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Abstract
Effective seabird conservation requires understanding their marine spatial ecology. Tracking can reveal details of their 
foraging ecology and habitat use, as well as the suitability of marine protected areas for at-sea conservation, but results are 
often regionally specific. Here we characterised the foraging behaviour of tropical breeding brown boobies Sula leucogaster 
in the Chagos Archipelago, Western Indian Ocean, and tested habitat requirements. GPS tracking of thirteen individuals 
from two colonies, located 142 km apart on the same atoll (Great Chagos Bank), showed similar foraging effort and habitat 
preferences despite differences in season and breeding stage. Brown boobies from both tracked populations foraged close 
to the colony along the atoll shelf edge, avoiding deep oceanic areas and shallow waters of the Great Chagos Bank atoll, 
but within the Chagos Archipelago Marine Protected Area. Sea-level height anomaly and sea surface temperature were 
important foraging predictors at both sites, although birds experienced distinct environmental conditions between colonies. 
These results suggest that while brown boobies have colony-specific at-sea foraging areas, similarities in habitat drivers of 
distribution and foraging behaviour can inform predictions of distributions at other colonies within the archipelago, with 
important benefits for at-sea conservation efforts.
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Introduction

Studying seabird foraging ecology is important not only 
because it explains their extreme life histories (Dobson and 
Jouventin 2007), but also to understand their key role as 
ecosystem engineers (Graham et al. 2018; Otero et al. 2018), 
and their value as bioindicators of prey abundance and 
marine productivity (Bost et al. 2008; Velarde et al. 2013). 
However, seabird populations are under intense pressure on 
land and at-sea, making them one of the most threatened 
groups of birds worldwide (Croxall et al. 2012; Dias et al. 
2019).

The establishment of Marine Protected Areas (MPAs) 
and Birdlife International’s Important Bird and Biodiver-
sity Areas (IBAs) have become two primary methods for 
the conservation of seabird foraging habitats. Studies on 
seabird distributions, foraging behaviour, and habitat use 
are common approaches for identifying potential MPA loca-
tions (Grecian et al. 2012; Lascelles et al. 2012; Le Corre 
et al. 2012; Thaxter et al. 2012). The creation of large-scale 
MPAs has surged in recent years with the aim to protect 
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wide-ranging species, including seabirds, but are still con-
strained in their effectiveness due to various management 
challenges (O’Leary et al. 2018). Advances in seabird track-
ing technologies have promoted greater and more compre-
hensive scientific understanding of species behaviours at sea, 
which has in turn aided in both the establishment of MPAs 
(Wakefield et al. 2009; Hays et al. 2019) and the evaluation 
of their effectiveness (Harris et al. 2007). These behaviours, 
which are informed by measures such as trip duration and 
distance, dive depth, and habitat use, are broadly referred 
to as foraging strategies. Furthermore, data collected from 
tracking devices can reveal utilisation distributions, indicat-
ing the probability density of an animal’s location at any 
given time (Powell and Mitchell 2012). Nevertheless, both 
foraging strategies and utilisation distributions can vary 
considerably within and among species, making the identi-
fication of foraging hotspots for conservation prioritisation, 
including MPA designation, more challenging.

Behavioural variation within and among species is central 
to ecology, and has implications for scaling of conserva-
tion measures (Brakes and Dall 2016; Cleasby et al. 2023). 
For example, for breeding seabirds, central-place foraging 
strategies can scale among colonies at local scales (War-
wick-Evans et al. 2018). However, variability in behaviour is 
common both within- (Votier et al. 2017; Trevail et al. 2021) 
and among colonies at regional scales (> 200 km; Mannocci 
et al. 2017; Miller et al. 2023; Cleasby et al. 2023). Diver-
gent foraging strategies often arise through local adaptation 
to environmental conditions such as wind (Raymond et al. 
2010; Nourani et al. 2023), and oceanographic features such 
as bathymetry, sea surface temperature, and heterogeneity 
(e.g., Weimerskirch et al. 2005; Waggitt et al. 2018; Tre-
vail et al. 2019), and can therefore vary both spatially and 
temporally (Mendez et al. 2017). Lastly, foraging strategies 
are dependent on interactions with other marine foragers; in 
tropical regions, sub-surface predators drive prey closer to 
the surface in reach of flying predators (Au and Pitman 1986; 
Vaughn et al. 2008; Correia et al. 2019), meanwhile resource 
competition can drive segregation within and among species 
(Almeida et al. 2021; Trevail et al. 2023). These sources of 
variation in individual and population behaviour could limit 
the ability to infer priority sites for at-sea protection from 
limited tracking data (Soanes et al. 2013). As such, under-
standing foraging strategies among populations is a key step 
for maximising use of existing tracking data and guiding 
future studies in conservation and management.

