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Abstract

Optimal oxygen distribution is one of the most important energy management problems in the modern
iron and steel industry. Normally, the supply of the energy generation system is determined by the energy
demand of the manufacturing processes. However, the balance between supply and demand fluctuates
frequently, owing to the uncertainty arising in the manufacturing processes. In this study, we developed an
optimal oxygen distribution considering uncertain demands and proposed a two-stage robust optimization
(TSRO) model with a budget-based uncertainty set that protects the initial distribution decisions with low
conservatism. The main goal of the TSRO model is to make “wait-and-see” decisions, maximizing energy
profits, and make “here-and-now” decisions, minimizing operational stability and surplus/shortage penalty.
To represent the uncertainty set of energy demands, we developed (1) a Gaussian process-based time-series
model, to forecast the demand intervals for continuous processes, and (2) a capacity-constrained scheduling
model, to generate multi-scenario demands for discrete processes. We perform extensive computational
studies on TSRO and its components using well-synthesized instances from historical data. The results of
model validation and analysis are promising and demonstrate that our approach is well adapted to solving
industrial cases under uncertainty.

Keywords: oxygen distribution, iron and steel industry, robust optimization, demand forecasting, process
scheduling, machine learning

1. Introduction

Energy plays a vital role in the plant-wide optimization of manufacturing systems, aiming to achieve a
carbon-neutral economy [1]. However, two major challenges are faced by most energy intensive manufactur-
ers: (1) rising energy costs and (2) strict emission requirements. These challenges are particularly severe in
the iron and steel industry because it is the second-largest energy consumer in global industrial sectors [2].
Oxygen is one of the most fundamental energy resources in integrated iron and steel plants because some
processes require a significant amount of oxygen gas, e.g., steelmaking via basic oxygen furnace (BOF),
ironmaking via blast furnace (BF). Moreover, oxygen is also a critical health resource, especially during
the COVID-19 pandemic. Therefore, optimal decisions on oxygen distribution can significantly enhance
productivity and energy efficiency, as well as indirectly contributing to mitigating the public health crisis.

In an integrated iron and steel plant, the oxygen energy system is mainly composed of three subsystems
(as illustrated in Fig. 1): an oxygen-generating system (OGS), oxygen storage system (OSS) and oxygen
user system (OUS). OGS has a set of air separation units (ASUs) that simultaneously separate atmospheric
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Fig. 1: Oxygen supply and demand system in a integrated iron and steel plant

air into pure gases, typically including nitrogen, oxygen and argon. The liquid oxygen is poured into a
tank, and the gaseous oxygen flows into the supply network connected to the OUS. OSS includes a pipeline
network that supplies high-pressure gas to each user and some oxygen gasholder units (GSUs), working as
a buffer between supply and demand. OUS mainly comprises ironmaking, steelmaking processes and other
processes, which consume gaseous oxygen at different pressures. During routine production, the ironmaking
and steelmaking processes consume most of the oxygen, i.e., approximately 40% for ironmaking and 50% for
steelmaking. In an integrated iron and steel plant, the decision support system, called energy management
system (EMS), focuses on determining the optimal operational parameters, balancing the supply from the
OGS and the demand from the OUS.

During the oxygen distribution horizon, we assume that: (1) other gases, including Nitrogen and argon,
are sufficient. The distribution of oxygen cannot affect the EMS distributing other gaseous energy from
the OGS to the OUS. (2) The OGS operates under normal conditions, and no machine breakdown occurs.
(3) Liquid oxygen is a type of recoverable energy, and is only used when any ASU in OGS breaks down or
the demand from OUS surges. Most approaches to handle oxygen distribution seek optimal operations and
assume all parameters associated with manufacturing and energy are fully known. However, the balance
between oxygen supply and demand often suffers from environmental and systematic uncertainty because
of unforeseen events or unobservable factors, e.g., the dynamic arrival of materials and duration variation
of processes. In practice, this means that the energy distribution decisions made by the EMS may not fulfil
the predesigned balance. Therefore, how to distribute oxygen under uncertainty is a critical issue for the
EMS achieving safety, stable and smart management.

The remainder of this paper is organized as follows. In Section 2, we review energy optimization models
in iron and steel plants and the robust optimization (RO) technique under uncertainty. In Section 3, the
deterministic model for optimal oxygen distribution and its uncertainty model using the two-stage robust
optimization (TSRO) approach are proposed. Sections 4 and 5 are devoted to developing a time series and
process scheduling model, respectively, to describe the uncertainty of oxygen demand, respectively. Section
6 presents computational studies that verify the effectiveness of the proposed approaches. The final section
provides conclusions and future perspectives of the study.
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2. Literature review

The iron and steel manufacturing system is integrated with the energy and material flows, each of which
restricts and promotes the other [3]. Gaseous oxygen provides energy to the manufacturing processes in OUS
to perform reactions or manufacturing, and the operations of OGS and OSS are guided by the consumption
demand of the manufacturing processes [4]. Therefore, a good trade-off between manufacturing and energy
systems is essential for sustainable manufacturing in modern iron and steel plants [5]. Many scholars and
practitioners have emphasized that this challenge can be addressed from the perspective of energy efficiency
and demand-side management [6]. Meanwhile, continuous advances in mathematical modeling and artificial
intelligence (AI) technologies have provided new opportunities to address the optimal distribution problem
in the EMS of iron and steel plants.

Most studies on the energy distribution in iron and steel plants mainly focused on making an optimal
distribution with fixed demands using mixed-integer linear programming (MILP). Kong et al. [7] and
Zhao et al. [8] proposed MILP models simultaneously considering both operational and environmental
factors. Zhao et al. [9] also studied a distribution model of by-product gas system under time–of–use tariff.
Zhang et al. [10] studied a optimization model for steam power system. Recent studies also stressed the
importance of optimal oxygen distribution in iron and steel plants. Zhang et al. [11] formulated an optimal
oxygen distribution problem with a MILP model that simultaneously minimized the emission, pressure,
liquefied, steam, and setup costs. Zhang et al. [12] proposed a simultaneous multi-period distribution model
that involves adjustments variables on the supply side, e.g., oxygen generation rate of each ASU and the
compression rate of the compressor.

