) , although there is a record of an opinion
poll from 1824 in the Harrisburg Pennsylvanian
(https://www.referenceforbusiness.com/history2/
84/The-Gallup-Organization.html). Gallup took the
view that an opinion poll was simply a reflection
of public opinion. There is an interesting counter
opinion due to Lippman (Lippman, 1922) that
opinion polls manipulate public opinion. The point
is discussed in (Jacobs and Shapiro, 1995). In 1995
the internet was relatively young, but since then
the means to manipulate opinion have emerged in
the form of blogs, social media platforms (such as
Facebook, WhatsApp or Twitter (X)), and product
reviews on websites such as Amazon, Google and
others. Problems of sample bias are discussed in
(Durant, 1954). They centre on location, respondents,
and questionnaire design, with additional factors
related to administration, cost, and whether or not the
results represent a general population.

There is evidence of bias in contemporary opinion
procurement. The term ’negative bias’ was intro-
duced by (Rozin and Royzman, 2001), and clear
numerical illustrations are presented in (Zendesk,
2013).

Early research on sentiment and opinion is
summarised in, for example, (Das and Chen, 2007).
The emphasis was then on sentiment extraction
using lexicons (word lists with tags showing related
words or parts of speech), lexical grammar (rules for
manipulating a lexicon), and classifiers (Bayes, Vot-
ing, Naive, Vector-Distance, Discriminant). Those
methods still form the basis of ’traditional’ sentiment
analysis, and act as a benchmark for assessing later
approaches using artificial intelligence.

Prediction of reputation has, to date, been
somewhat neglected, largely because of a lack of
appropriate data. The problem was tackled, albeit in
a difference sense of the word ’prediction’ by (Loke
and Kachaniuk, 2020), using a bi-directional LSTM.



That study used manual labelling of thousands of
product reviews, evaluated on a 3-point scale, aimed
at predicting individual review results. Our study
aims to produce a forward projection in time, and
uses much simpler prediction methods. Penta Group,
as part of their reputation intelligence website 2
available to subscribers, shows a basic forward (in
time) prediction based on exponential smoothing.

2.1 Alternative sources of Reputation
Intelligence

In this section we summarise the state of online
Reputation Intelligence. The term Reputation Intel-
ligence has been used in the past ten years to refer
more general aspects of sentiment and reputation. A
reputation time series is one of them. Others include,
for example, analysis of sentiment sources (e.g. tra-
ditional/social media), analysis of regional sentiment,
comparison with peers, and Environmental, Social
and Governance (ESG) issues.

Artiwise, produced by Istanbul Technical Uni-
versity  (https://www.artiwise.com) provides (to
subscribers) bespoke sentiment analysis services, and
calculates a short-term sentiment score based on a
limited number of sources to order. The Califor-
nian company Reputation (https://reputation.com/)
provides the same type of service, and makes a
Reputation Experience Management - RXM platform
available to customers. In New York, Social360
(https://www.social360monitoring.com) provides
bespoke analysis of online comments, and tracks
influential reporting agents. They specialise in social
media checking. Social360 has recently be acquired
by (SignalAl, 2024).

An earlier, and different, approach is typified by
the RepTrak Pulse metric (Fombrun et al., 2015),
published twice yearly by the Reputation Institute
(https://www.reptrak.com/). RepTrak is an updated
version of its predecessor, the Reputation Quotient
(Fombrun et al., 2000). Both are multi-factor
snapshot assessments of reputation. RepTrak Pulse
exports “Good overall reputation”, “Good feel-
ing about”, “Trust”, and “Admire and Respect”,
all condensed comments amassed throughout the
six months prior to publication. In contrast, the
Net Promoter Score - NPS from Bain and Co.
(https://www.bain.com/) is very simple, but limited
(Reichheld, 2003). It is based on one question: On
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a scale of 0-10, how likely are you to recommend
this company to a friend or colleague?. The NPS is
then the difference between the percentage of 9-10
(promoter) scores and the percentage of 0-6 scores
(detractors). Scores 7 and 8 are regarded as “’passive”.
The imbalance appears to induce negative bias. The
study by (Loke and Reitter, 2021) used the same
type of multi-factor analysis to measuring reputation,
using online review data and ’aspect’ extraction by
detecting negative sentiment and positive sentiment
keywords.