The Chagos Archipelago is a group of five above-surface 
atolls and home to some of the world’s most pristine coral 
reefs (Sheppard et al. 2012). It was declared a no-take MPA 
in April 2010, covering circa 640,000  km2 of the Western 
Indian Ocean. The MPA was established to protect marine 
biodiversity, including seabirds, their breeding and forag-
ing habitats (Sheppard et al. 2012). However, because of 

its remoteness, access limitations, and expanse, seabird 
research has been limited. The brown booby, Sula leu-
cogaster, is a pantropical oceanic species and one of the 18 
breeding seabird species found in the Chagos Archipelago 
(Carr et al. 2021b). Brown boobies’ diet mostly consists of 
pelagic fish (Harrison et al. 1984; Mellink et al. 2001) but 
can be variable in response to environmental conditions 
(Castillo-Guerrero et al. 2016). Foraging trip duration for 
the species is short compared to more pelagic sulid species 
(Lewis et al. 2004; Weimerskirch et al. 2009; Soanes et al. 
2015). Furthermore, there is evidence of sex differences in 
foraging behaviour of brown boobies, larger females often 
undertake longer foraging trips and can forage at different 
trophic levels (Lewis et al. 2005; Weimerskirch et al. 2009; 
Young et al. 2010; Miller et al. 2018). Foraging areas may 
also vary depending on season and breeding stage; seabirds 
typically travel further during incubation (Soanes et al. 
2015). Whilst previous studies have highlighted how forag-
ing strategies vary for the species within colonies (Weimer-
skirch et al. 2009; Miller et al. 2018; Austin et al. 2021) and 
when compared with colonies in different oceans (Soanes 
et al. 2015, 2016; Correia et al. 2021), there is limited evi-
dence for foraging variability among colonies within in the 
same archipelago or atoll (Soanes et al. 2016). Understand-
ing inter-colony variations in the same geographic areas can 
be used to better address the establishment and assess the 
effectiveness of MPAs and IBAs.

This study aims to characterise brown booby foraging 
strategies for colonies located in the same archipelago. 
Breeding brown boobies from two islands situated 142 km 
apart on the Great Chagos Bank atoll, in the Chagos Archi-
pelago, were fitted with GPS loggers to document forag-
ing trip metrics and at-sea behaviours, and explore foraging 
habitat use. Because of logistical constraints on fieldwork, 
birds were tracked during different years, monsoon seasons, 
and breeding stages. Because these differences are known 
to influence foraging strategies, inter-colony variability is 
expected.

Materials and methods

Study site

Fieldwork was conducted on Nelson’s Island (72.3126° E, 
5.6815° S) in July 2018 and Danger Island (71.2406° E, 
6.3869° S) in January 2019 (Table 1). These two remote, 
uninhabited islands are respectively situated in the North and 
West of the Great Chagos Bank, the largest living coral atoll 
in the world (Sheppard et al. 2012). Brown boobies breed 
at three major colonies in the archipelago; North Brother 
(max 740 pairs), Danger Island (max 141 pairs, 35 recorded 
during study period), and Nelson’s Island (max 35 pairs, 
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12 during study period) (Carr et al. 2021b). Elsewhere in 
the Chagos Archipelago, colonies comprising fewer than 8 
breeding pairs have been recorded across 5 islands (Carr 
et al. 2021b). Danger Island and Nelson’s Island are there-
fore important within the archipelago, although popula-
tions are not large enough meet IBA qualifying criteria for 
regional significance (Carr et al. 2021b). Coordinates of 
the Chagos Archipelago MPA were downloaded from the 
World Database on Protected Areas, managed by UNEP 
World Conservation Monitoring Centre (available at Pro-
tectedPlanet.net).