The optimal energy distribution can be achieved by exploring the flexibility of demand from the integrated
perspective of energy and material flows [13]. Zeng et al. [14] proposed an improved MILP-based optimal
distribution model by introducing new decision variables called consumption rates of by-product gases. Nolde
and Morari [15] proposed a MILP-based scheduling solution to minimize the penalty caused by electricity
overconsumption and underconsumption. Castro et al. [16] proposed a resource–task network to model
an energy-constrained scheduling problem in iron and steel plants; moreover, they studied the influence of
fluctuating energy prices on operations and economic benefits. Hadera et al. [17] developed a continuous-
time MILP model that simultaneously optimized steelmaking scheduling and an electricity load commitment.
Specially, the demand side of oxygen distribution integrates both continuous and discrete processes, each
of which has different consuming characteristics. The oxygen demand of an ironmaking process can be
controlled by a continuous variable called the flow rate [18]. The oxygen demand of a steelmaking process
is always adjusted by implementing optimal process scheduling. For example, Xu et al. [19] proposed an
optimal steelmaking scheduling method to reduce fluctuations in oxygen demand.

More recently, the emerging AI technologies, such as machine learning and swarm intelligent, open up
new ways to further study complex energy distribution problems in integrated iron and steel plants. Xi et
al. [20] developed machine learning-based surrogate models for different processes and applied a particle
swarm optimization (PSO) algorithm to find the optimal solution under operating constraints. AI is also
a powerful tool to investigate the optimal energy distribution under uncertainty. Because the gasholder
serves as a buffer during the distribution procedure, Zhang et al. [10] and Zhao et al. [21] improved the
least-squares support vector machine (LS-SVM) approach to forecast the gasholder level with noise. Zhao
et al. [22] proposed a AI-based optimization method that forecasted the objective intervals via a Gaussian
kernel-based learning model in the offline stage and implemented a time-horizon rolling MILP model in
the online stage. Jin et al. [23] employed directed acyclic graphs to construct the causal relationship
of a converter gas system, found the best scheduling solution via a PSO algorithm, and developed a gas
scheduling software system [24]. Some practitioners also attempted to optimize oxygen distribution using
AI techniques. Han et al. [25] applied a granular-computing-based model to forecast the oxygen/nitrogen
requirements and developed a MILP-based optimization model to distribute oxygen. Han et al. also [26]
employed an LS-SVM to fit the relationship between the energy load and electricity cost of an ASU, and
proposed a PSO algorithm to find the optimal distribution.

To address the uncertainty in an optimal distribution model, we naturally employ stochastic programming
(SP) or robust optimization (RO) to model the decision process. Unlike SP, which knows probabilistic
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information, RO only assumes that the decision-maker has little knowledge about the underlying uncertainty
(except for its upper and lower bounds) and seeks an optimal solution that covers the worst-case cost
within a well-synthesized uncertainty set. As early as 1973, Soyster [27] began to study the robust linear
programming problem. However, the RO technique was not widely used until Ben-Tal and Nemirovski [28]
proposed a seminal theory. Recent literature survey by Virginie Gabrel et al. [29] and Bram Gorissen et
at. [30] indicate that RO has been widely used in transportation, supply chain, and process scheduling;
moreover, RO has been receiving increased attention as a modelling technique for energy systems. The
essence of RO is to identify an optimal solution with strictly safe protection. However, it is too conservative
to apply in practice, because all uncertain parameters are unlikely to reach the worst-case simultaneously.
Therefore, this shortage motivates practitioners in the RO community to seek alternative uncertainty sets
with probabilistic guarantees, such as ellipsoidal, polyhedral, and budget-based sets [30]. The budget-based
uncertainty set, which was proposed in [31], intuitively interprets uncertainty for a risk-averse decision-maker
who might flexibly adjust the level of risk aversion by tuning the so-called budget of uncertainty. Notably,
this representation of uncertainty is sufficiently general to represent interactions with energy management
and can be easily interpreted by decision-makers.

According to the previous studies, recent studies tended to focus on the uncertain energy distribution
problem in integrated iron and steel plants. They assumed the key factor (i.e. gasholder level) or relation-
ship between generation and consumption of the uncertainty are predictable and sought optimal decisions
with deterministic optimization models. However, a large variety of unforeseen events in the realistic manu-
facturing and energy systems may affect the prediction accuracy and the feasibility of optimization models.
To construct a more legitimate model, we model the oxygen distribution problem with uncertain demand
(only knows limited information) and explore the flexibility on the demand side to form uncertainty sets.
The contributions of this paper can be summarized by the following aspects:

• Build an optimal oxygen distribution model considering flexible demands for continuous and discrete
processes. The details are presented in Section 3.2.

• Derive a TSRO model with a budget-based uncertainty set that has deeper insight into optimal oxygen
distribution. The details are presented in Section 3.3.

• Develop a time-series model via machine learning to forecast the oxygen demands of continuous pro-
cesses. The details are presented in Section 4.

• Develop a process scheduling model to form the oxygen demands of discrete processes. The details are
presented in Section 5.
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Nomenclature

Sets,Indices

R, r Suppliers of OGS.

Q, q Users of OUS,and QN , QE repectively denote continuous and discrete user sets.

L, l Time units of the process scheduling horizon.

Θ, θ Time periods of oxygen distribution, Θθ = 1, . . . , θ.

T, t Time horizons of the energy demand time series.

S, s Scenario set of discrete engery demands.

G, g Stage set and index of a steelmaking work.

Mg,m Machine set and index in stage g.

J, j Job set relased into a steel plant.

A, (g, j) Task set processed in a steel palnt, and Ag,j is the task of job j processed on stage g.

H,h Batch set and index groupped by the released jobs.

Parameters of oxygen distribution model

ωmin
r Minimum load of oxygen generator r,

[
Nm3

]
ωmax
r Maximum load of oxygen generator r,

[
Nm3

]
ω̂max Maximum deviation of oxygen load between period (θ − 1) and θ,

[
Nm3

]
ρmin
q Minimum adjustment rate of oxygen user q, [%]

ρmax
q Maximum adjustment rate of oxygen user q, [%]

GVθ Volume of gas storage at time period θ,
[
Nm3

]
GVmin Minimum level of the oxygen storage,

[
Nm3

]
GVmax Maximum level of the oxygen storage,

[
Nm3

]
GVmid Middle level of the oxygen storage,

[
Nm3

]
dq,θ Demand of user q at period θ,

[
Nm3

]
d̄θ Nominal demand of at period θ,

[
Nm3

]
d̂θ Maiximal demand deviation at period θ,

[
Nm3

]
ξθ Scale factor for uncertain demand at period θ,

[
Nm3

]
Γθ Time-variant budget of uncertainty set

Parameters of forcasting model

λt Total oxygen demand at distribution horizon t,
[
Nm3

]
yt State variable at distribution horizon t
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εt White noise of oxygen demand during distribution horizon t

TL Time lags of state space model in time series

n Size of training input in time series

Parameters of scheduling model

PTg,j Processing time of task Ag,j , [min]

TTg,gg Transfer time between stage g and gg,[min]

