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Abstract 

An elevated resting heart rate (RHR) is associated with an increased risk of cardiovascular 

mortality, but the mechanisms linking RHR to risk are still debated. Genome-wide association 

studies (GWAS) have identified over 350 loci for RHR explaining about 5% trait variance, but 

the effector genes and biological pathways at these loci are mostly unknown. We performed 

a meta-analysis of GWAS for RHR in 403,518 individuals from UK Biobank, including 388,237, 

6,714 and 8,567 individuals of European, African, and South Asian ancestry, respectively, and 

performed annotation-informed fine-mapping in the European GWAS dataset. We discovered 

318 RHR loci, including 23 not previously reported, which were validated in a larger meta-

analysis. Annotation-informed fine mapping in Europeans indicated 442 signals at 307 loci. 

For 20% (90 signals), a single variant accounted for >75% posterior probability of being causal, 

22 of which were annotated as missense. In disease-relevant tissues, 39 signals colocalised 

with cis-eQTLs, 3 with cis-pQTLs, and 75 had promoter interactions with HiC variants. In total, 

262 candidate genes were highlighted, and enrichment analyses indicated cellular 

component, cardiovascular and autonomic nervous system amongst the top pathways. 

Twenty-three genes had additional support from human or mouse disorder and RNA or protein 

differential expression. Druggability analyses revealed potential drug repurposing 

opportunities, highlighting ACHE, CALCRL, MYT1 and TDP1 as potential targets. Our study 

provides support for 23 novel loci for RHR, and we highlight 262 effector genes which, with 

support from functional evidence, biological pathways and druggability analyses, unravel new 

mechanisms underlying RHR for therapeutic strategies. 

 

Keywords (3 to 6): fine mapping, effector gene, resting heart rate, UK Biobank, genome-wide 

association study 
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Introduction 

An elevated resting heart rate (RHR) has been associated with an increased risk of 

cardiovascular mortality and morbidity independent of traditional risk factors1-3, but the exact 

mechanisms linking RHR to risk are still not clear. For example, observational studies have 

reported a U-shaped association between RHR and atrial fibrillation (AF), but mendelian 

randomization studies have found an inverse causal association between both4,5. Several 

potential mechanisms by which RHR may influence cardiovascular risk have been proposed, 

including the effect of RHR on coronary blood flow, cardiac contractility, energy expenditure, 

but the exact mechanisms are not fully understood.  

Reduction of RHR using pharmacological inhibition of the pacemaker current has been 

shown to reduce the number of clinical events6, suggesting that RHR is a modifiable risk factor. 

Genetics contributes to up to 20% of the interindividual variance in RHR5,7 and, at present, 

genome-wide association studies (GWAS) and exome-array wide association studies have 

identified >350 loci for RHR explaining >5% of this variance5,7-11. The actual underlying effector 

genes remain unknown for most of these loci, which limits the understanding of the genetic 

and biological mechanisms of RHR. Consequently, identification of the responsible effector 

genes and biological pathways may reveal the mechanisms underlying RHR and its relation 

to cardiovascular risk, as well as novel opportunities to improve treatment and prevention of 

cardiovascular disease. 

In the present work, we conducted a meta-analysis of RHR GWAS in European, 

African and South Asian ancestry in UK Biobank and an annotation-informed fine-mapping 

analysis to identify causal variants and candidate effector genes. Candidate effector genes 

prioritisation was based on evidence from functional annotation, colocalisation analyses with 

expression and protein quantitative loci (eQTLs and pQTLs) and promoter interactions in 

relevant RHR tissues. We investigated the biological pathways of the prioritised effector genes 

and searched for additional evidence of support from mouse and human phenotypes and 

differential expression. Finally, we assessed the potential of the prioritised effector genes for 
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drug target identification or repurposing opportunities. An overview of the study is shown in 

Figure 1. 