GPS deployment and retrieval

To study at-sea foraging behaviour, 21 breeding adult brown 
boobies were fitted with a unique British Trust of Ornithol-
ogy (BTO) metal leg ring, livestock marker to aid recapture, 
an archival GPS logger (15 g, IGotU GT-120, Mobile Action 
Technology Inc) attached to the tail with tesa tape, and a leg-
mounted light level geolocator (3 g, Intigeo C330, Migrate 
Technology—data not used in this study). Handling time 
per individual was approximately 5–6 min. Together, GPS 
loggers and geolocators weighed < 3% of the individual’s 
body mass and there were no detectable effects of device 
deployment and recovery on breeding success during each 
expedition. On both Danger and Nelson’s Island we moni-
tored all brown booby nests where tags were deployed, and 
a selection of nests where no adults were caught, and at 
the point when we left each island none of the nests were 
observed to have failed.

GPS loggers were programmed to obtain fixes every 5 
min (24 h a day) and deployed for between 3–8 days. The 
stage of breeding and nest GPS locations for the tagged indi-
viduals were recorded, and when possible, the bird’s sex 
was identified by morphological differences (Nelson 1978).

Data processing

First, downloaded GPS data were trimmed to incorporate tag 
deployment and retrieval periods only. A 300 m buffer was 
then created around the islands and used to exclude short 
trips, typically for bathing or rafting (Bennison et al. 2018; 
Trevail et al. 2019). Complete trips were defined as journeys 

starting and finishing within 300 m of the colony including 
a minimum of four fixes.

To evaluate the GPS logger performance, GPS trip fix 
success rate was statistically analysed using a Wilcoxon 
Signed-Rank Test as observed and expected fix success 
rate data were non-normal. Despite there being a difference 
between observed and expected fix success rate (P < 0.05), a 
frequency histogram (available in the Supplementary Mate-
rial, Fig. S1) revealed that the majority of trips had only one 
or zero missing locations, and only three trips contained 
recording gaps of over an hour of data. Because of this pre-
liminary analysis, and experimental evidence suggesting 
high performance of this GPS logger (Morris and Conner 
2017), performance of loggers was deemed suitable for fur-
ther analyses. All statistical analyses were conducted in R 
4.0.0 (R Core Team 2016).

Foraging trip metrics

GPS fixes from complete trips were used to estimate total 
trip duration (mins), total trip distance (km), and maximum 
distance travelled (km), using the R package trip (Sumner 
et al. 2009).

To test for differences in foraging trips between colonies, 
trip metrics were square-root transformed to meet assump-
tions of normality (Young et al. 2015). Data distributions 
before and after transformation supported use of transformed 
data for colony comparisons (Supplementary material Fig. 
S2). Because of the hierarchical nature of the data, inter-
colony variations in trip metrics were assessed with ‘indi-
vidual’ (i.e. bird ID) as a random effect in a linear mixed 
effect model (LMM) using the function lmer in R package 
lme4 (Bates et al. 2015). Differences between colonies were 
assessed by removing colony from the model using the func-
tion drop1 in lme4. For further data exploration, correlations 
between trip metrics were assessed using a Spearman’s rank 
correlation, selected after running a Shapiro–Wilk test that 
indicated a non-normal distribution in trip metric data.

At‑sea behaviours

At-sea movement behaviour was quantified using a Hidden 
Markov Model (HMM) in R package moveHMM (Michelot 

Table 1  Study location and number of GPS loggers deployed and retrieved for brown boobies

Colony Colony location Island size (ha) Population size 
(pairs)

Study period No. of loggers 
deployed

No. of 
loggers 
retrieved

Danger Island 71.2406° E, 6.3869° S 77.6 35 Jan-19
NW monsoon

15 11

Nelson’s Island 72.3126° E, 5.6815° S 33.6 12 Jul-18
SE monsoon

6 6
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et al. 2016). This time series model is suitable for making 
inferences on animal movement behaviour through a non-
observable state sequence derived from an observable series 
(Langrock et al. 2012). The model calculates changes in 
step length (i.e. distance) and turning angle between GPS 
points to annotate trajectories by behavioural state (Mich-
elot et al. 2016). Firstly, GPS data were linearly interpolated 
to every 5 min using default parameters in the R package 
adehabitat (Calenge 2017); this step accounted for missing 
locations associated with a GPS fix success rate of < 100% 
and allowed these data to be run using an HMM on equally 
spaced locations.