SUh Setup time of batch h, [min]

ESg,j Earliest starting time point of task Ag,j

LFg,j Latest finish time point of task Ag,j

WLmax
s Maximum capacity of oxygen in the qth scenario of the primary steelmaking stage

Variables

ωr,θ Continuous variable of oxygen distribution model, which represents load of gaseous oxygen of supplier
r at time period θ, Nm3

ρq,θ Continuous variable of oxygen distribution model, which represents oxygen adjustment rate of of
user q at time period θ

δθ Continuous variable of oxygen distribution model, which represents deviation from the gasholder
level to its middle level at time period θ, Nm3

εθ Continuous variable of oxygen distribution model, which represents volume of surplus or shortage
volume at time period θ, Nm3

zs Binary variable of oxygen distribution model, which is equal to 1 if and only if the steelmaking
schedule of the sth scenario is selected

xg,j,l Binary variable of the scheduling model, which is equal to 1 if and only if task Ag,j is in-process at
time t
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3. Optimal oxygen distribution model

3.1. Oxygen distribution in iron and steel plants
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Fig. 2: Actual oxygen consumption on the demand side

As illustrated in Fig. 1, we assume that a set of ASUs (R = {1, . . . , r, . . . , |R|}) exists in OGS and a set of
users (Q = {1, . . . , q, . . . , |Q|}) exists in OUS. To implement an optimal decision for oxygen distribution, we
divide the a distribution horizon into multiple time periods (Θ = {1, . . . , θ, . . . , |Θ|}) and balance supply and
demand in each period by setting operational parameters for both sides. On the supply side, the generation
load of each ASU (ωr,θ) can be controlled to produce the oxygen volume. On the demand side, there are
two approaches for adjusting the oxygen demand. In the ironmaking process, oxygen-enriched hot air is
continuously pumped into the BF to produce molten iron [32]. The oxygen level in hot air can be adjusted
according to the oxygen supply. In the steelmaking process, multiple machines may work simultaneously.
Scheduling simultaneous processing tasks helps to avoid overloading or underloading [33]. These policies
are verified by the actual data from the EMS, as shown in Fig. 2. Therefore, we introduce two variables to
define flexibility on the demand side.

• Adjustment rate (ρq), which represents the oxygen level in the hot air against the standard value.

• Scheduling scenario (s), which represents the schedule under a specific limit of the multiple simulta-
neous processing tasks (so-called capacity) in the steelmaking process.
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However, the oxygen demand in each period (dq,θ) may be affected by unknown factors, and cannot be
precisely estimated. At the beginning of the first period, the EMS must consider potential uncertainties
in the future, to make robust decisions and achieve a balance between supply and demand. When any
demand in the OUS varies during period θ, the EMS should control the gasholder level to build a new
balance between supply and demand. If these actions are ineffective, the gas in the OSS will be in shortage
or surplus, which incurs extra costs. Considering the demands under uncertainty, we propose a TSRO
model for flexible oxygen distribution, as shown in Fig. 3. In the first stage, we determine the operational
parameters of the supply and demand sides. In the second stage, we choose an adjustment policy according
to the status of the gasholder.
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Fig. 3: TSRO model for flexible oxygen distribution

In the following subsections, we formulate a deterministic optimal oxygen distribution model involving
flexible demands and develop a TSRO model which only knows limited information of demands.

3.2. Deterministic model with flexible demands

3.2.1. Objectives

GVmax

GVmin

GVmin GVmax

GVmid

GVmid

Fig. 4: piecewise function for stability and penalty

In the balance stage, the EMS first needs to increase the energy profit by maximizing the total load of
the OGS within the distribution horizon. In the adjustment stage, the gasholder level of the OSS fluctuates
frequently owing to varying demands. When the gasholder level is greater than GVmax, the surplus results
in environmental pollution. When the gasholder level is less than GVmin, the shortage incurs an extra cost
by evaporating liquid oxygen into the gasholder. Therefore, the middle level GVmid of the gasholder (1/2
between GVmin and GVmax, as shown in Fig. 4) reflects the best compromise between shortage and surplus
[8]. Thus, to ensure efficiency in reducing the risk of a gas system imbalance, affecting the manufacturing
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processes, the gasholder level should be retained approximately at the middle level. In other words, the
decision objective f includes the maximizing energy profit f1, the minimizing gasholder deviation f2 and
surplus/shortage penalty f3.

max f = f1 (ω)− f2 (δ)− f3 (ε)

= γ1

∑
r∈R

∑
θ∈Θ

ωr,θ − γ2

∑
θ∈Θ

|δθ| − γ3

∑
θ∈Θ

|εθ| (1)

where δθ denote the deviation from GVmid, εθ denote the volume of shortage and surplus; γ1 , γ2 and γ3

denotes the coefficient of each objective.

3.2.2. Constraints

1) Operational constraints: In the balance stage, the load (ωr,θ) of ASU r in period θ and the adjustment
rate (ρq) of user q on the continuous demand side are limited within the specified intervals (Eqs.2 and
3). Only one scenario (zs) for the demands of discrete users can be selected (Eq.4).

ωmin
r ≤ ωr,θ ≤ ωmax

r ∀r ∈ R. ∧ θ ∈ Θ (2)

ρmin
q ≤ ρq ≤ ρmax

q ∀q ∈ QN (3)

∑
s∈S

zs = 1 ∀zs ∈ {0, 1} (4)

2) Ramp constraints: In the balance stage, the load deviation of a ASU between two periods (θ − 1 and θ)
needs to be limited.

|ωr,θ − ωr,θ−1| ≤ ω̂max ∀r ∈ R, θ ∈ Θ \ {1} (5)

3) Flexible demands: The total energy demand in each period (dθ) is determined by the adjustment rates
(ρq) of the continuous users and the selected scenario (zs) of the discrete users.

dq,θ(ρ, z) =
∑
q∈QN

ρqdq,θ +
∑
q∈QE

zsd
s
q,θ ∀θ ∈ Θ (6)

4) Gasholder level: The oxygen generated at the end of the (θ−1)st period flows into OSS at the beginning
of the θth period, that is, all generated gas flows smoothly. According to the material equilibrium
relationship proposed by Zhang et al. [12], the total generated oxygen and user demand equals the
storage change in the OSS. Hence GVθ − GVθ−1 =

∑
r∈R ωr,θ − dθ(ρ, z). Because the surplus demand

causes emission and shortage of oxygen cause stock-out, we introduce a variable εθ to denote the volume
of surplus or shortage, respectively. Next, we can re-express the gasholder level (GVθ) using the following
closed-form equation.

