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Abstract

A separating path system for a graph G is a collection P of paths in G such that for every two

edges e and f , there is a path in P that contains e but not f . We show that every n-vertex graph

has a separating path system of size O(n log∗ n). This improves upon the previous best upper

bound of O(n log n), and makes progress towards a conjecture of Falgas-Ravry–Kittipassorn–

Korándi–Letzter–Narayanan and Balogh–Csaba–Martin–Pluhár, according to which an O(n)

bound should hold.

1 Introduction

Given a set A and a family F of sets, we say that F is a strongly-separating system for A, or that

F strongly-separates A, if for every two elements a, b ∈ A there is a set S ∈ F satisfying a ∈ S and

b /∈ S. Similarly, we say that F is a weakly-separating system for A, or that F weakly-separates

A, if for every two elements a, b ∈ A there is a set S ∈ F that contains exactly one of a and

b.1 In particular, if F strongly-separates A then every element of A is in some set in F , and if it

weakly-separates A then there is at most one element in A not contained in any set in F .

The notion of separation was introduced by Rényi [36] in 1961. It is easy to see that the smallest

weakly-separating system for a set of size n has size ⌈log2 n⌉, and that the smallest strongly-

separating system has size (1 + o(1)) log2 n (see [37]). The problem of determining the size of a

smallest separating system becomes more interesting when one imposes restrictions on the members

of the separating system. For example, separating systems with restrictions on the size of their

members were studied in [25, 29, 35, 41], and different extremal questions about separating systems

were studied in [6, 7, 19].

Another interesting direction is to consider separating systems where the ground set is a graph and

the members of the separating system satisfy some graph theoretic properties; see [9, 17, 18, 24]

for extremal examples [20, 38, 39] for algorithmic examples. Our focus will be on separating path
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systems, where the ground set is the set of edges of a given graph G and the members of the

separating system are paths in G. Separating path systems arise naturally in the study of network

design (see [2, 20, 38]). In the context of extremal graph theory, this variant was proposed by

Gyula Katona in the 5th Emléktábla Workshop (2013). Define sep∗(G) to be the size of a smallest

weakly-separating path system for G, and let sep∗(n) be the maximum of sep∗(G) over all n-vertex

graphs G; define sep(G) and sep(n) analogously for strongly-separating path systems. Katona asked

to determine sep∗(n).

Separating path systems were first studied by Falgas-Ravry–Kittipassorn–Korándi–Narayanan and

the author [13], who focused on the weak version, and, independently, by Balogh–Csaba–Martin–

Pluhár [4], who focused on the strong version. Both groups considered path separation in various

classes of graphs, including random graphs and trees. Moreover, both groups conjectured that the

answer to Katona’s question is O(n).2

Conjecture 1.1 (Falgas-Ravry–Kittipassorn–Korándi–Letzter–Narayanan [13] and Balogh–Csaba—

Martin–Pluhár [4]). There exists a constant c such that every graph on n vertices has a (weakly- or

strongly-)separating path system of size at most cn.

In fact, Falgas-Ravry–Kittipassorn–Korándi–Letzter–Narayanan [13] make the bold suggestion that

perhaps, for weak separation, c could be taken to be arbitrarily close to 1, for sufficiently large

n. If true, that would be tight, as can be seen by considering the complete graph Kn. In fact,

determining sep∗(Kn) and sep(Kn) seems hard; see Wickes [42] for the best-known upper bound on

sep∗(Kn).

The study of separating path systems of graphs is related to the well-researched topic of path

decompositions. A famous conjecture of Gallai asserts that every connected graph on n vertices can

be decomposed into at most
⌊
n+1
2

⌋
paths; here by decomposition we mean that each edge is covered

exactly once. A fundamental result of Lovász [34] proves the following slightly weaker version of

Gallai’s conjecture.

Theorem 1.2 ([34]). Every n-vertex graph can be decomposed into at most n/2 paths and cycles.

Consequently, every n-vertex graph can be decomposed into at most n paths.

Theorem 1.2 will play an important role in our proof. We sometimes use instead its following easy

corollary.

Corollary 1.3. Every n-vertex graph can be decomposed into at most e(G)/d + n paths of length

at most d.

Proof. By Theorem 1.2, there is a collection P of at most n paths that decomposes the edges of G.

Decompose each path in P into paths of length d and at most one shorter path. We thus obtain

a decomposition G into paths of length at most d, at most n of which have length shorter than d.

The corollary follows as there can be at most e(G)/d pairwise edge-disjoint paths of length d.

2Balogh–Csaba–Martin–Pluhár’s version is slightly stronger because they use the stronger notion of separation; we
suspect that the two variants are equally hard.
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The currently best-known bounds towards Gallai’s conjecture are due to, independently, Dean–

Kouider [10] and Yan [43], who proved that every n-vertex graph can be decomposed into at most
2n
3 paths. The conjecture was proved to hold for various families of graphs; see Blanché–Bonamy–

Bonichon [5] for a proof for connected planar graphs and the citations therein for other families of

graphs.

Theorem 1.2 implies an upper bound of sep(n) = O(n log n). Indeed, given an n-vertex graph G,

let H be a collection of O(log n) subgraphs of G that separate the edges of G; this exists by an

aforementioned result regarding separating a set without underlying structure. Now decompose

each H ∈ H into at most n paths. This yields a collection of O(n log n) paths separating G.

Until now, this was the best-known general upper bound on sep(n). In this paper we improve it

significantly, showing that sep(n) = O(n log⋆ n). Here log⋆ n is the iterated logarithm, namely the

minimum number of times the base-2 logarithm has to be applied, iteratively, to yield a result which

is smaller than 1.

Theorem 1.4. Every n-vertex graph has a strongly-separating path system of size O(n log⋆ n). That

is, sep(n) = O(n log⋆ n).

A key component in this paper is the use of sublinear expanders. These were introduced by Komlós–

Szemerédi [27, 28] and recently various variants of them were used to prove some interesting results

[8, 14, 15, 16, 21, 22, 23, 26, 30, 31, 32, 33]. Specifically, we will use many ideas from a very

recent paper by Bucić–Montgomery [8], who proved that every n-vertex graph can be decomposed

into O(n log⋆ n) cycles and edges. This is significant progress on the Erdős–Gallai conjecture [11],

asserting that every n-vertex graph can be decomposed into O(n) cycles and edges. We will also

use a tool from [32], where Liu and Montgomery solved the so-called odd cycle problem, due to

Erdős–Hajnal [12].

In the following section, Section 2, we give an overview of the proof and an outline of the structure

of the paper. We remark that, as our focus throughout the paper is on strong separation, from now

on we will refer to it simply as separation.

2 Proof overview

The main purpose of this section is to give an overview of the proof of Theorem 1.4. We will first

describe a general strategy for finding small separating path systems (see Section 2.1), we then show

how sublinear expanders come into play (Section 2.2), and we give a more detailed proof overview

in Section 2.3. At the end of the section we outline the structure of the paper (see Section 2.4) and

define some notation (in Section 2.5).

2.1 A general strategy

We start by describing a general strategy for finding a separating path system for a graph G on n

vertices, which was used in [13]. By Theorem 1.2, there is a collection P of at most n paths that
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decomposes G; for an edge e, denote by P (e) the unique path in P that contains e. We claim that

there is a collection M of at most 3n matchings that decomposes G, such that P ∪ M separates

the edges of G.

Indeed, take M to be a collection of 3n pairwise edge-disjoint matchings, whose edges intersect each

path in P in at most one edge, and that covers a maximum number of edges under these conditions.

Suppose that e is an edge in G which is not covered by any of the matchings in M. Notice that

there are at most n−1 matchings in M that contain edges of P (e), and at most 2(n−1) matchings

in M that contain an edge that intersects e. Hence, there is a matching M ∈ M that contains

neither edges of P (e) nor edges that intersect e. Replacing M by M ∪{e}, we reach a contradiction

to the maximality of M, thus showing that M covers all edges in G. Observe that P ∪M separates

the edges of G. Indeed, defining M(e) to be the unique matching in M that contains the edge e,

we see that for any two edges e and f , one of P (e) and M(e) contains e but not f .

Thus, if we could find a path PM , for each M ∈ M, that contains M but avoids all other edges of⋃
e∈M P (e), then we would obtain a separating path system for G whose size is |P|+ |M| ≤ 4n.

Of course, this strategy does not always work; otherwise we would have been able to improve on our

main result, Theorem 1.4. Nevertheless, if G has expansion properties and we impose additional

restrictions on the matchings in M, then this strategy often succeeds. Indeed, in [13] it was used to

show that, with high probability, the random graph G(n, p) has a weakly-separating path system

of size O(n) for every p = p(n) (similar ideas appear in [4], where the authors found much smaller

strongly-separating path systems when p ≥ 1000
logn). In this paper we apply it to a more general class

of expanders.

2.2 Expanders

The exact notions of expansion that we shall use will be introduced later (see Sections 4 and 5). We

mention that they are variants of the ‘sublinear expanders’, which were introduced by Komlós and

Szemrédi [27, 28], and have since been modified in various ways to prove many interesting results

[8, 14, 15, 16, 21, 22, 23, 26, 30, 31, 32, 33]. As their name suggests, such expanders have a fairly

weak expansion property. Their strength is in their omnipresence: every graph with a sufficiently

large (but possibly still constant) average degree contains a sublinear expander. In fact, Bucić and

Montgomery [8] recently showed that every graph can be decomposed (or almost decomposed, if we

want the expanders to be ‘robust’) into sublinear expanders that, on average, cover each vertex a

constant number of times. This is very useful for us; it shows that, essentially, it suffices to be able

to find separating path systems of linear size in expanders.

With this decomposition-into-expanders result at hand, a rough plan would be to apply it to decom-

pose a given graph into expanders, and then find a linear separating path system for each expander

using the strategy above. If this plan could be realised as stated, then we would end up with a linear

separating path system for the original graph. However, depending on the density of the expanders

we find, we sometimes require them to be ‘robust’ (or ‘somewhat robust’), and then some edges

might remain uncovered. Moreover, in some situations, our methods separate almost all, but not all,
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edges of a given expander. Instead, we perform O(log⋆ n) steps, each time significantly decreasing

the number of unseparated edges, until remaining with O(n) edges that we can separate trivially

by individual edges.

2.3 Proof sketch

We now give a more concrete outline of our proof. Our main task is to prove that, given a graph

G on n vertices and with average degree d, there is a subgraph G1 on O(n polylog d) edges and a

collection P of O(n) paths in G that separates the edges of G−G1.

It now essentially suffices to separate the edges of G1. Indeed, suppose that Q is a collection of

paths in G that separates G1. By Theorem 1.2, there are collections P ′ and Q′ of at most n paths

that decompose G−G1 and G1. We claim that P ∪ P ′ ∪ Q ∪ Q′ separates the edges of G. To see

this, let e and f be distinct edges in G. If both are in G−G1, then P has a path containing e but

not f ; if both are in G1 then Q has such a path; if e is in G−G1 and f is not, then P ′ has a path

through e but not f ; and finally if e is in G1 but f is not then Q′ has such a path.

Iterating the argument in the paragraph before last thus yields a separating path system for G of

size O(n log⋆ n). We complete this task in three steps.

Step 1: dense expanders. We show (in Lemma 3.1) that given a graph J on m vertices, it has

a subgraph J1 of size O(m polylogm) such that J − J1 can be separated using O(m) paths. To

do so, we decompose J into ‘robust’ expanders (with total order O(m)) and a remainder of size

O(mpolylogm) and show that such expanders can be separated using a linear number of paths (in

Corollary 6.4).

To separate a robust expander K, we show that if V is a set of vertices in K that includes each

vertex with probability 1/3, then, with high probability, the edges of K − V can be separated by a

linear number of paths. To find these paths, we apply the strategy given in Section 2.1 to K − V ,

to obtain small collections P of paths and M of matchings that together separate the edges of K,

while imposing a certain degree condition on the matchings in M. We then partially connect the

edges of each M ∈ M using a subset V1 of V , chosen uniformly at random, thereby forming a

path forest whose ends ‘expand well’ into V − V1. Now, we adapt a result from [8] (which in turn

uses ideas from a paper of Tomon [40]) that allows for connecting pairs of vertices, disjointly, via a

random set of vertices.

