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Abstract

In the modern iron and steel industry, the efficient distribution of byproduct

gases faces significant challenges due to quantity- and quality-related uncertain-

ties of gases. This study presents an optimal approach to gas distribution that

addresses this issue by incorporating the energy flow network and the uncer-

tain surplus gases from the manufacturing system. The uncertain optimization

problem is formulated as a two-stage robust optimization (TSRO) model, includ-

ing “here-and-now” decisions aimed at minimizing the start-stop cost of energy

conversion units, as well as “wait-and-see” decisions aimed at minimizing the

operating cost of gasholders and the penalties resulting from energy excess or

shortage. To facilitate practical implementation, we propose a “first quantify,

then optimize” approach: (1) quantifying the uncertainty of surplus gases via a

conditional quantile regression (CDQ)-based T-step time series model, and (2)

finding the optimal solution through a column-and-constraint generation algo-

rithm. Furthermore, a case study is conducted on an industrial energy system

to validate the proposed methodology. Computational results, using evaluation

indicators such as MAPE, RMSE, PICP, and PINAW, confirm the effectiveness

of the data-driven time series model in accurately quantifying uncertainties in
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each period. Sensitivity analysis demonstrates that the proposed TSRO model

achieves a favorable balance between robustness and flexibility by selecting the

combination of “budget and quantile” and the parameters of storage and conver-

sion units. Comparative results reveal: (1) the optimal objective of the TSRO

closely aligns with that of stochastic programming (SP) and is 2.717 times longer

than that of deterministic optimization (DO); and (2) the computation time of

TSRO is 2.388 times longer than that of DO, yet significantly smaller than that

of SP, being only 0.07 times longer. Consequently, TSRO can efficiently find

a robust gas distribution solution with the desired level of conservativeness for

integrated iron and steel plants.
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1. Introduction

Given that the global population and living standards are improving, steel

demand is expected to continuously grow in the coming decades, especially

in developing countries such as China, India, and Brazil [1]. However, the

iron and steel industry is also an energy-intensive and high-pollution industry,

contributing roughly 8% of energy-related consumption and 6% of global CO2

emissions [2]. This poses a core challenge that the world must face to achieve

a low-carbon and sustainable manufacturing future. China is the largest steel

producer worldwide, with a crude steel production volume of more than one

billion tons in 2021, accounting for approximately 15% of total greenhouse gas

emissions [3].

In an integrated iron and steel plant, the processes from iron ore to steel

products primarily rely on coal-related resources and generate a significant

amount of byproduct gas, which is identified as the most important secondary

energy source and primary source of CO2 emissions in the plant-wide energy

system [4]. These byproduct gases come from three different sources, namely
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Figure 1: Byproduct gas system in a integrated iron and steel plant.

coke ovens, blast furnaces, and basic oxygen furnaces, and are referred to as

coke oven gas (COG), blast furnace gas (BFG), and Linz-Donawitz gas (LDG),

respectively. As illustrated in Figure 1, these gases are initially supplied to other

production units in the manufacturing system. Then, surplus gases are either

stored in dedicated gasholders or converted to other forms of energy, such as

steam and electricity, to meet the specific demands of given production units.

Generating energy from byproduct gases reduces procurement costs in the mar-

ket. However, if surplus gases cannot be converted and exceed the capacity of

the gasholders, they must be flared, resulting in unnecessary energy loss and

environmental pollution. By summarizing these processes, the units are divided

into three parts:

1) The manufacturing system, which includes process units, serves as both a

supplier and a consumer.

2) The storage system, which includes gasholders, serves as a buffer.

3) The conversion system, which includes boilers, CHP, and CDQ units, serves

as an adjusting element.

The primary objective of plant-wide distribution of byproduct gas is to de-
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termine the storage and conversion of surplus gases to meet the demands for

steam and electricity, while minimizing the environmental pollution from gas

emissions. However, the energy system faces uncertainty from the following

factors:

1) Quality-related uncertainty, the calories of byproduct gases from the manu-

facturing system vary because the combustible components (H2, CH4, CO)

in gases change randomly.

2) Quantity-related uncertainty, the volume of byproduct gases cannot be pre-

cisely estimated because the process units in the manufacturing system are

not fully controllable.

As these factors are unforeseen, traditional optimal distribution models with

perfect assumptions for byproduct gases tend to fail in practice. To overcome

these shortcomings, this study presents a robust optimization (RO) method

that can provide several flexible strategies to absorb uncertainty and help the

byproduct gas system operate with low risks. The contributions of this study

can be summarized as follows:

1) Formulating a network flow-based mathematical model to achieve the opti-

mal distribution of byproduct gases in integrated iron and steel plants.

2) Developing a two-stage RO (TSRO) model to make “here-and-now” and

“wait-and-see” decisions under uncertainty.

3) Proposing a solution methodology to the TSRO with the “first quantify, then

optimize” idea.

The remainder of this study is organized as follows. Section 2 reviews the

optimal distribution models in integrated iron and steel plants and the RO tech-

nique under uncertainty. Section 3 proposes an optimization-based mathemat-

ical programming model for the distribution of byproduct gases and formulates

it as a TSRO model under uncertainty. Section 4 reformulates the TSRO as

a data-driven two-stage robust optimization (DD-TSRO) model, following the

idea of ”first quantify, then optimize”. Section 5 conducts a case study to verify
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the effectiveness of the proposed approach. Section 6 presents the conclusions

of the study and provides recommendations for future research.

