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Abstract— To develop robots that can show cognitive func-
tions, we must learn from the knowledge of human cognition.
Existing biological and psychological evidence suggests that self-
face perception and sensorimotor learning mechanisms play
a crucial role in self-recognition. However, one of the most
important self-identity cues – facial information – has not
been extensively studied in the robot self-recognition task.
Current research on robot self-recognition primarily relies
on the recognition of high-precision targets and tracking of
manipulator motions, where the self-perception of facial infor-
mation is not well studied. In this work, we propose a novel
approach to achieve self-recognition via self-perception of facial
expressions. Specifically, we developed a Conditional Generative
Adversarial Network (CGAN) model using the knowledge on
human cognitive and sensorimotor functions. It allows the
robot to be aware of self-face (i.e., off-line model). Passing the
observed visual variations in a mirror and comparing them
to self-perceptive information, the robot can recognize the self
through an online Bayesian learning regression. The results of
our first experiment show that the robot can recognize itself in
a mirror. The results from the second experiment show that our
algorithm could be tricked by a similar robot with the same
facial expressions, which is similar to the rubber hand illusion
(RHI).

I. INTRODUCTION

Sensorimotor learning refers to a type of cognitive learning
pattern in humans where an individual learns the correlation
between their actions, the effects of their actions, and the
sensory signals generated as a result [1]. This type of learning
is often observed in infants as they begin to walk, with
frequent touching of their own bodies creating interactions
between multiple sensory subsystems [2]. Through this goal-
directed process, infants gradually acquire the ability of self-
recognition by learning the neural organization of multi-
modal stimuli from physical activities. The Rubber Hand
Illusion (RHI) is a fascinating phenomenon in human cogni-
tion, which occurs when visual illusions mislead individuals
to perceive a rubber hand as part of their own body [3].
This phenomenon highlights the importance of sensorimotor
learning in the formation of self-recognition among healthy
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Fig. 1. Robot self-recognition. With the help of our developed algorithm,
the robot can understand that the facial expressions variations in the mirror
are the effect of its motor actions.

adults. Self-recognition in primates is understood as the
ability to become the object of one’s own attention [4].
In order to replicate human consciousness and behavior,
humanoid robots also need to possess the ability of self-
recognition through sensorimotor learning.

Apes and human beings possess the remarkable ability of
self-recognition, as demonstrated by their ability to identify
themselves and locate marks on their own bodies when
presented with a mirror [4], [5]. This ability requires high-
level cognitive processes such as self-awareness and self-
consciousness. To assess animals’ self-recognition abilities,
researchers often use the Mirror Self-Recognition (MSR) test
[4]. In robotic self-recognition tasks, researchers typically
use body actions, such as robotic manipulators, and visual
cues to enable humanoid robots to determine whether the
motion changes appearing in a mirror are the result of their
movements in the world [6], [7]. However, recent studies
have shown that self-face recognition is a unique representa-
tion of oneself, possessing processing advantages over other
faces. Recognition of one’s own face is significantly faster
and more accurate in various tasks than recognition of other
faces [8], [9]. In fact, some patients are unable to recognize
their faces when morphed with a famous face if their right
hemispheres are anesthetized [10]. Self-face recognition is
so distinctive that the ability to discriminate between one’s
own face and another is a subliminal process [11].

In this paper, we focus on the self-face recognition ability,
which has been proven to be crucial for the sense of identity
and for constructing and maintaining self-awareness [12]–
[14]. Inspired by sensorimotor theory and cognitive devel-
opmental robotics [15], we try to make the robot understand
self-face perception and recognize its face by passing an
inference process from visual cues in its field of view. We



present a novel algorithm that allows the robot to recognize
its face with self-reflected images by using a Bayesian
Inference process, which is addressed to answer the question:
“Are those changes in the mirror because I am changing my
facial expressions?” (see Figure 1). This algorithm allows
the robot to recognize its face without feature extraction.
Specifically, our approach focuses on the development of a
self-face perception model from sensorimotor learning. Then,
in a self-recognition scenario, the robot will change the facial
expressions several times. Finally, by continuing to compute
the motion changes process and update its prediction model,
the robot can recognize itself.

The main contributions of this paper are as follows:
• Our approach is the first attempt to make robot self-

recognition by using facial expressions.
• We developed a Conditional Generative Adversar-

ial Network (CGAN) model to achieve robot self-
perception. With the help of this off-line model, the
robot can recognize self through an on-line Bayesian
learning regression.

