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Abstract
Early fusion at a one-tower model such as a mul-
timodal transformer is an effective multimodal
learning paradigm. However, in a multimodal
transformer, the modality fusion is performed
solely through the self-attention function, which
is originally designed for unimodal token se-
quences. To improve the self-attention mecha-
nism for handling multimodal input, a parametric
adapter model, like the Q-former in BLIP-2, is
often used to align tokens from different modali-
ties. Unlike existing methods that use an adapter
model for modality alignment, our paper proposes
an implicit approach based on Wasserstein dis-
tance that aligns tokens from different modalities
in a multimodal transformer without using any
additional parameters. Our empirical study shows
that the implicit modality alignment improves the
effectiveness of the multimodal Transformer in
discriminative tasks, as well as its robustness to in-
put noise and missing modalities. We conduct ex-
periments on four different types of downstream
task datasets, including both 2-modalities and 3-
modalities tasks. In standard testing, testing with
modality noise, and testing with missing modal-
ities, the averaged improvement of our method
compared with the baseline over all datasets are
0.9%, 2.5%, and 2.1% respectively.

1. Introduction
Multimodal machine learning (MML) mimics human per-
ception by integrating multiple modalities such as text, au-
dio, images, video, and sensor data to form a comprehensive
understanding of the world. Many multimodal models have
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been applied to common tasks like multimodal medical di-
agnostics (Hayat et al., 2022), sentiment analysis (Zadeh
et al., 2018) and malicious speech detection (Kiela et al.,
2020).

Aligning heterogeneous data in multimodal learning is cru-
cial since such data often exhibit varied distributions, rep-
resentations, and noise levels. Proper alignment enhances
the uniform representation of these diverse data types, lead-
ing to improved performance and robustness in multimodal
tasks (Ghahremani Boozandani & Wachinger, 2024; Liang
et al., 2024; Kim et al., 2020). To achieve better modality
alignment, various strategies are applied in large-scale mul-
timodal models, such as the Q-Former in BLIP-2 (Li et al.,
2023), contrastive learning in CLIP (Radford et al., 2021)
and Imagebind (Girdhar et al., 2023).

Multimodal models based on a one-tower transformer (mul-
timodal transformer), by its flexibility and simplicity, are
widely used for a variety of multimodal learning tasks (Lee
et al., 2023; Nagrani et al., 2021; Zhi et al., 2024; Ma et al.,
2021). Although the multimodal transformer can handle
multimodal tokens as the input due to the flexibility of self-
attention layers, it lacks a mechanism for modality align-
ment during the fine-tuning process. In other words, it is not
optimal to rely on a pre-trained multimodal transformer to
achieve the modal alignment (Kim et al., 2021; Wang et al.,
2021). Taking ViLT (Kim et al., 2021) as an example, to-
kens from different modalities are concatenated together and
processed by the multimodal transformer. Several learning
tasks, such as image text matching and word patch align-
ment are applied during the pre-training phase to ensure
the modality alignment. However, the alignment process
is not enforced in the fine-tuning stage if the input tokens
are from multimodal sources, which leads to deteriorated
performance in a downstream task.

To address this issue, we propose Wasserstein Modality
Alignment (WMA), an implicit regularization method to
align the Wasserstein distance between two modalities
within a multimodal transformer, as shown in Fig. 1. To
make the computation feasible, we use the popular optimal
transport (OT) distance (Peyré et al., 2019) as the instanti-
ation of Wasserstein distance. We regularize the degree of
modality alignment by adjusting the OT distance between
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(a) Fine-tuning process of multimodal transformer (b) Fine-tuning process of multimodal transformer
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Figure 1. The overview of the proposed method. (a) Multi-label classification of movies by fine-tuning ViLT model on MM-IMDb dataset.
The image data xm1

i and text data xm2
i are firstly processed by the embedding operation eθm1

and eθm2
to get the token sequence ¯xm1

i

and ¯xm2
i , which then are concatenated and processed by the multimodal transformer fθX . Hi

cls in the multimodal transformer is input
into the classifier fθc for predicting the label ŷi. Note that there is no specific module to adjust modality alignment in (a). (b) We propose
the WMA regularization method to search for the optimal modality alignment for the target task. WMA calculates the OT distance
between Hi

