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Abstract
Objectives
Neuronal ceroid lipofuscinosis type 2 (CLN2-disease) is an inherited childhood-onset neu-
rodegenerative condition, with classical early features of speech delay, epilepsy, myoclonus,
ataxia, and motor regression. This study aimed to better characterize the spectrum of move-
ment disorders in CLN2-disease in a cohort of children receiving enzyme replacement therapy
(ERT).

Methods
A cohort of 18 children attending a single center for treatment with cerliponase alfa ERT was
systematically assessed using a standardized structured history and a double-scored, video-
recorded examination using the Unified Batten Disease Rating Scale (UBDRS) and Abnormal
Involuntary Movement Scale.

Results
Noncanonical movement disorders are common: while ataxia (89%) and myoclonus (83%)
were near-universal, spasticity and dystonia were experienced by over half (61% each), with
children having a median of 4 distinct movement disorder phenotypes. This progression was
stereotyped with initial ataxia/myoclonus, then hyperkinesia/spasticity, and later hypokinesia.
ERT slows progression of movement disorders, as measured by the UBDRS physical subscale,
with 1.45 points-per-month progression before diagnosis and 0.44 points-per-month while on
treatment (p = 0.019).

Discussion
Movement disorders are a core feature of CLN2-disease and follow a typical pattern of pro-
gression which is slowed by ERT. Identifying and treating movement disorders should become
standard, especially given increased patient survival.
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Introduction
Neuronal ceroid lipofuscinoses (NCL) are a group of inherited lysosomal disorders that typically
cause progressive neurodegeneration in childhood, with the unifying feature of accumulation of
autoflourescent ceroid lipofuscin. CLN2-disease is an NCL caused by biallelic loss-of-function
variants in CLN2/TPP1 leading to reduced synthesis of tripeptidyl peptidase 1 (TPP1).1 After a
period of either normal development or delayed speech, children present age 2–4 years with
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epileptic seizures and ataxia, progressing to loss of ambulation,
dementia, blindness, and early death.2-4 Cerliponase alfa (Bri-
neura, BioMarin) is an enzyme replacement therapy (ERT)
delivered by fortnightly intracerebroventricular infusion that
prolongs life and slows progression in classical CLN2-disease.5

CLN2-disease natural history has been characterized using
functional scales, typically either Hamburg (modified to
CLN2-Disease Rating Scale) orWeill-Cornell, which focus on
seizures, ambulation, language, and visual function.2,4,6 Some
movement disorders are well-recognized: ataxia is an early
hallmark contributing to loss of ambulation; myoclonus is
almost universal representing both epileptic and nonepileptic
movements.2 Other movement disorders such as chorea,
tremor, and dystonia are less well characterized.

In this study, we aimed to systematically characterize the
range of movement disorders in children with CLN2-disease
using cross-sectional standardized clinical assessment and
structured data review of a cohort of children receiving ERT at
a single center.

Methods
Standard Protocol Approvals, Registrations,
and Patient Consents
Children with biallelic pathogenic TPP1 variants and con-
firmed CLN2-disease attending Great Ormond Street Hos-
pital for regular administration of ERT were recruited. This
study was approved by the United Kingdom Research Ethics
Service (Research Ethics Committee: London–Bloomsbury:
13/LO/0168). Families provided written consent for in-
clusion and video recording. The standardized clinical as-
sessments comprised a structured clinical history and review
of clinical records and a video-recorded clinical examination
using the Unified Batten Disease Rating Scale (UBDRS) and
the Abnormal Involuntary Movement Scale (AIMS).7-10

Statistical Analysis
Summary statistics on clinical data were included for 18
children and UBDRS physical subscale (UBDRSp) and AIMS
scores for 15 children. Statistical analysis used R (version
4.3.2).11 Time-to-event analysis was performed on Kaplan-
Meier cumulative incidence curves for each movement phe-
notype using the survminer package12; significance was tested
with log-rank tests and Holm correction where multiple
comparisons were made. UBDRSp score correlation with age
was assessed using the nonparametric Spearman rank; the
contribution to this correlation from age at diagnosis, time to
ERT start, and time on ERT was assessed using multiple
regression in R (see eMethods for full detail).

Data Availability
All anonymous data have been shared in the eMethods; further
patient-level data sharing may be possible by request to the
corresponding author subject to legal and ethical considerations.

Results
Movement Disorders Are Common
This cohort of 18 children treated with ERT included 10 girls
and 8 boys, with a median age of 7 years 1 month, range
5–11.8 years (Table 1). The majority had movement disor-
ders: these included near-universal ataxia (89%) and myoc-
lonus (83%), spasticity (61%) and dystonia (61%) in over
half, and later hypokinesia (44%) (Video 1). Only 2 of 18 had
not experienced additional movement disorders beyond
ataxia and myoclonus with a median of 4 different phenotypes
per child (range 0–7). Stereotypies and bruxism were de-
scribed in 6 of 18 and 3 of 18, respectively (eTable 1).