GVθ = GV0 +
∑
r∈R

∑
τ∈Θθ

ωr,τ−
∑
τ∈Θθ

εθ −
∑
τ∈Θθ

dτ (ρ, z) ∀θ ∈ Θ (7)

where GV0 denotes the initial gasholder level.

5) Capacity constraints: The pressure of the OSS is commonly limited by its maximum and minimum values.
According to the conversion relationship proposed by Zhang et al. [12], we define the safety volume of
the OSS within a specific range, [GVmin, GVmax]. Thus, the capacity restrictions are represented using
Eqs.(8)

GVmin ≤ GVθ ≤ GVmax ∀θ ∈ Θ (8)

6) Deviation definition: In the θth period, the deviation between the current gasholder level and middle
level can be expressed using following equality.

δθ = GVθ −GVmid (9)
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7) Nonlinearity transformation: It can be easily observed that the nonlinearity of the model derives from
Eqs.1 and 5. We introduce auxiliary variables: δ−θ and δ+

θ ; ε−θ and ε+θ ; ω−r,θ and ω+
r,θ. Next, we let them

satisfy following constraints: 
δθ = δ+

θ − δ
−
θ

|δθ| = δ+
θ + δ−θ

δ−θ ≥ 0, δ+
θ ≥ 0

∀θ ∈ Θ (10)


εθ = ε+θ − ε

−
θ

|εθ| = ε+θ + ε−θ

ε−θ ≥ 0, ε+θ ≥ 0

∀θ ∈ Θ (11)


ωr,θ − ωr,θ−1 = ω+

r,θ − ω
−
r,θ

|ωr,θ − ωr,θ−1| = ω+
r,θ + ω−r,θ

ω−r,θ ≥ 0, ω+
r,θ ≥ 0

∀θ ∈ Θ \ {1} (12)

3.2.3. Abstract model

Observed the deterministic model (1)-(12), we found that only Eqs.(6-9) directly link with uncertain
demands. To simplify the notations and facilitate model analysis, we used set D to define feasible region
confirmed by Eqs.(2-5, 10-12), and re-write Eqs.(6-9) to canonical inequities. By dimensionality reduction,
we complete the following abstract optimal oxygen distribution (AO2D) model.

(AO2D)


max f1 (ω)− f2 (δ)− f3 (ε)

s.t.

θ∑
τ=1

(ωτ + dτ (ρ, z) + uτ (δ, ε)) ≤ vθ

∀θ ∈ Θ, ω ∈ Dω, (ρ, z) ∈ Dρ×z, (δ, ε) ∈ Dδ×ε

(13)

where ωθ represents two-index variable ωr,θ; dθ (ρ, z) denotes demand in each period based on variables
ρq and zs, uτ (δ, ε) expresses relationship between variables δθ and εθ, vθ is the right-hand-side constants ,
respectively.

3.3. Robust model with limited information

According to the simplified formulation (13), AO2D model can be identified as a variant of the multi-
period inventory management problem with multi-stage decision process. In this study, we assume that the
oxygen demand of each user is uncertain, and closely follows the idea of RO proposed by Bertsimas and
Sim [31] and Bertsimas and Thiele [34]. Subsequently, the dynamic decision process is divided into two
stages. (1) In the first stage, we determine here-and-now variables (i.e., load of ASU ωr,θ, adjustment rate
ρq, and scenario selection ys) with foresight. (2) In the second stage, we determine wait-and-see variables
in hindsight, where some uncertain demands are revealed. To make the worst-case RO less conservative, we
also introduce a budget-based uncertainty set that minimizes the deviation to the best profit in a certain
scenario. Consequently, we develop the TSRO model using the following three steps.

3.3.1. Step 1: Construct an uncertainty set of demands

In this study, we assume that oxygen demand dθ is an uncertain variable, for which only the nominal
value and bound are known. Let [d̄θ − d̂θ, d̄θ + d̂θ], where d̄θ is the nominal demand and d̂θ is the maximal

deviation. Next, we define a scale factor of the uncertain variable, ξθ = (d̂θ − d̄θ)/d̂θ, which falls into
the closed range [−1, 1]. Therefore, given a nominal value and deviation, we can convert the uncertain
variable into a function that varies by a scale factor. We also impose a budget-based uncertainty set into
the constraints within each time period θ, as follows.
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U =

{
ξθ : |ξθ| ≤ 1,

θ∑
τ=1

ξθ ≤ Γθ,∀θ ∈ Θ

}
With the predefined budget, we can avoid large deviations caused by many cumulative demands, and

obtain a reasonable worst-case” solution. Herein, the main assumption is that the deviation increases with
the number of periods θ considered, but the cumulative value should not exceed budget Γθ. Thus, we
can control the degree of the conservativeness of the robust solution by varying the budget of uncertainty.
Consequently, we obtain a reasonable trade-off between optimality and robustness.

3.3.2. Step 2: Formulate the robust counterpart model

According to the definition of the RO theory, we formulate the robust counterpart model with a specified
uncertainty set. First, to determine the RC for each related inequality, we replace dθ with dθ = d̄θ + ξθd̂θ
in the AO2D model (13). Moreover, the guarantee that any solution is ”immunized” against all realizations
of the uncertain demand must hold true for all ξ over the budget-uncertainty set. Thus, we reformulate the
inequality constraints in the AO2D model as follows.

GV0 +
θ∑

τ=1

(
ωτ −

[
d̄τ (ρ, z) + ξθd̂τ (ρ, z)

]
− uτ (δ, ε)

)
≤ vθ, ∀θ ∈ Θ, ξ ∈ U (14)

Based on the abstract distribution model AO2D (13), we first formulate a TSRO model under the worst
case, as follows.

(TSRO)



max
ω,ρ,z

f1(ω)−min
ξ∈U
{Φ (δ, ε, ξ)}

Φ (ξ) = min
δ,ε

f2(δ) + f3(ε)

s.t.

θ∑
τ=1

(
uτ (δ, ε) + d̂τ (ρ, z) ξτ

)
≥ GV0 +

θ∑
τ=1

(
ωτ − d̄τ (ρ, z)

)
− vθ

∀θ ∈ Θ, ξ ∈ U

(15)

where ω, δ, ε, ρ, z are decision variables and are as the same as model AO2D.

3.3.3. Step 3: Reformulate the tractable model

The above formulation of the TSRO is recast via duality, which is suitable for directly using off-the-shelf
optimizers, such as CPLEX, GUROBI, and SCIP. For brevity, we show the reformulation procedure for the
uncertainty constraint (14) according to its worst-case reformulation, which corresponds to maximizing its

left-hand side over the uncertainty set as U . For the (i, θ)
th

pair of uncertain constraints, the worst-case
reformulation is

θ∑
τ=1

(
ωτ − d̄τ (ρ, z)− uτ (δ, ε)

)
+ ∆θ(ξ) ≤ vθ (16)

Given a fixed vector of pair (ρ, z), the inequality (16) amounts to solving the two auxiliary linear pro-
gramming problems:

∆θ(ξ) =



max

θ∑
τ=1

d̂τ (ρ, z)ξτ

s.t.