 

Materials and Methods 

UK Biobank 

UK Biobank (UKB) is a prospective study of 502,366 volunteers, comprising relatively 

even numbers of men and women aged 40–69 years old at recruitment (2006-2008), with 

extensive baseline and follow-up clinical, biochemical, genetic and outcome measures. The 

study has approval from the North West Multi-Centre Research Ethics Committee, and all 

participants provided informed consent12. The work was undertaken as part of UKB application 

8256. 

 

Phenotypic data 

Two replicate measurements of resting pulse rate, which is equivalent to RHR, were 

recorded (data field 102) at baseline assessment. After calculating the mean of these two 

measurements, we removed participants with extreme values (< 40 or > 120 bpm) or with a 

diagnosis of cardiovascular disease (with International Code of Disease – tenth revision 

matching those in Supplementary Table 1). We also excluded participants using beta-blockers 

(Supplementary Table 2) given their potential confounding influence on heart rate. After 

exclusions, we applied kmeans clustering to the first and second principal components data13, 

resulting in a total of 388,237 individuals with European ancestry, 6,714 with African ancestry 

and 8,567 with South Asian ancestry. 

 

Genetic QC 

Following QC procedures already carried out centrally by UKB (Supplemental Methods), we 

exclude discordant SNVs and samples with QC failures, gender discordance, low imputation 

quality (INFO score ≤ 0.3) and high heterozygosity/missingness (Hardy-weinberg equilibrium 

test with P < 10-6 and missingness > 0.015). 
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Ancestry-specific single variant RHR association analyses 

Previously, we had performed a GWAS in the 388,237 individuals of European 

ancestry14. In this work, we additionally performed two GWAS separately for individuals with 

African and South Asian ancestry. We used SNPTest15 in the African and South Asian GWAS 

(after removing related individuals (N = 381 and N = 531, respectively). Each GWAS included 

the following covariates: age, age squared, sex, body mass index, the first 10 principal 

components, and a binary indicator variable for UK Biobank versus UK BiLEVE to adjust for 

the different genotyping arrays. We only considered single-nucleotide variants (SNVs) with 

minor allele frequency (MAF) ≥ 1%. A P value threshold of < 5 x 10-8 was used as the genome-

wide significance level. 

 

Meta-Analysis of RHR 

We undertook a one-stage, single-discovery design using an inverse variance-

weighted, fixed effects model using METAL (version released 2011-03-2516) to meta-analyse 

each of the three ancestry GWAS summary statistics. Quality control was performed using the 

EasyQC R package (version 23.817). Genomic control was applied during meta-analysis to 

ancestries in which the inflation factor (λ) was > 1.0. All variants with P < 5 × 10-8 were compiled 

and mapped to individual loci based on genomic distance of >500 kb to each side of another 

variant. If multiple variants fit the selection criteria for a single region, only the variant with the 

smallest P value was considered for follow-up.  

A locus was declared potentially novel if there were no previous studies5,7,10 reporting 

genome-wide significant variants in the 1Mb region. To validate the novelty of loci, we meta-

analysed the summary statistics of the lead SNVs from our meta-analysis RHR with those 

from the International Consortium for Resting Heart Rate (IC_RHR) summary statistics5, using 

METAL. Novelty was declared if the loci were genome-wide significant in the meta-analysis 

(across UK Biobank and IC_RHR), and the direction of effect was concordant. 
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Identification of distinct associations signals for fine-mapping 

We conducted fine-mapping analysis of the GWAS summary statistics from individuals 

with European ancestry. We initially defined loci as mapping 500kb up- and down-stream of 

each lead SNV (at genome-wide significance, P < 5 x 10-8). However, where loci overlapped, 

they were combined as a single locus. We then performed approximate conditional analyses 

using GCTA-COJO18 to detect distinct association signals at each locus, using European 

ancestry haplotypes from the 1000 Genomes Project (Phase 3, October 2014 release)19 as a 

reference for linkage disequilibrium (LD). Within each locus, variants attaining genome-wide 

significance in the joint GCTA-COJO model were selected as index SNVs for distinct 

association signals.  