2. Literature review

The optimal distribution of byproduct gases in integrated iron and steel

plants is a complex task that requires simultaneously balancing energy flow and

minimizing costs [5]. To achieve this, mathematical modeling approaches, par-

ticularly mixed-integer linear programming (MILP), have been widely adopted.

The MILP-based distribution model was initially introduced by Akimoto et al.

[6], which considered the operational cost of gasholders. Subsequently, MILP-

based models have been developed to optimize gas distribution while also con-

sidering multiple objectives such as fuel costs [7], varying energy demands [8],

switching time of boilers [9], and time-of-use (TOU) electricity pricing [10].

Numerous studies have also adopted the MILP model to describe additional

behaviors of the byproduct gas system. For example, Kong et al. [11] focused

on the optimal distribution of byproduct gas considering the requirements of

the manufacturing system. Zeng et al. [12] assumed that the generation rates

of byproduct gases were time-varying. Hu et al. [13] considered the new start-

stop behavior of the conversion system. These MILP-based methods have pro-

vided valuable insights into energy flow, but they are often criticized for be-

ing utopian as they rely on fully known parameters and disregard uncertainty.

Consequently, some practitioners have attempted to introduce data-driven tech-

niques to estimate uncertainty related to quantities in the MILP model. For

instance, Zhao et al. [14] used a Gaussian kernel-based regression model to pre-

dict the uncertain state of outsourcing natural gas and oil, power generation,

and gasholder levels. Pena et al. [15] proposed a range of time series models to

forecast the generation and consumption of COG, BFG, and LDG, respectively.

Subsequently, both of these studies employed a MILP model to minimize op-

erating costs and energy costs using a moving horizon. It is worth noting that

all the aforementioned models were solved using off-the-shelf software packages
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such as IBM ILOG CPLEX Optimizer and Lingo.

To ensure optimization is achieved more efficiently, several studies have de-

veloped heuristic and learning-based methods. Zhao et al. [16] proposed a neu-

ral network-based model to predict the real-time flow of COG and its gasholder

level. They developed a heuristic algorithm to find the optimal distribution

solution. Similarly, Jin et al. [17] applied granular causality techniques and a

support vector machine (SVM) model to predict the gasholder level of the LDG

system. They developed a particle swarm optimization (PSO) algorithm to find

the best solution. However, these methods are only applicable to the distribu-

tion problem in a single gas subsystem. To achieve plant-wide distribution, Jin

et al. [18] constructed a causal reasoning model to predict the gasholder level

and proposed a four-layer causal network involving the operational statuses of

boilers, heat quantity, steam demand, and gas mixture proportion to estimate

the best solution. Xi et al. [19] focused on the demand for carbon capture, uti-

lization, and storage in iron and steel enterprises. They used a gradient boosting

regression tree as the surrogate model of the energy conversion system and the

PSO algorithm to determine the optimal distribution decision. To enhance the

flexibility of the distribution model, Wang et al. [20] proposed reinforcement

learning methods for dynamic distribution, which included a granular prediction

model to describe state transitions and a fuzzy rule-based Q function. These

studies used data-driven techniques to discover information on quantity-related

uncertainty in the byproduct gas system and made more flexible decisions using

heuristic and learning-based methods. However, their robustness and appli-

cability are diminished because the uncertainty makes the forecasting results

imprecise.

To overcome imprecise predictions in mathematical models, RO is an effec-

tive approach for optimization under uncertainty. A comprehensive summary of

the development and application of RO can be found in the tutorial by Bertsimas

et al. [21], as well as in reviews presented by Gabrel et al. [22] and Rahimian et

al. [23]. Rather than precisely predicting uncertain parameters, RO considers a

range of possible values within a well-defined “uncertainty set” and seeks robust
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and reliable solutions that are optimal under the worst-case scenario within this

set. To incorporate risk preferences, various styles of uncertainty sets leveraging

historical data have been developed in the RO community [24]. Delage et al.

[25] developed a moment-based distributional RO model with mean and vari-

ance information. Bertsimas et al. [26] employed hypothesis testing to design

uncertainty sets with a probabilistic guarantee and low conservativeness. Shang

et al. [27] and Ning et al. [28] derived polyhedron uncertainty sets using ma-

chine learning techniques such as SVM, principal component analysis (PCA),

and kernel density estimation (KDE). RO models also provide a multi-stage

decision process under dynamic environments [29], of which the TSRO is the

most representative one. The TSRO model, including here-and-now and wait-

and-see decisions, can make decisions as time goes by and has been applied in

energy management systems (EMS) for industrial processes [30]. Zhao et al. [31]

proposed a TSRO model with KDE-based uncertainty sets to address the op-

erational optimization problem of industrial steam systems under uncertainty.

Shen et al. [32] applied a TSRO model with SVM-based uncertainty sets in the

energy system of an ethylene plant. In our previous work [33], we developed a

TSRO model for the optimal oxygen distribution problem with flexible demands,

where the uncertainty set is synthesized via the Gaussian process regression of

the iron-making process and the optimal scheduling of the steel-making process.