Step 2: separating edges touching large degrees in sparse expanders. We again start by

decomposing a graph G on n vertices and with average degree d into expanders (here the expanders

are not required to be robust, and so we have no uncovered edges), whose sum of orders is O(n).

For each such expander H, we show (in Lemma 8.1) that its edges touching high degree vertices

can be separated using O(n+ e(H)
d ) paths.

Denoting by L the set of large degree vertices in H, let us explain how to separate the edges in

H[L]. Writing k := n + e(H)
d , we apply the strategy in Section 2.1, while additionally requiring
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that the paths in P and matchings in M have size at most d; it is straightforward to show that

there exist appropriate P and M of size O(k). Now, given a matching M ∈ M, let F be a path

forest that extends M , avoids vertices in X :=
⋃

e∈M V (P (e))− V (M), and under these conditions

has as few components as possible, and as few edges as possible (prioritising the former). Suppose,

towards a contradiction, that there are at least two components, and let u and v be leaves of

distinct components of F . The minimality assumption allows us to show that, roughly speaking,

balls around u in H −X have few neighbours in F . Adapting a lemma from Liu–Montgomery [32],

it follows that more than |H|/2 vertices in H can be reached from u in H − (X ∪ V (F ) − {u}),
exploiting the fact that u has a large degree. Since the same holds for v, it follows that F can be

extended by a path from u to v, a contradiction. Thus F = FM is a path that extends M and avoids

other edges from
⋃

e∈M P (e), and {FM : M ∈ M}∪P is a collection of O(k) paths separating G[L].

In fact, similar reasoning can be applied to separate edges xy where x ∈ L and y has at least four

neighbours in L, by allowing the members of M to contain paths of length 2 whose ends are in L.

Step 3: separating almost all remaining edges in H. For each H as in the previous step, let

F be its subgraph of ‘unseparated edges’; so F has small maximum degree. We now decompose F

into ‘somewhat robust’ expanders (with total order O(|H|)) and a remainder of O(polylog d · |H|)
edges. Consider one of these expanders J . If |J | is fairly large with respect to d (namely, if

|J | ≥ 2(log d)
7)) then we show (in Lemma 8.4) that its edges can be separated using O(|J |) edges.

The proof is similar to the one outlined in Step 2. Here, in addition to requiring the paths and

matchings in P and M to have size at most d, we also require the edges in M to be far from

each other (the assumption that |J | is large with respect to d is used to prove that appropriate

M exists). Defining M , X and F as above, it suffices to show that F has just one component.

To this end, taking u to be a leaf in F , we first show that the ball of radius (log d)5 around u in

J ′ := J − (X ∪ V (F ) − {u}) is large, exploiting the expansion property being ‘somewhat robust’

and the fact that the other edges of M are far from u. We then proceed like in the previous step

to expand u further, and reach a contradiction if F has at least two components. As before, this

implies the existence of a separating path system for J of size O(|J |+ e(J)
d ).

If instead |J | ≤ 2(log d)
7
, we apply the first step to show that all but O(|J |polylog |J |) edges of J

can be separated using O(|J |) paths.

Altogether, we get a collection of O(n) paths that separate all but O(n polylog d) edges of the graph

G that we started with at the beginning of the second step, concluding the iterative step.

2.4 Organisation of the paper

In the next section (Section 3) we state two key lemmas — Lemma 3.1, which covers Step 1 above,

and Lemma 3.2, which covers Steps 2 and 3 — and show how our main theorem (Theorem 1.4)

follows from these lemmas. In Section 4 we state and prove the decomposition-into-expanders

lemma, Lemma 4.1, which will be used in the proofs of both key lemmas. Section 5 contains the

proof of Lemma 5.10, which allows for connecting pairs of vertices in an expander disjointly through
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a random set of vertices, and is a variant of a lemma from [8]. The first key lemma (Lemma 3.1) is

then proved in Section 6. In Section 7 we prove a variant of a lemma from [32] regarding expansion

with forbidden sets. Finally, in Section 8 we prove the second key lemma (Lemma 3.2).

2.5 Notation

Our notation is mostly standard. Given a graph G, a set of vertices X, and integer i ≥ 0, we write

NG(X) to be the set of vertices outside of X that send at least one edge into X, and write Bi
G(X)

to be the set of vertices at distance at most i from X in G. Given a vertex x and a set of vertices

X in a graph G, we denote the number of neighbours of x in X by dG(x,X). As is customary, we

omit the subscript G when it is clear from the context. Given a graph G and two disjoint sets of

vertices A,B in it, we write G[A,B] for the bipartite subgraph of G, with bipartition (A,B), whose

edges are the edges of G with one end in A and the other in B. Given vertices x, y, an (x, y)-path

is a path from x to y. We denote the length of a path P by ℓ(P ). We say that a sequence of events

(En)n≥1 holds with high probability if it holds with probability tending to 1 as n tends to infinity.

All logarithms will be in base 2, unless specified otherwise, and log⋆ n is iterated logarithm, namely

the least number of times the base-2 logarithms has to be applied, iteratively and starting with n,

to yield a number which is smaller than 1. When dealing with large numbers we often omit floor

and ceiling signs when they are not crucial.

3 Main lemmas

In this section we state two key lemmas and then show how to use them to prove our main result

(Theorem 1.4).

The first key lemma shows that given any graph on n vertices there is a linear collection of paths

separating all but O(n polylog n) of its edges.

Lemma 3.1. Suppose that G is a graph on n vertices. Then there is a subgraph G1 ⊆ G, with

e(G1) ≤ n(log n)55, and a collection P of at most 1300n paths in G that separates the edges of

G−G1.

The second key lemma has a more complicated statement; essentially, it shows that for every graph

G there is a linear collection of paths that separates a subgraph of G whose complement in G can

be decomposed into small subgraphs and a sparse remainder.

Lemma 3.2. There exists d0 such that the following holds. Suppose that G is a graph on n vertices

with average degree d, where d ≥ d0. Then there is a subgraph G1 ⊆ G, a collection H of subgraphs

of G and a collection P of paths in G with the following properties.

(1) The graphs in H are mutually edge-disjoint; |H| ≤ 2(log d)
7
for every H ∈ H; and

∑
H∈H |H| ≤

4n.

7



(2) The collection P separates the edges of G−G1 −
⋃

H∈HH, and satisfies |P| ≤ 80n.

(3) The graph G1 has average degree at most (log d)3.

The following corollary combines the two key lemmas to show that given a graph with average

degree d, there is a linear collection of paths that separates all edges but a remainder whose average

degree is O(polylog d).

Corollary 3.3. Suppose that G is a graph on n vertices with average degree d. Then there is a

subgraph G1 ⊆ G with average degree at most O((log d)420) and a collection P of O(n) paths in G

that separates G−G1.

Proof. Wemay assume that d is large, because otherwise we could takeG1 to be the empty graph and

P = E(G). Apply Lemma 3.2 to obtain H and P that satisfy the conditions of the lemma. Namely,

the graphs in H are mutually edge-disjoint and consist of at most 2(log d)
7
vertices,

∑
H∈H |H| ≤ 4n,

|P| ≤ 80n, and the paths in P separate the edges in G′, where G′ := G−G′′ −
⋃

H∈HH and G′′ is

a subgraph of G′ with average degree O((log d)3). Let P ′ be a collection of at most n paths in G′

that decomposes the edges of G′; such a collection exists by Theorem 1.2.

Apply Lemma 3.1 to each graph H in H; denote the resulting subgraph and collection of paths by

GH and PH . So e(GH) ≤ |H|(log |H|)55, |PH | = O(|H|), and PH is a collection of paths in H that

separates the edges of H −GH . Write G1 :=
⋃

H∈HGH ∪G′′. Then

∑
H∈H

e(GH) ≤
∑
H∈H

|H|(log |H|)55 ≤

(∑
H∈H

|H|

)
· (log d)420 = O(n(log d)420).

It follows that e(G1) = O(n(log d)420), or, equivalently, G1 has average degree O((log d)420). Let

P ′
H be a collection of at most |H| paths in H that decomposes E(H), and write Q := P ∪ P ′ ∪⋃
H∈H(PH ∪ P ′

H). Then |Q| = O(n), using
∑

H∈H |H| = O(n).

We claim that Q separates the edges of G−G1. To see this, consider two edges e and f in G−G1.

We consider four cases.

� There is H ∈ H such that e, f ∈ E(H). Then, there is P ∈ PH such that e ∈ E(P ) and

f /∈ E(P ).

� There is H ∈ H such that e ∈ E(H) and f /∈ E(H). Then, there is a path P ∈ P ′
H in H that

contains e, and so f /∈ E(P ).

� Both e and f are in G′. Then, there is P ∈ P such that e ∈ E(P ) and f /∈ E(P ).

� The edge e is in G′ and f is not in G′. Then, there is P ∈ P ′ such that e ∈ E(P ) and

f /∈ E(P ).

The subgraph G1 and collection Q of paths satisfy the requirements of the corollary.
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The next corollary, applies the previous one twice, to prove a very similar statement, with the

average degree of the remainder now being at most log d. We could have omitted this corollary

and proved Theorem 1.4 directly from Corollary 3.3, but the counting is slightly simpler with

Corollary 3.4.

Corollary 3.4. Let G be a graph on n vertices with average degree d, where d is large. Then there

is a subgraph G1 ⊆ G with average degree at most log d and a collection P of O(n) paths in G that

separates G−G1.

Proof. We apply Corollary 3.3 twice. Denote by G1 and P1 the subgraph and collection of paths

resulting from the first application, and let G2 and P2 be the subgraph and collection of paths

resulting from a second application with the graph G1. Apply Theorem 1.2 to get a collection P ′
1 of

at most n paths that decomposes G−G1, and define P ′
2 similarly with respect to G1 −G2. Write

Q = P1∪P2∪P ′
1∪P ′

2. Then |Q| = O(n) and Q separates the edges of G−G2 (this is easy to verify

using a similar analysis to the proof of Corollary 3.3).

By the properties of G1 and G2 given by Corollary 3.3 we have d(G1) = O((log d)420) and d(G2) =

O((log d(G1))
420) = O((log log d)420). Since d is large, it follows that d(G2) ≤ log d. The subgraph

G2 and collection Q satisfy the requirements of the corollary.

Finally, we deduce our main result (Theorem 1.4) from Corollary 3.4.

Proof of Theorem 1.4. Write G0 := G and d := d(G). We define sequences (Gi)i≥1 and collections

of paths (Pi)i≥1 as follows. As long as d(Gi) is large enough to apply Corollary 3.4, let Gi+1 and

Pi+1 be the graph and collection of paths resulting from an application of Corollary 3.4 to Gi. Then

d(Gi+1) ≤ log d(Gi), |Pi+1| = O(n) and P separates the edges of Gi −Gi+1. Suppose that the last

graph we defined was Gk. Then k ≤ log⋆ n and e(Gk) = O(n). For i < k apply Theorem 1.2 to

obtain a collection of paths P ′
i that decomposes Gi −Gi+1 and let P ′

k := E(Gk).

Let Q :=
⋃

0≤i<k Pi ∪
⋃

0≤i≤k P ′
i. Then |Q| = O(nk) = O(n log⋆ n). We claim that Q separates

E(G). To see this, let e and f be two edges in G, let i be such that e ∈ Gi − Gi+1 (with i = k if

e ∈ Gk), and define j similarly with respect to f . If i ̸= j then there is a path P ∈ P ′
i that contains

e but not f . If i = j ̸= k then there is a path P ∈ Pi that contains e but not f . Finally, if i = j = k,

then e is a path in P ′
k which contains e but not f . Thus Q is a collection of O(n log⋆ n) paths that

separates the edges of G.

4 Decomposition into expanders

We say that a graph G on n vertices is an (ε, s, t)-expander if |NG−F (X)| ≥ ε|X|
(log |X|+1)2

for every

X ⊆ V (G) and F ⊆ E(G) satisfying 1 ≤ |X| ≤ 2n/3 and |F | ≤ s ·min{|X|, t}. An (ε, s)-expander

is an (ε, s, 2n/3)-expander (namely, F is not restricted by t). An ε-expander is an (ε, 0)-expander

(namely, F is always empty). This definition builds on previously defined notions of expansion:

Komlós and Szemerédi [27, 28] introduced a notion of sublinear expanders, which are (up to a
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slight change in parameters) ε-expanders in our notation. Haslegrave, Kim and Liu [23] introduced

a notion of robust sublinear expanders, which are (ε, s)-expanders in our notation. We add the

parameter t, which provides a cut-off in the robustness: vertex sets of size at most t expand

robustly, whereas larger vertex sets expand less robustly.