 

Enrichment of RHR associations for genomic annotations 

We used fGWAS20 to identify genomic annotations from a total of 253 functional and 

regulatory annotations21,22, enriched for RHR association signals (Supplemental Methods). 

We then used an iterative approach to identify a joint model of enriched annotations using a 

forward-selection approach. At each iteration, we added the annotation to the joint fGWAS 

model that maximised the improvement in the penalised likelihood. We continued until no 

additional annotations improved the fit of the joint model (P < 0.00020, Bonferroni correction 

for 253 annotations).    

 

Fine-mapping distinct association signals for RHR  

For each 𝑗th variant at the 𝑖th distinct signal, we first estimated its prior probability of 

causality using an annotation-informed prior model: 

𝛾𝑗 = exp[∑ 𝛽̂𝑘𝑘 𝑧𝑗𝑘], 

where the summation is over the enriched annotations, 𝛽̂𝑘 is the estimated log-fold 

enrichment of the 𝑘th annotation from the final joint fGWAS model, and 𝑧𝑗𝑘 is an indicator 
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variable taking the value 1 if the 𝑗th variant maps to the 𝑘th annotation, and 0 otherwise.  We 

then approximated the Bayes’ factor, 𝛬𝑖𝑗, using the European ancestry summary statistics, as 

previously described23,24 (Supplemental Methods). Finally, we estimated the 𝑗th variant 

posterior probability of causality as 𝜋𝑖𝑗 ∝ 𝛾𝑗𝛬𝑖𝑗. 

Finally, we derived a 99% credible set25 for the 𝑖th distinct association signal by: (i) 

ranking all SNVs according to 𝜋𝑖𝑗; and (ii) including ranked variants until their cumulative 

posterior probability attains or exceeds 99%23,24. The credible set would, then, include the 

minimum number of variants that jointly explained >99% of the posterior probability of driving 

the RHR association under the annotation-informed prior. We defined high-confidence causal 

variants as single variants from the credible sets accounting for more than 75% of the posterior 

probability. 

 

Functional annotation of variants 

We used variant-effect predictor (VEP) analysis26 to annotate the high-confidence 

causal variants from the credible sets, and selected those annotated as missense variants. 

 

Colocalisation with gene expression data 

We integrated genetic fine-mapping data with expression quantitative trait loci (cis-

eQTL) in adrenal gland, artery, heart, nerve and brain tissues from the GTEx Consortium27. 

The tissue selection was informed by tissue enrichment analysis from prior GWAS (artery, 

heart and adrenal gland10) and biological mechanisms known to regulate RHR (nerve, and 

brain). We first did a lookup of significant lead eQTL variants in the 99% credible sets. For 

each signal where we detected overlap, we formally assessed whether the annotation 

informed Bayes’ factor for the credible set variants of the corresponding signal colocalised 

with the eQTL results, as previously described24. We used publicly available eQTL results from 

GTEx version 827 (Supplemental Methods). 
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Long-range chromatin interaction (Hi–C) analyses 

We identified potential target genes of regulatory SNVs using long-range chromatin 

interaction (Hi–C) data from adrenal gland, aorta, left and right ventricles, hippocampus and 

cortex, similar tissues as selected for eQTL analysis. Hi–C data was corrected for genomic 

biases and distance using the Hi–C Pro and Fit-Hi-C pipelines according to Schmitt et al.28. 

We followed a similar procedure as in the eQTL colocalization analysis. We first identified 

signals where potential regulatory SNVs (RegulomeDB score ≤2) where in the 99% credible 

set. Then, we reported the interactors with the SNVs of highest regulatory potential to annotate 

the signals. 