The existing literature on byproduct gas distribution primarily focuses on

addressing quantity-related uncertainties (e.g., gas consumption and gasholder

level) and assumes that they are fully known or precisely predictable. However,

mathematical models are sensitive to uncertainty, and even small changes in

inputs can lead to ineffective gas distribution decisions. This can result in sub-

optimal adjustments of gasholders and infeasible start-stop operations for con-

version units. To fill this research gap, we present a TSRO model for byproduct

gas distribution that accounts for uncertain surplus gas from the manufacturing

system and develop a solution methodology based on the idea of “first quantify,

then optimize”.
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Nomenclature

Sets,Indices

K, k Vertex in the energy network

A, a Arcs in the energy network

G, g Energy in the energy network

T , t Time periods of energy distribution

Parameters

A+(k), A−(k) Input and output arcs of vertex k

a+, a− Origin and destination vertex of arc a

e : a Energy of arc a

ωa Calorie value of the energy flow on arc a

ρk conversion efficiency of energy unit on vertex k

za,t Suplus gas at time pertiod t

da,t Demand of energy eat time pertiod t

η+k Minimum calorie value of the input energies to conversion unit k

η−k Minimum ratio of the ouput energies from conversion unit k to their

maximum flows

Uk Maximum volume of gasholder k

Uk Minimum volume of gasholder k

∆k Minimum devivation of gasholder k

F
+

k,a Maximum flow of input energy a of conversion unit k

F+
k,a Minimum flow of input energy a of conversion unit k
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F
−
k,a Maximum flow of output energy a of conversion unit k

F−
k,a Maximum flow of output energy a of conversion unit k

γ1 Objective coefficient of the start-stop costs

γ2 Objective coefficient of the gasholders operating costs

γ3,k Objective coefficient of surplus and shorages of demand k

Variables

fa,t Continuous variable, which represents the flow of arc a at time period t

uk,t Continuous variable, which represents stroaage level of unit v at time

period t

vg,t Continuous variable, which represents shortage or over-stock of energy

e at time period t

Ok,t Binary variable, which represents the running state (on and off) of con-

version unit k at time period t

Sk,t Binary variable, which represents the switch state (start up and shut

down) of conversion unit k at time period t
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3. Optimal distribution under uncertainty

3.1. Network of byproduct gas system
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Figure 2: Network flow of byproduct gas system.

This study considers the network of the byproduct gas system (K,A), where

K denotes the processing units and A denotes the available flows between these

units. Each processing unit is assigned one of the following four roles:

1) Supply (K+), which supplies surplus gases and other energies () to the sys-

tem.

2) Storage (KS), which includes the gasholders of BFG, COG, and LDG.

3) Conversion (KC), which converts the surplus gases to other energies, i.e.,

electricity and steam.

4) Demand (K−), which denotes the energy demands of surplus gases, electricity

and steam.

Assuming that the EMS collects all required information, the mathematical

model makes optimal decisions for the distribution of byproduct gases over a

finite time horizon T = {1, 2, · · · , t, · · · , T}, where t is the index of a period.

3.2. Deterministic optimization model

3.2.1. Storage units:

In time period t, the surplus gases flow into their dedicated gasholders

(k ∈ KS), and the varying gasholder level satisfies the mass balance [38]. The
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difference between period t−1 and t is equal to the surplus volume of byproduct

gas minus the total volume of the output flows, which can be described by the

following linear equation:

uk,t − uk,t−1 =
∑

a∈A+(k)

za,t −
∑

a∈A−(k)

fa,t, k ∈ KS , t ∈ T (1)

where uk,0 is the initial gasholder level.

Since each gasholder must operate within a safe operational region, its level

has the following lower and upper bounds:

Uk ≤ uk,t,≤ Uk, k ∈ KS , t ∈ T (2)

Due to operational restraints, the gasholder level change |uk,t − uk,t−1| of

gasholder k between periods t− 1 and t must not exceed ∆k.

uk,t − uk,t−1 ≤ ∆k, uk,t−1 − uk,t ≤ ∆k, k ∈ KS , t ∈ T (3)

The deviation vk,t of gasholder k from the middle level uk,mid to the current

level uk,t indicates the risk of under-stock or overstock. Thus, the deviation

(vk,t) can be defined with the following inequalities:

uk,t − Uk,mid ≤ vk,t, Uk,mid − uk,t ≤ vk,t, k ∈ KS , t ∈ T (4)

3.2.2. Conversion units:

Through a conversion unit (such as a boiler and CHP), input flows can be

converted into other output flows, which must satisfy the following input-output

balance of energy conversion.

ρk
∑

a∈A+(k)

fa,t × ωe:a =
∑

a∈A−(k)

fa,t × ωe:a, k ∈ KC , t ∈ T (5)

When a conversion unit is turned on (Ok,t = 1), its input and output energy

flows are restricted by the capacity of conversion unit k.