• The experimental results show that our method makes
the robot capable of self-recognition (i.e., the robot can
recognize itself in the mirror). Similar to rubber hand
illusion (RHI), the robot can also be tricked by a similar
robot with the same facial expression.

The rest of the paper is structured as follows: Section II
introduces the related works about current self-recognition
and self-modeling research in robotics. Section III describes
the framework of our algorithm and its substructure of Senso-
rimotor Learning, Visual Cues Accumulation, and Bayesian
Inference; Section IV shows the learning details and experi-
mental design. The results are summarized in Section V. Our
discussion is in VI. And finally, Section VIII concludes the
paper.

II. RELATED WORK

Similar to the human ability to identify themselves, self-
perception enables robots to understand the relationship
between inner states and outside motions [16]. In [17],
sensorimotor contingencies were considered as the key to
body awareness. The authors used sensory consequences
observed to infer where is the robot’s body. Similarly, we use
face cues consequences observed by the visual sensor to learn
whether it is the robot’s face. In [6], authors used free energy
minimization [18] to infer whether the body configuration
of the robot in the mirror is the same as the robot. Their
approach relies on the actions of robot arms.

Furthermore, the authors in [7], [19] used Bayesian in-
ference to collect self-evidence. However, in their methods,
still objects sometimes were recognized as moving ones
due to unstable segmentation. In [20], a self-morphology
(e.g., space occupancy queries and robot states) model was
developed to achieve better motion planning and control
tasks. Different from their full-body reconstruction model,
our facial expression self-perception model (see section III)
reconstructs the robot’s face by using sensorimotor learning.

Fig. 2. Self-recognition framework

Our approach includes facial expression self-perception
learning (i.e., off-line model) and Bayesian inference to
accumulate evidence (i.e., online learning) and can achieve
self-recognition tasks (i.e., cognitive ability). In addition, our
approach can be used in social scenarios by endowing social
robots with cognitive capabilities [21].

III. SYSTEM MODELLING

Our system is modeled as follows. We, first, observe the
variations of images in the robot’s view and the variations of
images are environment visual cues. Secondly, we use our
self-modeling method to generate images of robot faces. The
variations of self-modeling images are self-reflection cues.
Self-modeling images are generated by the sensorimotor
learning model. Thirdly, the robot keeps changing its facial
expression and tries to infer a prediction model from self-
reflection cues distribution to environment visual cues and
tries to decrease the estimation error. Finally, after several
iterations, the robot updates its inference model and gives the
confidence of whether an image is its face. In other words,
“The visual variations are caused by my face expression
variations, so that’s me.” The whole framework is shown
in Figure 2. Each module is detailed in the next subsections.

A. Sensorimotor Learning

Inspired by sensorimotor theory, our idea is to make the
robot learn “How do I look like?” when executing actions.
By continuously capturing the robot face images pixels yrobot
(i.e., In our experiments, it is a 640×480×3 array) combined
with motor signals smotor, we train a deep generative model
to map the robot’s face from motor signals. In order to add
uncertainty to our model, the inputs include motor signals
and Gaussian noise z∼N (µ, σ2). In this way, a Conditional
Generative Adversarial Network (CGAN) is considered to
provide this distribution transfer: yrobot ∼ P(y | z,s). CGAN
is not only able to learn log-likelihood estimation but also
able to control the generation from input [22]. In training, a



generator G and a discriminator D are learned together [23].
Equation (1) shows the training process of CGAN (see also
Figure 3).

min
G

max
D

V (D,G) = Ey∼pdata(y)[logD(y | s)]

+Ez∼pz(z)[1− logD(G(z | s))]
(1)

After training, the Generator G is the sensorimotor decoder
module (see Figure 2). The robot can get self-modeling
morphology y′t = G(zt ,st) at time t.

B. Visual Cues Accumulation

Generated self-modeling y′t is a static robot self-perception
based on prior knowledge from the sensorimotor learning
data before the self-recognition task. A contingent effect
always exists in the environment, such as lighting, back-
ground objects, or other factors. In [6], they use contingency
learning and optical flow to classify the contingency effects
and robot effects. In our approach, we use the Environment
Visual Variation Ve,tn = ytn−ytn−1 as outside cues and the self-
perception Visual Variation Vs,tn = y′tn − y′tn−1

as inside cues.
The Visual Variation Vtn (i.e., Ve,tn or Vs,tn ) is calculated with
the help of the Euclidean Distance dE [24]. The Equations
are shown in (2) and (3).