m1 and Hi
m2 to represent the alignment degree of two modalities. The target OT distance range is set to search for the

optimal alignment. Our proposed WMA method effectively improves the performance and robustness of the model, as shown in the lower
left corner of (1) and (2) ( the experiment results on MM-IMDb datasets, ’noise test’ refers to the test with noise on text and ’missing test’
refers to the test with missing text. See more details in Table. 1)

different modalities’ feature distributions. Interestingly, our
empirical study demonstrates that directly minimizing the
OT distance between two modalities often leads to inferior
performance, so our WMA aligns two modalities with a
task-dependent modality distance. In the practical sense,
the proposed WMA is a plug-and-play method and does
not introduce any additional training parameters. Our main
contributions are three-fold:

• We propose to perform the modality alignment in the
fine-tuning process of a pre-trained multimodal trans-
former without any additional adapter and design the
Wasserstein Modality Alignment based on the opti-
mal transport distance to achieve lightweight modality
alignment in the feature tokens of the transformer.

• Instead of minimizing the OT distance between any
two modalities, our WMA is a task-dependent modal-
ity alignment method that can handle different require-
ments for the degree of modality alignment.

• We evaluate our proposed WMA on four datasets, in-
cluding 2-modalities and 3-modalities tasks. Our exper-
imental results demonstrate significant improvements
in performance and especially robustness across all
tasks and test cases. The average performance gain on
four datasets in the standard test, test with modality
noise and test with missing modality over the baseline
are 0.9%, 2.5%, and 2.1%.

The paper is organized as follows. Sec. 2 gives an overview
of related research. Sec. 3 introduces the proposed method.

Sec. 4 shows the experiment results and the analysis. Finally,
Sec. 5 summarizes the paper, its limitations, and the future
work.
2. Related Work
Modality alignment in multimodal learning. Almost all
large-scale multimodal models use specific strategies for
modal alignment. Contrastive loss is a popular approach
that promotes related modality alignment by boosting the
similarity of positive sample pairs (Li et al., 2021; Radford
et al., 2021; Girdhar et al., 2023). Flamingo achieves modal-
ity alignment by combining a pretrained vision encoder and
a language model through a series of gated cross-attention
layers, allowing for effective interaction between visual and
textual inputs (Alayrac et al., 2022). In (Li et al., 2023),
BLIP-2 employs a lightweight Querying Transformer to
connect frozen image encoders with large language models
for modality alignment. In contrast, the multimodal trans-
former, i.e., ViLT (Kim et al., 2021) and SimVLM(Wang
et al., 2021) only employ the agent task such as image text
matching and word patch alignment for aligning modality
during pre-training, lacking such approach at fine-tuning
stage. To solve this problem, we propose an implicit regu-
larization method to adjust the alignment of the multimodal
transformer during the fine-tuning process.

Robustness of multimodal learning. Modality noise and
absence are two challenges to the robustness of multimodal
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learning. In ML for healthcare, the patient may be missing
the data such as an X-ray due to economic/timing issues. In
addition, some sensor data may be accompanied by a lot
of noise due to improper wear. A similar situation occurs
in vision-language tasks. For example, some online recom-
mender models are unable to receive images uploaded by
users or receive blurry images with a lot of noise due to net-
work issues. Sijie et al. (Mai et al., 2022) propose the multi-
modal information bottleneck to filter out noisy information
in unimodal representations. Md et al. (Islam & Iqbal, 2022)
apply a cooperative multitask learning-based guided multi-
modal fusion approach to get robust performance on noisy
and misaligned sensor data. For the missing modality prob-
lem, (Ma et al., 2021) reconstructs the missing modalities
using modality priors and Bayesian Meta-Learning during
the inference phase. (Lee et al., 2023) propose the missing-
aware prompts to learn the patterns of complete and incom-
plete samples. In (Zhi et al., 2024), an approach inspired
by in-context learning is proposed to improve the data effi-
ciency for multimodal learning under missing modality and
data scarcity. However, these methods require additional
parameters to enhance the incomplete samples. Differently,
we employ the nonparametric regularization approach to
obtain robust multimodal representation.
3. Proposed Method
We first describe the problem definition and the proposed
method is elaborated on later.