The following lemma shows that every graph G can be decomposed into expanders, or almost

decomposed into robust expanders. This is a variant of Lemma 14 in [8] and the proof is similar but

more technical. The main difference is the introduction of the parameter t, which allows us to obtain

expanders where small sets of vertices expand robustly, while not leaving too many edges uncovered.

As a sanity check, note that as s and t increase, the expansion property becomes stronger, and the

potential number of uncovered edges grows.

We will apply this lemma with several regimes for s and t: in Section 6 we take s to be polylogarith-

mic in n (and take t = 2n/3). In Section 8 we apply this lemma twice, once with s = 0 (in which

case the choice of t does not matter), and once with s a large constant and t being the average

degree of the ground graph.

Lemma 4.1. Let s ≥ 0, t ≥ 1 and let 0 < ε ≤ 1/48. Let G be a graph on n vertices. Then there is

a collection H of pairwise edge-disjoint (ε, s, t)-expanders that covers all but at most 48sn(log t+1)2

edges of G and satisfies
∑

H∈H |H| ≤ 2n.

Proof. We leave a few simple calculus claims (see Claims 4.3 to 4.5) until after this proof. Notice

that we may assume t ≤ 2n
3 , by our definition of expanders.

We prove the statement by induction on n, with the following slightly stronger upper bounds:

24sn · (log t+ 1)2(2− 1
logn+1) on the number of edges removed, and n · (2− 1

logn+1) on the sum of

orders. If G is itself an (ε, s, t)-expander then we may take H = {G}, noting that n·(2− 1
logn+1) ≥ n.

Suppose then that G is not an (ε, s, t)-expander. In particular, n ≥ 2 because the singleton graph

is an (ε, s, t)-expander. This means that there are subsets X ⊆ V (G) and F ⊆ E(G) such that

1 ≤ |X| ≤ 2n/3, |F | ≤ s ·min{|X|, t}, and |NG−F (X)| ≤ ε|X|
(log |X|+1)2

. Let G1 := G[X ∪NG−F (X)]

and let G2 be the subgraph obtained from G−X by removing the edges with both ends in NG−F (X).

Then G1 and G2 are edge-disjoint, together they cover all edges in G− F , and they satisfy

n ≤ |G1|+ |G2| = n+ |NG−F (X)| ≤ n+
ε|X|

(log |X|+ 1)2

≤ n+
3ε|G1|

(log |G1|+ 1)2
≤ n+

|G1|
16(log |G1|+ 1)2

,

(1)

where the penultimate inequality follows from Claim 4.3 stated below.

The bulk of the calculations needed for this lemma will be performed in the following claim.

Claim 4.2.

|G1|
(
2− 1

log |G1|+ 1

)
+ |G2|

(
2− 1

log |G2|+ 1

)
+

min{|G1|, t}
24(log t+ 1)2

≤ n

(
2− 1

log n+ 1

)
.
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Proof. Write D for the difference between the left-hand side and the right-hand side.

D = |G1|
(
2− 1

log |G1|+ 1

)
+ |G2|

(
2− 1

log |G2|+ 1

)
− n

(
2− 1

log n+ 1

)
+

min{|G1|, t}
24(log t+ 1)2

= 2 (|G1|+ |G2| − n)− |G1|
log |G1|+ 1

− |G2|
log |G2|+ 1

+
n

log n+ 1
+

min{|G1|, t}
24(log t+ 1)2

≤ |G1|
8(log |G1|+ 1)2

− |G1|
log |G1|+ 1

− |G2|
log n+ 1

+
n

log n+ 1
+

min{|G1|, t}
24(log t+ 1)2

≤ |G1|
(

1

8(log |G1|+ 1)2
− 1

log |G1|+ 1
+

1

log n+ 1
+

min{1, t/|G1|}
24(log t+ 1)2

)
,

where for the first inequality we used (1). We consider two cases: |G1| ≥ t and |G1| < t. In the first

case, using Claim 4.3, we have

min{1, t/|G1|}
24(log t+ 1)2

=
t

24|G1|(log t+ 1)2
≤ 3|G1|

24|G1|(log |G1|+ 1)2
=

1

8(log |G1|+ 1)2
.

Thus, noting that |G1| ≤ |X|+ ε|X|
(log |X|+1)2

≤ |X|
(
1 + 1

24

)
≤ 2n

3 · 25
24 ≤ 3n

4 , and using Claim 4.5,

D ≤ |G1|
(

1

4(log |G1|+ 1)2
− 1

log |G1|+ 1
+

1

log n+ 1

)
≤ 0.

In the second case, by Claim 4.4, we have 1
8(log |G1|+1)2

− 1
log |G1|+1 ≤ 1

8(log t+1)2
− 1

log t+1 . Thus,

D ≤ |G1|
(
1/8 + 1/24

(log t+ 1)2
− 1

log t+ 1
+

1

log n+ 1

)
≤ |G1|

(
1

4(log t+ 1)2
− 1

log t+ 1
+

1

log n+ 1

)
≤ 0,

where the last inequality follows from Claim 4.5, using 1 ≤ t ≤ 2n/3. Either way, D ≤ 0, as

required.

For i ∈ [2], apply the induction hypothesis to Gi to obtain a family Hi of pairwise edge-disjoint

subgraphs of Gi that cover all but at most 24s(log t+ 1)2|Gi|(2− 1
log |Gi|+1) edges of Gi and satisfy∑

H∈Hi
|H| ≤ |Gi|

(
2− 1

log |Gi|+1

)
. Take H = H1 ∪H2. By Claim 4.2, the graphs in H cover all but

at most the following number of edges in G:

24s(log t+ 1)2
(
|G1|

(
2− 1

log |G1|+ 1

)
+ |G2|

(
2− 1

log |G2|+ 1

)
+

min{|G1|, t}
24(log t+ 1)2

)
≤

24sn(log t+ 1)2
(
2− 1

log n+ 1

)
.
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Similarly,

∑
H∈H

|H| ≤
∑

H∈H1

|H|+
∑

H∈H2

|H| ≤ |G1|
(
2− 1

log |G1|+ 1

)
+ |G2|

(
2− 1

log |G2|+ 1

)
≤ n

(
2− 1

log n+ 1

)
.

So H satisfies the requirements, proving the induction hypothesis.

We now state and prove the calculus claims used in the proof of Lemma 4.1.

Claim 4.3. x
(log x+1)2

≤ 3y
(log y+1)2

for integers x, y with 1 ≤ x ≤ y.

Proof. Consider the function f(x) = x
(log x+1)2

. Then

f ′(x) =
(loge(2))

2 loge(2x/e
2)

(loge(2x))
3

.

In particular, f ′(x) ≥ 0 for x ≥ 4, showing f(x) ≤ f(y) ≤ 3f(y) when 4 ≤ x ≤ y (using f(y) ≥ 0

for y ≥ 4). A calculation shows 1/3 ≤ f(x) ≤ 1 for x ∈ [4]. It follows that f(x) ≤ 3f(y) for x ∈ [3]

and any integer y ≥ 1.

Claim 4.4. 1
8(log x+1)2

− 1
log x+1 ≤ 1

8(log y+1)2
− 1

log y+1 when 1 ≤ x ≤ y.

Proof. Write f(x) = 1
8(log x+1)2

− 1
log x+1 . Then the derivative f ′(x) satisfies the following for x ≥ 1.

f ′(x) =
loge(2)(4 loge x+ loge 8)

4x(loge(2x))
3

≥ 0.

In particular, f is increasing in the range x ≥ 1, as required.

Claim 4.5. The following holds for 1 ≤ x ≤ log(3n/4) + 1 and n ≥ 2.

1

4x2
− 1

x
+

1

log n+ 1
≤ 0.

Proof. Write f(x) = log n + 1 − 4x(log n + 1) + 4x2, and notice that it suffices to prove f(x) ≤ 0

for 1 ≤ x ≤ log(2n/3) + 1.

Since the set of real numbers x for which f(x) ≤ 0 is an interval, it suffices to show that f(x) ≤ 0
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for x = 1 and x = log(2n/3) + 1.

f(1) = log n+ 1− 4(log n+ 1) + 4 = 1− 3 log n ≤ 0.

f(log(3n/4) + 1) = log n+ 1− 4(log(3n/4) + 1)(log n+ 1) + 4(log(3n/4) + 1)2

= log n+ 1− 4(log n+ log(3/2))(log n+ 1) + 4(log n+ log(3/2))2

= log n · (1− 4− 4 log(3/2) + 8 log(3/2)) + 1− 4 log(3/2) + 4(log(3/2))2

≤ −1

2
· log n+

1

2
≤ 0.

This completes the proof of the claim.

5 Finding vertex-disjoint paths through a random vertex set

In this section we prove Lemma 5.10, which allows for connecting pairs of vertices (x1, y1), . . . , (xr, yr)

in a robust expander through a random set of vertices via vertex-disjoint paths, provided that any

subset of the vertices x1, . . . , xr, y1, . . . , yr expands well. This is a variant of Theorem 10 in [8],

which does something very similar, but avoids the expansion assumption on x1, . . . , xr, y1, . . . , yr

and only requires the paths to be edge-disjoint. Our proof follows [8] very closely. We note that, as

mentioned also in [8], some of the ideas that appear in the proof are due to Tomon [40].

We will introduce the relevant preliminaries (including a different notion of expansion) in Section 5.1,

we then prove Lemma 5.10 in three steps, given in Sections 5.2 to 5.4.

5.1 Preliminaries

Say that a graphG on n vertices is a weak (ε, s)-expander if |NG−F (U)| ≥ ε|U |
(logn)2

for every U ⊆ V (G)

and F ⊆ E(G) with 1 ≤ |U | ≤ 2n/3 and |F | ≤ s|U |. In [8] such a graph is called simply an (ε, s)-

expander; we add ‘weak’ to its name to distinguish it from (ε, s)-expanders, which have stronger

expansion properties for smaller sets of vertices. Note that an (ε, s)-expander on at least two vertices

is a weak ( ε2 , s)-expander.

We will use the following two propositions from [8], both of which show that every not-too-large

vertex set U in an expander either ‘expands well’ (i.e. has a large neighbourhood) or ‘expands

robustly’ (i.e. there are many vertices in N(U) with many neighbours in U). We state a slightly

simplified version of the propositions, where there is no set of forbidden edges, because we will not

use this feature.

Proposition 5.1 (Proposition 12 in [8]). Let ε > 0, let 0 < d ≤ s. Suppose that G is an n-vertex

(ε, s)-weak expander. Then one of the following holds, for every set U ⊆ V (G) with |U | ≤ 2n
3 .

� |N(U)| ≥ s|U |
2d , or
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� |{u ∈ V (G) : |N(u) ∩ U | ≥ d}| ≥ ε|U |
(logn)2

.

Proposition 5.2 (Proposition 13 in [8]). Let ε ≥ 2−9, s ≥ 8(log n)13, and let n be large. Suppose

that G is an (ε, s)-weak expander, and let W ⊆ V (G) satisfy |W | ≤ 2n/3. Then G contains one of

the following

� a collection of at least |W |
(logn)7

pairwise vertex-disjoint stars of size at least (log n)9, whose

centre is in W and its leaves are in V (G)−W ,

� a bipartite graph H with parts W and X ⊆ V (G)−W , such that

– |X| ≥ ε|W |
2(logn)2

,

– every vertex in X has degree at least (log n)4 and every vertex in W has degree at most

2(log n)9 in H.

As in [8], we also need the following hypergraph version of Hall’s theorem, due to Aharoni and

Haxell.

Theorem 5.3 (Aharoni–Haxell [1]). Let s, r ≥ 1 be integers, and let H1, . . . ,Hr be hypergraphs on

the same vertex set whose edges have at most s vertices. Suppose that, for every I ⊆ [r], there is a

matching in
⋃

i∈I Hi of size at least s(|I|−1). Then there is a matching of size r in
⋃

i∈[r]Hi whose

ith edge is in Hi.

Additionally, we use the following martingale concentration result (see Chapter 7 in [3]). We say

that a function f :
∏n

i=1Ωi → R, where Ωi are arbitrary sets, is k-Lipschitz if |f(u)− f(v)| ≤ k for

every u, v ∈
∏n

i=1 that differ on at most one coordinate.

