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Abstract 

While effects of general anesthesia on neuronal activity in the human neonatal brain are 

incompletely understood, electroencephalography (EEG) provides some insight and may identify 

age-dependent differences. A systematic search (MEDLINE, Embase, PUBMED, Cochrane 

Library to November 2023) retrieved English language publications reporting EEG during 

general anesthesia for cardiac or non-cardiac surgery in term neonates (37 to 44 weeks post-

menstrual age). Data were extracted and risk of bias (ROBINS-I Cochrane tool) and quality of 

evidence (GRADE checklist) assessed. From 1155 abstracts, nine publications (157 neonates; 

55.7% male) fulfilled eligibility criteria. Data were limited and study quality was very low. The 

occurrence of discontinuity, a characteristic pattern of alternating higher and lower amplitude 

EEG segments, was reported with general anesthesia (94 of 119 neonates, six publications) and 

with hypothermia (23 of 23 neonates, two publications). Decreased power in the delta (0.5-4Hz) 

frequency range was also reported with increasing anesthetic dose (39 neonates; three 

publications). While evidence gaps were identified, both increasing sevoflurane concentration 

and decreasing temperature are associated with increasing discontinuity. 
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Introduction  

Surface electroencephalography (EEG) non-invasively measures cortical brain electrical activity 

by the spatial summation of synchronous post-synaptic potentials from millions of aligned 

cortical neurons1–3. Components of the EEG can be used as biomarkers of brain activity or state, 

including amplitude, frequency, and pathological features. Regional and global changes in brain 

activity can be identified by placing multiple electrodes across the scalp. An EEG output can 

consist of an unprocessed (raw) form consisting of voltage changes over time, or a processed 

form that uses computer algorithms to generate an output from the raw EEG. Processed EEG 

monitors have been developed (e.g. Bispectral Index (BIS; Aspect Medical Systems, USA), 

Narcotrend (MonitorTechnik, Germany), SEDline (Masimo, USA), and amplitude-integrated 

EEG (aEEG)) to generate outputs that correspond moderately to anesthetic dose and 

unconsciousness3–6. However, direct correlation between anesthesia-induced changes in EEG 

and the clinical effects of anesthesia measured with minimum alveolar concentration (MAC) is 

yet to be shown. Processed outputs include spectrograms (e.g. SEDline)4,7, unitless integers (e.g. 

BIS is 0 – 100)8, and categorical read-outs (e.g. aEEG)9. Automated EEG decision-support tools 

are also becoming available (e.g. seizure surveillance)10–13.  

Brain monitoring with EEG in anesthetized adults has been used to understand dose titration, 

perioperative outcomes, and the neurophysiologic basis of anesthesia4,7,14–16. In adults, typical 

EEG changes with inhalational anesthetics and propofol include global increases in amplitude 

with gradual slowing of oscillations during anesthesia induction, followed by frontal alpha (8 to 

12 Hz) predominance during anesthesia maintenance. With further increasing dose, burst 

suppression – 17a profound form of discontinuity – develops17–20. Burst suppression is more 

likely in neurologically vulnerable adults such as those requiring surgery for epilepsy 

treatment21, those with neurodevelopmental disorders22, and the aging23. 
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EEG changes during general anesthesia have been reported throughout childhood8,24. 

Conclusions about specific age-related changes, particularly for neonates, are limited by broad 

age ranges reported25–28. With general anesthesia, alpha oscillations emerge around 3-months of 

age and become increasingly concentrated in the frontal cortex by seven months of age29,30. Total 

frontal EEG power increases with age and anesthetic depth between four months and six-to-eight 

years of age, thereafter, decreasing with increasing age31–33. Other reproducible changes seen in 

EEG with general anesthesia (e.g. alpha oscillation coherence) are not seen under one year of 

age31–33. Development of a discontinuous trace with general anesthesia is more likely at younger 

ages, especially aged under one year24,34–36.  