3.1. Problem setting

We consider the multimodal transfer learning problem with a
downstream dataset D containing multimodal input samples.
For notation simplicity, we assume there are two modalities
in the dataset, i.e., D = {xm1

i , xm2
i , yi}Ni=1 where yi is the

label. Note that our framework can handle any number of
modalities in principle and We will describe how to extend
it to 3-modalities tasks later. When we fine-tune a pretrained
multimodal transformer, i.e., ViLT for solving the target task,
some embedding operations are performed firstly performed
on the input data xm1

i and xm2
i :

¯xm1
i = eθm1

(xm1
i ) = [m1cls;m11; · · · ;m1Lm1

], (1)
¯xm2
i = eθm2

(xm2
i ) = [m2cls;m21; · · · ;m2Lm2

], (2)

where eθm1
and eθm2

refer to the embedding operation for
two modalities such as linear projection, position embedding
and modality type embedding (Kim et al., 2021). m1cls and
m2cls are the added classification head token and Lm1 and
Lm2

are the number of embedded tokens. [; ] means the
concatenate operation. Then, the multimodal transformer
fθX inference the output tokens Hi by

Hi = fθX ([ ¯xm1
i ; ¯xm2

i ]) = [Hi
cls;Hi

m1 ;Hi
m2 ], (3)

where Hi
m1 ∈ RLm1

×d and Hi
m2 ∈ RLm2

×d are the pro-
cessed features for two modalities, d is the embedding di-

mension. Hi
cls ∈ R1×d is the final classification head token

which can be input into an added classifier/regressor fθc for
predicting the label and minimizing the loss:

ŷi = fθc(Hi
cls), ℓ

(i)
task = ℓcls(ŷi, yi), (4)

where ℓcls is the task-dependent loss function such as cross-
entropy and ℓ

(i)
task is the loss value for the ith sample.

The issue with the fine-tuning process described above is
that it lacks the approach for aligning xm1

i and xm2
i or their

representation in this multimodal transformer. We will in-
troduce our proposed method for solving this problem in
the next section.

3.2. Improve the robustness of the multimodal
transformer by Wasserstein Modality Alignment

We propose the Wasserstein Modality Alignment (WMA),
an implicit regularization for adjusting the alignment of
different modalities in the multimodal transformer. For
keeping computation efficient, we use the OT distance as
the instantiation of Wasserstein distance and represent the
alignment degree of two modalities by it. Uniquely, WMA
search the task-dependent optimal alignment through two
hyperparameters rather than directly minimizing the OT
distance.

For the feature Hi
m1 and Hi

m2 , the optimal transport prob-
lem is defined as

W (Hm1
i , Hm2

i ) = min
T∈Σ(σ,δ)

⟨C, T ⟩, (5)

where C ∈ RLm1×Lm2 is a manually defined cost matrix,
with each element cpq representing the distance between the
pth token of Hm1

i and the qth token of Hm2
i . The optimal

solution T ⋆ is known as the optimal transport plan. The set
Σ(σ, δ) is defined as:

Σ(σ, δ) =
{
T ∈ RLm1

×Lm2
+ | T1Lm2

= σ, T⊤1Lm1
= δ

}
,

(6)

where σ and δ are the normalized distributions for Hm1
i and

Hm2
i , respectively, which are given by:

σ =
1

Lm1

1Lm1
, δ =

1

Lm2

1Lm2
, (7)

where 1Lm1
and 1Lm2

are vectors of ones with lengths Lm1

and Lm2
, respectively. To keep the computation efficient,

we apply the IPOT algorithm (Xie et al., 2018) to solve this
problem.

The optimal transport cost Di
m1m2 is calculated as

Di
m1,m2

= ⟨C, T ∗⟩. (8)
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We use Di
m1,m2

as the reference for the alignment degree
and manually set the target value of Di

m1,m2
to regular-

ize the model parameters during the fine-tuning phase by
modifying the loss function