A third strand of reputation measurement is
demonstrated by the Edelman Trust Barometer
(https://www.edelman.com). Trust is somewhat
distinct from sentiment or reputation, and implies a
degree of safety and/or reliable (Cambridge, 2023).
The Edelman method of data sourcing is, again,
by survey, is targeted at employees, and produces
generalised qualitative reports, with some associated
data. An example is (Russell, 2023). The argument
in (Renner, 2011) is that risk can be minimised by
increasing trust, and that corporate reputation is the
vehicle to build trust.

A few other attempts to measure reputation have
emerged. (Janson, 2014) recommends spending
at least 10% of a corporate budget on reputational
analysis and sampling, but is otherwise non-specific
on methodology. (Carreras et al., 2013) suggests a
ranking method in which company executives rank
themselves and peers on a multi-factor basis, and
produce a score based on those ranks. Overall, these
and similar alternatives rely on the subjective opinion
of selected individuals.

3 METHODS

We first review data stationarity and a methodology
for measuring the appropriateness of a projected time
series. Three projection methods are then discussed:
ARIMA, Copula and Cholesky.

3.1 Stationarity Test

We cannot assume that distributional properties of
reputational time series do not change over time.
Therefore we stress that the analyses that follow need
to be reviewed periodically. A particular concern is
the way changes in the data structure over time af-
fect the effectiveness of a reputation projection. The
problem is addressed in Section 3.6. The Augmented



Dickie-Fuller (ADF) test for stationarity is used to test
for consistency of mean, variance and autocorrelation
structure for the observed data.

The ADF test showed that approximately 60% of
reputation time series tested were stationary, and 40%
were not. That result is more significant for short pro-
jections, where auto-correlations may be very differ-
ent to the observed data. Longer projections are more
stable with respect to projection length. In all cases,
the general approach is to test whether or not the pro-
jection perturbs the auto-correlations structure of the
observed data unduly.

3.2 Goodness-of-Fit Test

There are indications from histograms of reputa-
tion data that Normal distributions might be appro-
priate for modelling distributions. The established
goodness-of-fit for normality is the Shapiro-Wilk test
(Shapiro and Wilk, 1965). That test rejected the null
hypothesis of normality in all cases that we encoun-
tered. The reason appears to be that the Shapiro-Wilk
test is weak with respect to distributions with longer
tails (Royston, 1992). Isolated outliers can also cause
the Shapiro-Wilk test to fail. Many reputation time
series have both long tails and/or outliers. As an al-
ternative, we have used the TNA test (Mitic, 2015),
which is a generalisation of a Q-0 plot. The TNA test
is less powerful than the Shapiro-Wilk test, is insensi-
tive to outliers and long data tails, and is not restricted
by data set size. The TNA test indicated that the Nor-
mal distribution is often not the best fit for reputation
data, and the null hypothesis was rejected in approxi-
mately 8% of cases. The Normal Mixture distribution
(Section 3.7) is a better fit in most cases, and is a bet-
ter model for bimodal distributions and for distribu-
tions with long tails. Therefore, we proceed with Nor-
mal Mixture distributions, which also subsume Nor-
mal distributions.

3.3 Data

Data for this study are sourced from Penta Group
(https://pentagroup.co). Penta can, uniquely, provide
time series of daily sentiment scores > (i.e. a reputa-
tion profile) for most organisations that are listed on
major world stock exchanges, and a large number of
others that are unlisted. We have concentrated on 125
corporate organisations that represent the principal
world industrial and service sectors: energy, manu-
facturing, travel, education, financial, media, mining,
food production and retail. The data range was two

3Data are available to subscribers only

years: from July 2021 to June 2023. Each recorded
data series comprises 730 daily sentiment readings on
a scale from -100 (the worst possible) to +100 (the
best possible). Zero (or very near to zero) represents
neutral sentiment.