Characterization of neonatal EEG with general anesthesia may improve our understanding of the 

effect of anesthesia on the developing brain. Neonatal surgeries are often gastrointestinal 

(61.8%) or cardiac (8.4%), and urgent or emergency cases (48%)37,38. Newborns are all at least 

ASA status III. When they are born prematurely (37%), they are more likely to require surgery 

and require intensive preoperative support (48.1%). Consequently, studying neonatal EEG 

during general anesthesia is logistically challenging, which results in small sample sizes or 

grouping with older children. This systematic review aims to summarize current literature 

reporting patterns of EEG during general anesthesia in term neonates aged 37-44 weeks post-

menstrual age. 

Materials and Methods 

Search Strategy and Information Sources 

This review was registered at the PROSPERO international register of systematic reviews, 

registration number CRD42021290387, by Sebastian J Corlette on 10 December 2021 (available 

from https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021290387). We 

searched MEDLINE, Embase, PUBMED and the Cochrane Library on 22 February 2022, and 
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repeated on 17 November 2023 to capture any recent publications, using a pre-defined search 

strategy (see search terms, Supplemental Digital Content 1, https://links.lww.com/ALN/D582). 

The additional search on 17 November 2023 identified no additional eligible publications. We 

also searched PROSPERO for existing systematic reviews and published protocols, and online 

trials registries for ongoing clinical trials or unpublished studies.  

Data Extraction 

Two reviewers (SC, and CB or SW) independently screened titles and abstracts. No 

disagreements or uncertainties regarding screening criteria arose that required a third adjudicator. 

One reviewer (SC) then screened full-text manuscripts. Data from the review of full-text 

manuscripts was compiled using a template with specific criteria such as dependent and 

independent variables, the number of eligible patients for which data were reported, and 

descriptive findings. The data extraction template is included as Supplemental Digital Content 2 

(https://links.lww.com/ALN/D583). We used the Prisma Extension checklist for reporting39.  

Study Selection Criteria 

We included randomized controlled trials, analytical cross-sectional studies, case control series, 

cohort studies, case series, and prospectively controlled single case studies that reported EEG in 

term neonates (defined as having post-menstrual age between 37 and 44 weeks) during general 

anesthesia administered by an anesthesiologist for surgery, procedural intervention, or 

investigation. Manuscripts were excluded if they did not separately report data regarding term 

neonates. Data in included publications that were not obtained from neonates were excluded. 

Where multiple publications reported data related to the same patients, the patients were included 

in analysis only once.  
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Outcomes: EEG Features 

Reported EEG features including amplitude, frequency, continuity, and seizures were extracted, 

including changes over time during general anesthesia with varying dose. When reported, 

comparisons were made relating to the type and dose of anesthesia. Eligible EEG modalities 

included: unprocessed EEG, processed EEG and derived indices, and modalities measured with 

any type of electrode, with any number of electrodes and with any electrode montage.  

Data Quality 

Risk of bias was assessed for each study using the ROBINS-I tool from Cochrane Handbook for 

Systematic Reviews of Interventions40. The ROBINS-I tool systematically covers seven distinct 

domains through which bias might be introduced (i.e. participant selection, missing data, 

measurement of outcomes) through comparison with a hypothetical randomized controlled trial 

that would produce similar results. The categories for risk of bias judgements are “low risk”, 

“moderate risk”, “serious risk” and “critical risk” of bias for each domain. Findings were 

summarized in tables and then collated for outcomes across the literature using the GRADE 

(Grading of Recommendations Assessment, Development, and Evaluation) approach to 

determine the degree of certainty for each finding41. The level of certainty was rated as “very 

low”, “low”, “moderate”, and “high”.  For example, evidence that includes observational data 

starts at low quality and thereafter is systematically upgraded to “moderate” or “high” or 

downgraded to “very low” depending on the following criteria: within-study risk of bias, 

indirectness, inconsistency, imprecision, and publication bias.  
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Results 

Characteristics of Included Studies  

Nine publications fulfilled the inclusion criteria (Figure 1) and reported results for 157 patients 

(55.7% male)35,42–49. The included publications were separated into non-cardiac (two 

publications, Table 1) and cardiac surgery (seven publications, Table 2), as the latter included 

EEG effects associated with cardiac bypass, and deep hypothermic cardiac arrest. 