ℓ
(i)
task = ℓcls(ŷi, yi) + α(Di

m1,m2
− β

1

bs

bs∑
j=1

Dj
m1,m2

)2,

(9)

where bs refers to the batch size. We use the average
Dm1,m2

of the first batch at model initialization (by ap-
plying the pretrained weight) as a basis and set the search
range by a combination of hyperparameters α and β. By this
strategy, we do not minimize Di

m1,m2
, instead, we search

for the best alignment for the different modalities in the
fine-tuning phase. Fig. 2 shows the search results for
the Hateful Memes dataset under α = 1 with different
value of β. The best overall performance is achieved at
β = 2.0 which demonstrates the superiority of the proposed
WMA over minimizing OT values. For 3-modalities tasks
Hi = [Hi

cls;Hi
m1 ;Hi

m2 ;Hi
m3 ], we can easily modify

Eq. 9 to

ℓ
(i)
task = ℓcls(ŷi, yi) + α((Di

m1,m2
− β

bs

bs∑
j=1

Dj
m1,m2

)2

+(Di
m1,m3

− β

bs

bs∑
j=1

Dj
m1,m3

)2

+(Di
m2,m3

− β

bs

bs∑
j=1

Dj
m2,m3

)2).

(10)
4. Experiment
We first introduce the experimental settings and then present
the experimental results of our methods and baselines on
four datasets, demonstrating the effectiveness of our method.
4.1. Experimental Setting

Datasets. We select both two 2-modalities datasets and two
3-modalities datasets across different downstream tasks to
evaluate our proposed method.

• Hateful Memes (Kiela et al., 2020). This is a bi-
nary classification task with two modalities image and
text. The task is to detect the maliciousness of memes.
The numbers of the samples in the training/val/testing
dataset are 8500, 500 and 1000.

• MM-IMDb (Arevalo et al., 2017). This is a multi-
label (25 labels) classification task with two modalities
image and text. The task is to tag the film. The numbers
of the samples in the training/val/testing dataset are
32278, 5411 and 16120.

• UR-FUNNY (Hasan et al., 2019). This is a binary
classification task with three modalities text, video and
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Figure 2. The performance of ViLT-WMA on Hateful Memes
datasets under α = 1 with different value of β. When β = 0, it
equals to minimize the OT distance. The best overall performance
is gained at β = 2.0. The performance and robustness of the
model are positively correlated with the value of β, indicating that
the alignment of the model should be task-dependent, instead of
minimizing the OT value. See more about the relationship between
performance, robustness and the value of α and β on other datasets
in Table 3, 4, 5, 6 and 2.

audio. The task is to detect humor in talk. The number
of samples in the training/val/testing dataset are 8074,
1034, 1058.

• MOSEI (Zadeh et al., 2018). This is a regression task
with three modalities text, video and audio. The task is
to recognize the degree of sentiment. The number of
samples in the training/val/testing dataset are 16265,
1869, 4643.

Metrics. We set the metrics for each dataset according to
the tasks. For Hateful Memes and UR-FUNNY, we use the
AUROC as evaluation metrics. For MM-IMDb and MOSEI,
we use F1 score and MAE, respectively.
Pretrained Multimodal Transformer. We use the clas-
sical pre-trained multimodal transformer, ViLT-B (Kim
et al., 2021) as the backbone and add additional classi-
fiers/regressors for different downstream tasks.
Input data processing. For vision-language tasks Hateful
Memes and MM-IMDb, we follow the operation in ViLT
(Kim et al., 2021): the text is embedded by Bert and the im-
age is split into patches (same with ViT). For UR-FUNNY
and MOSEI, we use MultiBench (Liang et al., 2021) to get
the embedded feature of three modalities.
Baseline. We use the standard transfer learning approach as
the baseline: adding a classifier/regressor for the target task
and fine-tuning all layers of ViLT with the added layers on
the target dataset.
Hyperparameter settings. We set the batch size for Hate-
ful Memes, MM-IMDb, UR-FUNNY and MOSEI as 128,
64, 256, 256. The learning rate search range is [1e-2, 1e-3,
1e-4, 5e-5, 1e-5]. The learning rate strategy is linear decay
with warm-up. The search range of α is set as [0.1, 0.2,
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Table 1. Results of our proposed method with the baseline on all datasets and test cases. The bold numbers mean the best performance.
The bigger AUROC and F1 and smaller MAE refer to better performance.

test with modality noise test with missing modality
Datasets Metric Model normal text noise image/video noise audio noise text missing image/video missing audio missing