3.4 Definitions

Following a slightly modified definition from (Liu,
2015) Opinion is defined in terms of a numerical
value, representing the thought, idea or view that
is held or expressed (as defined in, for example
(Cambridge, 2023)), Liu’s view is slightly differ-
ent. He represents Opinion as an ordered pair: a
polarity value (+1, 0, or -1) for positive, neutral or
negative view respectively, with a positive number
representing its intensity. We assume that the view is
quantifiable numerically. In principle, the range of
permitted values does not matter, but in practice, a
meaningful symmetric scale that presents a positive
score for positive sentiment and a negative score
for negative sentiment (between real numbers -r and
+r) is useful. Opinion also incorporates the holder,
h of the view, its target, T, and a date/time stamp
t. In addition, Liu labels the opinion value with a
type flag, used to designate it as either rational or
emotional. We prefer a wider range type, aimed at
assessing the influence or importance of the holder,
and denote it by u. The definition of Opinion,
Equationl, incorporates all of those components.
The numerical view is denoted by x, and the values
of h and T are best identified with reference to a
set of unique identifiers W (positive integers or guids).

Definition: Opinion
O:(x,h,T,u) = F (x|h,T,u); x € [—rr];
teZt ue(0,1); h,T €W (1)

At this point, it is acceptable, in principle, to use
the terms Opinion and Sentiment interchangeably.
However, to facilitate the ensuing discussion of
Reputation, it is useful to define Sentiment as a
function W of a set of holders H = {h;,h,,...} C W,
each having expressed corresponding numeric views
X = {x1,x2, ...}, and each with having corresponding
numeric influences U = {uj,uy,...}, referred to a
single target T on a single day ¢. The function W acts
on the elements of X to produce a single real number
in the same range as the x;, namely [—r,7].

Definition: Sentiment
SI(XaHa T7U) = T({O[()Ci,/’li, T7 ul)}> 5

hieH;, x;eX;, uyc¢U 2)



S; is a single real number representing a set of
sentiments at time ¢. In practice, it is more useful to
use a “day” stamp rather than a ”time” stamp, so that
S; refers to the sentiment on “day #”. It is then easy to
define reputation as a sequence of such numbers as
t varies. Equation 3 shows a date range from times
t to date r,. No assumption are made about periods
within that range that have no sentiment data.

Definition: Reputation

w(T) = {St(T)};

The definition of reputation in Equation 3 is hinted
at in, for example, (Loke and Vergeer, 2022), in
which phrases such as “collective view” and “built
over time” are used. Loke and Vergeer make the point
that attempts to quantify corporate reputation are lim-
ited. We believe that we have made a significant ad-
vance in that respect. (Loke and Kisoen, 2022) argue
that, essentially, reputation is a summary of internal
and external perceptions of an organisation. We argue
that reputation should extend much further. Specifi-
cally, broadcasting, news reports and trade presenta-
tions represent a further strand that provides a more
objective view. Reports from the *popular’ press are
often not objective. Nevertheless, they are there, and
present an opinion. The same applies to reports that
contain mistakes or lies.

nH<t<n 3)

3.5 [Initial Data Preparation

The common basis of the Copula and Cholesky auto-
correlation models used in this analysis is an auto-
correlation matrix, A, which contains sequences of
lagged data. If a time series of length n has L lags,
A takes the form given in Equation 4. The S-values
are the daily sentiments in Equation 2.

S1 S> S
A— Sy 8 eee Spt1 @)
Sn SL+] SrH»Lfl

Following construction of A, we calculate a rank
correlation matrix (Spearman or Kendall) rather than
Pearson’s product moment variety, since the latter as-
sumes a linear relation between co-variates.

3.6 Auto-correlation success criterion

Comparing the autocorrelations of any two subsets of
the data cannot be expected to give similar correlation
structures. Therefore we adopt an alternative strategy,
which is to test whether or not a projected simulation

does not perturb the correlation structure of the ob-
served data. The test applied is to calculate the auto-
correlation function (ACF) of the observed data and
compare it the observed data augmented by the sim-
ulated data. With a fixed number of lags L (typically
between 50 and 100), the two applications of an ACF
function yields parallel sequences of auto-correlation
components c¢? and ¢?S (equation 5.

{c9,¢9,....c%} Observed
{e95,¢95,...,c95}  Observed + Simulated

Since the two sequences are paired, a two sam-
ple t-test can be used to determine significance of
the augmentation of the observed data by the sim-
ulation. If the means of the sequences in Equation
5 are denoted by u(c?) and u(c%S) respectively, the
null and alternative hypotheses are u(c®) = u(c%%)
and u(c©) # u(c?%) respectively, and significance is
tested at 5% and 1%.