Two of the included studies were non-randomized experimental studies and seven were 

prospective cohort studies. No randomized controlled trials met the inclusion criteria. The risk of 

bias was moderate to serious for all publications (summarized in Table 3, full details in 

Supplemental Digital Content 3, https://links.lww.com/ALN/D584). Since all included 

publications were either non-randomized trials or prospective cohorts, all were initially rated as 

‘low’ quality of evidence and then adjusted accordingly using the GRADE method.  

Sample size ranged from one to 75 patients (See Tables 1 and 2). Sex distribution ranged from 

40% to 72% male. Four publications included either one or two term neonates only35,42,44,49, and 

two reported on the same patients with different analyses43,47. Twenty-three patients undergoing 

cardiac surgery were reported across two publications48,49 and 134 patients undergoing non-

cardiac surgery across seven publications35,42–47. 

EEG methodology 

One publication (non-cardiac) reported results from amplitude integrated EEG (aEEG)45 in 75 

patients, and the remainder reported unprocessed EEG35,42–44,46–49 in 82 patients. Most 

publications used 6 or fewer electrodes. Bipolar electrode pairs positioned at C3-P3 and C4-P4 

were used in three publications (112 patients)43,45,47. One publication (2 patients) reported the use 

of electrode positions F3, F4, CP3 and CP4, with a reference electrode on the nose42. In one 

publication (18 patients) a single electrode was positioned at FP1 with left ear used as 

Acc
ep

ted
 Prep

roof D
ow

nloaded from
 http://pubs.asahq.org/anesthesiology/article-pdf/doi/10.1097/ALN

.0000000000005088/708701/aln.0000000000005088.pdf by guest on 16 July 2024



11 

 

reference46, and two publications (3 patients) the electrode positions were unspecified44,49. One 

publication (one patient) reported using 34 electrodes35, and another publication (21 patients) 

reported using 16 electrodes48, both with a modified international 10/20 electrode placement 

system. The reference position was Fz in the former and unspecified in the latter.  

Electrode types were silver/silver-chloride cup electrodes in three publications (21 

patients)35,42,46, gold plated cup electrodes in one publication (21 patients)48, and subdermal 

needle electrodes in one publication (one patient)44. Electrode type was not specified in the 

remaining four publications (114 patients)43,45,47,49. 

General anesthesia 

EEG changes during inhalational anesthesia with sevoflurane, isoflurane or halothane in 156 

patients were reported across eight publications35,42–48. In 138 patients (88%) anesthesia was 

maintained with sevoflurane and data were insufficient to make comparison with other agents. 

One publication (two patients) reported one patient receiving fentanyl-based general anesthesia 

without added isoflurane, the other receiving both fentanyl and isoflurane49. The details of 

propofol administered in addition to inhalational anesthesia were not reported (dose, intermittent 

bolus versus continuous infusion, timing, or duration). Nitrous oxide use was permitted but not 

reported in one study of two cardiac patients49. In all other cases, nitrous oxide was not used 

during periods of anesthesia for which EEG was analyzed35,42–48.  

Neuromuscular blocking agents were used in both cardiac surgery (23 patients)48,49, and non-

cardiac surgery cases (59 patients)35,42–44,46,47. The remaining publication reported use of 

neuromuscular blocking agents in 123 of 129 total patients (95%) but was not separately reported 

for the 75 term neonatal patients included in this review45.  
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EEG properties 

Discontinuity 

Discontinuity was reported in four publications (71 of 96 patients) during non-cardiac 

surgery35,42,45,46 and in two publication (23 of 23 patients) during cardiac48,49.  