Hateful Memes AUROC
ViLT

ViLT-WMA
0.736
0.741

0.711
0.718

0.571
0.591 -

0.647
0.655

0.650
0.660 -

MM-IMDb F1
ViLT

ViLT-WMA
0.551
0.558

0.486
0.498

0.243
0.255 -

0.378
0.414

0.378
0.384 -

UR-FUNNY AUROC
ViLT

ViLT-WMA
0.704
0.711

0.612
0.634

0.620
0.663

0.680
0.694

0.650
0.664

0.602
0.601

0.703
0.707

MOSEI MAE
ViLT

ViLT-WMA
0.807
0.801

0.814
0.813

0.817
0.814

0.807
0.802

0.806
0.800

0.824
0.822

0.823
0.818

Table 2. Results of our proposed method with minimizing OT distance on all datasets and test cases. The bold numbers mean the best
performance. The bigger AUROC and F1 and smaller MAE refer to better performance.

test with modality noise test with missing modality
Datasets Metric Regularzation normal text noise image/video noise audio noise text missing image/video missing audio missing

Hateful Memes AUROC
minimize OT

WMA
0.724
0.741

0.709
0.718

0.546
0.591 -

0.652
0.655

0.650
0.660 -

MM-IMDb F1
minimize OT

WMA
0.550
0.558

0.487
0.498

0.270
0.255 -

0.379
0.414

0.381
0.384 -

UR-FUNNY AUROC
minimize OT

WMA
0.707
0.711

0.564
0.634

0.667
0.663

0.666
0.694

0.642
0.664

0.597
0.601

0.695
0.707

MOSEI MAE
minimize OT

WMA
0.806
0.801

0.818
0.813

0.818
0.814

0.807
0.802

0.805
0.800

0.821
0.822

0.821
0.818

1.0, 5.0]. The search range of β is [0.1, 0,2, 0.4, 0.6, 0.8,
1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 4.0, 6.0, 10.0]. For some of the
best results obtained at the boundary values, we slightly
expand the values of α and β for further searches. Early
stopping with patience 5 is applied for selecting the weight.
Experiments are running on the Tesla V100 GPU.
Robustness test setting. We test the robustness of the model
in two ways: test with modality noise and test with missing
modality. When simulating noise in a particular modality,
we add uniform noise of amplitude 3 to the embedding
feature. For simulating a missing modality, we randomly
remove 50% of the samples for that modality by setting the
embedding features all to 0.

4.2. Main Results

Table 1 presents the quantitative results of our proposed
method ViLT-WMA and the baseline ViLT across all the
datasets and test cases. From the table 1, we find that our
proposed method significantly improved over baseline in
almost all datasets and test scenarios. Under standard test,
the ViLT-WMA enhance the score of four datasets at 0.7%,
1.3%, 1.0%, 0.7%. Under test with modality noise, the ViLT-
WMA enhances the score of four datasets at 2.1%, 3.3%,
4.1%, 0.4%. For test with missing modality, the the score
is increased for four datasets at 1.4%, 5.6%, 0.9%, 0.5%.
These results demonstrate that our proposed WMA method
can help the multimodal transformer to align different modes
efficiently, which benefits both performance and robustness.

We also report all the search results under various combina-
tions of α and β in Table 3, 4, 5, 6. From Table 3, 4, 5, 6 we
can make the following summary:

• The modality alignment can be effectively adjusted
by using our proposed WMA method. The obvious
performance improvements can be achieved in almost
half of the settings.

• Different tasks require different degrees of modality
alignment. For example, Table 4 shows better per-
formance and robustness at smaller target OT values
for MM-IMDb dataset and the opposite trend is ob-
served from Table 3 for Hateful Memes datasets. Our
proposed method can achieve task-dependent optimal
alignment.

4.3. Ablation study

We compare minimizing the OT distance with our proposed
WMA method. We simulate this strategy by setting α to 1
and β to 0. The comparison of this method with our pro-
posed method is shown in Table 2. Table 2 indicates that
our proposed WMA outperforms this strategy in most of
the test cases. We assume that different tasks require dif-
ferent levels of modality heterogeneity and alignment, and
over-alignment could cause a loss of modality heterogeneity
which might be important to the model performance and
robustness.