Cross-sectional examination included indicators of severity
according to the UBDRS or AIMS descriptors, ranging from
0-none to 4-severe. Dystonia was present in 9 of 15 (2 min-
imal, 2 mild, 5 moderate), spasticity in 7 of 15 (worst limb
score: 4 minimal, 1 mild, 2 moderate), chorea in 6 of 15 (1
minimal, 3 mild, 2 severe), and hypokinesia in 7 of 15 (1
minimal, 2 mild, 4 moderate). (eTable 2).

Movement Disorders Progress in a
Typical Pattern
Children with CLN2-disease follow a typical pattern of
progression of their movement disorder. Figure 1A shows a
time-to-event analysis with cumulative probability of de-
veloping the most common phenotypes: median age at
ataxia onset is 4 years, myoclonus 5 years, spasticity 7.5 years,
dystonia 8 years, and hypokinesia 10 years (log-rank test of
differences p = 0.0014). Figure 1B shows phenotype pro-
gression in relation to ages at diagnosis and ERT com-
mencement for each individual.

ERT Slows Worsening of UBDRS Score and
Movement Disorder Progression
UBDRSp scores, which comprises function and movement
disorder severity, increase with age at assessment (r = 0.63, p =
0.012). Multiple regression analysis showed a greater contri-
bution from age at diagnosis (1.45 UBDRSp-points-per-month
before diagnosis, p = 0.003) compared with while receiving
ERT (0.44 UBDRSp-points-per-month on ERT, p = 0.019)
(eMethods). This indicates that progression slows but does not
stop after starting ERT. There was no apparent correlationwith
other variables such as sex or common genotype.

Treatment for Movement Disorders Is Variable
Only half of the cohort had received medications or treat-
ments for movement disorders, despite 9 of 15 having at least
one moderate/severe movement disorder noted on exami-
nation. On average, 2 medications had been trialed per patient
(range 0–4); gabapentin and clonazepam were most com-
monly used (5 and 4 patients, respectively) (Table 1). Parents
reported that gabapentin was generally effective for dystonia
[mean dose 43 mg/kg/d, range 26–60 mg/kg/d], but less
consistent benefit was reported for other medications.
Medication-related worsening of symptoms was not reported,
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Table Summary of Clinical Details and Movement Disorders Present or Previously Reported

ID Sex Age Diagnosis (m)
ERT
start (m)

ERT
duration (m) Walk Talk Epilepsy Dyst. Myoc. Chorea OLD Tremor Ataxia Hypok. Spast. Other Drugs for MD UBDRS AIMS