Lemma 5.4. Let X1, . . . , Xn be independent random variables, with Xi taking values in a set Ωi

for i ∈ [n], and write X = (X1, . . . , Xn). Suppose that f :
∏n

i=1Ωi → R is k-Lipschitz. Then,

P (|f(X)− Ef(X)| > t) ≤ 2 exp

(
−2t2

k2n

)
.

5.2 Expansion into a random vertex set

The following lemma shows that, given a sufficiently robust weak expander G and a random set

of vertices V , obtained by including each vertex independently with probability 1/6, any set U

expands well in V , while avoiding a given small set of vertices Z, with quite large probability. This

lemma is a variant of Lemma 17 in [8], where instead of a forbidden set of edges we have a forbidden

set of vertices, and the proof is essentially the same.

Lemma 5.5. Let 2−9 ≤ ε < 1, s ≥ 8(log n)13 and let n be large. Suppose that G is an n-vertex

weak (ε, s)-expander and let U,Z ⊆ V (G) be sets satisfying |U | ≥ (log n)23 and |Z| ≤ |U |
(logn)3

. Let V
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be a random subset of V (G), obtained by including each vertex independently with probability 1/6.

Then, with probability at least 1− exp
(
−Ω

(
|U |

(logn)22

))
,

∣∣∣B(logn)4

G[V ′] (U ∩ V ′)
∣∣∣ > |V |

2
,

where V ′ := V − Z.

Proof. Take ℓ := (log n)4, and let p satisfy 1− (1− p)ℓ(1− 3
20)(1−

1
120) =

1
6 , so that

1− pℓ ≤ (1− p)ℓ =
1− 1/6

(1− 3/20) · (1− 1/120)
≤ 99

100
,

which implies that p ≥ 1
100(logn)4

. Let V1, . . . , Vℓ, V
∗, V ∗∗ be random sets, where Vi is obtained by

including each vertex with probability p, independently, V ∗ is obtained by including each vertex

with probability 1
120 , independently, and V ∗∗ is obtained by including each vertex with probability

3
20 , independently. Notice that each vertex is in V1 ∪ . . .∪Vℓ ∪V ∗ ∪V ∗∗ with probability 1/6, so we

may think of V as the union V1 ∪ . . . ∪ Vℓ ∪ V ∗ ∪ V ∗∗.

Define U∗ = (U ∩V ∗)−Z. Then, with probability 1−exp (−Ω (|U |)), we have |U∗| ≥ 1
200 |U |−|Z| ≥

1
400 |U |. Define B0 := U∗ and, for i ≥ 1, let Bi be the set of vertices in G that can be reached by

a path in G − Z that starts in U∗, has length at most i, and its interior is in V1 ∪ . . . ∪ Vi. We

emphasise that Bi is only required to be disjoint from Z, and need not be a subset of Vi. Notice that

Bi ⊆ Bi+1 for every i ≥ 0, implying that |Bi| ≥ |B0| = |U∗| ≥ 1
400 |U | for i ≥ 0 when |U∗| ≥ 1

400 |U |.

Claim 5.6. If |Bi| ≤ 2
3n, then, with probability at least 1− exp

(
−Ω

(
|U |

(logn)22

))
,

|Bi+1 −Bi| ≥
ε|Bi|

104(log n)2
.

Proof. Notice that a vertex in N(Bi) − Z is in Bi+1 − Bi if at least one of its neighbours in Bi is

sampled into Vi+1. We consider the two possible outcomes of Proposition 5.2 for Bi.

Suppose that the first outcome holds, so there are |Bi|
(logn)7

pairwise vertex-disjoint stars of size

(log n)9 with centres in Bi and leaves in N(Bi). By a Chernoff bound, with probability at least

1 − exp
(
−Ω

(
p|Bi|

(logn)7

))
= 1 − exp

(
−Ω

(
|U |

(logn)11

))
, at least p|Bi|

2(logn)7
centres are added to Vi+1,

implying that

|Bi+1 −Bi| ≥ (log n)9 · p|Bi|
2(log n)7

− |Z| ≥ |Bi|
200(log n)2

− |U |
(log n)3

≥ |Bi|
400(log n)2

.

Now suppose that the second outcome holds, so there is a bipartite subgraph H ⊆ G with parts Bi

and X ⊆ V (G)−Bi, with |X| ≥ ε|Bi|
4(logn)2

, such that vertices in X have degree at least d := (log n)4

in H while vertices in Bi have degree at most D := 2(log n)9 in H. Let Y be the set of vertices in X

that do not have an H-neighbour in Vi+1. Note that E|Y | ≤ |X|(1− p)d ≤ |X|e−pd ≤ 399
400 |X|. Note
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also that |Y | is D-Lipschitz, since the outcome of the sampling of any single vertex in Bi affects the

outcome of at most D vertices in X. Thus, by Lemma 5.4,

P
(
|Y | > 799

800
|X|
)

≤ P
(
|Y | > E|Y |+ |X|

800

)
≤ 2 exp

(
− |X|2

2 · 8002 ·D2|Bi|

)
= exp

(
−Ω

(
|U |

(log n)22

))
.

So, with probability at least 1−exp
(
−Ω

(
|U |

(logn)22

))
, we have |Bi+1−Bi| ≥ |X|

800−|Z| ≥ ε|Bi|
104(logn)2

.

Iterating the claim, with probability at least

1− (log n)4 · exp
(
−Ω

(
|U |

(log n)22

))
≥ 1− exp

(
−Ω

(
|U |

(log n)22

))
,

if |Bi| ≤ 2
3n and i ≤ (log n)4, then,

|Bi| ≥
(
1 +

ε

104(log n)2

)i

|U |,

which implies |Bℓ| ≥ 2
3n with probability 1− exp

(
−Ω

(
|U |

(logn)22

))
.

To complete the proof, note that any vertex in Bℓ that gets sampled into V ∗∗ (or that is already

in V1 ∪ . . . ∪ Vℓ ∪ V ∗) is in the set B′ := B
(logn)4

G[V ′] (U ∩ V ′). By Chernoff, with probability at least

1 − e−Ω(n), at least 99
100 · 3

20 · 2
3n = 99

1000n vertices of Bℓ are in V , and |V | ≤ 101
100 · 1

6n = 101
600n. If all

this holds, then |B′| > 1
2 |V |, as required.

The next corollary, which is a variant of Lemma 19 in [8], boosts the probability of expansion of U

into V , so as to be amenable to an application of the union bound, with the expense of a slightly

smaller upper bound on |Z|.

Corollary 5.7. Let 2−9 ≤ ε < 1, s ≥ 211(log n)50, and let n be large. Suppose that G is an

n-vertex weak (ε, s)-expander, and let V be a random subset of V (G), obtained by including each

vertex independently with probability at least 1/6. Then, with high probability, if U,Z ⊆ V (G) are

sets with |Z| ≤ |U |
(logn)30

, then ∣∣∣B(logn)4

G[V ′]

(
N(U) ∩ V ′)∣∣∣ > |V |

2
, (2)

where V ′ := V − Z.

Proof. Say that a set U ⊆ V (G) expands well if |N(U)| ≥ |U |(log n)24. Given a (non-empty) set U

which expands well, and a set Z with |Z| ≤ |U |, Lemma 5.5 (applied with U5.5 = N(U)) tells us

that (2) holds, with probability at least 1− exp
(
−Ω

(
|U |(log n)2

))
.

By a union bound, we conclude that the probability that (2) fails for (U,Z), with U well-expanding
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and |Z| ≤ |U |, is at most

n∑
u=1

(
n

u

)2

exp
(
−Ω

(
u(log n)2

))
≤

n∑
u=1

exp
(
2u log n− Ω

(
u(log n)2

))
=

n∑
u=1

exp
(
−Ω

(
u(log n)2

))
= o(1/n).

For the rest of the proof we assume that (2) holds for all such pairs (U,Z). To complete the proof,

we will deduce that (2) holds for all pairs (U,Z), where U need not expand well, |U | ≤ 2
3n, and

|Z| ≤ |U |
(logn)30

. Fix such U,Z.

Write d := 2
ε (log n)

26. By Proposition 5.1, either |N(U)| ≥ s|U |
2d , or |{u : |N(u) ∩ U | ≥ d}| ≥ ε|U |

(logn)2
.

Notice that the first outcome implies that U expands well and so we already know that (2) holds.

We thus assume that the second one holds, and write W := {u : |N(u) ∩ U | ≥ d}. Let U ′ be a

subset of U of size |U |
d , chosen uniformly at random. For a fixed w ∈ W , the probability that w has

no neighbours in U ′ is at most (|U |−d
|U |/d

)( |U |
|U |/d

) ≤
(
|U | − d

|U |

)|U |/d
≤ e−1.

It follows that E[|W ∩ N(U ′)|] ≥ (1 − e−1)|W | ≥ ε|U |
2(logn)2

= |U ′|(log n)24. In particular, there

is a subset U ′ ⊆ U of size |U |
d with |N(U ′)| ≥ |U ′|(log n)24. Since such U ′ expands well, and

|Z| ≤ |U |
(logn)30

≤ |U ′|, Equation (2) holds for (U ′, Z) and thus for (U,Z).

5.3 A path connection through a random set

Our end goal is to be able to join (disjointly) r pairs of vertices through a random set V , provided

that they expand well. Here we show how to join one pair of vertices (while avoiding a small set of

forbidden vertices). This is a variant of Proposition 8 in [8], where in addition to forbidding vertices

instead of edges, we also impose the expansion property on the vertices we wish to connect. The

proof is essentially the same.

Lemma 5.8. Let 2−9 ≤ ε < 1, s ≥ 211(log n)50, and let n be large. Suppose that G is an n-

vertex weak (ε, s)-expander, and let V be a random subset of V (G), obtained by including each

vertex independently with probability 1/6. Then, with high probability, the following holds for every

r: if x1, . . . , xr, y1, . . . , yr are distinct vertices, satisfying |N(X)| ≥ |X|(log n)50 for every subset

X ⊆ {x1, . . . , xr, y1, . . . , yr}, and Z is a set of size at most 2r(log n)12 which is disjoint from

{x1, . . . , xr, y1, . . . , yr}, then for some i ∈ [r] there is an (xi, yi)-path in G whose interior is in

V − Z and whose length is at most (log n)6.

Proof. Fix an outcome of V such that Equation (2) holds for every disjoint U,Z ⊆ V (G) with

|Z| ≤ |U |
(logn)30

(here V ′ := V − Z), and moreover |V | ≥ n
8 . By Corollary 5.7 and a Chernoff bound,
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both these assumptions hold with high probability, and so we are justified in making them. Write

ℓ := (log n)4 + 1. For a set of vertices X and integer d ≥ 1, define Rd(X) := Bd
G[V ′](N(X) ∩ V ′).

Let X1 be the set of vertices x in {x1, . . . , xr} satisfying |Rℓ logn(x)| ≤ |V |
2 .

Claim 5.9. |X1| < r
2 .

Proof. Suppose |X1| ≥ r
2 . We will show that there is a sequence (Xi)i≥1, such that Xi ⊇ Xi+1,

|Xi+1| ≤ max{1, |Xi|
2 }, and ∣∣∣Riℓ(Xi)

∣∣∣ > |V |
2

, (3)

for i ≥ 1.

Notice that |N(X1)| ≥ r
2(log n)

50, using |X1| ≥ r
2 and the assumption on the xi’s. Thus |N(X1)| ≥

|Z|(log n)30, and, by (2), |R(logn)4(N(X1) ∩ V ′)| > |V |
2 . It follows that |Rℓ(X1)| ≥ |R(logn)4(X1)| >

|V |
2 , proving (3) for i = 1.

Now suppose that X1 ⊇ . . . ⊇ Xj and (3) holds for i ∈ [j]. If |Xi| = 1 we take Xi+1 = Xi (which

clearly satisfies the requirements). Otherwise, by dividing Xi into at most three sets of size at most
|Xi|
2 , there is a subset Xi+1 ⊆ Xi of size at most |Xi|

2 satisfying |Riℓ(Xi+1)| ≥ |V |
6 . Consider the set

U := Riℓ(Xi+1). It satisfies |U | ≥ |V |
6 ≥ n

48 ≥ r
48(log n)

50 ≥ |Z|(log n)30, where the third inequality

follows implicitly from the assumption that |N({x1, . . . , xr})| ≥ r(log n)50. Thus, by (2),∣∣∣B(logn)4

G[V ′]

(
N(U) ∩ V ′)∣∣∣ > |V |

2
.