5. Conclusion
This paper addresses a pivotal challenge in multimodal trans-
formers: the absence of a modality alignment approach
during the fine-tuning phase. We introduce a Wasserstein
distance-based regularization method to adjust the modal-
ity alignment degree. The proposed method does not re-
quire training more parameters and can be easily integrated
into the multimodal transformer. The experimental results

5



Title Suppressed Due to Excessive Size

demonstrate significant improvements on performance and
especially robustness on both 2-modalities and 3-modalities
tasks. The average improvements on four datasets in the
standard test, test with modality noise and test with missing
modality are 0.9%, 2.5%, and 2.1% respectively. Mean-
while, our experimental results show that modality align-
ment needs to be task-dependent, rather than forced align-
ment, i.e., minimizing the OT distance between modalities,
which provides valuable insights for related work. Our fu-
ture work will focus on more theoretical analyses of our
proposed method.
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A. More experimental results
We report all the search results under various combination of α and β for all datasets in Table 3, 4, 5 and 6.

Table 3. Results of different α and β on Hateful Memes dataset. Bold indicates better or equal performance than baseline, and red font is
the weight we select.

test case β = 0.1 β = 0.2 β = 0.4 β = 0.6 β = 0.8 β = 1 β = 1.2 β = 1.4 β = 1.6 β = 1.8 β = 2 β = 4 β = 6 β = 10

α = 5

normal 0.721 0.727 0.733 0.732 0.734 0.738 0.733 0.735 0.721 0.741 0.737 0.731 0.714 0.728
image noise 0.538 0.548 0.547 0.545 0.550 0.566 0.565 0.556 0.551 0.540 0.565 0.592 0.543 0.549
text noise 0.708 0.710 0.706 0.705 0.713 0.714 0.717 0.716 0.708 0.723 0.718 0.712 0.701 0.698

image missing 0.626 0.641 0.652 0.659 0.651 0.663 0.644 0.643 0.634 0.652 0.654 0.635 0.632 0.647
text missing 0.638 0.660 0.656 0.664 0.672 0.657 0.671 0.641 0.633 0.655 0.655 0.674 0.641 0.650

α = 1.0

normal 0.730 0.729 0.729 0.732 0.730 0.730 0.735 0.736 0.740 0.740 0.741 0.725 0.731 0.730
image noise 0.540 0.543 0.558 0.539 0.548 0.566 0.557 0.572 0.580 0.563 0.591 0.548 0.593 0.574
text noise 0.711 0.708 0.709 0.710 0.713 0.717 0.711 0.718 0.709 0.723 0.718 0.708 0.709 0.706

image missing 0.657 0.653 0.653 0.659 0.653 0.672 0.654 0.651 0.660 0.656 0.660 0.633 0.655 0.646
text missing 0.655 0.653 0.662 0.655 0.653 0.655 0.654 0.635 0.659 0.662 0.655 0.644 0.649 0.652

α = 0.2

normal 0.731 0.732 0.731 0.738 0.735 0.736 0.732 0.736 0.740 0.735 0.728 0.717 0.740 0.721
image noise 0.545 0.540 0.537 0.544 0.568 0.548 0.549 0.573 0.552 0.563 0.547 0.552 0.548 0.559
text noise 0.710 0.708 0.710 0.713 0.720 0.711 0.718 0.717 0.714 0.721 0.706 0.704 0.723 0.705

image missing 0.655 0.648 0.652 0.656 0.648 0.658 0.660 0.651 0.659 0.656 0.645 0.641 0.655 0.656
text missing 0.661 0.653 0.655 0.661 0.654 0.651 0.654 0.649 0.651 0.643 0.650 0.635 0.654 0.642

α = 0.1

normal 0.728 0.730 0.735 0.726 0.739 0.730 0.728 0.725 0.724 0.733 0.721 0.732 0.728 0.714
image noise 0.539 0.551 0.554 0.563 0.548 0.546 0.538 0.570 0.550 0.555 0.567 0.579 0.543 0.575
text noise 0.705 0.708 0.707 0.703 0.714 0.711 0.707 0.706 0.704 0.710 0.701 0.719 0.717 0.695

image missing 0.652 0.655 0.660 0.645 0.656 0.661 0.645 0.643 0.643 0.649 0.640 0.646 0.651 0.639
text missing 0.647 0.652 0.659 0.643 0.658 0.639 0.645 0.655 0.645 0.651 0.648 0.658 0.652 0.639
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Table 4. Results of different α and β on MM-IMDb dataset. Bold indicates better or equal performance than baseline, and red font is the
weight we select.

