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the model-based design of experiment framework for model discrimination

Emmanuel Agunloye?, Panagiotis Petsagkourakis?, Ricardo Labes®, Thomas W. Chamberlain®,

Frans L. Muller®,

Richard A. Bourne®, and Federico Galvanin®”

aDepartment of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
bSchool of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
*corresponding author: f.galvanin@ucl.ac.uk

2 Introduction and Motivation

1 Hydrogen borrowing is a widely used protocol in the pharmaceutical industry to diversify alcohols

in new drug discovery [1].

1 A hydrogen borrowing cycle can be described using three elementary steps: 1) oxidation; 2)
addition; 3) reduction - various kinetic models can be developed.
J Available experimental data, however, would constrain the model space to a few kinetic models

with estimable parameters [2].

 This work presents a model-based design of experiment (MBDoE) framework for model
discrimination applied through a cloud-based system (SimBot) [3] to select the best model for a

hydrogen borrowing case study.

Methodology

 Fig. 1 shows the cloud-based SimBot software, which depends on physics-based modelling for

model development and employs a sequential parameter estimation technique

J The Python-coded SimBot employs identifiable physics-based models in the model-based design of

experiments (MBDoE) for model discrimination.
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Fig. 1: SimBot kinetic model identification framework for hydrogen borrowing

1 Simbot modelling and optimisation structure

I Differential and algebraic equations (DAEs):

f(x(7),x(7), u(z),6,7) = 0
y(t) = g(x(1)); x(0) = xg
(P — [uT' T, xOT]T; X(T) S x

space @ described by Eq. 3.
JModelling objectives [4]:

N/

Eqg. 1
Eq. 2
Eq. 3
Eq. 1 describes the reactor DAEs model initialised and measured using Eq. 2 within the design

** Parameter estimation for maximizing the log-likelihood function (sequentially performed[5]):

N ~ -1 ,~
Ypp = max(—1) [log(Zn)”S”y + 621 X2, logdetVy + (3 — )TV, 7H(F - y)] Eq. 4
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divergence criterion:

Ymp-BF = I(Ir)lgg{(yl - J’Z)T(Zvy +Vy+V3)
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x(t): state variable, y(t): measured responses, u(t): control variables, 8: parameters, t: time; y: model expectation, Ny: sampling points, N,,: No of
measured responses, V,,: response covariance matrix, V§: model i prediction covariance matrix, Y. objective function, ¢: experimental design vector

** Model-based DoE for model discrimination among two rival models using the Buzzi-Ferraris
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[¢] Results

2 Model calibration and goodness of fit analysis

J The hydrogen borrowing case study involves benzyl
alcohol and benzylamine reacting on Ru catalyst in the

d Six kinetic models describing

LabBot reactor

to form d

I-benzylamine and tri-

benzylamine (at sufficiently long residence times).

increasing number of

chemical steps and species were developed.

3 Table 1 shows the results of the models when tested for y?
and Fisher information model
identifiability (|FIM|), identifying the two simplest models.

model adequacy

Table 1:Results from y% model adequacy test and Fisher
Information analyses for the six candidate kinetic models

Model number | Number of model x“ Xrer  |FIM|
parameters
1 6 26.49 60.48 397.00
2 6 26.48 83.68 39/7.36
3 3 23.01 92.81 0.00
4 10 23.01 101.88 0.00
5 10 23.01 113.15 0.00
6 12 23.02 122.11 0.00

3 MIBDoE for model discrimination in-silico

J Fig. 2A obtained from in-silico model discrimination
studies shows the two identifiable models: Models 1 and
2, which are zeroth and first orders, respectively, with
respect to the catalyst amount, are similar, i.e., their
discrimination probabilities are around 0.50.

. However, a decrease in the catalyst amount (if assumed
an experimental design variable, Eq. 3) would provide a
clear distinction among Model 1 (True Model) and Model
(Figs 2B,C,D), the discrimination
probability surpassing 0.99 at 3% catalyst decrease.
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Fig. 2: Model discrimination experiments (MD) via in-silico
studies between Models 1 and 2 with catalyst decrease of A.
0%, B. 1%, C. 2% and D. 3%

&) Conclusions

J Within the cloud-based Simbot framework, two
promising kinetic models have been identified among
candidates and tested for the hydrogen borrowing.
1 In-silico MBDoE study shows that these models can only
be distinguished by decreasing the catalyst amount.
J Future validation experiments will be needed to confirm
the impact of catalyst decrease on model discrimination
and hence the adequacy of Model 2 in representing
reaction kinetics in the hydrogen borrowing system.
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