F+
k,aOk,t ≤ fa,t ≤ F

+

k,aOk,t, k ∈ KC , a ∈ A+(k), t ∈ T (6)

F−
k,aOk,t ≤ fa,t ≤ F

−
k,aOk,t, k ∈ KC , a ∈ A−(k), t ∈ T (7)
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To ensure that an equipment unit works under normal conditions, the mixed

calorific value of the input flows must be greater than or equal to the minimum

value of η+k .∑
a∈A+(k)

fa,t × ωe:a ≥ η+k
∑

a∈A+(k)

fa,t ×+bigM(Ok,t − 1), k ∈ KC , t ∈ T (8)

Given that the operation of large-capacity equipment with low output is

thought to be uneconomic [13], the ratio of output flow to its maximum limits

must not be allowed to be lower than the defined threshold value η−k . Otherwise,

the conversion unit should be closed.∑
a∈A−(k)

fa,t ≥ η−k
∑

a∈A−(k)

F
−
k,a + bigM(Ok,t − 1), k ∈ KC , t ∈ T (9)

∑
a∈A−(k)

fa,t ≤ bigM ×Ok,t, k ∈ KC , t ∈ T (10)

If a conversion unit is being started or stopped (Sk,t) its on/off status (Ok,t)

is also being changed between periods t − 1 and t. In a real-world situation,

conversion units should operate stably and avoid repeated start-stop changes.

Thus, the binary variables Sk,t and Ok,t are related as follows:

Ok,t −Ok,t−1 ≤ Sk,t, Ok,t−1 −Ok,t ≤ Sk,t k ∈ KS , t ∈ T (11)

3.2.3. Demand side:

According to the energy characteristics we divided the energies on the de-

mand side into the following two sets: the emitted gases (K−
1 ), including BFG,

LDG, and COG; and the generating energy (K−
2 ), including electricity and

steam. In K−
1 the gases are not allowed to be emitted into the air; thus, their

demands are set to zero, and the excess of supply over demand needs to be min-

imized. In K−
2 the shortage of supply under demand will result in a purchase

cost. Because the total input energy flow of demand k at period t must meet

its demand dk,t we can define the following inequalities:
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

∑
a∈A+(k)

fa,t − wk,t ≥ dk,t, k ∈ K−
1 , t ∈ T

∑
a∈A+(k)

fa,t + wk,t ≥ dk,t, k ∈ K−
2 , t ∈ T .

(12)

where wk,t indicates the surplus and shortage of demands in K−
1 and K−

2 .

3.2.4. Objectives:

Given the assumptions and constraints above, the optimal objective (F ) of

the studied byproduct gas system within the time horizon (T ) can be repre-

sented as follows:

minF = γ1
∑
t∈T

∑
k∈KC

Sk,t + γ2
∑
t∈T

∑
k∈KC

vk,t +
∑
t∈T

∑
k∈K−

γ3,kwk,t (13)

where the first term (F1) represents the start-stop cost of conversion units, the

second term (F2) denotes the operating cost of the gasholder deviation from the

middle position, and the last term (F3) indicates the demand penalty caused

by the excess or shortage of energies. It should be noted that in (13), γ1 and

γ2 are unit-unrelated constant coefficients, and γ3,k is a unit-related coefficient.

Furthermore, γ2 is represented by a set of piece-wise functions [9].

3.3. TSRO model

It should be noted that, in the gasholder level balance equation (1), the

volume of surplus gases (za,t) is equal to the generation of manufacturing units

minus their consumption. Given that manufacturing units are not fully con-

trolled, the gas volumes are random and equation (1) needs to hold under the

random. In this study, it was assumed that za,t is an uncertain variable that

varies between [z◦a,t−ẑ−a,t, z◦a,t+ẑ+a,t], where z◦a,t is the forecasting point (i.e. nom-

inal value) and ẑ−a,t, ẑ+a,t respectively denote its maximum negative and positive

forecasting deviations. Thus, the random surpluses over time can be represented

as the following box-uncertainty set.

Zbox :=
{
z : za,t = z◦a,t + ξ+a,tẑ

+
a,t − ξ−a,tẑ−a,t, 0 ≤ ξ−a,t, ξ+a,t ≤ 1, ∀a, t

}
(14)
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Since the box-uncertainty set always suffers from over-conservativeness, Bert-

simas and Thiele [34] introduced an integer parameter Γt(0 ≤ Γt ≤ T ) (budget

of uncertainty) to restrict the maximum cumulative deviation with the summa-

tion of absolute value constraints.

Zbud :=
{
z : za,t = z◦a,t + ξ+a,tẑ

+
a,t − ξ−a,tẑ−a,t,

0 ≤ ξ−a,t, ξ+a,t ≤ 1,

T∑
t=1

(
ξ+a,t + ξ−a,t

)
≤ Γa, ∀a, t

} (15)

With the defined uncertainty sets above, a TSRO model can be formulated

to make the offline decisions of which conversion units are started or stopped

in the first-stage minimization, while the online operating variables can be de-

termined in the second-stage minimization after the potential variations have

been realized via the maximization over the uncertainty set Z.

min
O,S∈{0,1}

{
γ1
∑
t∈T

∑
k∈KC

Sk,t +max
z∈Z

min
u,v,w,f∈R

∑
t∈T

(∑
k∈KS

γ2vk,t +
∑

k∈K−

γ3,k × wk,t

)}
(16)

subject to constraints (1)-(12)

4. TSRO formulation and solving

The formulations presented in the previous section provide a comprehensive

framework for applying TSRO to byproduct gas distribution.In this section, a

reformulation of TSRO into a DD-TSRO model is proposed, following the idea

of ”first quantify, then optimize”. The detailed steps are illustrated in Figure 3.