test case β = 0.1 β = 0.2 β = 0.4 β = 0.6 β = 0.8 β = 1 β = 1.2 β = 1.4 β = 1.6 β = 1.8 β = 2 β = 4 β = 6 β = 10

α = 8

normal 0.55 0.55 0.544 - - - - - - - - - - -
image noise 0.277 0.274 0.24 - - - - - - - - - - -
text noise 0.475 0.477 0.497 - - - - - - - - - - -

image missing 0.383 0.384 0.366 - - - - - - - - - - -
text missing 0.409 0.407 0.391 - - - - - - - - - - -

a=6

normal 0.55 0.558 0.552 - - - - - - - - - - -
image noise 0.283 0.255 0.271 - - - - - - - - - - -
text noise 0.473 0.498 0.485 - - - - - - - - - - -

image missing 0.384 0.384 0.382 - - - - - - - - - - -
text missing 0.410 0.414 0.385 - - - - - - - - - - -

α = 5

normal 0.553 0.555 0.551 0.55 0.543 0.55 0.546 0.541 0.545 0.547 0.551 0.55 0.538 0.555
image noise 0.284 0.283 0.256 0.231 0.252 0.275 0.264 0.277 0.278 0.277 0.282 0.261 0.234 0.265
text noise 0.48 0.496 0.479 0.494 0.467 0.481 0.475 0.481 0.477 0.479 0.483 0.495 0.474 0.502

image missing 0.388 0.39 0.378 0.37 0.368 0.372 0.368 0.367 0.363 0.363 0.371 0.364 0.369 0.378
text missing 0.408 0.396 0.374 0.385 0.405 0.401 0.39 0.396 0.394 0.377 0.387 0.384 0.351 0.362

α = 1.0

normal 0.552 0.551 0.553 0.549 0.549 0.546 0.549 0.535 0.548 0.542 0.548 0.55 0.549 0.551
image noise 0.245 0.255 0.255 0.254 0.256 0.267 0.253 0.254 0.242 0.276 0.276 0.271 0.249 0.262
text noise 0.487 0.487 0.486 0.483 0.475 0.483 0.478 0.457 0.481 0.494 0.484 0.496 0.482 0.484

image missing 0.376 0.381 0.376 0.376 0.378 0.367 0.373 0.356 0.365 0.356 0.367 0.365 0.369 0.371
text missing 0.384 0.404 0.379 0.394 0.379 0.394 0.37 0.376 0.416 0.387 0.372 0.38 0.378 0.379

α = 0.2

normal 0.55 0.549 0.55 0.55 0.548 0.554 0.549 0.55 0.544 0.541 0.549 0.545 0.554 0.55
image noise 0.248 0.245 0.267 0.252 0.269 0.241 0.261 0.245 0.239 0.253 0.24 0.26 0.242 0.285
text noise 0.487 0.484 0.478 0.485 0.479 0.489 0.482 0.488 0.478 0.476 0.485 0.494 0.498 0.489

image missing 0.377 0.379 0.378 0.372 0.376 0.374 0.37 0.371 0.364 0.363 0.368 0.359 0.368 0.37
text missing 0.369 0.391 0.39 0.369 0.378 0.421 0.377 0.403 0.396 0.357 0.398 0.361 0.394 0.381

α = 0.1

normal 0.551 0.552 0.556 0.552 0.553 0.55 0.55 0.549 0.551 0.551 0.549 0.547 0.549 0.546
image noise 0.263 0.258 0.257 0.266 0.269 0.286 0.241 0.259 0.236 0.249 0.244 0.272 0.262 0.235
text noise 0.49 0.477 0.488 0.488 0.486 0.477 0.482 0.478 0.484 0.485 0.476 0.495 0.498 0.473

image missing 0.379 0.376 0.38 0.374 0.379 0.38 0.375 0.377 0.37 0.371 0.369 0.365 0.366 0.367
text missing 0.396 0.374 0.383 0.404 0.376 0.381 0.393 0.370 0.389 0.392 0.400 0.374 0.395 0.356
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Table 5. Results of different α and β on UR-FUNNY dataset. Bold indicates better or equal performance than baseline, and red font is the
weight we select.