 

Colocalisation with protein expression data 

We additionally integrated genetic fine-mapping data with protein quantitative trait loci 

(cis-pQTL) in plasma29. We performed the same Bayesian statistical procedure as for eQTL 

colocalisation to assess whether those signals for which a 99% credible set variant was the 

lead pQTL variant colocalised with pQTL results. 

 

Prioritisation of candidate effector RHR genes 

A full list of candidate effector genes for RHR was collated from the results of our fine-

mapping pipeline and computational approaches, as done recently24. A gene was indicated 

for a signal if there was support from a coding and high-confidence variant in the gene at the 

locus, or if the gene was indicated from eQTL, pQTL colocalization or Hi-C analyses.  

 

Effector gene pathway analysis 

We used the Gene2Function analysis tool in FUMA (v1.4.0) to perform geneset 

enrichment on the prioritised list of candidate genes, and to identify significantly associated 

Gene Ontology (GO) terms and pathways30. Redundant GO terms were removed using the 
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Reduce and Visualize Gene Ontology (REVIGO) web application31. REVIGO uses a 

hierarchical clustering method to remove highly similar terms, incorporating enrichment P-

values in the selection process. Default settings (dispensability cut off <0.7) were used in this 

analysis.  

 

Additional evidence for effector genes from mouse and human phenotypes and differential 

expression 

We collated additional information for each prioritised candidate gene using data from 

GeneCards32 (https://genealacart.genecards.org). This included the following:  1) a mouse 

model from Mouse Genome Informatics which has a cardiovascular phenotype. 2) A 

cardiovascular or vascular phenotype described for the candidate gene in the Human 

Phenotype Ontology database. 3) Differential RNA expression of the candidate gene in the 

GTEx database in cardiovascular or vascular tissues, only genes with fold changes >4 in a 

tissue were selected. 4)  Differential protein expression of the candidate gene based on 69 

integrated normal proteomics datasets in HIPED (the Human Integrated Protein Expression 

Database). Genes with a fold change value of >6 and protein abundance value of >0.1 PPM 

in an anatomical were selected. 

 

Druggability of prioritised effector genes 

To identify candidate druggable targets, a look-up was done of the prioritised list of 

candidate genes in a previously published database of the druggable genome developed by 

Finan et al33. To identify potential opportunities for drug repurposing, a look-up of each 

candidate gene was performed for Tier 1 to identify any existing drug targets (Supplemental 

Methods). 

 

Results  

RHR GWAS results 
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We identified 318 genome-wide significant loci in the UK Biobank meta-analysis 

(Supplementary Table 3), and there was no evidence of heterogeneity of test statistics 

(Supplementary Figure 1).   

The European-only GWAS discovered 307 genome-wide significant loci 

(Supplementary Table 4), 295 of which were genome-wide significant in the full meta-analysis. 

The African-only GWAS identified one genome-wide significant locus (GJA1-HSF2), which 

had been previously reported in Europeans (Supplementary Table 5). No genome-wide 

significant loci were found in the South Asian-only GWAS. 

 

Novel loci for RHR 

Thirty-six potentially novel loci were identified in the meta-analysis GWAS (9 of these 

were not genome-wide significant in the European GWAS). From these, 23 were genome-

wide significant in the meta-analysis with IC_RHR summary statistics (Table 1, Supplementary 

Table 6, Supplementary Figure 2), and declared as novel.  

 

Fine-mapping and genomic annotation reveals high-confidence causal variants for RHR 

Using European GWAS14 results, through approximate conditional analyses, we 

partitioned RHR associations at the 307 loci into a total of 442 distinct association signals that 

were genome-wide significant (Supplementary Table 7). 

We next mapped SNVs to functional and regulatory annotations. We observed 

significant joint enrichment for RHR associations mapping to protein coding exons and 5’ 

UTRs, enhancers in the heart, and promoters in the right ventricle (Main Figure 2, 

Supplementary Table 8).  