Notice that

B
(logn)4

G[V ′]

(
N(U) ∩ V ′) = Bℓ

G[V ′](U) = R(i+1)ℓ(Xi+1),

so Xi+1 has the required properties. This completes the proof of the existence of a sequence (Xi)i≥1

with the above properties.

Fix such a sequence, and take i := log n. Then |Xi| ≤ max{1, 2− logn|X1|} = 1. This means

|Rℓ logn(x)| > |V |
2 for the single vertex x in Xi, contradicting the choice of X1.

Take Y1 to be the set of vertices y ∈ {y1, . . . , yr} with |Rℓ logn(y)| ≤ |V |
2 . Then, analogously to the

above claim, |Y1| < r
2 . Hence, there exists i ∈ [r] such that |Rℓ logn(xi)|, |Rℓ logn(yi)| > |V |

2 , showing

that there is an (x, y)-path of length at most 2ℓ log n+ 2, with interior in V ′, as required.

5.4 Many disjoint path connections through a random set

Finally, we prove that given a sufficiently robust weak expander and pairs (x1, y1), . . . , (xr, yr), such

that the set {x1, . . . , xr, y1, . . . , yr} expands well, the pairs can be connected via vertex-disjoint

paths through a random set V . This is a variant of Lemma 10 in [8] (though their statement looks

quite different).
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Lemma 5.10. Let 2−9 ≤ ε < 1, s ≥ 211(log n)50, and let n be large. Suppose that G is an n-vertex

weak (ε, s)-expander, and let V be a random subset of V (G), that includes each vertex independently

with probability 1
6 . Then, with high probability, for every sequence of vertices x1, . . . , xr, y1, . . . , yr

satisfying |N(X)| ≥ |X|(log n)50 for every X ⊆ {x1, . . . , xr, y1, . . . , yr}, there is a sequence of paths

P1, . . . , Pr, whose interiors are pairwise vertex-disjoint and in V , such that Pi is a path from xi to

yi.

Proof. We assume that the conclusion of Lemma 5.8 holds (it holds with high probability, so we

are justified in making this assumption). Let Hi be the hypergraph on vertex set V with edges the

interiors of P , for all (xi, yi)-paths P of length at most ℓ := (log n)6 with interior in V .

We will use Theorem 5.3. Fix a subset I ⊆ [r]. We wish to show that there is a matching of size

ℓ(|I|−1)+1 in H′ :=
⋃

i∈I Hi. Suppose no such matching exist, and let M′ be a maximal matching

in H′. Then |M′| ≤ ℓ(|I| − 1) and every edge in H′ intersects Z := V (M′), a set of size at most

ℓ2(|I| − 1) ≤ |I|(log n)12. The conclusion of Lemma 5.8 tells us that for some i ∈ I there is an

(xi, yi)-path P of length at most ℓ whose interior is in V −Z. But this means that V (P )− {xi, yi}
is an edge in H′ that does not intersect Z, a contradiction.

So, the assumptions in Theorem 5.3 are satisfied, showing that there is a matching M of size r in⋃
i∈[r]Hi, whose i-th edge is in Hi. Let Pi be the path corresponding to the i-th edge in M. Then

Pi is an (xi, yi)-path with interior in V , and the interiors of the Pi’s are pairwise vertex-disjoint,

proving the lemma.

6 Proof of Lemma 3.1: separating dense expanders

In this section we prove the first key lemma, Lemma 3.1, which shows that for any graph G, there

is a linear (i.e. of size O(|G|)) path system that separates a subgraph of G, whose complement in G

has polylogarithmic average degree. This will follow quite easily from Lemma 4.1, that decomposes

graphs into expanders, and Corollary 6.4 that shows that robust weak expanders can be separated

by a linear path system.

To prove the latter corollary, given a robust weak expander G, we will take a random partition

{V1, V2, V3} of V (G) and show that, with high probability, G − Vi can be separated using a linear

path system, for i ∈ [3]. Taking the union of these collections of paths, as well as a decomposition

of G−Vi into a linear number of paths, we obtain the desired linear separating paths system for G.

It thus suffices to prove that, with high probability, if V is a random set, obtained by including each

vertex independently with probability 1/3, then G − V has a linear separating path system. This

is done in the following lemma, whose proof proceeds as follows. First, we decompose G − V into

at most n paths P (using Theorem 1.2), and then we show that G− V can be further decomposed

into O(n) matchings M , each of which intersects each path in P in at most one edge, and moreover

each matching satisfies a certain degree condition. Next, we take a random partition {V1, V2} of V ,

taken uniformly at random. We first extend each M through V1 to a path forest F , in such a way
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that any set of leaves of F expands in G, and thus in V . This is exactly the property needed for

an application of Lemma 5.10, so we can use it to connect the leaves of F via paths through V ,

vertex-disjointly. We thus get a path PM that extends M and contains no other edges from G− V ,

and so P ∪ {PM : M ∈ M} is a linear collection of paths separating G− V .

Lemma 6.1. Let 2−9 ≤ ε < 1, s ≥ 211(log n)51, and let n be large. Suppose that G is a weak

(ε, s)-expander, and let V be a random subset of V (G), that includes each vertex independently with

probability 1
3 . Then, with high probability, there is a collection of 211n paths that separates G− V .

Proof. Let {V1, V2} be a partition of V , chosen uniformly at random. We will make the following

assumptions.

(a) if |N(U)| ≥ |U |(log n)2 then |N(U) ∩ V1| ≥ 1
10 |N(U)|, for every set of vertices U ,

(b) the conclusion of Lemma 5.10 holds for V2.

Noting that each vertex is included in Vi with probability 1
6 , independently, a Chernoff bound and

Lemma 5.10 allow us to make these assumptions.

Write G′ := G − V . Let P be a collection of at most n paths that decomposes G′. For an edge

e = xy in G′, let P (e) be the unique path in P that contains e, and define d̄(e) := min{dG(x), dG(y)}.
Notice that, by expansion, δ(G) ≥ s ≥ (log n)51 and so d̄(e) ≥ (log n)51 for every edge e in G.

Claim 6.2. There is a collection M of 210n pairwise edge-disjoint matchings in G′ that covers all

edges in G′ and every M ∈ M satisfies: every path in P intersects at most one edge in M ; and for

every d there are at most d
50 edges e in M with d̄(e) ≤ d.

Proof. Let M be a collection of 210n pairwise edge-disjoint matchings such that every M ∈ M
satisfies the following properties,

� every path in P contains at most one edge from M ,

� for every integer r ≥ 1, there are at most 1
2002

r edges e in M with d̄(e) ∈ [2r−1, 2r),

and M covers a maximum number of edges in G′ under these conditions. We will show that the

matchings in M together cover all edges of G′. Suppose not, and take e to be an edge in G′ such

that e /∈
⋃

M. Let r be the integer for which d̄(e) ∈ [2r−1, 2r).

There are at most n matchings in M containing an edge of P (e), and at most 2n matchings

containing an edge that intersects e. Notice that G has at most 2rn edges touching vertices of

degree at most 2r. In particular, G′ has at most 2rn edges f with d̄(f) ∈ [2r−1, 2r), so the number

of matchings M ∈ M that contain at least 1
2002

r − 1 such edges is at most

2rn
1

2002
r − 1

= 200n+
40000n

2r − 200
≤ 201n,
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using that r ≥ log(d̄(e))−1 ≥ 51 log log n−1 and that n is large. Hence, there existsM ∈ M that has

no edges in P (e) or edges that intersect e, and has at most 1
2002

r − 1 edges f with d̄(f) ∈ [2r−1, 2r).

Replacing M with M ∪ {e}, we reach a contradiction to the maximality of M, showing that M
covers all edges in G′.

It remains to show that there are at most d
50 edges e in M with d̄(e) ≤ d, for every d ≥ 1 and

M ∈ M. To see this, fix M and d, and let r be the integer such that d ∈ [2r−1, 2r). Then, there

are at most 1
200(1 + 2 + . . .+ 2r) ≤ 1

1002
r ≤ d

50 edges e in M with d̄(e) ≤ 2r, as required.

Let M be as in the above claim. For an edge e in G′, denote by M(e) the unique matching in

M containing e. Fix M ∈ M. We will show that there is a path PM that contains E(M) and

its edges which are not in M have at least one end in V = V1 ∪ V2. Write M = {e1, . . . , e|M |},
where d̄(e1) ≤ . . . ≤ d̄(e|M |). We will define a sequence F0, . . . , F|M | of path forests, as follows. Take

F0 := M . Having defined Fi−1, if a vertex v in ei is a leaf in Fi−1 and has a common neighbour u

in V1 with a leaf v′ of another component in Fi−1, add the edges uv, uv′ to Fi−1 (thereby obtaining

a new path forest which has one component fewer). Repeat this with the other vertex in ei, and

denote the resulting graph by Fi. Write F := F|M |, denote the components of F by P1, . . . , Pr, and

let xi, yi be the ends of Pi.

Claim 6.3. Every X ⊆ {x1, . . . , xr} satisfies |N(X)| ≥ 2|X|(log n)50.

Proof. Let ij be such that xj ∈ eij , for j ∈ [r], and suppose that i1 < . . . < ir. We claim that

|N(xj) ∩ (N(xj+1) ∪ . . . ∪N(xr)) ∩ V1| ≤ 2ij , for j ∈ [r]. Indeed, the forest Fij uses at most 2ij

vertices from V1. Because xj remains a leaf in Fij , the vertices xj and xℓ, for ℓ ∈ [j + 1, r], have no

common neighbours in V1 − V (Fij ), showing that xj has at most 2ij neighbours in V1 that are also

neighbours of a vertex in {xj+1, . . . , xr}, as claimed.

We additionally claim that, if v is a leaf of F and a vertex in ei, then |N(v)∩ V1| ≥ 2i+ 2(log n)50.

Recall thatM has at most d
50 edges e with d̄(e) ≤ d, for every d. Since there are at least i edges e inM

with d̄(e) ≤ d̄(ei), it follows that d̄(ei) ≥ 50i. Recalling Assumption (a) and that d̄(ei) ≥ (log n)51,

we find that |N(v) ∩ V1| ≥ 1
10 |N(v)| ≥ 1

10 d̄(ei) ≥ max{5i, (log n)51} ≥ 2i+ 2(log n)50.

Writing X = {xi1 , . . . , xiρ}, where i1 < . . . < iρ, we have

|N(X)| ≥ |N(X) ∩ V1| ≥
∑
j∈[ρ]

(
|N(xij ) ∩ V1| −

∣∣N(xij ) ∩
(
N(xij+1) ∪ . . . ∪N(xiρ)

)
∩ V1

∣∣)
≥
∑
j∈[ρ]

(
2ij + 2(log n)50 − 2ij

)
= ρ · 2(log n)50 = 2|X|(log n)50,

proving the claim.

An analogous argument shows that |N(Y )| ≥ 2|Y |(log n)50 for every Y ⊆ {y1, . . . , yr}. Thus, if

X ⊆ {x1, . . . , xr, y1, . . . , yr}, without loss of generality the set X ′ := X ∩ {x1, . . . , xr} has size at

least 1
2 |X|, and then by the claim |N(X)| ≥ |N(X ′)| ≥ 2|X ′|(log n)50 ≥ |X|(log n)50. Assumption

(b) thus shows that there exist paths Q1, . . . , Qr−1, where Qi has ends yi, xi+1, and the interiors
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of the Qi’s are pairwise vertex-disjoint and contained in V2. Because F was chosen so as not to

contain vertices from V2, the union Q1 ∪ . . .∪Qr−1 ∪F is a path PM that contains M and no other

edges from G′.

Take Q := {PM : M ∈ M}. We claim that P ∪Q separate the edges of G′. Indeed, given edges e, f

in G′, it is easy to see that one of P (e) and PM(e) contains e but not f .

To summarise P ∪ Q is a collection of at most 211n paths that separates the edges e of G′, as

required.

The following easy corollary of Lemma 6.1 shows that weak robust expanders have linear separating

path systems.

Corollary 6.4. Let 2−9 ≤ ε < 1 and s ≥ (log n)51. Suppose that G is a weak (ε, s)-expander. Then

there is a collection P of at most 636n paths that separates the edges in G.