During non-cardiac surgery, one publication (75 patients) reported discontinuity in four term 

neonates before anesthesia and in 69 term neonates during sevoflurane anesthesia45. Concomitant 

propofol administration was associated with most cases of profound discontinuity45. In another 

study (18 patients), there was no difference in burst suppression ratio between end-tidal 

sevoflurane concentrations of 0.5% and 2%46. One publication (two patients) reported 

intermittent periods of low-frequency oscillations (0.5-2Hz) with amplitudes between 25-100V 

that merged to become continuous oscillations during washout from mean end-tidal 

concentration of sevoflurane of 2.3% (SD 0.5, range 1.5-3.5). This is suggestive of discontinuity 

albeit not explicitly defined by the authors42. In a fourth publication (one patient) the incidence 

of discontinuity with general anesthesia was the primary outcome measure and it was reported to 

not have occurred35.  

During cardiac surgery, in one publication (21 patients) both the number of patients developing 

discontinuity and the degree of discontinuity progressively increased in response to decreasing 

temperature both prior to, and during, cardiac bypass48. In this study, the EEG became isoelectric 

in all patients cooled below 32C48, while in another (two patients), all patients were cooled to 

below 20C and isoelectric EEG only developed after additional administration of thiopental 49. 

These data suggest an association between lower body temperature and the development of 

discontinuity during cardiac surgery, however anesthetic management during these periods were 

not reported in detail48,49. 

Power spectrum and EEG-derived indices 
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Four publications (57 patients) with non-cardiac surgery reported details of the power spectrum 

or EEG-derived indices. Two publications (37 patients) reported a decrease in spectral power in 

the frequency range 0.5-4Hz during volatile anesthesia compared with 3-6 hours pre-anesthesia 

and 3-6 hours post-anesthesia, although data were not adequately detailed to show a graded dose-

response relationship43,47. One publication (two patients) reported no change in spectral power in 

the frequency range 5-20Hz42 and another (37 patients) showed no change in the frequency range 

30-100Hz with washout of volatile anesthesia43. Spectral power in the frequency range 20-30Hz 

was not reported. In 18 patients, 90% spectral edge frequency, relative beta ratio and 

approximate entropy showed little change between end-tidal sevoflurane concentrations of 0.5% 

and 2%46.  

Seizures 

In a study of 111 neonates (36 preterm and 75 full-term) requiring non-cardiac surgery, none 

were known to have seizures preoperatively, but 11 had electrographic seizure activity identified 

by aEEG in the perioperative period. Intraoperative electrographic seizure activity occurred in 

four patients (two single occurrences, two repetitive occurrences), with onset during induction 

(end tidal sevoflurane concentration 2.5-5%) in one case45. In the first 24 postoperative hours, 

electrographic seizure activity was identified in eight neonates (six single seizures, two repetitive 

seizures) and one had electroclinical seizures45. Data relating intraoperative electrographic 

seizure activity to postoperative seizures, preterm or full-term birth, or suspected genetic 

syndromes (in four patients) were not reported.  
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Discussion 

Despite many publications meeting the search criteria, only nine publications including a total of 

157 patients addressed the review question. Sample sizes were small and there was significant 

heterogeneity in the types of surgeries, electrode montages and EEG analysis methods. The 

quality of the evidence was very low when assessed using the GRADE system. Four publications 

reported data from just one or two patients and there was significant heterogeneity of outcomes. 

While the predominance of observational study designs introduces risk of bias, it is consistent 

with the ethical imperative to provide general anesthesia to neonates only when clinically 

necessary, and to always provide standard-of-care anesthesia when doing so. 

Many publications did not report the post-menstrual ages of individual subjects. Despite reaching 

out to investigators directly, these data had either not been collected or could not be 

retrospectively accessed. Knowledge about this population could be improved through 

standardized reporting of post-menstrual age in clinical studies and better public availability of 

data. 