Using these enriched annotations, for each of the 442 distinct signals, we derived 99% 

credible sets of variants. The median 99% credible set size for RHR was 26 variants 

(Supplementary Table 7). For 90 (20.4%) RHR signals, a single SNV accounted for >75% of 

the posterior probability of driving the RHR association under the annotation-informed prior, 

which we defined as “high-confidence” for causality (Main Figure 3, Supplementary Table 9). 
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Missense variants implicate causal candidate genes 

From the 90 high-confidence variants, 22 were missense variants (Main Table 2), of 

which six were annotated as damaging and deleterious by PolyPhen and SIFT, respectively. 

Four variants annotated as probably damaging and deleterious were in APOE (rs7412, 

p.Arg176Cys), LAMB1 (rs80095409, p.Arg795Gly) and CCDC141 (rs17362588, p.Arg935Trp 

and rs10497529, p.Ala141Val), Main Table 2). The APOE variant, rs7412, determines the 

APOE2 isoform, which has been shown in both human and animal studies to be protective 

against Alzheimer Disease34 and increase longevity35. Previous studies suggest that laminins 

have important roles in human heart development and function36,37. In particular for LAMB1, 

zebrafish embryos had mild morphogenetic defects and progressive cardiomegaly, as well as 

a limited heart size during cardiac development38. CCDC141 is a less characterised gene 

involved in axon guidance and cell adhesion and plays a critical role in radial migration and 

centrosomal function. 

Three missense variants were annotated as possibly damaging and deleterious by 

PolyPhen and SIFT, respectively (GAB1 (rs28925904, p.Pro311Leu), ARHGEF40 

(rs12889267, p.Lys293Glu) and FHOD3 (rs61735998, p.Val647Phe), respectively). The 

variants in ARHGEF40 and FHOD3 had a 100% posterior probability of driving the RHR signal. 

GAB1 is an adapter protein that plays a role in intracellular signaling cascades triggered by 

activated receptor-type kinases39. Cardiac GAB1 deletion has been reported to lead to dilated 

cardiomyopathy associated with mitochondrial damage and cardiomyocyte apoptosis40. 

ARHGEF40 has previously been associated with all-cause mortality10, but is less functionally 

characterised and encodes a protein similar to guanosine nucleotide exchange factors for Rho 

GTPases. Finally, FHOD3 is essential for myofibrillogenesis at an early stage of heart 

development41.  

 

Effector genes identified using gene expression in disease relevant tissues 
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Convincing support for colocalization with gene expression in at least one tissue was 

identified for 39 distinct high confidence signals at 37 loci (Supplementary Table 10). There 

was a total of 36 genes with tissue-specific colocalizations, of which 29 (81%) were in heart 

or arterial tissue, and 7 (19%) in brain. There were no specific colocalisations in adrenal gland 

tissues (Supplementary Figure 3). An interesting candidate gene with heart-specific 

colocalisation is PLEC. PLEC mouse models show right bundle branch block and abnormal 

heart morphology, and a missense variant in PLEC has been reported to increase risk of AF42 

in humans. 

There were a few genes with brain-specific colocalisations, including NKX2-5, LEMD2 

and UCK1. NKX2-5 is an eQTL in brain in our data, but its specific function is not well 

understood.  There are mouse and zebrafish models with cardiovascular phenotypes43, and 

previous GWAS have identified variants significantly associated with CAD44 and AF44-46, as 

well as for ECG traits, including the QT interval47 and the T-peak-to-T-end interval48. There 

are LEMD2 mouse and human models that include an arrhythmogenic cardiomyopathy 

phenotype49. Finally, UCK1 phosphorylates uridine and cytidine to uridine monophosphate 

and cytidine monophosphate (GeneCards), but there is no data indicating association with 

RHR or cardiovascular phenotypes. 