3.7 Normal Mixture distribution

In this section we define a distribution that fits the
reputation time series in this study. Although a
Normal distribution is a good fit in most cases, a
Normal Mixture distribution is usually better. We call
it NMix for short.

NMix is a weighted sum of two Normal distribu-
tions, with parameters {u;,G1,u2,02,b}. Its density
function is ¢u(¢) and the corresponding distribution
function is denoted by @y (7) (on day 7). The inverse
distribution (quantile) function takes a probability p
as parameter, and is denoted by ®,,'(p). The quan-
tile function is needed for the Copula algorithm in
Section 3.8. In the following equations, x € [—r,7],
p € (0,1). The parameter ranges are uj,u, € (—r,r),
61 >0,0, >0,and b € [0, 1].

¢M([aﬂ17617#27627b) =
bo(t,pu1,61) + (1= b)0(t,12,062) (6)

Dy (b, u1,61,42,62,b) =
t
¢M(Z7H17617H2762ab)dz (7)

q)j;jl (p7#13617/~12a627b) =
t |q>M(t,,Ul,61,,Ll2,62,b):p (8)
As an example, we return to the Toyota data

presented in Figure 1, but plot a density histogram
instead. An NMix distribution has been fitted and



overlaid. The bimodal nature of the data is clear from
the histogram, and the fitted NMix distribution echoes
that. In this case, a Normal distribution is a poorer fit,
but nevertheless satisfies the TNA goodness-of-fit test
described in Section 3.2.

Specifically, the NMix parameters were u; =
—23.16,61 =4.13,up = —10.72,06, = 4.37,b = 0.56,
and the p-value for the NMix fit was 0.011. The Nor-
mal distribution parameters were y = —17.69,6 =
7.49, with p-value 0.025.

Toyota, Normal and Normal Mixture distribution fits
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Figure 3: Toyota Normal Mixture and Normal distribu-
tion fits (black and grey respectively). Data source: Penta
Group.

3.8 Copula Model

In Algorithm 1, the symbols used are: Reputation
time series R, Lag L, required simulation length n.
The internal variables are the auto-correlation matrix
A, a multi-variate Normal copula C, uniformly dis-
tributed marginal distributions of C G;,i = 1...n, Nor-
mal Mixture-distributed marginals Y;,i = 1...n, and
their corresponding auto-correlation p-values o;,i =
1...n. The process uses a procedure FIT(D) to fit a
distribution D (in this case D is a Normal Mixture ), a
function MVN (from the R package mvtnorm) to ini-
tialise a multi-variate normal copula, a function AC to
test the marginal effect of the simulated data on the
autocorrelation of the input data, and a Loess smooth-
ing function LO.

3.9 ARIMA Model

The ARIMA modelling incorporates both auto-
regressive (AR) and moving average (MA) compo-
nents, although we suspect that the AR components
are much more important. With AR, MA and differ-
encing parameters p, g and d respectively, plus a con-
stant u and error term &, the ARIMA model used is

Data: R, L n
Result: Simulation of length n
Calculate best fit parameters p = FIT (R(D));
Derive auto-correlation matrix A(R);
Initialise copula: C = MVN(A);
Generate uniform marginals G = ®(C);
for i in 1:L do

Y; = LO(®,,' (Gi, p)) (NMix marginals) ;

Test auto-correlation: o; = AC(R,Y;);
end
Select optimal auto-correlation: Oy, Yopr;
Return {Y,,/,0};

Algorithm 1: Copula simulation

given in 9. The values of p, g and d are determined us-
ing the auto-ARIMA method of Hyndman and Khan-
dakar (Hyndman and Khandakar, 2008). Parameter
d is determined by carrying out successive unit-root
tests (D. Kwiatkowski and Shin, 1992) until a station-
ary series results. There is a correction for seasonal
data, although we would not expect reputation data to
exhibit any degree of seasonality since reputation is
event-driven. Parameters p and g are determined by a
stepwise algorithm in which target values of p and ¢
are tested against for minimal AIC.
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Having determined the parameter values, the
ARIMA fit is done using maximum likelihood via
a state-space representation of the ARIMA process.
The innovations and their variances are found by a
Kalman filter (Gardner et al., 1980). In the ARIMA
algorithm below, the auto-ARIMA function used to
determine the ARIMA parameters (Hyndman and
Khandakar, 2008) is denoted by FC(R), and the sim-
ulation function is denoted by FSim(R,...).