Most studies included in this review used six or fewer electrodes and scalp positions were 

heterogenous. As a result, the evidence does not support any interpretation of spatial patterns of 

activity. Since the neuroanatomical associations between anesthesia and EEG are still 

uncertain25,28, and the neonatal cortex is still developing50, there is much to be gained from 

exploring the spatial patterns. If loss of consciousness with general anesthesia is indeed a direct 

drug effect on the cortex51, then a more nuanced understanding might consider where, as well as 

what, changes are best measured in the term neonatal EEG. 

Although not observed in all patients, some form of discontinuity was reported in 94 out of 119 

neonates across both cardiac48,49 and non-cardiac35,42,45,46 groups. Discontinuity increased with 

increasing dose of anesthesia, however there was heterogeneity in the definitions for 
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discontinuity and these were not clearly referenced. Cornelissen et al defined discontinuity as a 

period of greater than two seconds with amplitude <25µV across most electrodes35. Seltzer et al 

defined discontinuity as burst suppression graded according to duration of the inter-burst 

intervals (0s, <30s, 31-179s and >180s), without any amplitude criteria48. Sury et al described 

“regular transients that later merged to become continuous oscillations” with wash-out of 

sevoflurane, which suggests discontinuity albeit not systematically defined42.  

Interestingly, definitions of burst suppression are also heterogenous across the entire neonatal 

literature52. This is despite discontinuity being typical in the developing brain50, and burst 

suppression being a key feature used to grade severity of neonatal encephalopathies and guide 

clinical treatment53. Neonatal burst suppression is considered an ominous sign, yet discontinuity 

with neonatal general anesthesia is reversible and has no known associated harm54. It remains 

unclear if the discontinuity observed in term neonates with general anesthesia is the same 

phenomenon as burst suppression seen with general anesthesia in older patients.  

EEG-derived depth of anesthesia indices, which often incorporate discontinuity detection in their 

algorithms, perform poorly in children under five years, particularly in those under one year25,55–

58. It is unclear if this represents a fundamental difference in general anesthetic effects on the 

developing brain or age-related changes in pharmacodynamic potencies. In other words, are the 

mechanisms of anesthesia effect fundamentally different in neonates, or are the unique effects 

that anesthesia has on neonatal EEG independent of the effect on clinical stage of anesthesia? 

This question presupposes the possibility that the EEG does not directly measure anesthetic 

state28.  

Amplitude-integrated EEG (aEEG) was reported for 75 patients (48%). It classifies filtered and 

compressed EEG by relatively simple pattern recognition of background activity59. aEEG was 

originally developed to enhance EEG monitoring in adult patients after cardiopulmonary 
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resuscitation60. In neonates, aEEG is used to grade the degree of discontinuity and screen for 

seizures61,62 .  

The aEEG algorithm defines burst suppression within a continuum of discontinuity, a point when 

background activity has low amplitude and no variability (0 to 1µV) and bursts have amplitude 

>25µV. It is quantified by the density of bursts per hour59. In contrast, consensus guidelines 

define burst suppression as atypically composed EEG bursts separated by prolonged and 

atypically low voltage interburst periods (<5V), with no spontaneous variability or reactivity to 

external noxious stimulation. Burst suppression is distinguished from excess discontinuity by the 

absence of typical patterns within the bursts19. 