Proof. Note that we may assume that n is large (otherwise take G1 = G and P = ∅). Let {V1, V2, V3}
be a random partition of V (G), chosen uniformly at random. By Lemma 6.1, with high probability,

there is a collection of paths Pi of size at most 211n that separates G[Vi+1 ∪ Vi+2] (indices taken

modulo 3); fix an outcome of V1, V2, V3 that has these properties. Let Qi be a collection of at most

n paths that decomposes G[Vi+1 ∪ Vi+2], for i ∈ [3].

We claim that P := P1 ∪ P2 ∪ P3 ∪ Q1 ∪ Q2 ∪ Q3 separates the edges of G. Indeed, consider two

edges e, f in G, and pick i ∈ [3] so that e ∈ G[Vi+1∪Vi+2] (notice that such i exists but need not be

unique). If f ∈ G[Vi+1 ∪ Vi+2] then there is a path in Pi that contains e but not f , and otherwise

there is a path in Qi that contains e but not f .

To complete the proof it suffices to observe that |P| ≤ 3 · 211n+ 3n ≤ 636n.

Finally, we prove the first key lemma (Lemma 3.1), restated here.

Lemma 3.1. Suppose that G is a graph on n vertices. Then there is a subgraph G1 ⊆ G, with

e(G1) ≤ n(log n)55, and a collection P of at most 1300n paths in G that separates the edges of

G−G1.

Proof of Lemma 3.1. We assume that n is large (otherwise, we can take G1 = G and P = ∅).
Take s = (log n)51, ε = 2−8 and t = 2n

3 . Apply Lemma 4.1 to obtain a collection H of pairwise

edge-disjoint (ε, s)-expanders that covers all but at most 48sn(log n)3 edges of G and satisfies∑
H∈H |H| ≤ 2n. Let G1 be the subgraph of G spanned by edges not covered by H. Then e(G1) ≤

n(log n)55 and the graphs in H are weak ( ε2 , s)-expanders.

Apply Corollary 6.4 (with ε
2 and s) to each H ∈ H to obtain a collection PH of at most 636|H|

paths that separates H. Let QH be a collection of at most |H| paths that decomposes H (which

exists by Theorem 1.2). Take P :=
⋃

H∈H(PH ∪QH).
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We claim that P separates G−G1. To see this, consider two edges e, f in G−G1 and let H ∈ H
be a graph containing e. If f ∈ H then PH has a path containing e but not f , and otherwise QH

has such a path.

To finish, note the following bound.

|P| ≤
∑
H∈H

(|PH |+ |QH |) ≤
∑
H∈H

637|H| ≤ 1300n.

So the graph G1 and the collection of paths P satisfy the requirements of the lemma.

7 Expanding with forbidden sets

As a preparation for the proof of the second key lemma, in this section we prove a variant of Lemma

3.2 from [32], which allows one to expand a set of vertices A while avoiding another set X, provided

that X has a small intersection with each ball around A (in [32] the authors list two other properties

of X that guarantee the expansion of A while avoiding X, but we shall not use them). In both

cases, the conclusion is that the radius-i ball around A in G − X is large. In [32] this was only

shown for specific, fairly large values of i, whereas here we give a general lower bound that can be

applied for any i, as per our needs later on.

Following [32], say that a vertex set A has k-limited contact with a vertex set X in a graph G if∣∣NG(B
i−1
H−X(A)) ∩X

∣∣ ≤ ki for every integer i ≥ 1. The following lemma is similar to Lemma 3.2 in

[32], but tailored to our needs.

Lemma 7.1. For every ε > 0 there exists k0 = k0(ε) such that the following holds for k ≥ k0(ε).

Suppose that G is an n-vertex ε-expander, and let A and X be disjoint subsets of V (G) where

|A| ≥ k3 and A has k-limited contact with X. Then
∣∣Bi

G−X(A)
∣∣ > min{2i1/4 , n/2}, for every integer

i ≥ 1.

Proof. WriteH := G−X andBi := Bi
H(A) for i ≥ 0. Our task is thus to show |Bi| > min{2i1/4 , n/2}

for i ≥ 1.

Claim 7.2. For every integer i ≥ 0, either |Bi| > n/2 or |NH(Bi)| ≥ ε|Bi|
2(log |Bi|)2 .

Proof. We prove the claim by induction on i. Let i ≥ 0 be such that |Bi| ≤ n/2 and suppose that the

statement holds for j with 0 ≤ j < i. (We will prove the induction base and step simultaneously.)

For j ∈ [i], since Bj is the disjoint union of Bj−1 and NH(Bj−1), we have

|Bj | ≥
(
1 +

ε

2(log |Bj−1|)2

)
|Bj−1| ≥

(
1 +

ε

2(log |Bi|)2

)
|Bj−1|,

using that Bj−1 ⊆ Bi. Iterating this, we get

|Bi| ≥
(
1 +

ε

2(log |Bi|)2

)i

|A|. (4)
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(Notice that this inequality holds for i = 0, as B0 = A, since A is assumed to be disjoint of X,

allowing us to treat the induction base and step simultaneously.)

We conclude that |Bi| ≥ max{k3, i3}. Indeed, if i ≤ k this holds because |Bi| ≥ |A| ≥ k3. So

suppose that i > k and |Bi| < i3. Then (4) implies

|Bi| ≥
(
1 +

ε

2(log i3)2

)i

|A| ≥
(
exp

(
ε

4(log i3)2

))i

= exp

(
εi

36(log i)2

)
≥ i3,

using that i is large and thus ε
2(log i3)2

≤ 1 (which follows from k being large and the assumption

i > k). This is a contradiction, proving that |Bi| ≥ max{k3, i3}. Write m := max{k, i}. Then

ε|Bi|
(log |Bi|)2

≥ εm3

(logm)2
≥ 4m2 ≥ 2k(i+ 1), (5)

using that m is large.

Recall that |X ∩NG(Bi)| ≤ k(i+1) (this is what it means for A to have k-limited contact with X)

and notice that NG(Bi)−X ⊆ NH(Bi). Thus,

|NH(Bi)| ≥ |NG(Bi)| − k(i+ 1) ≥ ε|Bi|
(log |Bi|)2

− k(i+ 1) ≥ ε|Bi|
2(log |Bi|)2

,

where the second inequality follows from expansion (using |Bi| ≤ n/2), and the third inequality

follows from (5). This proves the induction hypothesis for i.

Suppose that i ≥ 1 satisfies |Bi| ≤ min{2i1/4 , n/2}. Since |Bi| ≥ |A| ≥ k3, it follows that 2i
1/4 ≥ k3.

In particular, i is large. By Claim 7.2, every j ∈ [i] satisfies

|Bj | = |Bj−1|+ |NH(Bj−1)| ≥
(
1 +

ε

2(log |Bj−1|)2

)
|Bj−1| ≥

(
1 +

ε

2
√
i

)
|Bj−1|,

using that Bj−1 ⊆ Bi and the assumption |Bi| ≤ min{2i1/4 , n/2}. Iterating this, we get

|Bi| ≥
(
1 +

ε

2
√
i

)i

≥ exp

(
εi

4
√
i

)
> 2i

1/4
,

using that i is large, and yielding a contradiction.

8 Proof of Lemma 3.2: separating sparse expanders

In this section we prove the second key lemma, Lemma 3.2. The proof will be split into two parts:

Lemma 8.1, proved in Section 8.1, and Lemma 8.4, proved in Section 8.2. In both parts, we are

presented with an expander G on n vertices and a number d, and we wish to separate edges of G by

O(n + e(G)/d) paths. In the first part, we separate edges that touch large degree vertices, and in
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the second part we consider expanders with small maximum degree and many vertices. Lemma 3.2

itself is proved in Section 8.3.

8.1 Dealing with large degree vertices

The following lemma shows that given an expander G on n vertices and a number d, there is a

collection of O(n+e(G)/d) paths that separate all edges of G except for a remainder with maximum

degree at most d7. Take L1 to be the set of vertices of degree at least d7 and L2 to be the set of

vertices outside of L1 that send at least four edges into L1. We will let the remainder graph be

G−L1. Noting that we can separate the edges of G[L1, V (G)− (L1 ∪L2)] by O(n) single edges, it

suffices to separate the edges in G′ := G[L1] ∪G[L1, L2].

To do so, as usual we first decompose G′ into O(n + e(G)/d) paths P of length at most d. Then,

for each u ∈ L2 we pick a family Au of d(u, L1) paths of length 2 with the central vertex being u

and the other two vertices in L1, such that each edge between u and L1 is covered twice, and each

such 2-path intersects each path in P in at most one edge. Write A =
(⋃

u∈L2
Au

)
∪ E(G[L1]), so

that A is a collection of paths of length at most 2. Then, we find a collection M of O(n+ e(G)/d)

graphs M , which are disjoint unions of at most d paths of length at most 2 from A, such that

P ∪ M separates G′. Now it suffices to show that each M ∈ M can be extended to a path that

avoids using other edges in E :=
⋃

e∈E(M) P (e) (where P (e) is the unique path in P that contains

e). Take F to be a linear forest that extends M , avoids other edges in E, and minimises the number

of components and then edges under these assumptions. We show that F must be a path, using

Lemma 7.1 and that all leaves in F have degree at least d7 in G, and are thus easy to expand.

Lemma 8.1. Let ε > 0 and let d be sufficiently large. Suppose that G is an n-vertex ε-expander.

Then there is a subgraph G1 ⊆ G with maximum degree at most d7 and a collection P of at most

17max{n, e(G)/d} paths in G that separates the edges of G−G1.

Proof. Write m := e(G) and k := max(m/d, n).

Let L1 be the set of vertices in G with degree at least d7 and let L2 be the set of vertices outside

of L1 that have at least four neighbours in L1. Define G1 = G− L1. We will find a collection P of

at most 17max{n, e(G)/d} paths in G that separate the edges of G−G1.

Write H1 := G[L1] ∪ G[L1, L2] and H2 := G[L1, V (G) − (L1 ∪ L2)]. Let P1 be a collection of at

most n + m/d ≤ 2k paths of length at most d that decomposes H1; such a collection exists by

Corollary 1.3. For an edge e in H1, let P (e) be the unique path in P1 that contains e.

For each u ∈ L2, let v1, . . . , vdu , where du := d(u, L1), be an ordering of the neighbours of u in

L1 such that uvi and uvi+1 are not in the same path in P1, for i ∈ [du] (indices taken modulo

du). Notice that such an ordering exists because du ≥ 4 and the paths in P1 are pairwise edge-

disjoint. Define Au := {viuvi+1 : i ∈ [du]} (with indices taken modulo du) for u ∈ L2 and A :=(⋃
u∈L2

Au

)
∪ E(G[L1]), so A is a collection of edges and 2-paths.
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Claim 8.2. There is a collection M of at most 12k graphs which are disjoint unions of at most d

paths of lengths at most 2 from A, such that each path in A is a component in exactly one graph

M ∈ M; and every path in P1 shares at most one edge with any M ∈ M.

Proof. Let M be a collection of 12k graphs that are disjoint unions of at most d paths from A,

such that: each A ∈ A is a component in at most one M ∈ M; every path in P1 shares at most one

edge with any M ∈ M; and a maximum number of paths in A are components in some graph in

M. We claim that every edge and 2-path in A is a component in some M ∈ M. Indeed, suppose

not, and let A ∈ A be an edge or 2-path which is not a component in any M ∈ M.

Notice that |A| ≤ m, so there are at most m/d graphs M ∈ M with d components.

We claim that every vertex v ∈ L1 ∪ L2 is in at most 2n paths in A. Indeed, if v ∈ L1 then there

are at most |L1| edges in A that contain v and at most 2|L2| paths of length 2 in A that contain v,

because each edge in G[L1, L2] is used by exactly two such 2-paths. If v ∈ L2 then v is in at most

2|L1| paths of length 2 in A (and in no edges in A). Either way, there are at most 2|L1|+2|L2| ≤ 2n

paths in A that contain v. As |V (A)| ≤ 3, it follows that A shares a vertex with at most 6n paths

in A. In particular, there are most 6n graphs M ∈ M such that A and M share a vertex.

Notice also that each path in P1 has at most n edges and thus intersects the edges of at most 2n

paths in A. Thus, there are at most 4n graphs M ∈ M for which there is a path P ∈ P1 that shares

an edge with both A and M .