 

Identification of effector genes using promotor-centred long-range chromatin interactions 

Promoter interactions and candidate genes were identified for 75 unique high 

confidence signals at 66 loci (Supplementary Table 11). A total of 107 genes were indicated 

in a single tissue, of which 14 (13%) where in left or right ventricle, 83 (78%) in brain, and 10 

(9%) in adrenal gland. From the genes specifically indicated in heart tissue, SCN10A has been 

thoroughly characterised as a RHR modifier10,13,50 and CASZ1 is involved in cardiac 

morphogenesis and development51, and there are abnormal mouse phenotype including 

congenital and structural cardiomyopathies52-54. There are also some genes indicated that do 

not have experimental support for cardiovascular traits, these include CABLES1, BET1 and 

SLC22A17. CABLES1 encodes a protein involved in regulation of the cell cycle through 
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interactions with several cyclin-dependent kinases. BET1 encodes a golgi-associated 

membrane protein that participates in vesicular transport from the endoplasmic reticulum to 

the Golgi complex. SLC22A17 is a cell surface receptor for Lipocalin 2, an antibacterial protein 

that acts by sequestering iron during bacterial infection and has recently been reported to be 

involved in various pathophysiological conditions in various organs and tissues, including the 

heart and brain55. 

Two genes indicated in brain tissue with a low (2a) regulome score include CEP68, 

and CISD3 (Supplementary Table 11). CEP68 has a mouse cardiovascular phenotype 

(increased heart weight), and variants at this locus have previously been associated with 

AF56,57. CISD3 may play a role in regulating electron transport and oxidative phosphorylation58, 

and diseases associated with this gene include Wolfram Syndrome (OMIM number 222300). 

 

Effector genes identified using protein expression 

We identified significant pQTLs for 3 genes, GCKR, ENO3 and MXRA7 

(Supplementary Table 12), which also had support from missense annotation (GCKR) and 

eQTL analyses (ENO3 and MXRA7). GCKR regulates glucokinase by forming an inactive 

complex with this enzyme59,60. Postprandial triglyceridemia is an emerging risk factor for 

cardiovascular disease and GCKR gene polymorphism affects postprandial lipemic response 

in a dietary intervention study61. ENO3 has demonstrated increased differential expression in 

the left ventricle in rats62. Finally, the role MXRA7 (matrix-remodeling-associated protein 7) in 

modulating RHR is less known. 

 

Candidate gene prioritisation 

From the complementary fine mapping and computational approaches (high-

confidence missense, colocalised eQTLs and pQTLs and Hi-C interactions), we prioritised a 

total of 262 candidate genes for RHR that had at least one line of evidence (Main Table 3, 

Supplementary Table 13).  
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Biological pathways 

To gain insights into the biological role of the 262 candidate genes for RHR, we 

performed gene-set enrichment analyses. We found significant enrichment for 41 unique GO 

biological processes (Supplementary Table 14). The most significant biological processes 

included cellular component morphogenesis (P = 2.1 x 10-4), neuron differentiation (P = 4.6 x 

10-4), and neuron development (P = 8.9 x 10-4). 

 

Additional functional evidence 

We observed 74 of the 262 prioritised candidate genes (28.2%) had support from 

mouse model data and 45 (17.2%) from human cardiovascular phenotypes (25 genes had 

support from both mouse and human cardiovascular phenotypes). We also found 11 candidate 

genes (4.2%) had support from RNA or protein differential expression. In total, 23 candidate 

genes (9.2%) had additional functional evidence from mouse or human phenotypes and RNA 

or protein differential expression (Main Table 3). 

 

Drug target identification and repositioning opportunities 

We found 21 of the 262 candidate effector genes were existing targets of small 

molecules or biotherapeutics and clinical drug candidates (Tier 1, Supplementary Table 15). 

Of these, CACNA1D, MYH6 and SCN10A are the top gene targets for a cardiovascular 

disease (sinoatrial node dysfunction, hypertrophic cardiomyopathy and AF, respectively). The 

remaining 18 genes are existing targets of drugs for diseases not involving the cardiovascular 

system, suggesting potential drug repurposing. 