1 F 8–10 27 47 50 Y Y Y Y Y Y Y N Y N Y N Clonazepam 24 12

2 M 8–10 49 70 52 N N Y Y Y N Y N Y Y Y N Baclofen, botox,
clonazepam

68 8

3 M 8–10 95 101 19 Y Y N Y Y Y Y Y Y N N N Nil 40 11

4 M 5–7 51 52 14 N Y Y Y Y Y Y N Y Y Y Bruxism,
stereotypies

Gabapentin, trihex 53 12

5 F 8–10 55 56 53 N N Y Y Y Y N Y N Y Y Torticollis,
stereotypies

Baclofen, botox, clobazam,
gabapentin

78 3

6 F 5–7 15 21 46 Y Y Y N N N N N N N N N Nil 4 0

7 F 11–13 49 53 89 N N Y Y N Y Y N Y Y Y Bruxism,
stereotypies

Alimemazine, clonazepam,
chloral hydrate, midazolam

59 6

8 M 8–10 50 52 48 Y N Y N Y N N N Y Y Y Bruxism,
stereotypies

Nil 50 3

9 F 5–7 54 55 17 N N Y Y N Y N N Y N Y N Nil 57 3

10 F 5–7 49 52 21 Y Y Y N Y N N Y Y N Y Stereotypies Nil 34 4

11 F 8–10 45 47 83 N N Y Y Y N Y Y Y Y Y Torticollis Gabapentin 61 9

12 F 5–7 46 47 22 N N Y Y Y N N N Y Y N Stereotypies Clobazam 40 0

13 F 5–7 53 54 11 N Y Y N Y Y Y Y Y N Y N Nil 39 7

14 F 8–10 53 55 57 N Y Y Y Y Y Y Y Y N N N Baclofen, diazepam,
gabapentin

43 20

15 M 11–13 47 52 85 N N Y Y Y Y N N Y Y Y N Clonazepam 17 0

16 M 5–7 57 58 7 Y Y Y N Y N N Y Y N N N Nil — —

17 M 5–7 40 51 9 N Y Y N Y N N N Y N N N Nil — —

18 M 5–7 62 63 1 Y Y Y N Y N N Y Y N N N Nil — —

Abbreviations: AIMS = Abnormal InvoluntaryMovement Scale score (possible range from 0 (unaffected) to 24); ERT = enzyme replacement therapy; Dyst. = dystonia; Hypok. = hypokinesia; Myoc. =myoclonus; MD =movement
disorder; OLD = orolingual dyskinesia; Spast. = spasticity; trihex. = trihexyphenidyl; UBDRS = Unified Batten Disease Rating Scale physical subscale score (possible score range from 0 (unaffected) to 112).
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and side effects were rarely reported (drowsiness with gaba-
pentin, n = 2; reduction in central tone with baclofen, n = 1).

Discussion
This cross-sectional assessment of movement disorders in a
cohort of children with CLN2-disease receiving ERT shows
that movement disorders are near-universal, follow a typical
pattern of development, and that ERT appears to slow pro-
gression. This systematic analysis corroborates and expands on
previously described frequent pyramidal signs and infrequent
chorea, tremor, and dystonia in ERT-naive children.2 It is likely
that these movement disorders are part of the natural history of
CLN2-disease, rather than a consequence of treatment, and
predominantly reflect disease progression before starting ERT.
Even when ERT is started, it can take several months to see
improvement in CLN2 scores and biomarkers.13 It is also
possible that ERT is prolonging lifespan, which may alter the
natural history of disease, resulting in a new “ERT-treated
disease phenotype” including a spectrum of movement disor-
ders. Although intracerebroventricular delivery of recombinant
TPP1 in dogs led towidespreadCNSpenetration including key
areas for motor control,14 future data on the biodistribution of
ERT in patients will be informative for understanding which
regions of the brain are effectively targeted.

The progression of movement symptoms from ataxia and
myoclonus (median age 4–5 years) through to both pyramidal

(spasticity) and extra-pyramidal (dystonia) features (age 8
years) and then to hypokinesia (age 10 years), indicates pro-
gressive functional impairment. Early myoclonus may be cor-
tical or subcortical in origin,3,4 but often accompanies the onset
of generalized convulsive seizures. Loss of ambulation may
initially be related to ataxia but also negative myoclonus and
later spasticity and dystonia. This stereotyped progression
bears some similarity to other NCLs and neurometabolic dis-
orders such as juvenile Tay-Sachs disease.15 Whether the ob-
served hypokinesia is parkinsonian remains to be determined,
as other features such as bradykinesia and rigidity are not seen.

Qualitative assessment (Figure 1B) supported by multiple
regression analysis indicates slower progression on ERT,
suggesting that progression ofmovement disorders slows with
treatment, in keeping with the slower overall disease pro-
gression on ERT.

Notably, 3 patients (03, 09, 13) presented atypically with a
movement disorder other than myoclonus or ataxia before ep-
ilepsy: 2 with dystonia and another with tremor. Two (03, 14)
have a predominantly hyperkinetic phenotype, with marked
choreiform and ballistic movements that are treatment-
refractory. With increasing availability of genomic testing, en-
zyme assay, and ERT, CLN2-disease should be considered early
in the diagnostic pathway for childrenwithmovement disorders.

This study is limited in assessment of natural history, as all
participants started ERT at varying disease stages as it became

Figure Movement Disorder Presentation and Phenotypes

(A) Kaplan-Meier cumulative probability curves of developing the commonest movement disorders present in this group against age. This shows the high
prevalence of each phenomenon, progressing over time: ataxia and myoclonus (median onset age 4 and 5 years, respectively), spasticity and dystonia
(median onset age 7.5 and 8 years, respectively), and hypokinesia (median onset age 10 years). Tick marks across each line indicate statistical censoring of
data where individuals had not yet developed the phenotype at their last assessment and so were not contributing to the probability analysis for higher ages.
(B) Individual patient timelines, ordered by decreasing age at diagnosis of CLN2-disease, with the gray bar indicating continued receipt of ERT.
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available. Given that ERT slows disease progression, it is likely
that this study underestimates the burden of movement dis-
orders in untreated disease. In addition, our ERT access
program excluded children with very severe disease, which
might have led to study bias by negative selection.

In conclusion, this study provides an in-depth assessment of
movement disorders associated with CLN2-disease in a co-
hort of children receiving ERT. While ataxia and myoclonus
have long been hallmarks of early CLN2-disease, other
movement disorder phenotypes have received less focus. In
this era of disease-modifying treatment and increased survival,
a more holistic approach to management and treatment can
be informed by this assessment of phenotype progression that
will better maintain quality of life, inclusion, and functional
attainment.
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