In practice we have never encountered the White
noise case.

3.10 Cholesky Model

Cholesky decomposition is an established way to
derive data that is correlated with a given data
set. The autocorrelation matrix, derived from the
observed data forms the basis of the Cholesky de-
composition. As such, the correlation matrix A must
be positive definite. That is, it must be symmetric
with positive eigenvalues. A proof may be found in,
for example, (Golub and van Loan, 1992) (Section
4.2.7). Further details, including points arising from
numerical calculations, and supporting literature
may be found in (Higham, 1990). Appendix A



Data: R, L, n
Result: Simulation with length n
Extract ARIMA order {p,d,q} = FC(R);
if (p >0&d >0) then
| ARMA:Y =FS(R,p,q);
end
if (p > 0&d =0) then
| AR:Y =FS(R,p);
end
if (p=0&d > 0) then
| MA:Y =FS(R,q);
end
if (p =0& d =0) then
| White noise: Y = FS(R,0,0,0);
end

Return(Y)
Algorithm 2: ARIMA simulation

shows how this result applies to auto-correlation
matrices. We have found empirically that, in all cases
examined, a Cholesky decomposition is successful
(i.e. all autocorrelation matrices encountered are
positive definite). Consequently we have not needed
to provide for non-positive definite autocorrelation
matrices. There is a work-around for that possibility.
(Rebonato and Jaeckel, 2000) describe two methods
to cast a non-positive definite matrix into a positive
definite state: hypersphere decomposition and spec-
tral decomposition.

A Cholesky decomposition presents problems
in the context of autocorrelation. First, the ’base’
Cholesky result is a matrix that has the same num-
ber of columns as the correlation matrix used to
derive it. Effectively, in our context where many
auto-correlation components are close to 1, each
column is an almost carbon copy of the original
data. The problem then is to find a reasonable way
to derive a single simulation from those columns. To
address this problem for an auto-correlation matrix
A of dimension L x L, assuming that a simulation of
length n is required, L vectors each of length n are
generated from a probability distribution D (NMix in
the case of reputation data). The calculated Cholesky
matrix is applied to a matrix of the D-distributed vec-
tors, thereby generating L correlated vectors. Each
correlated vector is assessed using the autocorrelation
test (Section 3.6), and the optimal vector (given by
maximum p-value in the auto-correlation #-test) is
selected as the simulation.

In Algorithm 2, the symbols used are the same
as in Algorithm 1: Reputation time series R, Lag L,
required simulation length n. Chol(A) is a function

that calculates the Cholesky decomposition of a
matrix A. In addition, G(L,D,n) is a function that
generates L random samples, each of length n, and
each with Normal Mixture distribution D.

Data: R, L, n
Result: Simulation, with length n
Calculate best fit parameters p = FIT (R(D));
Generate random samples Z = G(L,D,n);
Smooth samples Z = LO(Z);
Derive auto-correlation matrix A(R);
Cholesky decomposition: C' = Chol(A);
Generate correlated samples ¥ = X c;
for i in 1:L do

\ Test auto-correlation: a; = AC(R,Y;);
end
Select optimal autocorrelation

Olopr = max (o (pval));
Select optimal sample vector Y, ;
Return {Y, ¢, Oopt }

Algorithm 3: Cholesky simulation

4 RESULTS

4.1 Prediction Accuracy

The first set of results is a comparison of actual and
predicted reputations. The starting point for these re-
sults is a partition of the available data into a training
set (the first 75%: days 1 to 547) and a test set (the
remaining 25%: days 548 to 730). Projections be-
yond 730 days were not used. Predictions were made
using the training data only, and the essential details
of the configured models were noted. For the ARIMA
model, the only necessary component was the ARIMA
fit object, calculated using the auto.arima function in
the R forecast package. The corresponding Cholesky
objects were the Cholesky decomposition matrix and
the fitted Normal Mixture parameters. For the Copula
model, the Copula correlation matrix and the fitted
Normal Mixture parameters were needed. Predictions
were then made using the test data with the objects
derived in the training phase.