4.1. Data-driven uncertainty quantification

Since the RO technique is interested in forecasting intervals instead of points,

the conditional quantile regression (CQR) proposed by Koenker et al. [35] can be

applied to define a time series model. The CQR aims to quantify the uncertain

surplus gases at a period τ (zτ where subscript a is omitted in this section)

given data from the past p periods.

z̃τ = ψ(zτ−1, . . . , zτ−p; θ) + ϵτ (17)
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Figure 3: Flowchart of the proposed DD-TSRO framework.

where z̃τ represents the prediction, ψ(·) represents the latent function of un-

known form, θ represents its hyper-parameter, and ϵτ represents the random

noise, but it is not necessarily normally distributed. Instead of forecasting the

conditional mean µ(z̃τ |zτ−1, . . . , zτ−p), the CQR technique can be applied to

estimate a given quantile of z̃τ , such as the median. Let Lα be the αth quantile

of the cumulative density function of z̃τ , i.e. Pr(z̃τ ≤ Lα) = α, and the αth

conditional quantile function of zτ can be rewritten as:

qα(z̃τ |zτ−1, . . . , zτ−p) := inf{zt ∈ R : Pr(z̃τ |zτ−1, . . . , zτ−p) ≥ α} (18)

Given the training set D = {(z(i)τ−1, . . . , z
(i)
τ−p; z

(i)
τ )}Ni=1, classical regression

analysis estimates the conditional mean by minimizing the sum of squared resid-

uals on the training set. Analogously, CQR estimates a conditional quantile

function qα of zτ by minimizing the following loss function:

L = min
θ

1

N

N∑
i=1

[
α/2max(z(i)τ − z̃(i)τ , 0) + (1− α/2)max(z(i)τ − z̃(i)τ , 0)

]
(19)

When α < 0.5, the loss function places more weight on smaller predictions,

and when α > 0.5, it places more weight on larger predictions. When α = 0.5,
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the loss function is reduced to the least absolute deviation regression, which is

also known as median regression. Thus, given the training set D and quantile

α, the uncertainty of zt can now be quantified:
z◦τ = q0.5(z̃τ |zτ−1, . . . , zτ−p)

ẑ−τ = z◦τ − qα(z̃τ |zτ−1, . . . , zτ−p)

ẑ+τ = q1−α(z̃τ |zτ−1, . . . , zτ−p)− z◦τ

(20)

In this study, gradient boosting decision tree (GBDT) is applied to find

the best latent function ψ(·) to cover the training data. GBDT is a powerful

machine learning technique that uses multiple regression trees (e.g. CART).

The prediction model can be rewritten as follows:

ψM (zτ−1, . . . , zτ−p) =

M∑
m=1

tree(zτ−1, . . . , zτ−p; Θm) (21)

where tree(·; ·) represents a regression tree, Θm denotes parameters of tree m,

and M represents the number of regression trees. Then, GBDT uses a gra-

dient boosting and a forward step-wise algorithm to find the optimal hyper-

parameters.

Θ∗
m = argmin

Θm

L(z̃τ , ψm−1 + tree(zτ−1, . . . , zτ−p; Θm) (22)

The details can be found in the work of [36]. This study also proposes a

framework for implementing T-step prediction, as shown in the following:

z̃τ+t = ψt
M (zτ−1, . . . , zτ−p, α), t ∈ 1, ...., T (23)
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4.2. Reformulation for TSRO

For formulation simplicity, the TSRO model is presented in the following

matrix form:

min c⊤x+max
z∈Z

min
y∈Ω(x,z)

d⊤y (24a)

s.t. Ax ≤ b,x ∈ {0, 1} (24b)

Ω(x, z) =


Gy ≥ h

Qy ≥ r−Px

Wy = z+ s

(24c)

In formulation (24), vector x represents the first-stage decisions (O,S), and

vector y represents the second-stage decisions (u, v, w, f). The objective func-

tion (24a) is divided into two parts: one depends on the binary variables x,

and the other depends on the continuous variables y. Equation (24b) includes

all constraints involving only binary variables (6),(7), (10) and (11).In the do-

main defined by equation (24c), the first term collects constraints (2)-(5) only

involving continuous variables, the second term accounts for (8) and (9) that

involving mixed variables, and the last term represents the constraints (1) that

involves the uncertain gas surplus.

With the simplified formulation, the dual of the second-stage optimization

problem is first found to be LP and holds a strong duality. Therefore, its dual

problem can be rewritten in the following form:

max
z,λ,σ,ϕ

λ⊤h+ σ⊤(r−Px) + ϕ⊤(z+ s)

s.t. λ⊤G+ σ⊤Q+ ϕ⊤W = d⊤

λ ≥ 0,σ ≥ 0, z ∈ Z

(25)

where λ,σ,ϕ are the Lagrangian multipliers of the formula (24c) and ϕ is

unbounded. Note that ϕ⊤z are bilinear in the objective function, and therefore

needs to be linearized. First, due to the variable z being independent of other

variables in the equation (25), the optimal solution must be one of the extreme
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points of Z. Next, the uncertain set is inserted into the term ( ϕ⊤z) to obtain

the following equation:

ϕ⊤z =

T∑
t=1

(
ϕtz

◦
t + ϕtξ

+
t ẑ

+
t − ϕtξ−t ẑ−t

)
Then, (25) is transformed to the following MILP model using the Big-M

method [37], which can be easily solved by commercial solvers.