θ∑
τ

ξτ 6 Γθ ∀θ

− 1 6 ξθ 6 1, ∀θ

(17)
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Because the auxiliary linear programming problem (17) is feasible and bounded by strong duality, the
optimal objective of this problem is equal to the optimal objective of its duality. By reinjecting the duality of
the auxiliary problem (17) in the TSRO (15), we obtain the following tractable optimization problem (18);
herein, constraint (i) imposes a set of protective variables, and constraints (ii-iii) restrict the dual variables.

(TSRO)



min
ω,ρ,y,δ,ε∈D

f1 (ω)− f2 (δ)− f3 (ε)

s.t.

θ∑
τ=1

(
ωτ − d̄τ (ρ, z)− uτ (δ, ε)

)
+ βθΓθ +

θ∑
τ=1

αθ,τ ≤ vθ ∀τ, θ (i)

βθ + ατ,θ ≥ d̂τ (ρ, z) ∀θ, τ ≤ θ (ii)

ατ,θ ≥ 0, βθ ≥ 0 ∀θ, τ ≤ θ (iii)

(18)

Fig. 5: Upper and lower bound of gasholder level

From Eqs. (8) and (16), we can deduce the upper and lower bound of gasholder level, as UB (GVθ) =
GVmax − ∆θ(ξ),LB (GVθ) = GVmin + ∆θ(ξ). If UB (GVθ) < LB (GVθ), the TSRO (18) is supposed to be
infeasible, as shown in Fig. 5. To keep UB (GVθ) ≥ LB (GVθ), we must let ∆θ(ξ) ≤ (GVmax −GVmin) /2.
Therefore, we need to bound Γθ when implementing the TSRO in practice.

4. Interval demands forecasting for continuous processes

Because the oxygen is consumed smoothly in the continuous processes, we assume that the nominal
demand and its maximum deviation in each period are equal. In this section, we parameterize the total
oxygen demand of user q during each period as λt for brevity, t ∈ T , and develop a time-series model to
forecast the oxygen demand of the next distribution horizon.

4.1. Time-series forecasting

According to the first principle of the ironmaking process, the goal of a forecasting model is to determine
a function φ(·) based on potential exogenous inputs, such as material (ore and coke components) and
operational conditions (temperature of flame and blast air). Because first-principle forecasting models
are too complex and highly time-consuming, they cannot be directly applied in the EMS. To provide an
accurate and efficient forecast, we ignored the exogenous inputs of the ironmaking process and identified
oxygen consumption as a time-varying output because it is smooth and continuous under normal conditions.

Typically, a time series tends to exhibit high correlations induced by the temporal structure of the data.
Let us consider a time series of oxygen demand, λt. Let the state yt = [λt−1, . . . , λt−TL]

T
, the time series

forecasting model is defined as follows [35].

λt = φ (yt) + εt = φ (λt−1, . . . , λt−TL) + εt (19)

where TL represents the size of a time lag (the number of past values), t indicates the horizon in the past, and
εt is a white noise follows Gaussian distribution. Next, we assume that a training input y = (yt−1, . . . , yt−n)
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with a size of n is obtained. Because a Gaussian process (GP) (refer to [36] for details) exhibits significant
advantages on quantifying uncertainty, we employ it for modeling a time-series forecasting function φ(·) in
this study.

4.2. GP-based time-series model

For selected time horizons t1, t2, . . . , ti, . . . , tn, GP is a stochastic process of φ(yt), where the probability
distribution is P [φ(yt1), . . . , φ(ytn)] is a multivariate Gaussian. To formulate a GP model, we first define a
mean function µ(yti) = E [φ(yti)] and a covariance function (which is also referred to as a kernel function)
k
(
yti , yti′

)
= Cov

[
φ(yti), φ(yti′ )

]
= E

[
(φ(yti)− µ(yti))(φ(yti′ )− µ(yti′ ))

]
. Note, that the covariance be-

tween the outputs is written as a function of the inputs. Thus, the specification of the kernel function implies
the shape of the distribution over functions.

For the training set y = {yt1 , yt2 , · · · , ytn}, we can define the following covariance matrices.

K (y,y) =

k(yt−1, yt−1) · · · k(yt−1, yt−N )
...

. . .
...

k(yt−N , yt−1) · · · k(yt−N , yt−N )

 (20)

We then denote the prior distribution of λ by

λ ∼ N
(
µ (y) ,K (y,y) + σ2

nI
)

(21)

Our main concern is get the posterior distribution over functions P (λt | y,λ, yt) based on the training
data. First, we define the new joint distribution between training target λ and undergoing function φ(·).

P
([

y
φ(yt)

])
= N

([
µ(y)
µ(yt)

]
,

[
K (y,y) + σ2

nI K (y, yt)
K (yt,y) k (yt, yt)

])
(22)

where
K (yt,y) = [k(yt, yt−1), · · · , k(yt, yt−N )] (23)

After some manipulations of the joint Gaussian distribution, the resulting posterior distribution over
φ(yt) is also a GP with the mean µ̂t and variance σ̂2

t , which are defined as follows.

µ̂t = K (yt,y)
[
K (y,y) + σ2

nI
]−1

[λ− µ (y)] + µ (yt) (24)

σ̂2
t = k (yt, yt)−K (yt,y)K

[
K (y,y) + σ2

nI
]−1K (y, yt) (25)

Next we can infer that the the mean of λt, µ (λt) = µ̂t, the variance of λt, σ
2 (λt) = σ̂2

t +σ2
nI. Because the

correlation between any pair of forecasting λt is specified by the covariance functions, we combine and modify
the existing functions [36] to model the shape of the set of observations and predictions. The forecasting
model works as follows: it predicts only one time horizon ahead, using the estimate of the output of the
current time, as well as previous outputs (up to the lag TL), as the input to the prediction of the next time
step (for more details, refer to [35]). Via the GP-based forecasting model, we can quantify the uncertainty
of λt and get the nominal and deviation values of the oxygen demand in each period (as shown in Fig. 6).