Treated in this way, the train/test environments
provide a measure of the accuracy of the test predic-
tion compared to the training prediction, via the mean
absolute error (MAE) for both. To that effect, the pro-
portionate change in MAE, AMAE ), was calculated for
each target organisation (Equation 10).



A(MAE) _ MAE(tmin) _ MAE(test) 10
MAE (train)

The distribution of values of AMAE) then gives an
indication of gross deviations of MAE between the
training and test environments, for every organisation
considered . Figure 4 shows a plot of AM4E) (on the
horizontal axis) against quantile (on the vertical axis).
The value AMAE) — | represents a 100% increase in
MAE for the test environment relative to the training
environment. The corresponding low quantile values
shows that in the majority of cases, an order of mag-
nitude difference, which would indicate instability in
a model, is absent. Only one value of AMAE) out of
125 exceeded the nominal order of magnitude limit:
14.19 using the Cholesky model. A second instance
of the Cholesky model had a AMAE) value of 9.63:
just below the limit. The largest AMAE) values for
the ARIMA and Copula models were 1.17 and 3.82
respectively.
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Figure 4: Comparison of MAE in training and test environ-
ments.

4.2 Auto-correlation results

The principal results of this analysis are presented in
this section. The auto-correlation test (Section 3.6)
for the three prediction methods (sections 3.8, 3.9 and
3.10) are shown at two significance levels: 5% and
1%. Using five runs in each case, Tables 1, 2 and 3
show the means and standard deviations of the num-
ber of organisation that *passed’ the auto-correlation
test. A ’pass’ is a p-value greater than 0.05 for 5%
significance and greater than 0.01 for 1% significance.
Column heading ’Simulation length’ refers to the per-
centage augmentation of observed data by simulated
data.

The auto-correlation results for the three predic-
tion methods are consistent in that the ’success’ rate
reduces as the prediction length increases. Of the

Table 1: Augmentation of observed data by simulated data:
Copula method

Simulation Mean SD

length 5% 1% 5% 1%
5% 0.979 1.000 0.004 0.000
10% 0.779 0.906 0.004 0.007
15% 0.672 0.760 0.018 0.009
20% 0.587 0.702 0.012 0.009
25% 0.541 0.603 0.017 0.004
33% 0.448 0.544 0.016 0.006

Table 2: Augmentation of observed data by simulated data:
ARIMA method

Simulation Mean SD

length 5% 1% 5% 1%
5% 0.950 0.990 0.009 0.000
10% 0.794 0.896 0.018 0.019
15% 0.623 0.755 0.030 0.013
20% 0.557 0.701 0.036 0.022
25% 0.541 0.663 0.025 0.032
33% 0.475 0592 0.018 0.033

three, Cholesky provides optimal ’success’. There
are indications, particularly from the Cholesky results,
that the ’success’ rate levels off for large prediction
lengths. It is likely that this effect is due to converg-
ing resemblance of the predicted data structure to the
observed data structure.

4.3 Simulation illustrations

This section contains examples of the three simula-
tion modes, to which we add qualitative comments on
the characteristics of the simulations. In each case,
the observed data is shown in red, the three simu-
lations are shown in green, and the median simula-
tion is shown in blue. The illustrations are for Mi-
crosoft, which has a typical reputation profile of many
large corporates, subject to the general sentiment level
(positive, negative or neutral). Microsoft’s sentiment
is mostly positive, and has the characteristic "jagged’
reversing pattern with prolonged upward and down-
ward movements. The two year profile is shown in
Figure 5, for which the sentiment mean and standard
deviation were 10.76 and 8.10 respectively. The end
of the observed data period is marked at day 730. For
each simulation type illustrated, the simulation is for
110 days: 15% more than the length of the observed
data. Only the latest six months of the observed data
are shown, in order to better highlight the profile of
each simulation.



Table 3: Augmentation of observed data by simulated data:
Cholesky method

Simulation Mean SD

length 5% 1% 5% 1%
5% 0.981 1.000 0.007 0.000
10% 0.837 0.933 0.017 0.012
15% 0.722 0.810 0.015 0.019
20% 0.712 0.800 0.032 0.017
25% 0.667 0.739 0.022 0.026
33% 0.662 0.717 0.046 0.040
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Figure 5: Microsoft: Microsoft observed data

1
W

T T T T T T T
550 600 650 700 750 800 850

-10

20 30
I 1

Sentiment score
10

Figure 6: Microsoft: three ARIMA simulations.
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Figure 7: Microsoft: three Copula simulations.