The potential association between body temperature and discontinuity may be a significant 

confounder for the interpretation of EEG as a biomarker of anesthetic state. In adults undergoing 

controlled hypothermia during cardiac surgery, the degree of burst suppression systematically 

depends on the degree of hypothermia. In the setting of 1% isoflurane administration, the 

average interburst interval increases with decreasing temperature and returns toward baseline 

with rewarming63. This is relevant because hypothermia is likely in neonates undergoing general 

anesthesia, both therapeutic during cardiac bypass and iatrogenic. Therapeutic hypothermia is 

also routinely used in neonatal encephalopathy64. Although there are no data reporting the effects 

of mild hypothermia on neonatal EEG, the direct effect of temperature has potential to make 

EEG-guided therapeutic decisions more difficult65. One study (14 patients) of children aged less 

than two years during deep hypothermic arrest for cardiac surgery reported decreased EEG 

voltages without spectral change with decreasing temperature alone, however there were internal 

inconsistencies, and the anesthesia data were not reported in detail. This suggests further targeted 

investigation may be worthwhile66. 
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With increasing interburst interval, a neonatal EEG contains fewer low-frequency oscillations in 

any given data window being analyzed. This is mathematically consistent with a power spectrum 

containing less absolute power in these lower frequencies. In turn, neonatal EEG is dominated by 

the frequency range 0.5-4Hz, the spectral power of which is observed to decrease with increasing 

volatile anesthesia43,47. Detailed characteristics of discontinuity associated with hypothermia are 

not reported. Thus, it is plausible that a common underlying mechanism (or family of 

mechanisms) is being observed, relating both increasing anesthesia dose and decreasing body 

temperature with increasing discontinuity in a dose-related way. One might speculate receptor-

mediated mechanisms that are dependent on the rate of adenosine triphosphate production. This 

is presented visually in Figure 2. 

Whilst the quality of evidence is very low, the results herein may suggest two divergent 

interpretations regarding the measurement of hypnosis with general anesthesia. We set aside the 

conundrum of defining consciousness itself, let alone consciousness in a neonate, other than to 

acknowledge that the lack of a clear definition makes it a difficult phenomenon to measure. 

Nonetheless, if we assume that inhalational anesthetics do have a hypnotic effect in neonates 

then the challenge lies in measuring the effect size using EEG. Based on the evidence above, 

doing so by quantifying changes in EEG activity in the 5-100Hz frequency band is unlikely to be 

successful. This is consistent with familiar EEG-based indices being unreliable in these patients. 

However, examining patterns that might occur in activity below 5Hz, or patterns observed with 

discontinuity, may hold promise. Unfortunately, low frequency signals are notoriously 

vulnerable to artifact.  

Alternatively, one might consider that the typical changes observed in EEG with inhalational 

anesthesia represent a direct neurological correlate of hypnosis. In this case, their absence in 

neonates might suggest the confronting idea that when neonates go limp and unresponsive on 
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administered inhalational agents, it is not due to hypnosis at all. It could simply reflect a direct 

drug effect at spinal cord level. An exploration of pharmacological plausibility for anesthesia-

induced immobility mediated primarily at the spinal cord without hypnosis mediated in the brain 

follows67,68.  

Inhalational agents act in the brain to inhibit synaptic transmission, albeit with limited receptor 

selectivity. They are active at GABAA, glutamate, glycine, and nicotinic receptors as well as 

nitric oxide pathways69–71. Although it remains unclear how their actions translate into clinical 

effects, it is thought that augmentation of GABAA-mediated post-synaptic hyperpolarization 

predominates3,4,17,70.  

In the neonatal brain, higher post-synaptic intracellular chloride concentrations mean that when 

GABAA receptors are activated and open chloride channels, post-synaptic membranes depolarize 

rather than hyperpolarize. This leads to excitatory rather than inhibitory signaling4,72–76. In the 

neonatal brain, the role of GABAA receptors is thought to be primarily involved in signaling for 

neuronal proliferation77,78. The neonatal brain also undergoes massive proliferation of astrocytes, 

which reuptake and recycle GABA from the synaptic cleft, further modifying the synaptic 

environment79. 

In contrast, in the neonatal spinal cord, GABAA-mediated signaling does not provide excitatory 

drive80. A balance between excitation and inhibition is preserved due to concurrent increases in 

GABAergic and glutamatergic pathways, and immature descending inhibitory signaling81,82. 