The HMM with three states fitted these data better than 
a two-state mode; (based on Akaike Information Criteria, 
AIC, Supplementary material Table S1), as is the case for 
other booby species (Boyd et al. 2014; Oppel et al. 2015; 
Miller et al. 2018). The Viterbi algorithm was used to esti-
mate the most likely sequence of movement states. The 
HMM revealed three distinct underlying behavioural states 
(Fig. S6). A short step length and narrow turning angle (step: 
0.07 ± 0.04 km; turn: μ = 0.02, κ = 38) corresponded to a 
slow-moving state, described in the literature as a ‘resting’ 
state (Boyd et al. 2014; Miller et al. 2018). A greater step 
length and the widest turning angle (step: 0.9 ± 0.8 km; turn: 
μ =− 0.004, κ = 1.5) revealed a ‘foraging’ behaviour. Finally, 
a ‘transiting’ state was matched to a much greater step 
length, and the narrowest turning angle (step: 3.2 ± 0.6 km; 
turn: μ = − 0.01, κ = 19). Transiting would correspond to a 
relatively straight section of the trajectory in which GPS 
points are spaced out by an average of 3.2 km (Fig. S6), 
corresponding to a flight speed of roughly 38 km/h. Visual 
examination of the HMM output revealed that the propor-
tion of time spent foraging was 100% in some of the shortest 
trips in distance, hence a Spearman’s rank correlation was 
run to further investigate a relationship between maximum 
trip distance from the colony and proportion of time spent 
in each state. The analyses for this, found in Supplementary 
Material Fig. S3, suggested that the output for the HMM 
could be used to examine foraging behaviour of the tracked 
individuals. To understand inter-colony differences in behav-
ioural states, binomial GLMMs were run on the proportion 
of time spent in each behaviour, with ‘trip’ and ‘individual’ 
as nested random effects.

Habitat selection

To understand how brown booby occurrence and foraging 
locations were linked to environment, we used habitat-selec-
tion models based on available locations (i.e., all locations 
within each individuals’ home range) and known foraging 
locations determined by the HMM (i.e., locations that were 
documented by tracking devices) to test if tracked animals 
show preference towards particular habitats within their 

foraging range. To sample the available environment, a circle 
polygon with a radius of the furthest trip from the respective 
colony was drawn around the two colonies (i.e. 111.5 km 
around Danger Island and 67 km around Nelson’s Island). 
Ten GPS points were randomly generated for every foraging 
GPS point (as indicated by the HMM) in the tracking data 
within this radius using the function spsample in R package 
sp (Trevail et al. 2019).

We sampled static and dynamic environmental variables 
at all used and available points that could influence the avail-
ability and accessibility of foraging opportunities for brown 
boobies; (1) bathymetry, (2) bathymetric slope, (3) sea sur-
face temperature (SST), (4) chlorophyll, (5) sea-level height 
anomaly (SLA), (6) wind speed, (7) wind direction, and (8) 
distance to the colony. NOAA ETOPO1 bathymetry (1-arc 
minute resolution) was downloaded using package marmap 
(Pante et al. 2023). Slope was obtained from bathymetry 
using function “terrain” in the R package raster (Hijmans 
and Etten 2018). Dynamic variables were downloaded using 
the erddap interface from NOAA oceanwatch (https:// ocean 
watch. pifsc. noaa. gov/ erddap/): sea surface temperature 
(NOAA geopolar blended—monthly), chlorophyll a concen-
tration (ESA OC CCI—monthly), sea surface height anoma-
lies and geostrophic currents (NOAA/NESDIS/STAR), and 
ocean surface winds (CCMP, daily). Distance from colony 
was obtained using function “distGeo” in package geosphere 
(Hijmans et al. 2022).

For each colony, we ran habitat selection models using 
the biomod2 package (Thuiller et al. 2009) to predict pres-
ence/absence based on environmental variables. To avoid the 
idiosyncratic effect of different model types we constructed 
ensemble models comprising random forests (RF), gener-
alised linear models (GLM), generalised additive models 
(GAM), maximum entropy (MAXENT), boosted regression 
trees (GBM), and artificial neural networks (ANN). Model 
performance was evaluated on tenfold cross validation using 
relative operating characteristic (ROC) and true skills statis-
tic (TSS) scores, where values closer to 1 indicate improved 
model discrimination between presence and absences (ROC) 
and presence prediction (TSS). Ensemble performance was 
evaluated using an 80/20 split. Ensemble predictions used 
the weighted sum of probabilities (EMwmeanByTSS). We 
assessed variable importance and made spatial predictions 
using this ensemble model.