5. Multi-scenario demands for discrete processes

Because the oxygen demand shape of a discrete process dq,θ is non-smooth, we cannot directly calculate
the nominal demand and its maximum deviation during each period. However, they are directly linked to
the schedule of the steel plant. In this section, we propose a scheduling model for the EMS to generate
multiple scheduling solutions by defining different capacity limits.
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Fig. 6: Forecast demand by GP-base time series

5.1. Scheduling for steelmaking production

Scheduling in a steel plant is linked to a set of stages (G = 1, · · · , g, · · · , |G|), through which high-
temperature molten iron from ironmaking processes is converted into solidified slabs. Scheduling focuses
on sequencing a job set J = 1, · · · , j, · · · , |J | that has some tasks Ag,j in its routing, allocating an eligible
machine for each task, and optimizing certain criteria, such as makespan and waiting time. The task set of
each job must follow the same order from the steelmaking to the casting stage. In the casting stage, the
tasks must be performed in batches, without interruptions, because the liquid steel is solidified continuously
within a period. Considering such procedural, temporal, and resource constraints, the scheduling model of
the steelmaking processes is always identified as a variant of the hybrid flow shop-scheduling problem [38].

Given a fixed schedule, we can calculate the oxygen demands in period θ via its process units (PT θg,j)
allocated in period θ (as shown in Fig. 7). Next, we can estimate the nominal value and deviation of
uncertain energy demand using the GP-based approach from our previous study [37]. To reduce the effect
on the oxygen distribution system, the demand shape needs to be shifted through peak clipping and valley
filling. Because the number of simultaneous processing tasks (referred to as capacity) directly determines
the oxygen consumption, we propose a capacity-constrained shifting method to adjust the oxygen on the
demand side.
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Fig. 7: A Gantt chart for the feasible schedule executed in a steel plant
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5.2. Preprocessing procedure

Depending on the problem size and complexity, scheduling methodologies, involving resource constraints,
can be divided into two groups: monolithic and sequential [39]. Monolithic approaches simultaneously
solve the job assignment, sequencing problem, and timing problems. In contrast, sequential approaches
assume that the job sequencing and machine allocation problems have already been solved. Considering the
advantage of computational complexity, we adopt a sequential approach and represent the solution of the
job sequencing and machine allocation with a directed graph G (Fig. 8), where (0, 0) is a dummy task.

1,1 1,4 1,2 1,5

H 2

1,3 1,6

2,4 2,52,1 2,2 2,3 2,6

3,1 3,2 3,3 3,4 3,5 3,6
H 1

0,0

0,0

Fig. 8: A directed graph G for a schedule released into a steel plant

Because the timing optimization problem is highly sensitive to the number of time-indexed variables and
constraints, we perform a preprocessing procedure on the directed graph and compute the earliest starting
times (ESg,j) and latest finishing times (LFg,j) for each task. Given a fixed G, let

• Gg and Gg,m respectively represent tasks allocated in stage g and the mth machine in Mg,

• Agg,j is the next task of Ag,j and Ag,jj is the next task of Ag,j on the same machine

Here, the two-pass method called forward-backward scheduling (as in Algorithm 1) is used to estimate ESg,j
and LFg,j .

5.3. Model formulation

In this section, we develop a discrete-time MILP model for the capacity-constrained steelmaking schedul-
ing problem. The model is based on the definition of binary variables (xg,jl) that describes the processing
state of task Agj at each time unit l.

5.3.1. Objectives

Considering the productivity and energy loss, the objective of the steelmaking scheduling problem is to
minimize the sum of make-span (Cmax) and waiting times (Wtot).

minF = Cmax +Wtot

= max
j∈J

C|G|,j +
∑
j∈J

C|G|,j − C1,j −
|G|−1∑
g=1

PTg,j

 (26)

5.3.2. Constraints

A feasible schedule executed in a steel plant must satisfy the following constraints.

(1) Each task can only start at exactly one time unit.

|L|−PTg,j+1∑
l=1

xg,j,l = 1, ∀g ∈ G, j ∈ J (27)
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Algorithm 1: Forward-backward scheduling

Input: Directed graph G
Output: Earliest starting Time(ESi,j) , Latest finish times(LFi,j)

1 /*Notes: S̄g,j C̄g,j represent estimated starting and finishing time of Ag,j */
2 /*Step 1. forward scheduling*/
3 Set S̄0,0 := 0 ;
4 for gg = 1 to |G| do
5 foreach Agg,jj ∈ Ggg do
6 S̄gg,jj := S̄gg,j + PTgg,j + 1 ;

7 foreach Agg,j ∈ Ggg do
8 ESgg,j := max

{
S̄g,j + PTg,j + TTg,gg + 1, S̄gg,j

}
;

9 S̄gg,j := ESgg,j ;

10 /*Step 2. backward scheduling*/
11 S̄0,0 = T
12 for g = |G| − 1 to 1 do
13 foreach Ag,j ∈ Gg do
14 C̄g,j = C̄g,jj − PTg,jj − 1 ;

15 foreach Ag,j ∈ Gg do
16 LFg,j := max

{
C̄gg,j − PTgg,j − TTg,gg − 1, C̄g,j

}
;

17 C̄g,j := LFg,j ;

(2) The completion time of task Ag,j can be defined as

Cg,j =

|L|−PTg,j+1∑
l=1

(l − 1)xg,j,l + PTg,j , ∀g ∈ G, j ∈ J (28)

(3) For every two connected tasks of the same job (i.e., Ag,j and Agg,j ), the next task (Agg,j) cannot be
started unless the previous one (Ag,j) has been completed and delivered.

Cgg,j − Cg,j ≥ PTg,j + TTg,gg + 1, ∀g, gg ∈ G, j ∈ J (29)

(4) For every two connected tasks on the same machine (i.e., Ag,j and Ag,jj ), the next task (Ag,jj) cannot
be started unless the previous one Ag,j) has been completed.

Cg,jj − Cg,j ≥ PTg,jj + 1, ∀g ∈ G, j, jj ∈ J (30)

(5) The number of jobs simultaneously processed at time t cannot be greater than the total number of
available resources. Here, AO represents the stages consuming oxygen WLmax

s represents the capacity
limitation under scenario s. ∑

Ag,j∈AO
xg,j,l ≤WLmax

s , ∀l ∈ [ESg,j , LFg,j ] (31)

(6) A minimum setup time at the casting stage must be guaranteed before the first job of a new batch (hh)
starts.

C|G|,firstOf(hh) − C|G|,lastOf(h) = PT|G|,firstOf(hh) + SUhh, ∀h, hh ∈ H (32)

where firstOf(·) and lastOf(·) denote the first and last job in a batch, respectively.