Therefore, it may be that anesthesia-induced GABAergic signaling remains inhibitory in the 

spinal cord but not in the brain.  
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If this is true, and if one considers it plausible that anesthesia-induced hypnosis might not occur 

at all in neonates, alternative measurement strategies are needed that better reflect the clinical 

goals of anesthesia. Such strategies might include characterizing changes that occur with general 

anesthesia to evoked response potentials from noxious stimuli. 

In conclusion, both increasing sevoflurane concentration and decreasing temperature appear to 

be associated with increased discontinuity measure in neonatal EEG and there is scope for more 

detailed characterization of these relationships.  

Supplemental Digital Content 

Supplement 1: Literature search terms, https://links.lww.com/ALN/D582 

Supplement 2: Data extraction template, https://links.lww.com/ALN/D583 

Supplement 3: Extracted data tables, https://links.lww.com/ALN/D584 
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Legend of figures 

Figure 1 – PRISMA flow diagram 

Figure 2 – A possible common underlying mechanism. With increasing sevoflurane 

concentration and/or with decreasing body temperature, the low-frequency oscillations of 

neonatal EEG become increasingly discontinuous, and vice versa. 
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Table 1 – Summary of findings table for non-cardiac surgery using GRADE method 

Population: 37-44wk PMA humans      Setting: Non-cardiac surgery      Intervention: Anesthesia condition      Comparator: Anesthesia condition 

Outcomes Studie
s 

Neonates Main findings Quality 

Discontinuity 4 96 (i) EEG was classified as discontinuous prior to anesthesia in 6%, and in 98% during surgery. Discontinuity during surgery was burst 
suppression in 51% of patients and the grade of discontinuity classification regressed by two classes compared to preoperatively in 49% of 
patients. Concomitant propofol administration was associated with most cases of profound changes in discontinuity classification (n=75 of 111) 
45. 
(ii) Discontinuity did not occur during anesthesia (n=1 of 68) 35. 
(iii) Low-frequency oscillations (0.5-2Hz) resembling regular transients [spontaneous activity transients (SATs)] observed to gradually merge to 
become continuous oscillations in neonates during early phase of wash-out from sevoflurane anesthesia (n=2 of 20) 42. 
(iv) Burst suppression ratio (BSR) showed little anesthesia-dependent change under sevoflurane concentrations between 0.5% and 2% (n=18 
of 62) 46. 

⊕○○○ 

VERY 
LOW 

Power 
spectrum 

3 39 (i) Absolute EEG power in (0.5-2Hz), (2-4Hz) and (30-100Hz) bands were compared. MEDIAN power decreased from baseline in (0.5-2) and 
(2-4Hz) in sevoflurane group, analyzed across whole intraoperative period (n=37 of 37) 43. 
(ii) Averaged EEG power in 0.5-4Hz (delta) band was reduced during sevoflurane anesthesia (n=36 of 36) 47. 
(iii) Infants <52 weeks PMA demonstrates little change in P5–20 Hz and P8-13 (alpha) with anesthesia. Total P5–20 Hz and P8-13 (alpha) is 
under 100microV^2 and is monotonically (maybe linearly) related to age in infants below 52 weeks PMA (n=2 of 20) 42. 

⊕○○○ 

VERY 
LOW 

EEG-derived 
indices 

1 18 Calculated 90% spectral edge frequency (SEF90), relative beta ratio (RBR) and approximate entropy (ApEn) showed little anesthesia-
dependent change under sevoflurane concentrations between 0.5% and 2% (n=18 of 62) 46. 

⊕○○○ 

VERY 
LOW 

Time-series 
analysis 

2 3 (i) During maintenance halothane anesthesia, neonatal EEG "...consisted of a mixture of irregular delta, theta and alpha waves which were 
different from those of older patients who had waves of 10-12Hz” (n=1 of 62) 44. 
(ii) Low-frequency oscillations (0.5-2Hz) resembling regular transients [spontaneous activity transients (SATs)] observed to gradually merge to 
become continuous oscillations in neonates during early phase of wash-out from sevoflurane anesthesia (n=2 of 20) 42. 