max
π,λ,µ,ϕ

λ⊤h+ σ⊤(r−Px) + ϕ⊤s+

T∑
t=1

(
ϕtz

◦
t + π+

t ẑ
+
t + π−

t ẑ
−
t

)
s.t. λ⊤G+ σ⊤Q+ ϕ⊤W = d⊤

π+
t ≤ bigMξ+t , π

+
t ≤ ϕt + bigM

(
1− ξ+t

)
, ∀t

π−
t ≤ bigMξ−t , π

−
t ≤ bigM

(
1− ξ−t

)
− ϕt, ∀t

T∑
t=1

(
ξ+t + ξ−t

)
≤ Γ, ξ+t , ξ

−
t ∈ {0, 1}

λ ≥ 0,σ ≥ 0

(26)

where π+
t and π−

t are auxiliary variables. If ξ+t and ξ−t are equal to 1, π+
t and

π−
t will be limited to ϕt and −ϕt. If ξ+t and ξ−t are equal to 0, π+

t and π−
t will

be limited 0.

4.3. Column-and-constraint generation algorithm

max
x,β,yi|i<I

c⊤x+ β (27a)

s.t. Ax ≤ b,x ∈ {0, 1} (27b)

β ≥ d⊤yi, i = 1, . . . , I (27c)

Gyi ≥ h, i = 1, . . . , I (27d)

Qyi ≥ r−Px, i = 1, . . . , I (27e)

Wyi = zi + s, i = 1, . . . , I, (27f)

It is difficult to find the optimal solution of (24) directly within a short

time using state-of-the-art optimization solvers (e.g. Cplex, Gurobi, and SCIP).
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Since the uncertainty set Z is a polyhedron, the worst-case scenarios of surplus

gas are only located at an extreme point of Z; therefore, the number of possible

worst-case scenarios is finite [38]. Based on this characteristic, this study applied

the column-and-constraint generation (C&CG) algorithm proposed by Zeng and

Zhao [38] to seek the optimal solution for DD-TSRO. Initially, the TSRO defined

in (24) is relaxed and reformulated as the master problem (27). Then, the

possible worst-case scenarios are identified by solving the subproblem (26) and

added to (27) as a cutting plane. Finally, the optimal solution can be found by

iteratively improving the gap between the lower and upper bounds. The solving

procedure is stated in Algorithm 1.

Algorithm 1 Column-and-Constraint Generation (C&CG)
1: Initialization: LB = −∞, UB =∞, i = 1

2: Construct a feasible decision at the first stage x1 (via the deterministic

model (1)-(13))

3: repeat

4: Solve subproblem (26) with fixed xi, obtain the optimal solution ξ′i and the

optimal objective value β′. Then, a worst-case scenario zi is constructed

via the budget-based set (15).

5: Update UB = min{UB, c⊤xi + β′}

6: Solve the master problem defined in (27) by adding the new scenario zi

and new variables yi. Let (x∗, β∗) be the optimal solution.

7: Update LB = c⊤x∗ + β∗.

8: i← i+ 1,xi ← x∗.

9: until UB− LB ≤ δ or i > I (δ is a user-defined tolerance)

Output: The optimal solution x∗, LB and UB.

5. Case study

To verify the proposed approach, this section presents a case study on the

energy system of an integrated iron and steel plant in China. The integrated
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iron and steel plant consists of three gasholders, two 35t boilers, two 130t boil-

ers, two sets of CHP, and two sets of CDQ. The operational parameters and

the network configuration of the industrial energy system are presented in the

attached supplementary materials (ref. Tables S1-S6).

For uncertainty quantification, the open-source scikit-learn package, version

1.2.1 [39], was used. The DD-TSRO model was implemented using Pyomo

[40], a Python-coded, open-source modeling language, and solved using ”Gurobi

9.0” (https://www.gurobi.com/products/gurobi-optimizer/), an academic

version with default settings. All computational studies were conducted on a

PC with an Intel Core i7 processor (3.60 GHz), 16 GB RAM, and a Windows

10 operating system.

5.1. Uncertainty quantification

BFG LDG COG
Gas

0.5

0.6

0.7

0.8

0.9

1.0

Su
pp

ly

Figure 4: The violin plot of gas surpluses on dataset.

First, we extracted 1000 historical data samples for each gas from the EMS

of the iron and steel plant and shared them on the following webpage: https://

github.com/janason/Energy/tree/main/gas. The violin plot shown in Figure

4 illustrates the visual distribution of normalized samples and suggests that

the volume of surplus LDG follows a bimodal distribution. To quantify the

uncertain surplus gases, we applied the GBDT technique using scikit-learn’s

GradientBoostingRegressor class. Specifically, we separated all the samples into
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training (900 samples) and testing (100 samples) sets and used them to test the

CDQ-based T-step time series model.

Next, we set T = 8 and p = 20 in the proposed time series model. When

forecasting the nominals, we set α = 0.5, and when forecasting the deviations,

we enumerated the quantile α from the set {0.01, 0.05, 0.1}. Thus, we obtained

8× 3 = 24 groups of prediction results for each type of gas. Figure 5 shows the

predictions for t = 1, where the “plus” points represent medians, and the gray

regions represent intervals of uncertain gases quantified by each quantile. The

graphical representation shows that the width of the gray region increases as

the quantile decreases, implying that the uncertainty quantification of gases in

each period is determined by selecting the appropriate quantile.