(7) The processing precedence constraints of jobs in the same batch in the last stage are as follows:

C|G|,jj − C|G|,j = PT|G|,jj + 1, ∀h ∈ H ∧ j, jj ∈ J(h) (33)
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According to the above formulation (Eq. 26 - 33), it is worth noting that the scheduling model link to
the optimal oxygen distribution model only via capacity limit WLmax

s and constraint (31). Therefore, the
value of zs in TPSO will impact the objective of the scheduling model.

6. Computational studies

In this section, we present the computational studies that verify our proposed models with the flowchart
shown in Fig. 9, and test their ability to effectively distribute oxygen under uncertainty as the following
steps.

(1) Test the GP-based time series model, which predict oxygen demands of each ironmaking process q

within current distribution horizon t, and estimate the point and interval demands (d̄q,θ, d̂q,θ) of each
time period.

(2) Test the multi-scenario process scheduling model, which generate oxygen demands (dsq,θ) via under
different capacity limits (WLmax

s ) in steel plants.

(3) Analyzed the proposed TSRO model for oxygen distribution under uncertainty including its budget
levels, sensitivity and robustness.

Collect historical data Receive production tasks

(1) GP-based time series 

model

(2)  Multi-scenario process 

scheduling model

(3) Oxygen distribution under uncertainty

(TSRO)

Uncertain demands

selected scenario
adjustment rate

gasholder deviation,

volume of surplus or shortage

Steel plantIron plant

load of gaseous oxygen 

,qd  ,

s

qd 

ASU

Gasholder

Fig. 9: Interactions between TSRO, forecasting and scheduling

The TSRO and scheduling model were programmed in Pyomo [40], which is a Python-based, open-
source algebraic modeling language, and solved by ”Gurobi 9.0” (https://www.gurobi.com/products/
gurobi-optimizer/, an academic version with default settings), which is a state-of-the-art optimizer for
mathematical programming. For GP implementation, we adapted the open-source scikit-learn package,
version 0.24.1 [41]. All computational studies were executed on a PC with an Intel Core i7 processor (3.60
GHz), 16 GB RAM, and Windows 10 operating system.

Case studies addressed in this section were performed by applying our methods in an integrated iron
and steel plant in China, which has two ASUs in OGS, five oxygen users in OUS including two ironmaking
processes, two steelmaking processes and a small user from other processes. In the following studies, we
collected statistical data on manufacturing and energy from the EMS, and randomly synthesized energy
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distribution instances with different demand levels. All testing instances have been shared on GitHub
(https://github.com/janason/Energy/tree/master/O2).

6.1. Interval demands forecasting via GP

To validate the forecasting model, we collected actual daily oxygen data for three months (90 days);
three horizons were collected each day: 90 × 3 = 270 samples in total. We used 235 samples for training
and 35 samples for testing the oxygen demand with one horizon ahead. The GP-based time-series model
was implemented using scikit-learn’s class GaussianProcessRegressor. We specified the prior mean to be
zero and prior covariance by passing a mixture kernel object with a squared exponential and white noise
covariance function. We ran the forecasting model with 10 random restarts, with a maximum of 2,000
iterations, and evaluated it with metrics known as mean absolute percentage error (MAPE) and prediction
interval normalized average width (PINAW)

MAPE =
1

N

∑
t∈T ′

∣∣∣∣ λ̄t − λtλt

∣∣∣∣× 100%

PINAW =
1

N

(
max
t∈T ′

λt −min
t∈T ′

λt

) ∑
t∈T ′

(Ut − Lt)

where T ′ is time horizons in testing set with the size of N , λt and λ̄t represent the actual and predicted
value, Ut and Lt denote the lower bound and upper bound of 95% confidence intervals. MAPE is used
for evaluating the accuracy of prediction values, while PINAW is used for further evaluating the quality of
prediction intervals.

The testing results of the studied processes listed in Table 1. To investigate the forecasting performance
in a more intuitive manner, we graphically illustrated the probabilistic forecasting results in Fig. 10 which
plots the observed and forecasted oxygen demands, and represents their predictions intervals with shaded
boundaries. According to the results, the forecasting model with time lag TL = 5 is better than the one
with time lag TL = 1, because the former one has smaller MAPE values and greater PINAW values. The
figures also confirm the results, where TL = 5 plots curves more closed to actual values, and has more
narrow intervals. Therefore, it is beneficial to reduce conservativeness of TSRO model.

Table 1: evaluation indices on ironmaking processes

Data set
MAPE PINAW

TL=1 TL=5 TL=1 TL=5

ironmaking process 1# 5.60% 2.70% 1.15 0.73

ironmaking process 2# 4.60% 2.50% 1.08 0.69

6.2. Multi-scenario demands via capacity-constrained scheduling

As previously mentioned, multiple scenarios exist for steelmaking production scheduling, and each of
them has different demands for oxygen. The investigated iron and steel plant has two steelmaking processes
as two independent energy users. In the first process, two machines are used for dephosphorization. In the
second process, three machines are used for decarbonization. In this study, we selected three representative
scheduling instances and generate their multi-scenario energy demands by setting the two capacity limits
for the steelmaking processes.

• Scenario 1: The maximum capacity WLmax
1 = 5, where the number of simultaneous processing tasks

is not greater than 5.
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Fig. 10: Probabilistic forecasts of oxygen interval demand
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• Scenario 2: The maximum capacity WLmax
2 = 4, where the number of simultaneous processing tasks

is not greater than 4.

The scheduling results under each scenario are represented with Gantt charts (Fig. A1-Fig. A3). Based
on scheduling results and statistics in EMS, we plotted the demand curves (Fig. B1-Fig. B3) of each user
for 32 periods, spanning 15 min each. Because the steelmaking process is the bottleneck of the steel plant
when its capacity limit becomes smaller, there are not sufficient machine resources to process tasks. Thus
the starting times of the next stages are likely to be delayed. Observed the scheduling objectives shown in
Fig. 11, the optimal scheduling objectives (Cmax and Wtot) deteriorate when the capacity is constrained.
The statistics results of oxygen demand in each period are plotted in Fig. 12. When the capacity limit
is lower, there are fewer tasks to require for energy simultaneously. Therefore, the mean demands under
scenario 2 are lower than scenario 1. The demand variations under scenario 2 are also lower than scenario 1.
This is because the idle time of each machine is reduced, which also make the waiting time objective (Wtot)
increase. In other words, the multi-scenario scheduling model can provide demands with multiple shapes
for the TSRO and contributes to flexibility for oxygen distribution.
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6.3. Analysis of TSRO model

To analyze the performance of the TSRO model, we extracted the following model parameters from the
EMS database.

• Load of each ASU: ωmin
r = 1.5× 104Nm3, ωmax

r = 2.0× 104Nm3.

• Maximum ramp: ω̂max = 300Nm3.