Results

GPS data

Tag recovery success was 73% on Danger Island (11 loggers) 
and 100% on Nelson’s Island (6 loggers, Table 1), yield-
ing tracking data for nine birds on Danger Island and four 

https://oceanwatch.pifsc.noaa.gov/erddap/
https://oceanwatch.pifsc.noaa.gov/erddap/
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on Nelson’s Island (Table 2; battery failure occurred on the 
remaining loggers). On Danger Island, data were from three 
males and six females. On Nelson’s Island, data were from 
two males, and two birds of unknown sex. Because of low 
sample sizes, no formal comparisons were made between 
foraging strategies of different sexes. All tracks were located 
within the Chagos Archipelago MPA (Fig. 1). Individuals 
from both colonies travelled away from the central Great 
Chagos Bank into surrounding, deeper waters (Fig. 1).

Foraging trip metrics

We analysed 74 trips from the 13 individuals (Table 2), 
compising 2–9 trips over 3–8 days per individual. In general, 

birds departed for one long foraging trip per day or multiple 
shorter ones, and trips took place during daytime. Across 
both colonies, trips ranged from 0.3–12.7 h duration, cov-
ered a total distance of 2.3–252.8 km, and reached a maxi-
mum of 1.1–111.5 km from the colony. On Danger Island, 
foraging trips lasted, on average, 3.8 ± 0.4 h, reached a maxi-
mum of 35.6 ± 3.8 km from the colony, and covered a total 
distance of 88.0 ± 9.0 km. On Nelson’s Island, foraging trips 
lasted 3.7 ± 0.5 h, reached a maximum of 23.9 ± 3.7 km from 
the colony, and covered a total distance of 63.0 ± 9.0 km. 
There were strong positive correlations between all trip 
metrics (Figure S4). Trip duration for both sites combined 
was positively correlated with total trip distance  (rs = 0.899, 
P < 0.001, n = 74) and maximum distance travelled from the 

Table 2  Summary of tracking data and trip metrics obtained for brown boobies with GPS loggers. Trip metrics were rounded to one decimal 
place

Colony No. of individuals 
with tracking data

Breeding stage No. of trips Mean trips 
per indi-
vidual

Trip duration (h) Maximum dis-
tance from colony 
(km)

Total trip distance
(km)

Mean ± SE

Danger Island 9 Provisioning chicks 54 6 3.8 ± 0.4 35.6 ± 3.8 88.0 ± 9.0
Nelson’s Island 4 Incubating eggs 20 5 3.7 ± 0.5 23.9 ± 3.7 63.0 ± 9.0

Fig. 1  Trips (n = 74) performed by GPS tagged Brown boobies 
(n = 13) from two separate colonies (triangles). (a) Trips are coloured 
by individual and overlaid on bathymetry map. (b) Location of the 

Chagos Archipelago in the Indian Ocean with MPA boundary shown 
in green. (c) Tracks from both colonies occur close to the islands, 
well within the Chagos Archipelago MPA
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nest  (rs = 0.829, P < 0.001). Total trip distance and maximum 
distance travelled were also positively correlated  (rs = 0.973, 
P < 0.001). Although trip metrics were marginally shorter on 
Nelson’s Island than on Danger Island (Table 2), there was 
no significant inter-colony variation; trip duration  (F1 = 0.08, 
P = 0.78), total distance   (F1 = 1.09, P = 0.31), maximum 
distance  (F1 = 1.93, P = 0.19) (Fig. 2). Trip metrics are pre-
sented for individuals by sex in the Supplementary Material 
(Fig. S5).

At‑sea behaviour

On average, tracked individuals (colonies pooled) spent 57% 
of the time foraging, 38% of the time transiting, and 5% of 
the time resting. All deconstructed tracks for both colonies 
and a close-up individual example are respectively found in 
the Supplementary Material (Figure S7 & S8). Tracked indi-
viduals at Nelson’s Island spent a significantly greater pro-
portion of time foraging (GLMM, χ2(1) = 15.4, P < 0.001) 
and a lower proportion of time transiting (χ2(1) = 488, 
P < 0.001), whereas there was no statistical difference in the 
proportion of time resting (χ2(1) = 150, P = 0.53) between 
colonies (Fig. 3).

Habitat selection

Individual habitat selection models had high performance 
(cross-validation AUC > 0.85, TSS generally > 0.7 at both 
colonies; Figure S9). For predictions, we formed ensemble 
models combining all model types at each colony, with high 
AUCs (0.98 for Danger Island, 0.985 for Nelson’s Island).