Ve,tn = dE(ytn ,ytn−1) = ∥ytn − ytn−1∥ (2)

Vs,tn = dE(y′tn ,y
′
tn−1

) = ∥y′tn − y′tn−1
∥ (3)

In this way, we can compute the action effect from time
tn−1 to time tn, and the noise of the background is filtered.
With the Visual Cues Accumulation process, our model can
achieve a robust self-recognition system.

C. Bayesian Inference

There is no doubt that the decoder can never generate self-
perception images with 100% accuracy. If the robot is partly
broken, the generated images will be unreliable because of
the changing in the robot morphology or the environment.
In the other world, there is an error between estimated cues
Ve,tn and the observed cues Vs,tn as shown in (4).

errortn =Ve,tn − f (Vs,tn) (4)

In Friston’s theory [25], the perception of the body and
the action of the motor are driven by surprise minimization.

Fig. 3. CGAN pipeline

It means that we try to update our actions to make the reality
the same as what we have predicted. The error between
reality and estimation is the direction that guides our opti-
mization. Free Energy Minimization (FEM) is used to keep
updating this process in Friston’s theory [25]. Inspired by
this theory, error is the surprise parameter in our algorithm.
We assume that if the facial expression changing in the visual
sensor is the same process with its self-reflected face image,
it exists a correlation as indicated in Equation (5).

Ve,tn = f (Vs,tn) |errortn→0 (5)

Bayesian Inference is used to optimize the function and
to update the function parameters online. The goal is to
decrease the error gradually and estimate real-world chang-
ing Ve,tn . If function f (Vs,tn) successfully estimates the Ve,tn
with high confidence psel f , it means that the system has
learned the effects of the robot motions and the robot is
no longer surprised about the visual cues, and therefore, the
self-recognition is established. We use linear regression to
fit these correlations and Ve,tn is assumed to be Gaussian
distributed by Vs,tnw as indicated in (6).

f (Vs,tn)→ p(Ve |Vs,w,α) = N (Ve |Vsw,α) (6)

The α is a random variable and will be updated by
observing the error. The w is the coefficient. Based on [26],
the prior of w is a spherical Gaussian as in (7) and we
get (8). The α and λ given in equations are from gamma
distributions.

p(w | λ ) = N (w | 0,λ−1Ip) (7)

ln p(w |Ve) =−
λ

2

m

∑
n=1

error2
n

2
− α

2
wT w+ const (8)

By using Bayesian Theory as in [27], the update process
is as in 9.

p(w |Ve,tn) ∝ p(Vs,t0 ,Vs,t1 , ...,Vs,tn−1 | w)p(w |Ve,tn) (9)

D. Algorithm

The Algorithm 1 describes the self-recognition process.
Firstly, we need a Sensorimotor Decoder G, which has
been trained already to generate real-time facial expression
images. G is used to calculate pSel f and Vs,tn . Then, the online
learning module estimates Ve,tn from a sequence of actions.
Finally, if the effects of actions can learn from a sequence of
the robot actions and the errorn converges to zero, the robot
can conclude: It is me!.

IV. EXPERIMENTS
Because the execution time of the facial motor in our robot

system is very long (about 1 second), real-time and visual
information cannot be compared. So in our experiment, the
visual information will be compared to the static expression
after the motor completes the action. Moreover, our robot
does not have a camera in its eyes, so the robot’s head does
not turn from side to side during the experiment.



Algorithm 1 Self-recognition algorithm
Input: Sensorimotor Decoder: G, Visual Sensor: y, Time t

1: st0 ,yt0 ← Initial Robot Face Motor State, Visual Sensor
2: Vs,t0 ,Ve,t0 ← Initial Self and Environment Variation
3: z∼N (0, 1) ← uncertainty noise
4: α = λ = 1e−6←Initial Bayesian Inference
5: while recognized(psel f ) do
6: y′tn−1

= G(stn−1 ,zn−1)
7: y′tn = G(stn ,zn)
8: Vs,tn = Euclidean(y′tn ,y

′
tn−1

)
9: Ve,tn = Euclidean(ytn ,ytn−1)

10: psel f = p(Ve,tn | f (Vs,tn)∼N (Vs,tnw,λ ))
11: errorn =Ve,tn − f (Vs,tn)
12: erroraccumulation = ∑

m
n=1 absolute(errorn)/n

13: wn ∝ argmin−λ

2 ∑
m
n=1

error2
n

2 − α

2 wT w
14: update(wn,αn,λn)
15: if erroraccumulation converges and errorn← 0 then
16: It is me ! My confidence is of psel f
17: else
18: It is not me !
19: end if
20: end while
Output: Estimated Ve, Self-recognition probability psel f

Fig. 4. Zeno robot. There are 6 motors embedded in Zeno’s face, The
motor control of the entire face structure is symmetrical, with the left and
right sides showing the same facial movement.