• Adjustment rate of continuous users: ρmin
q = 0.8, ρmax

q = 1.2.

• Scheduling scenario of discrete users: S = {1, 2}

• Total capacity of OSS: GV = 6× 104Nm3.

• Initial volume of OSS: GVmin = 0.1GV,GVmax = 0.9GV , GVmid = 0.5GV

• Objective coefficients: γ1 = 1.0, γ2 = 2.0, γ3 = 20.0

• Number of the time period: |Θ| = 32.

In the following studies, we assume that the estimated oxygen demand of each user (as shown in Fig. B1-

Fig. B3 in the Appendix) is randomly varied between [d̄θ − d̂θ, d̄θ + d̂θ] and d̂θ = η × d̄θ. Here, η has two
candidate levels (η1 = 0.05 and η2 = 0.08) that cover 68% and 90% confidence intervals, respectively.

6.3.1. Choice of budget levels

(a) η = 0.05, critical point (a = 0.05, b = 0.40)

(b) η = 0.08, critical point (a = 0.10, b = 0.25)

Fig. 13: Response under different budget levels
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As discussed in Section 3.3, we introduced budget parameters Γθ and Γmax in the TSRO to control the
trade-off between the probability of constraint violation and the optimality of the objective function. We
define the time-varying budget, as follows.

Γθ = min
{
Z1−a

√
θ + 1, b |Θ|

}
,

where a denotes the risk level, Z is the quantile of the standard normal distribution, and b is a constant
coefficient. The first term is used to control robustness, and the second term is set for the upper bound of
Γθ to maintain feasibility.

To choose an appropriate combination of (a, b), we adopted instance B as the test representative, and
selected a and b from [0, 0.5] with step 0.05. Hence, we obtained 11× 11 = 121 candidate budgets. Subse-
quently, we ran the TSRO with different values of (a, b), and plotted the response surfaces of two deviations
(η1 = 0.05 and η2 = 0.08), as shown in Fig. 13. If the TSRO is infeasible, let f = −2.0× 106. These results
demonstrate that the objective value of f increases as the risk level decreases or as the maximum budget
decreases. When a ≥ 0.05 or b ≤ 0.40, solutions with a deviation of 0.05 are feasible. When a ≥ 0.10 or
b ≤ 0.25, solutions with a deviation of 0.08 are feasible. According to these critical points in the figures, we
recommend a = 0.10 and b = 0.40 in the subsequent computational studies.

6.3.2. Sensitivity analysis of ramp capacity

In this section, we study the relationship between the ramp capacity of the ASU and the performance
of the robust models. The assumption is that a higher ramp capacity improves the ability of the EMS to
address a high variation in oxygen. Therefore, we aimed to verify the advantages of the TSRO model under
different ramp capacities between [0, 500]Nm3 with steps of 50Nm3.

Fig. 14 summarizes the computational results for two group studies: the deviation levels of η1 = 0.05
and η2 = 0.08. The results indicate that the TSRO models for instances A and C can obtain more optimal
objectives by enlarging the ramping capacity when the ramping capacity ω̂max ≤ 200; however, the model
for instance B retains its optimal objective. This clearly demonstrates that models with higher and lower
demands require a design of an appropriate ramp capacity to improve their profits.

6.3.3. Robustness comparison by simulation

With the budget-based uncertainty set U , the TSRO model provides a protective solution. We randomly

sampled two demand vectors d1
θ and d2

θ, following a truncated normal distribution between
[
d̄θ − d̂θ, d̄θ + d̂θ

]
.

Let the random demand sample dθ = (d1
θ + d2

θ)/2. The random sample may be located outside the budget-
based uncertainty set. Thus, we can test the robustness of the proposed TSRO model. In the following
studies, we tested three instances (A-C) with five different initial gasholder levels (GV0 is between 0.3 and 0.7
GV ); hence, we obtained 3× 5 = 15 cases under each deviation (η ∈ {0.05, 0.08}). Next, we independently
ran the distribution model with deterministic optimization (DO) [12] and the proposed TSRO with a fixed
budget level (a = 0.10, b = 0.40). We also scholastically simulated the solutions of DO and TSRO with
1,000 rounds (-simulated).

Fig. 15 shows the objective values of DO and RO and their average objectives under simulation with
95% confidence intervals (two standard deviations). The results indicate that the objective of the TSRO
is lower than that of the DO; however, the objective of the TSRO provides promising protection that is
lower than the 95% confidence intervals. Under stochastic environments, the simulated objective of the
TSRO is only slightly lower than that of the simulated DO, indicating that the objective of the TSRO is
less conservative. Unsurprisingly, the DO fails to hedge against uncertainty for most instances, except in
some cases with instance B (with medium demand). Because a too large or small demand can increase the
risk of an imbalance of oxygen distribution, we must reduce demand fluctuation when implementing the
distribution model in practice.
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Fig. 14: Response under different ramp capacities
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7. Conclusions

In this study, we investigated the problem of optimal oxygen distribution with flexible demands under
uncertainty. We proposed a TSRO model with a budget-based uncertainty set that protected the initial
distribution policy with low conservatism. The following conclusions were drawn based on computational
studies.

(1) The GP-based time-series model can forecast varied oxygen demands with 95% confidence intervals.
The capacity-constrained rescheduling model can effectively shift step-wise oxygen demands.

(2) According to the level of risk aversion, the decision-maker can select appropriate budget parameters for
the TSRO model. The ramp capacity also contributed to the flexibility of the oxygen distribution.

(3) In contrast to the DO commonly used in existing studies, the TSRO model can provide a safer solution;
however, its average performance has not deteriorated under uncertainty.

In conclusion, the model simulation is consistent with our design and confirms that the proposed model
provides a promising solution for the uncertain oxygen distribution problem. In the future, the following
problems need to be studied further.

(1) In the investigated problem, we only considered uncertain energy demands from the manufacturing sys-
tem. However, several other uncertain factors, such as energy market demands and machine breakdowns,
should be investigated.

(2) In the proposed TSRO model, we only know the interval of the uncertain demands; however, the
probabilistic information was not embedded in the model. Therefore, building a data-driven uncertainty
set should be considered.
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Appendix A. Gantt chart for instance A-C
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(a) Scenario 1: Cmax = 704,Wtot = 304
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Fig. A1: Gantt chart of Instance A
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Fig. A2: Gantt chart of Instance B
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Fig. A3: Gantt chart of Instance C
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Appendix B. Demand curve for instance A-C
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Fig. B1: Oxygen demand curve of Instance A
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Fig. B2: Oxygen demand curve of Instance B
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(b) Scenario 2

Fig. B3: Oxygen demand curve of Instance C
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