In summary, since m/d + 6n + 4n ≤ 11k < 12k, there is M ∈ M such that M has fewer than d

components, A and M do not share a vertex, and there is no path P ∈ P1 that shares an edge with

A and M . Thus we can replace M by M ∪A, contradicting the maximality of M.

Let M be a collection as guaranteed by the above claim. For a graph M ∈ M, write EM =⋃
e∈E(M)E(P (e)) and XM := V (EM )−V (M) (so EM is the set of edges that appear on paths from

P1 that share edges with M , and XM is the set of vertices on such paths, minus the vertices of M).

Note that |XM | ≤ 2d2 (there are at most 2d edges in M , each of which causes the insertion of at

most d vertices into XM ).

Claim 8.3. There is a path in G that contains M and avoids the edges in EM−E(M), for M ∈ M.

Proof. Fix M ∈ M. For convenience, write E := EM and X := XM . Let Q be a collection of

pairwise vertex-disjoint paths of length at least 2 in G−X with the following properties.

(a) The union of M and the paths in Q is a path forest whose components are paths that alternate

between components ofM and paths inQ, starting and ending with a path inM . In particular,

|Q| ≤ d.

(b) Subject to (a), |Q| is maximal.

(c) Subject to (a) and (b),
∑

Q∈Q ℓ(Q) is minimal.
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Denote the path forest, which is the union of M and paths in Q, by F .

Let R be a component in F , let u be an end of R, and let Xu := (X ∪ V (F ))− {u}. We claim that

the following holds for r ≥ 1. ∣∣NG

(
Br−1

G−Xu
(u)
)
∩ V (F )

∣∣ ≤ (r + 4)d. (6)

Suppose this is not the case. Because |V (M)| ≤ 3d and |Q| ≤ d, there is a path Q ∈ Q such that

∣∣NG

(
Br−1

G−Xu
(u)
)
∩ V (Q◦)

∣∣ > (r + 4)d− 3d

d
≥ r + 1, (7)

where Q◦ is the interior of Q. Let R′ be the component of F that contains Q. Let v be one of the

ends of Q; if R′ = R take v to be the further end of Q from u in R (see Figures 1 and 2). Let w

be the first vertex in Q (starting from v) in NG(B
r−1
G−Xu

(u)) ∩ V (Q◦), and let Q1 be the subpath of

Q that starts at v and ends at w. Take Q2 to be a shortest path in G from u to w whose interior

vertices are not in V (F )∪X. By choice of w we have ℓ(Q2) ≤ r. Finally, let Q′ be the concatenation

of Q1 and Q2 and define Q′ := (Q− {Q}) ∪ {Q′}.

figures/two-paths-eps-converted-to.pdf

Figure 1: The caseR′ ̸= R. The crosses signify the vertices inNG

(
Br−1

G−Xu
(u)
)
∩

V (Q◦), and the blue paths replace R and R′ in the path forest M ∪Q′.

figures/one-path-eps-converted-to.pdf

Figure 2: The case R′ = R. The crosses are as above, and the blue path
replaces R in the path forest M ∪Q′.

Notice that the paths in Q′ are pairwise vertex-disjoint paths of length at least 2 in G − X (in

particular, Q′ was indeed chosen to have length at least 2 and be in G − X). Notice also that

Q′ satisfies (a). Indeed, if R′ = R then by choice of v we have that (R − Q) ∪ Q′ is a path, and

if R′ ̸= R then ((R ∪ R′) − Q) ∪ Q′ is a vertex-disjoint union of two paths. Other components

of F are not affected by the switch from Q to Q′. Clearly, |Q′| = |Q|. Finally, notice that

ℓ(Q′) = ℓ(Q1)+ℓ(Q2) ≤ ℓ(Q1)+r < ℓ(Q1)+ℓ(Q−Q1), where the last inequality holds becauseQ−Q1

is a path with at least r interior vertices, due to (7). This implies that
∑

Q∈Q′ ℓ(Q) <
∑

Q∈Q ℓ(Q),

contradicting (c), and thus proving (6).
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We now conclude that F is a path, namely it has exactly one component. Suppose not, and let R1

and R2 be two components in F . Let uj be an end of Rj , for j ∈ [2]. By (a), both u1 and u2 are

ends of paths in M , and thus have degree at least d7 in G. Let Aj := NG(uj)− (X ∪ V (F )). Then

|Aj | ≥ |NG(uj)| − |X| − |NG(uj) ∩ V (F )| ≥ d7 − 2d2 − 5d ≥ (9d2)3,

using (6) (with r = 1), |X| ≤ 2d2 and that d is large. Also,∣∣∣NG

(
Br−1

G−V (F )−X(Aj)
)
∩
(
V (F ) ∪X

)∣∣∣ ≤ (r + 5)d+ 2d2 + 1 ≤ 9rd2,

using (6) (with r+1), where the 2d2+1 term accounts for X∪{u}. In particular, Aj has 9d
2-limited

contact with V (F ) in G′ (the notion of limited contact was defined at the beginning of Section 7).

Take r = (log n)4. Then, by Lemma 7.1, |Br
G−V (F )−X(Aj)| > n/2 for j ∈ [2]. Hence, there is a path

Q in G − V (F ) −X joining A1 and A2. Let Q′ be the extension of Q by edges from uj to Aj , for

j ∈ [2]. Take Q′ := Q ∪ {Q′}. Then Q′ is a collection of pairwise vertex-disjoint paths of length at

least 2 in G −X that satisfy (a) and |Q′| > |Q|, contradicting (b). This proves that F consists of

a single component.

We claim that F satisfies the requirements of the claim. Clearly, F contains M . Moreover, any edge

in F which is not in E(M) is incident with at least one vertex which is not in XM ∪V (M) = V (EM )

and thus it is not in EM .

For M ∈ M, denote by PM the paths whose existence is guaranteed by Claim 8.3. To prove the

theorem, take P to be the union of P1, P2 and the edges of H2 = G[L1, V (G)−(L1∪L2)] (each edge

in H2 is considered as a separate path in P). Notice that |P| = |P1|+ |P2|+e(H2) ≤ 2k+12k+3n ≤
17k = 17max{n, e(G)/d}.

We claim that P separates all edges in G that touch L1. To see this, consider two distinct edges, e

and f , that touch L1. If e ∈ E(H2) then e itself is a path in P (which obviously does not contain

f). Otherwise, either the path P (e) contains e but not f , or there exists M ∈ M that contains e

but not f and then PM contains e but not f .

Recall that G1 = G − L1. Then G1 has maximum degree at most d7, and the previous paragraph

shows that P separates the edges of G−G1. This proves Lemma 8.1.

8.2 Sparse expanders with small maximum degree

The next lemma shows that given a ‘somewhat robust’ expander G on n vertices with maximum

degree at most d7, where n is large in terms of d, the edges of G can be separated by O(n+ e(G)/d)

paths. The proof is very similar in structure to the proof of Lemma 8.1. We first decompose G into

paths P and find matchings M, such that |P|, |M| = O(n + e(G)/d), the union P ∪M separates

G, the paths in P and matchings in M have size at most d, and for any two edges e, f in the same

matching, the paths P (e) and P (f) are far apart in G (we need n to be large with respect to d to

be able to satisfy the last property).
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Now it remains to show that for each M ∈ M there is a path that contains M and avoids E :=⋃
e∈M P (e) − E(M). As before, we take F to be a path forest that extends M , avoids edges in

E, and minimises the number of components and then edges. We again use Lemma 7.1 to deduce

that F is a path. This time we do so by first showing that small-radius balls around any leaf of F

expand well, using that such balls have few edges of E (by assumption on M) and the moderate

robustness property. We can then expand such balls further similarly to the proof of Lemma 8.1,

using that we now start from sizeable sets.

Lemma 8.4. Let ε > 0, let d be sufficiently large, let n ≥ 2(log d)
7
, and let s ≥ (k0(ε)7.1 + 3)3.

Suppose that G is an n-vertex (ε, s, d)-expander with maximum degree at most d7. Then there is a

collection P of at most 5max{n, e(G)/d} paths in G that separates the edges of G.

Proof. As before, write m := e(G) and k := max{n,m/d}. Let P1 be a collection of at most

n+m/d ≤ 2k paths of length at most d that decompose the edges in G; it exists by Corollary 1.3.

For an edge e denote by P (e) the unique path in P1 that contains e. Write r0 = (log d)5.

Claim 8.5. There is a decomposition M of G of size 3k such that every M ∈ M satisfies: M is a

matching of size at most d; and the paths P (e) and P (f) are a distance at least 2r0 apart for every

distinct e, f ∈ M .

Proof. Let M be a collection of 3k pairwise edge-disjoint matchings that satisfy the conditions of

the claim, and together cover a maximum number of edges in G. We claim that M covers all edges

of G. Suppose not, and let e ∈ E(G)−
⋃
M.

As e(G) = m, there are at most m/d matchings M ∈ M of size d.

We have the following upper bound on the ball of radius 2r0 around P (e).∣∣B2r0
G (P (e))

∣∣ ≤ |P (e)| · (1 + d7 + . . .+ (d7)2r0) ≤ d14r0+2,

using the maximum degree assumption, that |P (e)| ≤ d+ 1, and that d is large. Notice that every

P ∈ P1 intersects the edges of at most d matchings M ∈ M, implying that each edge f is in⋃
h∈M P (h) for at most d matchings M ∈ M. It follows from the maximum degree assumption that

every vertex u is in
⋃

h∈M P (h) for at most d8 matchings M ∈ M. Hence, the sets B2r0
G (P (e)) and⋃

h∈M P (h) share a vertex, for at most d8 · d14r0+2 ≤ d14r0+10 ≤ 2(log d)
7 ≤ n matchings M , where

for the last inequality we used the assumption on n and d. In other words, P (e) is at distance at

least 2r0 from
⋃

h∈M P (h), for all but at most n matchings M ∈ M.

To summarise, since m/d + n < 3k, there is a matching M ∈ M such that |M | < d and P (e) and⋃
h∈M P (h) are a distance at least 2r0 apart. We can thus replace M by M ∪ {e}, a contradiction

to the maximality of M.

Let M be a decomposition of G into matchings, as guaranteed by the above claim. For an edge e,

denote by M(e) the unique matching in M that contains e.
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Claim 8.6. There is a path in G that contains all edges in M and avoids the edges in
⋃

e∈M (P (e)−
{e}), for M ∈ M.

Proof. Fix M ∈ M, and write E :=
⋃

e∈M P (e) and G′ := G−E. Let Q be a collection of pairwise

vertex-disjoint paths in G′ with the following properties.

(a) The union of M with the paths in Q is a path forest whose paths alternate between M and

Q, starting and ending with an edge from M .

(b) Subject to (a), |Q| is maximal.

(c) Subject to (a) and (b),
∑

Q∈Q ℓ(Q) is minimal.

Denote the path forest which is the union of M and Q by F .

Let u be an end of a path in F , let v be the neighbour of u in F (so uv ∈ M), let R be the component

in F that contains u, and write Xu := V (F )− {u}. We claim the following, for r < r0,∣∣∣NG

(
Br−1

G′−Xu
(u)
)
∩ V (F )

∣∣∣ ≤ r + 1. (8)

Suppose this is violated for some r ≤ r0. As edges in M are a distance at least 2r0 apart in G,

the set NG(B
r−1
G′−Xu

(u)) ∩ V (M) is contained in {v}, so it has size at most 1. Hence there is a path

Q ∈ Q such that either v is not an end of Q and NG(B
r−1
G′−Xu

(u)) ∩ V (Q◦) ̸= ∅ or v is an end of Q

and
∣∣NG(B

r−1
G′−Xu

(u)) ∩ V (Q◦)
∣∣ ≥ r + 1.

Suppose that the former holds, and let Q ∈ Q be a path, none of whose ends is v, that satisfies

NG(B
r−1
G′−Xu

(u)) ∩ V (Q◦) ̸= ∅. Let w0 be a vertex in this intersection, let Q0 be a shortest path in

G′ from u to w0 whose interior avoids Xu; so ℓ(Q0) ≤ r < r0. Denote the ends of Q by w1 and

w2, where if Q is in R then w1 is further away from u in R. Let Qi be the subpath of Q from

w0 to wi, for i ∈ [2]. Notice that ℓ(Qi) ≥ r0, because of the assumption that edges in M are a

distance at least 2r0 apart in G; indeed, otherwise the concatenation Q0Qi of Q0 and Qi is a path

of length shorter than 2r0 between two distinct edge in M . Write Q′ := Q− {Q} ∪ {Q0Q1}. It is

easy to check that Q′ is a collection of vertex-disjoint paths in G′ that satisfies (a), |Q′| = |Q|, and∑
Q∈Q′ ℓ(Q) <

∑
Q∈Q ℓ(Q), contradicting (c).