⊕○○○ 

VERY 
LOW 

Seizures 1 75 Seizures may occur in up to 4% neonates during surgery, however distribution between term (n=75 of 111) and preterm (n=36 of 111) not 
reported 45. 

⊕○○○ 

VERY 
LOW 

aEEG 1 75 Propofol during sevoflurane anesthesia associated with most cases of profound changes in aEEG patterns (n=75 of 111) 45. ⊕○○○ 
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Table 2 – Summary of findings table for cardiac surgery using GRADE method 

 

Population: 37-44wk PMA humans      Setting: Cardiac surgery      Intervention: Anaesthesia condition      Comparator: Anaesthesia condition 

Outcomes  Total 
studies 

Total 
neonates 

Findings Quality 
(GRADE) 

Discontinuity 2 23 (i) Moderate burst suppression occurred in all neonates during cardiopulmonary bypass. In neonates with CPB but not DHCA, 
moderate burst suppression (IBI under 30 seconds) was maximum effect. All neonates who cooled to<32 C developed severe burst 
and subsequence isoelectric EEG (n=21 of 21) 48. 
(ii) Neonates with profound hypothermia (17.9 +- 1.6 deg C) in addition to fentanyl / NMB anaesthesia exhibit ongoing EEG activity. 
Thiopental bolus of 8mg/kg in addition to hypothermia, prior to deep hypothermic circulatory arrest (DHCA) rendered EEG 
isoelectric during DHCA (n=2 of 15) 49. 

⊕○○○ 

VERY 
LOW 

Time-series 
analysis 

1 21 With the induction of general anaesthesia, neonatal EEG changed from typical for age to slow and continuous (n=21 of 21) 48. ⊕○○○ 

VERY 
LOW 

Seizures 1 2 During DHCA, there were no patterns consistent with seizure activity, focal ischemia or global hypoperfusion (n=2 of 15) 49. ⊕○○○ 

VERY 
LOW 
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Table 3 – Risk of bias summary determined using the ROBINS-I tool 

Study ID Bias due to 

confounding 

Bias in 

selection of 

participants 

Bias in 

classification 

of 

interventions 

Bias due to 

deviations from 

intended 

interventions 

Bias due to 

missing data 

Bias in 

measurement 

of outcomes 

Bias in 

selection of 

reported 

result 

Overall bias 

Stolwijk 2017 Serious risk Low risk Serious risk Serious risk Low risk Low risk Moderate risk Serious risk 

Costerus 2021* Serious risk Low risk Low risk Low risk Serious risk Low risk Serious risk Serious risk 

Hendrikx 2021* Serious risk Low risk Low risk Low risk Serious risk Low risk Serious risk Serious risk 

Seltzer 2016 Moderate risk Moderate risk Low risk Low risk Moderate risk Low risk Moderate risk Moderate risk 

Hayashi 2012 Serious risk Low risk Low risk Low risk Low risk Low risk Moderate risk Serious risk 

Rung 1991 Moderate risk Low risk Low risk Moderate risk Low risk Low risk Low risk Moderate risk 

Sury 2014 Moderate risk Low risk Low risk Low risk Low risk Low risk Low risk Moderate risk 

Cornelissen 2017 Moderate risk Low risk Low risk Low risk Low risk Low risk Moderate risk Moderate risk 

Oshima 1981 Serious risk Low risk Low risk Low risk Low risk Low risk Low risk Serious risk 
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Figure 1 
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Figure 2 

 

Acc
ep

ted
 Prep

roof D
ow

nloaded from
 http://pubs.asahq.org/anesthesiology/article-pdf/doi/10.1097/ALN

.0000000000005088/708701/aln.0000000000005088.pdf by guest on 16 July 2024