 

Discussion 

In the present work, we used the enhanced statistical power of our multi-ancestry 

meta-analysis in UK Biobank to discover 23 previously unreported loci. In parallel, we 

employed a robust statistical framework for identifying genomic annotations that are most 
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relevant to the biology of RHR and used this information to advance from initial broadly 

associated genomic regions to the prioritisation of 262 candidate effector genes for RHR. 

Whilst preparing this manuscript, Van de Vegte et al. published the largest genome-

wide meta-analysis comprising 100 studies in up to 835,465 individuals5. Their analysis 

revealed 493 independent genetic variants in 352 loci5. Despite their larger sample size, our 

analysis discovered 36 loci, of which 23 validated that were not reported in their work. Potential 

explanations in discordancy of results between studies could be that we meta-analysed 

ancestry specific GWASs in our discovery analysis whereas they conducted single GWASs 

with all ancestries combined, including UK Biobank. Their analysis was also not limited to 

three ancestries, like ours. 

A review of candidate genes for the 23 novel loci highlighted two interesting genes 

implicated in the cardiovascular system, ETV1 and KCNE3. ETV1 is a critical transcription 

factor in determining fast conduction physiology in the heart63,64, as well as atrial remodelling 

associated with atrial arrhythmias65,66. Functional studies have reported that mutations in 

KCNE3 can underlie the development of Brugada syndrome, an inherited syndrome 

associated with a high incidence of sudden cardiac arrest67. We also found relevant genes 

implicated in the nervous system, FAM155A, ZNF804A and HLA-DRB5. FAM155A belongs to 

a large protein complex termed the NALCN channelosome, which is a sodium leak channel 

expressed mainly in the central nervous system that is responsible for the resting Na+ 

permeability that controls neuronal excitability68. ZNF804A affects brain structure and function, 

modulating neurodevelopment and translation69. Finally, the HLA-DRB5 gene was also 

highlighted in a previous study of our team investigating the genetic architecture of two 

phenotypes reflecting the sympathovagal balance, HR response to exercise and recovery13. 

We observed relatively strong support for two loci from individuals of European and 

African ancestry, METTL15, a novel protein necessary for efficient translation in human 

mitochondria70, and KCNE3, described earlier. Support for the SIM1 locus came from 

European and South Asian ancestry samples (Main Table 1). SIM1 is involved in the 

development and function of the paraventricular nucleus of the hypothalamus. 
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Our genetic fine-mapping pipeline prioritised 262 candidate effector genes for RHR for 

future focused functional validation, and for 23 of these genes we found additional functional 

evidence from existing mouse or human phenotypes and RNA or protein differential 

expression data. We highlight two genes from our refined list of 23 genes not previously 

prioritised as candidate genes for RHR; CACNA1D and RBM20. CACNA1D is present in the 

membrane of most excitable cells and mediates calcium influx in response to depolarization. 

Associated diseases include sinoatrial node dysfunction and deafness. RBM20 acts as a 

regulator of mRNA splicing of a subset of genes encoding key structural proteins involved in 

cardiac development, such as TTN, CACNA1C, CAMK2D or PDLIM5/ENH71-80). Mutations in 

this gene have been associated with familial dilated cardiomyopathy81.  

Van de Vegte et al did not perform fine-mapping, but used a scoring system for gene 

prioritisation based on four criteria: proximity, coding, eQTL and DEPICT, highlighting 39 

genes with high levels of support, PHACTR2, ENO3 and SENP2 being their top effector 

genes5. A direct comparison with our results is complicated, because our methodology ranks 

variants based on posterior probability, instead of P-values, and also the definition of signal 

might differ. We found 12 of their 39 genes were amongst the 262 candidate genes prioritised 

by our fine-mapping pipeline, and 5 of these were in our list of 23 genes with additional 

evidence. Moreover, at six genomic regions, the candidate gene prioritised by our pipeline 

was different. Our method also offered more granularity in suggesting candidate genes at loci, 

prioritising additional candidate genes at five genomic regions (Supplemental Table 16).   