Variable importance assessment (Fig. S10) highlighted 
that distance to colony was a strong predictor at both colo-
nies, with individuals preferring habitat closer to their col-
ony (Fig. 4) relative to the overall environment available 
within their foraging range. Sea-level height anomaly and 
sea-surface temperature were also important at both colo-
nies but with different ranges likely associated with differ-
ent at-sea conditions (Fig. 4). At both colonies individuals 
also preferred habitat with steep slopes (Fig. 4) along the 
shelf edge. Other variables differed in their importance at 
each colony. Wind-speed was a useful predictor for birds 
from Danger Island (perhaps as wind speed was consistently 
higher, Fig. 4); chlorophyll-a and bathymetric depth were 
important predictors at Nelson (with individuals preferring 
shallower, less productive waters, Fig. 4). Based on these 
habitat preferences, we predicted brown boobies from the 
two tracked colonies to forage nearby to their colonies, in 

Fig. 2  Box-and-whisker plots comparing the three trip metrics; trip duration, maximum distance and total distance between the two colonies on 
Danger Island (DI) and Nelson’s Island (NI), for which we found no significant differences

Fig. 3  Colony comparison box-and-whisker plot of proportion of time spent in three behavioural states by GPS tracked brown boobies; forage, 
transit, rest. Behavioural states that differed significantly between colonies (P < 0.001) are indicated with three asterisks (***)
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areas extending outwards into deeper waters, away from the 
central Great Chagos Bank (Fig. 5).

Discussion

Our results reveal similar patterns of at-sea behaviour 
between two segregated colonies of brown boobies in the 
Chagos Archipelago. Despite differences in colony location, 
monsoon period, year, and breeding stage during tracking, 
trip metrics did not differ significantly between colonies. 
Foraging similarities could arise because of shared envi-
ronmental preferences for shelf edge habitats close to the 
colony. Both colonies foraged in distinct at-sea areas inside 
the MPA.

Brown boobies used comparable foraging strategies at 
both tracked colonies in the Chagos Archipelago with simi-
lar trip lengths of < 12.7 h duration (Fig. 2), foraged at distal 
locations (Figure S7) up to a maximum of 111.5 km from the 
colony, and spent very little time resting at sea (Fig. 3). Nev-
ertheless, we note that the number of tracked individuals is 

quite small (DI n = 9, NI n = 4) and while similarities should 
be treated with caution, all tracked birds had more than one 
trip (Table 1). Trip durations and distances were similar to 
those reported for this species in other oceans (Table 3), 
further highlighting that brown boobies generally forage in 
neritic zones and along coastal shelf edges (Weimerskirch 
et al. 2009; Young et al. 2015; Miller et al. 2018; Correia 
et al. 2021; Austin et al. 2021). However, given that temporal 
changes in the environment can influence foraging strategies 
(Soanes et al. 2015), and seabirds often forage further from 
the colony during incubation (Sommerfeld and Hennicke 
2010), it is interesting that variability in foraging effort was 
not observed between study colonies, perhaps because of 
shared environmental preferences.

Brown boobies are one of three sulids breeding in the 
Chagos Archipelago, alongside red-footed boobies, Sula 
sula (total 22,871 pairs), and masked boobies, Sula dactyla-
tra (total 164 pairs) (Carr et al. 2021b). Brown boobies for-
age much closer to the islands than the smaller, more pelagic 
red-footed boobies (mean maximum distance: 112.9 ± 3.7 in 
Chagos Archipelago, (Trevail et al. 2023), that are resident 

Fig. 4  Probability of habitat use 
along environmental gradients 
for GPS tracked brown boobies 
from Danger Island (pink) and 
Nelson’s Island (blue), based 
on ensemble models (error 
bars show confidence inter-
vals based on 100 ensemble 
iterations). Birds at each colony 
experienced different ranges 
of dynamic variables, but all 
preferentially foraged closer to 
the colony and at steeper bathy-
metric slopes
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in the archipelago year-round (Votier et al. 2024). Masked 
booby at-sea distributions in the Chagos Archipelago are 
unknown, however population sizes are smaller, so intraspe-
cific competition is less likely.