S DISCUSSION

The numerical results in Section 4 invite a choice of
which prediction method to use. Table 3 indicates that
Cholesky decomposition is the optimal method, since
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Figure 8: Microsoft: three Cholesky simulations.

it provides a higher proportion of auto-correlation
“successes’. The Cholesky choice would be clear,
were it not for a qualitative examination of the
predicted data, and of its microstructure. Figure 8
shows that the day-to-day variation in the prediction
is greater than the day-to-day variation for the ARIMA
and Copula methods. Further, the predictions for
ARIMA and Copula appear, subjectively, to be less
volatile than the observed data. Examination of
similar plots for other organisations confirms that
view. We have investigated, albeit briefly, a way to
reduce the volatility of the Cholesky prediction. A
scale factor can be derived as a function of prediction
residuals resulting from a piecewise linear fit to
the observed data. The same technique can also be
used to increase the volatility of the ARIMA and
Copula predictions. Despite some misgivings, we
prefer the Cholesky method because of its superior
conformance to the observed data auto-correlation.

Normally we would not recommend calculating
predictions that extend far beyond the bounds of
the observed data. A 10-15% extension would be
an upper limit. We have extended further in this
analysis to illustrate the limitations and capabilities
of the overall method. The further extensions have
revealed a slow convergence to what appears to be
a limiting value for the percentage ’success’ metric.
Convergence is attributable to convergence of the
auto-correlation structures of the observed data and
the prediction.

Investigating the predictive nature of reputation
is important because it has implications for risk
management and corporate decision-making. As
part of a generalised risk mitigation process (which
nearly always focuses primarily on monetary risk),
estimating risk due to reputation can provide insights
which balance sheet items cannot. For example, a
predicted downturn in reputation could signal future
difficulties in selling products or in hiring staff.
More generally, tracking reputation following the



introduction of new products can indicate whether
or not it is worth introducing similar products at a
later stage. The question of monetary valuation of
reputation was tackled in (Mitic, 2024), in which
reputation was valued in terms of share price. Share
capitalisations for large corporates are often valued
in hundreds of millions of euros, which is not useful
for insights into individual products. However, if a
company tracks sales with reputation, the possibility
of monetising reputation in terms of sales becomes
realistic. Thereafter, reputation prediction can be
used to predict sales. Further research is required on
this topic, but it would probably have to remain in the
domain of individual companies who can track their
own sales on a daily basis.

5.1 Further work

In addition to monetisation of reputation in terms of
product sales (as discussed above), prediction using
statistical properties of reputation time series presents
possibilities. In particular, neural networks using
Long Short Term Memory (LSTM) is a fruitful area
because LSTM can mimic the “choppiness* of repu-
tation time series due to its mechanism for selectively
retaining or discarding information using input gates
and forget gates respectively. However, this type of
neural network is very slow to train. Recent work
on this topic in other contexts includes (Yadev and
Thakkar, 2024). Adding attention layers to a neural
network may also be a way forward, provided that the
attention can be directed at particular features of the
data. A recent study (Wen and Li, 2023) in the con-
texts of air quality, electricity and share price is en-
couraging .
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APPENDIX A

Proposition

An auto-correlation matrix A is positive definite
(T'AL > 0 for all vectors §) , and therefore admits a
Cholesky decomposition.

Preliminary result
A positive definite matrix has a Cholesky decomposi-
tion (Golub and van Loan, 1992) (Section 4.2.7)

Proof
Let A be an L x L auto-correlation matrix and let its
column vectors be z = {z1,22,...z.}. Symmetry is
assured for (auto-)correlation matrices since for any
two vectors z; and z;, cor(z,z;) = cor(zj,zi); i,j=
1...L.

By definition, A = E[(z —Z)(z —Z)']. Then, for all
vectors C,

gAg = CE[(z—2)(z—2)']¢
= E[f(z—2)(z—2)']
= Epy] wherey=C'(z—2)
= E[var(y)] >0 Yy>0 (11)

Also A is symmetric, and therefore A is positive
definite.