Then, we observed the effects of quantile selection by calculating the fol-

lowing four evaluation indicators: (1) mean absolute percentage error (MAPE),

(2) root mean square error (RMSE), (3) prediction interval coverage probability

(PICP), and (4) prediction interval normalized average width (PINAW):

MAPE =
1

N

N∑
τ=1

∣∣∣∣z◦τ − z̃τz̃τ

∣∣∣∣× 100% (28)

RMSE =

√√√√ 1

N

N∑
τ=1

(z◦τ − z̃τ )
2 (29)

PICP =
1

N

N∑
τ=1

Cov(α)τ (30)

where Cov(α)τ =

 1, if zτ ∈ (z◦τ − ẑ−τ , z◦τ + ẑ+τ ),

0, otherwise

PINAW =
1

N(zmax − zmin)

N∑
τ=1

(ẑ−τ + ẑ+τ ) (31)

where zmin and zmax is the minimum and maximum values of the target value

in the testing set, respectively.

Finally, we presented the calculated indicators in Table 1. The results in-

dicate the following: (1) When α = 0.50, the forecasted nominals for each gas
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are not completely precise, as indicated by their values of MAPE and RMSE

being greater than zero. Additionally, they exhibit similar effects, as their val-

ues of MAPE and RMSE are close. (2) The values of PICP and PINAW for

smaller quantiles are lower, emphasizing the significance of quantile selection

for quantifying the uncertainty of the proposed DD-TSRO model.

By utilizing the validation set (refer to the attached data file on the web-

page), we obtained forecasted nominals z◦a,t and deviations z−a,t, z+a,t for eight

periods (see Table S7 in the supplemental material), as illustrated in Figure 6.

These values were then used to parameterize the budget-based uncertainty set

Z in the model.

Table 1: Metrics of prediction results

metrics α BFG LDG COG

MAPE 0.50 6.418 6.488 6.804

RMSE 0.50 0.059 0.056 0.057

PICP

0.01 0.941 0.969 0.981

0.05 0.825 0.897 0.862

0.10 0.680 0.784 0.791

PINAW

0.01 0.850 0.852 1.011

0.05 0.525 0.481 0.550

0.10 0.392 0.367 0.436

5.2. Sensitivity analysis on Γ and α

As discussed in Section 3, the quantile α reflects the estimated level of un-

certainty of surplus gases in each period, and the budget Γa controls how much

the uncertain parameters can deviate from their nominal values. In this subsec-

tion, a set of scenarios was generated to observe how the optimal objective is

affected by budgets and quantiles. Then, the appropriate combination of (α,Γa)

was determined to avoid over-conservativeness, with the quantile α falling into

{0.01, 0.05, 0.10}, and the budget Γa of each gas ranging from 0 to 8. When

Γ = 0, TSRO is defined as a deterministic optimization, representing the most
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Figure 5: Prediction results for gases when τ = 1
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Figure 6: Prediction intervals of byproduct gases.
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optimistic scenario without any uncertainty. When Γ = 8, TSRO is defined

as an uncertain optimization with a box-based set, representing the most pes-

simistic scenario.

Figure 7 shows the curves of optimal objectives with different budgets (Γa)

and quantiles (α). With an increase in the budget of uncertainty, the opti-

mal objectives under all quantiles worsened, as higher budgets represent more

uncertain parameters deviating from their nominal values. Specifically, the op-

timal objectives are at their worst and deteriorate (increase) at the most rapid

rate when α = 0.01 because it exhibits the most conservative estimation of za,t.

To achieve a trade-off between the probability of violation and the effect on

the optimal objective, α = 0.05 and Γa = 4 were chosen for the subsequent

experiments.
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Figure 7: Optimal objective under different budgets and quantiles.

5.3. Sensitivity analysis on ∆k and η−k

In the studied TSRO model, the maximum deviation of each gasholder (∆k)

and the minimal output ratio of each conversion unit (η−k ) reflect the flexibility

of the byproduct gas system as they can absorb some uncertainties. In the

following experiments, we varied their values respectively by [∆k] = ι×∆k and

[η−k ] = ι×η−k , where ι represented the scaling ratio ranging from 0.5 to 2.0 with
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a step size of 0.1.

Figure 8 displays the varied objectives output by the TSRO model with

different values of [∆k] (left y-axis) and [η−k ] (right y-axis). These curves confirm

the following observations:

(1) Increasing [∆k] or decreasing [η−k ] enhances the flexibility of the energy

system, as indicated by the decreasing optimal objectives.

(2) The energy system is more sensitive to changes in [η−k ] compared to [∆k].

For instance, when ι = 1.5, the objective of [η−k ] is ten times higher than

that of [∆k]. Moreover, for ι ≥ 1.6, the objective of [η−k ] sharply increases.
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Figure 8: Optimal objective under varied ∆k and η−k

5.4. Comparison with deterministic optimization

To further explore the behaviors of the TSRO model (α = 0.05,Γa = 4),

we compared its optimal objectives with that of the deterministic optimization

(DO) model (Γa = 0).