The habitat selection analyses demonstrated that distance 
to the colony was the most important environmental pre-
dictor across both populations, followed by sea-level height 
anomaly and sea-surface temperature. Although the range 
of these dynamic variables differed across the two tracking 
periods, birds at both colonies foraged in areas with higher 
sea-level height anomaly than available, indicative of eddy 
circulation and potential nutrient entrainment (Hyrenbach 
et al. 2006). Sea-surface temperature was also an important 
driver of habitat selection at both colonies, with birds at 
Nelson’s Island selecting intermediate temperatures com-
pared to those available between 27.5 and 28 °C, and birds 
at Danger Island selecting warmer waters > 29.5 °C (Fig. 4). 
Both of these temperature ranges coincide with favourable 
feeding habitats of skipjack tuna (Druon et al. 2017), so 
could suggest preference for facultative feeding opportuni-
ties, although further investigation into foraging modality is 
necessary (Dunn et al. 2024). At both colonies, individuals 
foraged over steeper slopes, away from the central Great 
Chagos Bank, similar to brown boobies in the Great Barrier 
Reef that also forage on the reef edge (Miller et al. 2018). 
Bathymetric slopes are associated with greater productiv-
ity as currents and topography can drive prey closer to the 

surface (Piatt et al. 2006; Reisinger et al. 2018), thereby 
attracting foraging seabirds (Piatt et al. 2006; McDuie et al. 
2018; De Pascalis et al. 2020).

There were significant differences in the proportion of 
time spent in foraging and transiting states between the colo-
nies. Differences may be explained by trip distances (Fig. 
S3); birds on Danger Island travelled marginally greater dis-
tances than birds from Nelson’s Island, and therefore may 
have incurred greater transit distances (Oppel et al. 2015). 
Alternatively, birds at Nelson’s Island experienced greater 
wind speeds (Fig. 4), potentially facilitating lower transit 
times. Female brown boobies sometimes travel further than 
males during foraging trips (Lewis et al. 2005; Weimerskirch 
et al. 2009; Soanes et al. 2015; Bunce 2015; Miller et al. 
2018), although the reverse may also occur (Austin et al. 
2021). Sample sizes here precluded formal testing, although 
we note no obvious sex differences in descriptive statistics 
(Fig. S5).

Foraging effort and at-sea distribution models are both 
used to help designate MPAs for seabirds (Lascelles et al. 
2012; Le Corre et al. 2012). Our results demonstrate the 
value of the Chagos Archipelago large scale MPA for 
encompassing the foraging area and habitat preferences 
of brown boobies during breeding. This is encouraging for 
seabirds that appear to be increasing following the long-
term impacts of invasive rats and vegetation (Carr et al. 
2021a, b). Nevertheless, distribution of brown boobies 

Fig. 5  Predicted occurrence of central place foraging brown boobies from Danger Island (left) and Nelson’s Island (right) during tracking peri-
ods across the Chagos Archipelago, based on habitat preferences. Islands are denoted by black outlines
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within the Chagos Archipelago MPA does not imply com-
plete protection of foraging resources, as illegal fishing 
remains a concern within the MPA (Collins et al. 2021).

Here, we attempted to understand variability in forag-
ing strategies of two colonies of brown boobies in the Cha-
gos Archipelago. As outlined previously, limited access to 

Table 3  Comparison of trip metrics for breeding brown booby colonies in the Pacific Ocean, Gulf of California, Caribbean Sea from prior stud-
ies, and in Indian Ocean from this study

Trip metrics were rounded to one decimal place and presented as reported by the studies, with sexes separated or pooled together. Colony size 
refers to individuals unless otherwise stated. Values in parenthesis indicate sample sizes of studies, or number of loggers retrieved ‘loggers’ 
where sample sizes were not specified
A Lewis et al. 2004
B Weimerskirch et al. 2009b
C Soanes et al. 2015
D Bunce 2015
E Young et al. 2015
F Soanes et al. 2016
G Miller et al. 2018
H Correia et al. 2021
I Austin et al. 2021

Colony Colony size (indi-
viduals)

Stage of breeding Mean trip duration 
(h)

Mean max distance 
from colony (km)

Mean total distance
(km)

 ± trip metrics
Indicating

Johnston Atoll,
North Pacific 

Ocean A

450 Incubating eggs 6.7 ± 3.8
(23)

– –  ± sd

Isla San Ildefonso, 
Mexico B

2000–4000 Provisioning chicks 2.0 ± 1.0 ♂ (14)
3.0 ± 1.3 ♀ (17)

50.9 ± 31.5 ♂ (8)
105.6 ± 45.9 ♀ (11)

16.6 ± 14.3 ♂ (9)
39.2 ± 16.6 ♀ (11)

 ± sd

Dog Island, 
Anguilla C

2462 Provisioning chicks 5.6 ± 2
(19)

48.4 ± 18.9
(19)

125.3 ± 54.4
(19)