It remains to consider the second case, namely that Q ∈ Q has ends w1 and w2, where w2 = v,

and
∣∣NG(B

r−1
G′−Xu

(u)) ∩ V (Q◦)
∣∣ ≥ r + 1. Let w0 be the vertex in the intersection which is furthest

away from w2 in Q and let Q0 be a shortest path from u to w0 in G′ whose interior avoids Xu; so

ℓ(Q0) ≤ r. Let Qi be the subpath of Q from w0 to wi, for i ∈ [2]. Then ℓ(Q2) ≥ r+1 by assumption

on the intersection size
∣∣NG(B

r−1
G′−Xu

(u) ∩ V (Q◦)
∣∣. Defining Q′ := Q− {Q} ∪ {Q0w0Q1}, we reach

a contradiction as in the previous paragraph. Thus (8) is proved.

We now conclude the following. ∣∣∣Br0
G′−Xu

(u)
∣∣∣ ≥ 2(log d)

2 ≥ d8. (9)
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Write G′′ := G − P (uv). We claim that Br
G′−Xu

(u) = Br
G′′−Xu

(u) for every r ≤ r0. Indeed, this

holds because G′′ = G′ −
⋃

f∈M−{uv} P (f), and P (f) is a distance at least 2r0 away from uv in G

for every f ∈ M − {uv}. In particular, (8) implies∣∣∣NG′′

(
Br−1

G′′−Xu
(u)
)
∩Xu

∣∣∣ ≤ r + 1, (10)

for r < r0. We claim further that G′′ is an ε-expander. To see this, let X ⊆ V (G′′) satisfy

1 ≤ |X| ≤ 2n/3. Let E′′ be the set of edges from P (uv) that touchX. Then |E′′| ≤ min{2|X|, d} and
NG′′(X) = NG−E′′(X). Thus, as G is an (ε, s, d)-expander and s ≥ 2, |NG′′(X)| = |NG−E′′(X)| ≥

ε|X|
(log |X|+1)2

, as required for ε-expansion. Note also that G has minimum degree at least s + 1, by

(ε, s, d)-expansion, implying that G′′ has minimum degree at least s− 1. Write Au := NG′′−Xu(u)∪
{u}. Then (10) implies |Au| ≥ |NG′′(u)| − 2 ≥ s− 3 and

∣∣NG′′(Br−1
G′′−Xu

(Au))∩Xu

∣∣ ≤ r+2 ≤ 3r for

r ≤ r0 − 2. Write X ′
u := Xu ∩ NG′′(Br0−3

G′′−Xu
(u)). Then Au has 3-limited contact with X ′

u. Using

that s is large, Lemma 7.1 shows |Br0−2
G′′−X′

u
(Au)| ≥ 2(r0−2)1/4 ≥ 2(log d)

2 ≥ d8. This proves (9), as

Br0−1
G′′−Xu

(u) = Br0−2
G′′−X′

u
(Au).

Next, we follow the proof of Claim 8.3 quite closely to show that the set Br0
G′−Xu

(u) expands. Define

V :=
⋃

e∈M V (P (e)), Bu := Br0
G′−Xu

(u)−V and Y := V ∪V (F ). Notice that |Bu| ≥ d8−d(d+1) ≥ d7

by (9) and since |V | ≤ d(d+ 1). We claim the following for r ≥ 1.∣∣NG

(
Br−1

G−Y (Bu)
)
∩ V (F )

∣∣ ≤ d(r + r0 + 1). (11)

The proof of this is very similar to that of (6) in Claim 8.3. Suppose this does not hold for some

r ≥ 1. Because |V (M)| ≤ 2d and |Q| ≤ d, there is a path Q ∈ Q such that

∣∣NG(B
r−1
G−Y (Bu)) ∩ V (Q◦)

∣∣ ≥ d(r + r0 + 3)− 2d

d
≥ r + r0 + 1.

Let R′ be the component in F that contains Q. Denote the ends of Q by w1 and w2, where w1

is further from u in R if R′ = R. Let w0 be the vertex in NG(B
r−1
G−Y (Bu)) ∩ V (Q◦) which is

closest to w1 in Q, and let Q0 be a shortest path in G′ from u to w0 whose interior avoids Y ; so

ℓ(Q0) ≤ r + r0. Let Qi be the subpath of Q from w0 to wi, for i ∈ [2]; then ℓ(Q2) ≥ r + r0 + 1.

Taking Q′ := Q− {Q} ∪ {Q0w0Q1} yields the desired contradiction to (c). Thus (11) is proved.

Next, we deduce the following. ∣∣B(logn)4

G−Y (Bu)
∣∣ > n/2. (12)

Notice that (11) implies
∣∣NG(B

r−1
G−Y (Bu))∩Y

∣∣ ≤ d(r+ r0+ d+2) ≤ 3d2r for r ≥ r0 (using that d is

large), i.e. Bu has 3d2-limited contact with Y in G. As |Bu| ≥ d7 ≥ (3d2)3, Lemma 7.1 proves (12).

Finally, we conclude that F consists of a single component; namely, it is a path. Suppose not, and

let u1 and u2 be ends of distinct components in F . By (12), the sets B
(logn)4

G−Y (Bu1) and B
(logn)4

G−Y (Bu2)

intersect, showing that there is a path Q in G′ from u1 to u2 whose interior avoids V (F ). Taking

Q′ := Q ∪ {Q′}, we reach a contradiction to (b). We have thus proved that F is a path. As it

contains M and has no other edges in
⋃

e∈M P (e), it satisfies the requirements of Claim 8.6.
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For M ∈ M, let PM be a path as guaranteed by Claim 8.6. Write P2 := {PM : M ∈ M}, and take

P := P1 ∪ P2. Then |P| ≤ |P1|+ |P2| ≤ 5k. Notice that P separates the edges of G. Indeed, given

e, f ∈ E(G), then one of P (e) and M(e) contains e but not f . Thus Lemma 8.4 is proved.

8.3 Proof of Lemma 3.2

Finally, we put everything together to prove Lemma 3.2, restated here. The proof follows quite

straightforwardly from Lemmas 8.1 and 8.4.

Lemma 3.2. There exists d0 such that the following holds. Suppose that G is a graph on n vertices

with average degree d, where d ≥ d0. Then there is a subgraph G1 ⊆ G, a collection H of subgraphs

of G and a collection P of paths in G with the following properties.

(1) The graphs in H are mutually edge-disjoint; |H| ≤ 2(log d)
7
for every H ∈ H; and

∑
H∈H |H| ≤

4n.

(2) The collection P separates the edges of G−G1 −
⋃

H∈HH, and satisfies |P| ≤ 80n.

(3) The graph G1 has average degree at most (log d)3.

Proof of Lemma 3.2. Let G be a graph on n vertices with average degree d, where d is large. Take

ε := 1/48 and apply Lemma 4.1 with ε, s = 0 and t = 2n/3 (the last choice does not matter as t

does not play a role when s = 0) to obtain a collection H of ε-expanders that decomposes G and

satisfies
∑

H∈H |H| ≤ 2n.

Apply Lemma 8.1 to each H ∈ H, to obtain a subgraph FH ⊆ H and a collection PH of paths in

H such that: FH has maximum degree at most d7; |PH | ≤ 17max{|H|, e(H)/d}; and PH separates

the edges of H−FH . Let P ′
H be collection of at most |H| paths decomposing H−FH (which exists

by Theorem 1.2).

Now, for each H ∈ H, apply Lemma 4.1 to FH with ε, s4.1 = ((k0(ε))7.1 + 3)3 and t4.1 = d,

to obtain a collection FH of pairwise edge-disjoint subgraphs of FH that cover all but at most

48s|FH |(log d+ 1)2 edges of FH and satisfy
∑

F∈FH
|F | ≤ 2|FH |. Denote by EH the set of edges in

H uncovered by FH .

Let F1 be the collection of graphs F ∈
⋃

H∈HFH that satisfy |F | ≥ 2(log d)
7
and let F2 :=

(
⋃

H∈H FH) − F1. Apply Lemma 8.4 to each F ∈ F1 to obtain a collection QF of paths in F

such that |QF | ≤ 5max{|F |, e(F )/d} and QF separates the edges of F .

Take P to be the union of the collections PH ,P ′
H , for H ∈ H, and QF , for F ∈ F1. Define G1 to

be the graph on vertices V (G) and edges
⋃

H∈HEH . We show that the statement of Lemma 3.2

holds (with H3.2 = F2). Notice that the graphs in F2 indeed are pairwise edge-disjoint, because the

graphs in H are pairwise edge-disjoint and so are the graphs in FH for every H ∈ H. Moreover,

|F | ≤ 2(log d)
7
for every F ∈ F2, by choice of F2. Finally,∑

F∈F1∪F2

|F | =
∑
H∈H

∑
F∈FH

|F | ≤
∑
H∈H

2|FH | ≤
∑
H∈H

2|H| ≤ 4n,
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using the choice of H and FH . In particular,
∑

F∈F2
|F | ≤ 4n. Thus (1) is proved.

Next, notice that

|P| ≤
∑
H∈H

(
|PH |+ |P ′

H |
)
+
∑
F∈F1

|QF |

≤
∑
H∈H

18(|H|+ e(H)/d) +
∑
F∈F1

5(|F |+ e(F )/d)

≤ 36n+ 18e(G)/d+ 20n+ 5e(G)/d ≤ 80n.

For the second inequality we used that the graphs in H are pairwise edge-disjoint and similarly for

F1, and for the last inequality we used that G has average degree d.

We claim that P separates the edges of G′ := G − G1 −
⋃

F∈F2
F . Indeed, let e and f be distinct

edges in G′, and let H ∈ H satisfy e ∈ H. If e ∈ H −FH , then if f /∈ H −FH there is a path in P ′
H

that contains e but not f , and otherwise there is such a path in PH . Now suppose e ∈ FH and let

F ∈ FH be a graph that contains e. Then QF has a path that contains e but not f . This proves

(2).

Finally, we have

2e(G1) ≤ 2
∑
H∈H

|EH | ≤
∑
H∈H

96s|FH |(log d+ 1)2 ≤ 1

2

∑
H∈H

|H|(log d)3 ≤ n(log d)3,

using that d is large and s is a constant (it depends only on ε, which itself is a constant). This

completes the proof of (3) and Lemma 3.2.

9 Conclusion

Recall that sep∗(G) is the size of a smallest weakly-separating path system for G, and sep∗(n) is

the maximum of sep∗(G) over all n-vertex graphs G; sep(G) and sep(n) are defined analogously for

strong separation.

In this paper we proved that sep(n) = O(n log⋆ n). This is significant progress from the easy initial

bound of O(n log n), towards a conjecture of, independently, Falgas-Ravry–Kittipassorn–Korándi–

Narayanan and the author [13], and Balogh–Csaba–Martin–Pluhár [4], that sep(n) = O(n).

It is plausible that our methods could be used to fully settle this conjecture. For example, one could

try to prove a statement like the following, by induction on n. Suppose that G is an ε-expander

and let H be a subgraph of G on n vertices. Then the edges of H can be separated using O(n)

paths in G. To accomplish this, it would suffice to find O(n) paths in G that separated all edges of

H touching a set V of Ω(n) vertices in H. An obstruction to achieving this is a graph H as follows:

H has average degree d, but almost all vertices in H have degree much lower than d (say, at most

log log d), and, moreover, there are relatively small sets of low degree vertices in H with few low

degree neighbours.
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In fact, the authors of [13] suggest that, perhaps, sep∗(n) = (1 + o(1))n; it is easy to see that

this bound would be tight by considering complete graphs. If true, this is likely to be very hard

to prove. Indeed, even the restriction to complete graph seems hard. Wickes [42] proved that

sep∗(Kn) ≤ (2116+o(1))n for any integer n, and that sep∗(Kn) ≤ n when n = p or p+1 for some prime

p. It would be nice, and perhaps not completely out of reach, to prove that sep∗(Kn) = (1+o(1))n.

It also makes sense to study sep(Kn).
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