Table 2 lists the objectives of the TSRO and RO models, while Figures 9-11

illustrate their solutions for decision variables Ok,t, uk,t, and ve,t, respectively.

The x-axis represent conversion units, gasholders, and generating energies, the

y-axis denote periods, and the z-axis mark their values in each period. These

comparative results suggest the following:
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(1) The TSRO model has a lower start-stop cost (F1 in Table 2) since TSRO

only shuts down one unit, while RO shuts down two units (as shown in

Figure 9), providing adjusting capacity to absorb uncertainties.

(2) The TSRO model incurs significantly higher operating costs for gasholders

(F2 in Table 2) and higher demand penalties (F3 in Table 2). Figure 10

shows that the gasholder level of TSRO declines more significantly, while

Figure 11 shows that more energies have excess and shortage. This is be-

cause the TSRO model computes the optimal objectives under the worst-

case scenario.

(3) Computation time in Table 2 shows that the TSRO model takes 2.388 times

longer than the DO model to solve due to the iterative nature of the C&CG

algorithm.

From the above observations, it can be concluded that the TSRO model

provides a robust optimal solution considering the worst-case scenario, despite

the acceptable cost of increased computation time. This is evidenced by its

objective (F ) being 2.717 times that of the DO model, and its computation

time being within 5 seconds.

Table 2: Comparison results between DO and TSRO model

items DO TSRO

F1 20 10

F2 221.934 371.669

F3 53.667 421.371

F 295.601 803.040

Computation Time (s) 1.727 4.124

5.5. Comparison with stochastic programming

In this subsection, we compared our TSRO approach with the two-stage

stochastic programming (TSSP) approach in solving the test instance. It is
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Figure 9: On-off status of conversion units.
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worth noting that the TSSP approach has been widely used in handling uncer-

tainty in previous works on energy management (see [41] and its cited refer-

ences).

In our TSRO model, we set α = 0.05 and Γa = 4. For the TSSP model, we

generated 400 scenarios from a truncated normal distribution within the predic-

tion interval. These scenarios were based on the mean z◦τ and standard deviation

(z+τ +z−τ )/4, representing the uncertainty of surplus gases. We then used a vali-

dation dataset consisting of 800 scenarios, which were randomly drawn from the

same distributions as those used in the TSSP model, to compute the objectives

of both models.

The simulated results are summarized in Table 3. It is worth noting that the

TSRO model incurs a lower start-stop cost (F1 in Table 3) because it adopts

a conservative approach to handle uncertainties, avoiding frequent switching of

conversion units. Both models yield similar results for F2 and F3 under average

and worst-case scenarios. Moreover, the average and worst-case objectives (F )

of the TSSP and TSRO models are similar, which indicates that the TSRO

model can achieve the desired conservativeness. Notably, the TSRO model runs

significantly faster, taking only 0.07 times longer than the stochastic approach.

Table 3: Comparison results between TSSP and TSRO

items TSSP TSRO

F1 20 10

Worst-case F2 305.696 311.417

Average F2 229.637 240.199

Worst-case F3 388.814 388.814

Average F3 86.337 86.337

Worst-case F 642.277 645.053

Average F 335.974 336.536

Computation Time(s) 65.431 4.592
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6. Conclusions

This study presents an optimal gas distribution approach to address the

challenge of uncertain surplus gas from the manufacturing system. The pro-

posed approach utilizes a TSRO model that includes “here-and-now” decisions

to minimize the start-stop cost of conversion units and “wait-and-see” decisions

to minimize the operating costs of gasholders and demand penalties. To facili-

tate practical implementation, this study also introduces a “first quantify, then

optimize” method: using a data-driven time series model to quantify the uncer-

tainty of surplus gas and then applying a C&CG algorithm to find the optimal

solution. A comprehensive case study conducted on an industrial energy system

of an iron and steel plant provides significant insights, yielding the following key

findings:

(1) Computational results of quantified indicators, such as MAPE, RMSE,

PICP, and PINAW, validate the effectiveness of the CDQ-based T-step

time series model in accurately quantifying uncertainties for each period by

selecting the appropriate quantile.

(2) The sensitivity analysis reveals that the proposed TSRO model ensures

robustness and flexibility by selecting suitable “budget and quantile” com-

binations and setting the parameters of storage and conversion units, such

as the maximum deviation of gasholders and minimum output ratio. The

optimization of these parameters can enhance the performance of the energy

system in dealing with uncertainties under various conditions.

(3) Comparative analysis highlights that the TSRO model can obtain a robust

solution with low conservativeness while maintaining an acceptable com-

putation speed. Compared to the DO model, the TSRO model achieves a

2.717 times higher objective and takes 2.388 times longer to solve. However,

when compared to the stochastic approach, the TSRO model achieves com-

parable optimal objectives with a computing time that is only 0.07 times as

long.
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Despite the robustness and low conservativeness offered by the proposed ap-

proach, this study still has some limitations. The study primarily focuses on

the uncertainty of the surplus volume of byproduct gases and does not account

for quality-related uncertainty, particularly the calorific value of each gas. Fu-

ture research directions should involve developing a novel uncertainty set that

incorporates both uncertain surplus and calorific value. Additionally, as the un-

certainty information evolves over time, it is necessary to extend the two-stage

decision process to a multi-stage decision process.
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