 ± sd

Swain Reefs,
Great Barrier 

Reef D

18–158 Provisioning chicks 6.8 ± 2.8
(5)

14.5 ± 10.1
(5)

49.5 ± 30.3
(5)

 ± sd

Palmyra Atoll,
North Pacific 

Ocean E

200–600 6 incubating eggs
3 provisioning 

chicks

3.7 ± 2.4
(9)

37.3 ± 19.6
(9)

98.5 ± 52.9
(9)

Not specified

Sombrero, Anguilla 
F

724 Incubating/ provi-
sioning chicks

4.7 ± 0.3
(21 loggers)

28.5 ± 6.1
(21 loggers)

78.3 ± 2.4
(21 loggers)

 ± se

Prickly Pear West, 
Anguilla (2013) F

185 Incubating/ provi-
sioning chicks

5.5 ± 0.5
(32 loggers)

46.2 ± 1.6
(32 loggers)

105.6 ± 3.9
(32 loggers)

 ± se

Prickly Pear West, 
Anguilla (2014) F

520 Incubating/ provi-
sioning chicks

4.9 ± 0.4
(11 loggers)

30.3 ± 2.9
(11 loggers)

72.5 ± 7.1
(11 loggers)

 ± se

Raine Island,
Great Barrier 

Reef G

2642
(1994–2003)

Provisioning chicks 5.4 b2 ± 2.06
(19)

57 ± 22
(19)

150 ± 59
(19)

 ± sd

Tinhosas Islands, 
Gulf Of Guinea H

738 pairs Provisioning chicks 11.4 ± 7.1 ♀ (49)
9.5 ± 8.2 ♂ (78)

92.7 ± 45.4 ♀ (49)
64.4 ± 39.1 ♂ (78)

217.9 ± 105.7 ♀ 
(49)

153.1 ± 99.0 ♂ (78)

 ± sd

Cayman Brac, Cay-
man Islands I

146 breeding adults 
(2017)

Provisioning chicks 3.0 ± 0.3 ♀ (27)
4.4 ± 0.4♂ (31)

14.8 ± 1.4 ♀ (27)
23.5 ± 1.7 ♂ (31)

49.9 ± 3.9 ♀ (27)
77.2 ± 5.5 ♂ (31)

 ± se

Nelson’s Island,
Chagos Archi-

pelago
(This Study)

12 Incubating eggs 3.7 ± 0.5
(4)

23.9 ± 3.7
(4)

63.0 ± 9.0
(4)

 ± se

Danger Island,
Chagos Archi-

pelago
(This Study)

35 Provisioning chicks 3.8 ± 0.4
(9)

35.6 ± 3.8
(9)

88 ± 9.0
(9)

 ± se
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field sites meant that individuals between the two colonies 
were tracked during different years, monsoon periods, and 
breeding stages, and that sample sizes of both sexes were 
relatively low. Whilst similarities in foraging strategies are 
therefore noteworthy, future studies in the region could focus 
on filling these data gaps and providing greater understand-
ing of intra-colony variability in this species.

Because of low sample sizes, at-sea tracks (Fig. 1) may 
under-represent true population distributions (Soanes et al. 
2013). Despite the limited number of individuals with 
retrieved tracking data, incorporating multiple trips per 
individual undoubtedly improves estimation of area use 
(Soanes et al. 2013). Understanding the proportion of gen-
eral and core foraging areas represented by tracked individu-
als is dependent on multiple factors, including year, and sex. 
Therefore, drawing conclusions on the effectiveness of the 
Chagos Archipelago MPA surrounding Danger Island and 
Nelson’s Island using brown boobies could be assessed in 
future studies with a particular emphasis on sample sizes.

Conclusion

To conclude, we found comparable foraging strategies by 
brown boobies from nearby islands (142 km apart) in the 
Chagos Archipelago despite differences in tracking peri-
ods and breeding stage. Brown boobies foraged in coastal 
areas along the shelf-edge, which contrasts the more pelagic 
behaviour of neighbouring red-footed boobies (Trevail et al. 
2023), but is consistent with studies of this species else-
where (Austin et al. 2021). Importantly, we found that forag-
ing boobies avoided the shallow water of the Grand Chagos 
Bank atoll, but showed a preference for areas with a steeper 
bathymetric slope, higher sea-surface height anomalies, 
and ranges of SST that correspond to tuna foraging habitat. 
Finally, brown boobies remained within the Chagos Archi-
pelago MPA suggesting that this large-scale MPA can offer 
protection to habitats and prey.
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