A. Sensorimotor Learning

Zeno robot is used in our experiment (see Figure 4).
Zeno’s face is driven by 6 PMW motors, which can make
abundant facial expressions in 6 Dof (i.e., brow, eyelid,
gaze, eye-turning, corners of the mouth, jaw, head-turning
). Inspired by human sensorimotor theory, we have the robot
continuously drive its motor to present different expressions.
At the same time, the robot keeps watching its expression
change in the mirror in order to learn the co-relationship.
Specifically, in order to learn a sensorimotor module, the
robot shows more than 200,000 different expressions in front
of a camera and records the face images combined with the
motors’ signal data (see Figure 5 (a)). The resolution of each
image is 640×480×3.

After data collection, we use Pytorch to train the CGAN

(a) Sensorimotor Learning Process (b) Model Result

Fig. 5. Data collection and model results

model. We use a multi-layer Convolutional Neural Network
(CNN) as discriminator D and Deconvolutional Neural Net-
work (DeCNN) as generator G. The number of layers in the
generator and discriminator is 4. We resized the images to
320×240×3. Then, we normalized the tensor images with a
mean ([0.5,0.5,0.5]) and standard deviation ([0.5,0.5,0.5]).
The batch size is 64. The Adam optimizer was used with an
initial learning rate of 2×10−4. LeakyReLU and 2D Batch
normalization is used to avoid over-fitting. Training loss is
shown in Figure 6. After 100 epochs of learning steps, the
robot gradually acquired the self-face image generation abil-
ity. By using this module, we can estimate the expressions
of the robot from motors signals (see Figure 5 (b)).

In order to evaluate our work, we have designed two types
of experiments: a self-recognition experiment described in
Section IV-B, and a visual illusion experiment presented in
Section IV-C.

(a) Generator Loss (b) Discriminator Loss

Fig. 6. Training Loss of learning process

B. Self-recognition experiment

The robot is positioned in front of a mirror (see Figure
7 (a)), and the visual sensor is fixed on the robot’s head to
observe the information in its field of view (see Figure 4).
The robot presents several different facial expressions for
recognition. Examples of expressions are shown in Figure 8.
The robot keeps observing and updating the fitting algorithm.
Afterward, it indicates how confident it is about “It is me
in the mirror.” In our hypothesis, the robot should give a
low probability in the initial stage. After several iterations
of learning (limited to 20 steps), the robot will give a high
probability from visual cues.

C. Visual illusion experiment

The robot is put in front of another Zeno robot (see Figure
7 (b)) (both robots are identical). Several expressions are



(a) Zeno in front of a mirror (b) Two Zeno face to face

Fig. 7. Experiment diagram. The camera was fixed on the head to
detect optical information for the mirror before the experiment. The first
experiment was in the left figure, Zeno was placed in front of a mirror and
showed different facial expressions to recognize himself. Then the algorithm
was trying to recognize itself in the mirror. The second experiment was in
the right figure, Zeno was placed in front of the same Zeno robot and shows
the same facial expression. Then the algorithm also tried to recognize its
face.

given to both robots as in the above experiment. The robot
will see a similar robot that shows the same expressions in
its field of view. In this experiment, we aim to test whether
Zeno robot will give a visual illusion result that it is itself.
As presented in Section I, human beings have the rubber
hand illusion (RHI) phenomenon because of sensorimotor
learning. In this experiment, we will show that our algorithm
makes the robot have a similar behavior.

V. RESULTS

In both experiments, 15 random expressions are given, and
the robot recognizes itself successfully. In our experiment,
no arm or feature recognition methods are used. No prior
information about the environment is learned in advance.
We used offline sensorimotor learning to generate real-time
face appearance, and on-line inference to learn the difference
between the real world and estimation. The face of the robot
was detected and extracted to compare with each other by
the python program. Finally, the robot learns the real-world
expressions variations within 15 iterations with more than
98% confidence. Also, the robot is tricked when there is a
robot that looks like it and shows the same facial expressions,
which means that the visual illusion also appears in our
robots.

