

Predictive Modelling of COVID-19 Pandemic

Emmanuel Agunloye and Mohammed A. Usman Department of Chemical and Petroleum Engineering, University of Lagos

15th Unilag Annual Research Conference.

Presentation outline

- Introduction to COVID-19 modelling and research objective
- Modelling approach and model development
- Model validation
- Conclusions

Introduction _ COVID-19 world

• COVID-19 is a global pandemic that has changed our lifestyles: face mask, social distancing and travel restrictions.

Introduction COVID-19 figures and modelling motivation

- The disease began in late COVID-19 in Wuhan China by zoonosis with a couple of confirmed cases.
- Current statistics shows more than 168 million people worldwide confirmed with the disease, about a million deaths.
- In Nigeria, new daily cases are decreasing but more than 166,000 confirmed cases and more than a thousand death.

COVID-19 modelling – motivation and objectives

- With the exponential spread of the disease, we were worried about various measures imposed on the society.
- Modelling can be used as a tool to monitor the trend and the impact of the measures.
- As the disease spreads by interactions between carriers and the rest of the population, we employ a balance equation modelling assuming a closed society.

Objective:

to monitor and predict the impact of health protocols on the time evolution of total confirmed cases of COVID-19.

Modelling approach – balance equation modelling

$$
Acc = (In - Out) + Gen
$$
 (1)

$$
\frac{dP_i(t)}{dt} = r_i(t) \tag{2}
$$

$$
\frac{dP_F}{dt} = k_F P_F P_S - (k_R + k_D) P_F = k_F P_F P_S \qquad (3)
$$

$$
\ln(P_F/P_{F0}) = k_F B t; P_F = P_{F0} e^{(At)}
$$
 (4)

- A determines the spreading rate of COVID-19,
- Its maximum value would correspond to a congested population and the early stage of the pandemic

Key model assumptions:

- 1. A closed society
	- 2. Considering the early part of the pandemic, thus ignoring recovery and death terms.
	- 3. Constant susceptible population.

 P_F : infected population P_F : susceptible population P_F : recovered population P_F : dead population

Modelling – social distancing effect

- As social distancing and other measures are introduced, its value begins to decrease.
- 1. Worst case (A_C) highest value would occur in a congested area such as in a BRT bus:

6 by 6 people occupying 2 by 2 m^2 , that is, 9 persons per m^2 .

2. Minimum social distance (A_S) : 5 persons per 8 $m²$, that is, 0.625 person per $m²$ when compared

 $A_{\rm S} = 0.07 A_{\rm C}$

Modelling – social distancing effect

3. Total lockdown (A_L) – Under an absolute total lockdown situation in Nigeria, where the value of B_S is 0.000218 person per $m²$ as shown is Section 2, Eq. (26) becomes:

$$
A_L = k_F B_S = 2.42 \times 10^{-5} A_C \tag{5}
$$

Thus, the disease spread under a total lockdown is negligible in comparison to the spread in a congested situation.

Modelling results

- COVID-19 data from China in January 2020 were used for parameter estimation and model validation.
- The parameter to be estimated is the exponential constant, A .
- Some of the data were used to estimate A while the remaining data were used for the model validation.

Modelling results – Parameter estimation

- 0.1706 per day or 2.39 per fourteen days
- The latter value compares with the transmission rate of 2.2 reported by Sun et al. (2020).

Fig. 1: Correlation of data to obtain the rate constant

Modelling results – model validation

Fig. 2: Model predictions of reported cases of covid-19 in covid-19 in China.
China China and $\mathsf{In}_{\mathsf{11}}$

- The remaining data of COVID-19 cases reported in China in the period 01 – 11 January 2020 are used to validate the model.
- As shown, the model gives excellent predictions of the reported cases of

Modelling results – model validation

- A good trend
- Early deviation due to emigrants from China.
- Influx of carriers back to China made later predictions reasonable.

Fig. 3: Covid-19 in China in the period of January 2020.

Modelling results – Nigerian case

- The same value of the exponential constant as for China.
- Able to give good predictions o the cases in Nigeria in March 2020.

Fig. 4: Model predictions of reported cases of covid-19 in Nigeria after border closure

Modelling results – Nigerian case after lockdown

• After lockdown and other prevention and control measures in place, the predictions diverge from real data.

Fig. 5: Model predictions of reported cases of covid-19 in Nigeria after lockdown

Comparison of parameter values

- The value of the exponential constant has decreased from 0.1706 to 0.0605, about one-third of the original value.
- Total lockdown would even make the spread negligible as expected.

Fig. 6: Parameter values under lockdown

Conclusions

- This modelling and its parameters can therefore be employed to check the effectiveness of various measures to mitigate the spread of covid-19.
- Since the exponential constant decreases with time as measures are put in place, the model can be improved by replacing A with a function that decreases with time.

References

- NCDC (Nigeria Centre for Disease Control), 2021. COVID-19 Nigeria, <https://covid19.ncdc.gov.ng/>
- Pengfei Sun, P., Xiaosheng Lu, X., Xu, C., Sun, W., Pan, B., 2020. Understanding of COVID-19 based on current evidence, J Med Virol. 2020;92:548-551, doi: 10.1002/jmv.25722.
- WHO, 2020c. WHO Director-General's opening remarks at the media briefing on COVID-19 - 24 February 2020, https://www.who.int/dg/speeches/detail/who-director-general-s[opening-remarks-at-the-media-briefing-on-covid-19---24-february-2020](https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---24-february-2020)

Thank you …