Our enrichment analyses indicated cellular component and animal organ 

morphogenesis, neuron differentiation and development and circulatory system differentiation 

and development as top biological pathways of the 262 candidate genes. Twenty-nine of the 

41 significant biological pathways identified using the 262 prioritised candidate genes 

implicate at least one of the 23 candidate genes with additional functional evidence, 

strengthening further our fine-mapping pipeline to prioritise RHR effector genes for 

subsequent functional assessment. Previous studies have reported enrichment of 
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associations in pathways involved in cardiac tissue development, muscle cell differentiation 

and pro-arrhythmic pathways5,9,11. The prominence of nervous system pathways observed in 

our findings, in addition to cardiac, supports the validity of our effector genes as modulators of 

RHR.  

 Druggability analyses highlighted the role of CACNA1D, MYH6 and SCN10A as top 

gene targets for cardiovascular disease, all genes which are well known to play a role in the 

cardiovascular system. We also found four top gene targets for a neurological disease with 

repurposing potential, ACHE, CALCRL, MYT1 (autism spectrum disorder) and TDP1. ACHE 

is a target of drugs for Alzheimers disease including Donepezil and Galantamine, which cause 

bradycardia as a side effect. CALCRL is a target of drugs for migraine disorder. It is a receptor 

for adrenomedullin, together with RAMP282,83. One of the reported mouse phenotypes is 

differences in heart rate of heterozygous CALCRL female and male mice84. MYT1 is a drug 

target for autism spectrum disorder85 and is less characterised, it binds to the promoter regions 

of proteolipid proteins of the central nervous system and plays a role in the developing nervous 

system86,87. Finally, TDP1 is a drug target for spinocerebellar ataxia type 1 with axonal 

neuropathy88 and mouse models have identified abnormal retina vessel phenotypes. 

We performed annotation-informed fine mapping analyses on the European GWAS, 

despite finding more loci in the multi-ancestry meta-analysis. This decision was made to avoid 

the calibration issues of meta-analysis fine-mapping over individual GWAS89. Despite this, we 

are aware that the lack of population diversity in our fine-mapping approach is a limitation. An 

additional weakness is that whilst benefitting from dense genotyping and imputation of 

common variants, this is not exhaustive in capturing all the potential phenotypically associated 

genetic variation within each locus. This will miss the possible impact of rare variants, as well 

as any poorly tagged larger variants (copy number variants, short tandem repeats, inversions, 

etc.). 

In conclusion, we have identified 23 novel genes for RHR, and prioritised 262 

candidate genes using annotation-informed fine mapping. Functional evidence, biological 

pathways and druggability analyses provide support to these genes and unravel mechanisms 
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underlying RHR. Our findings will further investigations to improve the functional 

understanding of the biology underlying RHR and enable novel preventive and therapeutic 

opportunities. 
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Figures 

 

Figure 1. Study Overview and summary of main findings. 

eQTL, expression quantitative locus; GWAS, genome-wide association study; Hi-C, long-

range chromatin interaction; pQTL, protein quantitative locus; RHR, resting heart rate; RNA, 

ribosomal nucleic acid. 
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Figure 2. Results from genomic enrichment annotation for RHR. Estimate and 95% 

confidence interval of the enrichment at the most significant annotations for RHR, calculated 

using functional GWAS. 

UTR, untranslated region; TSS, transcription start site; RHR, resting heart rate. 
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Figure 3. Distinct RHR association signals.  

(a) Summary of distinct association signals for RHR. A single signal at 221 genomic regions 

and at least two at 52. (b) Distribution of the posterior probability of causality of the variants in 

credible sets. RHR, resting heart rate. 
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Tables 

Table 1. Novel Genes. 

 

Table 2. High-confidence missense variants. 

 

Table 3. Summary of candidate effector genes for RHR.  