A. Self-recognition in front of a mirror

As shown in Figure 8, the robot keeps moving different
parts of its face (e.g., eyelids, mouth, jaw) to show different
expressions yt0 ,yt1 , ...,ytn . The robot keeps observing the
variation Vs,t0 ,Vs,t0 , ...,Vs,tn−1 . In Figure 10, it can be seen
that at the 5th iteration (i.e., 4 iterations evidence to estimate
the 5th iteration), the real variations Ve,t5 (blue line in Figure
8 (a)) drops into prediction confidence interval of f (Vs,t5)
(orange line and pink area in Figure 8 (a)). The accumulation
error erroraccumulation has not converged (red line in Figure
8 (a)). The algorithm gives 49.76% confidence in self-
recognition. However, in the 14th iteration, after collecting 13
pieces of evidence, the algorithm gives 99.97% confidence.
The erroraccumulation tends to be stable and the error tends to

be 0 (green line in Figure 8 (b)), which means that the robot
has recognized itself.

B. Self-recognition in front of a robot

Similar to Section V-A, at the 5th iteration, the real
variation Ve,t5 drops out of the prediction confidence interval.
The algorithm gives 0% confidence. At the 12th iteration,
the variation between f (Vs,t12) and real Ve,t12 is small and
erroraccumulation tends to converge, which means that the
robot mistakenly thinks it is standing in front of itself with
98.34% confidence.

VI. DISCUSSION

For human beings, facial information is the most important
piece of evidence for self-identity [10]. Compared to robot
arm actions recognition, the use of facial information is more
in line with cognitive science research [11] and fits with
human intuition. However, no previous research uses facial
expression context to make robots recognize themselves.
In Human-Human Interaction (HHI), the face provides an
interface of an underlying emotional state [28]. Hence, if we
want to equip the robot with self-recognition abilities, self-
face understanding and self-perception are indispensable.
We posit that cognitive abilities should combine off-line
knowledge learning and online environment fitting. In this
way, the cognitive robot will acquire a robust intelligent
system to overcome general tasks. This path is the same
with Free Energy Minimization (FEM) theory [18] to use a
generative model (off-line knowledge model) to learn how
to achieve the goal (online optimization).

In our experiments, the robot can achieve self-recognition
in front of a mirror. Furthermore, the robot is tricked by
another robot’s face, through an inference process. However,
the full version of Mirror Self-Recognition (MSR) is still a
complex cognitive task that requires the intelligent agent to
not only recognize the self in the mirror but also touch a
mark on the body by observing the mirror. This requires the
self-perception of the whole body and the self-reflection of
minimal self [1]. Our algorithm has provided the path to the
self-perception model and methodology to pass the Mirror
Self-Recognition (MSR).

VII. CONCLUSION

In this work, we propose a novel algorithm to achieve
self-recognition ability in a humanoid robot. This framework
is the first attempt to make self-recognition by using robot
facial expressions. Our self-perception module is inspired by
sensorimotor theory to learn self-face generation through the
CGAN method. To estimate the real environment, we use a
Bayesian inference regression to predict the facial expres-
sions variations from self-perception expressions variations.
This is a combination of online inference and offline learning
algorithm. With the help of our experiments, we demon-
strated that our algorithm successfully makes the Zeno robot
recognize itself within 15 expressions. Nevertheless, our last
experiment shows that our algorithm would be tricked if the
recognizing object is showing the same facial expressions



Fig. 8. Face in the mirror

Fig. 9. Another face of Zeno in the field of view

(a) On-line learning in 5 iterations (b) On-line learning in 14 iterations

Fig. 10. Self-recognition process. After 4 iterations, the robot gives a 49.76% probability to think it is itself. After 13 iterations, 99.97% probability is
given by the robot.

(a) On-line learning in 5 iterations (b) On-line learning in 12 iterations

Fig. 11. Visual illusion experiment results. After 4 iterations, the robot gives 0% probability to think it is itself. After 11 iterations, 98.35% probability
is given by robot.

with a similar face. This visual illusion phenomenon is
usually led by the human cognitive system. The limitation of
this research is that the application of our model is limited to
the face. Fully body self-perception is needed for real Mirror
Self-Recognition (MSR).

VIII. LIMITATION AND FUTURE WORK
In our study, our generative model could generate real-

time facial expressions, but the execution of the motor
lagged behind the visual generation, which was caused by
the experimental platform. This is part of one of the main
challenges of humanoid robots: “How to make them more

flexible and agile?” Another limitation of our system is that
the background used was constant (black background). We
plan to examine in further research how changes in the
background can interfere with the robot’s recognition, and
how self-recognition of faces can be applied to a broader
cognitive robot framework.
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