β = 0.1 β = 0.2 β = 0.4 β = 0.6 β = 0.8 β = 1 β = 1.2 β = 1.4 β = 1.6 β = 1.8 β = 2 β = 4 β = 6 β = 10

α = 8

normal 0.707 0.702 0.696 0.703 0.694 0.702 0.708 0.706 0.707 0.706 0.71 0.712 0.711 0.699
video noise 0.591 0.596 0.586 0.619 0.578 0.646 0.63 0.641 0.561 0.583 0.624 0.588 0.581 0.589
text noise 0.582 0.582 0.589 0.614 0.6 0.611 0.636 0.627 0.584 0.602 0.614 0.581 0.569 0.577

audio noise 0.693 0.688 0.683 0.682 0.676 0.68 0.703 0.697 0.693 0.693 0.692 0.676 0.674 0.638
video missing 0.578 0.579 0.582 0.605 0.587 0.627 0.585 0.599 0.57 0.589 0.587 0.589 0.586 0.585
text missing 0.641 0.64 0.636 0.642 0.647 0.658 0.634 0.661 0.613 0.63 0.656 0.628 0.611 0.616

audio missing 0.706 0.702 0.696 0.7 0.692 0.699 0.709 0.705 0.706 0.705 0.708 0.709 0.706 0.685

α = 6

normal 0.701 0.699 0.701 0.701 0.705 0.706 0.706 0.707 0.711 0.708 0.707 0.714 0.703 0.705
video noise 0.601 0.588 0.598 0.623 0.591 0.665 0.666 0.674 0.622 0.607 0.604 0.601 0.554 0.596
text noise 0.588 0.584 0.57 0.625 0.59 0.636 0.612 0.617 0.615 0.604 0.615 0.573 0.595 0.572

audio noise 0.683 0.688 0.677 0.678 0.679 0.693 0.689 0.678 0.702 0.694 0.686 0.638 0.675 0.652
video missing 0.582 0.582 0.597 0.615 0.592 0.614 0.617 0.613 0.589 0.589 0.596 0.593 0.57 0.582
text missing 0.638 0.644 0.65 0.635 0.647 0.663 0.661 0.666 0.65 0.624 0.662 0.664 0.64 0.603

audio missing 0.701 0.698 0.7 0.697 0.703 0.703 0.703 0.704 0.709 0.708 0.705 0.698 0.701 0.689

α = 5

normal 0.699 0.699 0.699 0.711 0.698 0.704 0.706 0.707 0.711 0.709 0.71 0.714 0.703 0.705
video noise 0.592 0.587 0.601 0.663 0.592 0.64 0.641 0.612 0.559 0.59 0.599 0.617 0.54 0.607
text noise 0.585 0.589 0.596 0.634 0.592 0.621 0.611 0.613 0.611 0.602 0.606 0.583 0.563 0.563

audio noise 0.689 0.676 0.677 0.694 0.675 0.683 0.687 0.696 0.703 0.697 0.695 0.641 0.674 0.653
video missing 0.584 0.588 0.594 0.601 0.592 0.614 0.609 0.581 0.569 0.579 0.587 0.602 0.577 0.585
text missing 0.641 0.635 0.656 0.664 0.643 0.658 0.652 0.655 0.646 0.634 0.634 0.642 0.598 0.599

audio missing 0.699 0.699 0.699 0.707 0.695 0.7 0.705 0.706 0.709 0.707 0.708 0.708 0.702 0.693

α = 1.0

normal 0.702 0.7 0.699 0.698 0.696 0.703 0.702 0.608 0.699 0.703 0.706 0.708 0.704 0.702
video noise 0.642 0.637 0.619 0.604 0.654 0.633 0.628 0.553 0.595 0.602 0.645 0.53 0.593 0.515
text noise 0.562 0.579 0.631 0.593 0.614 0.604 0.61 0.584 0.616 0.631 0.636 0.59 0.582 0.557

audio noise 0.672 0.678 0.691 0.677 0.691 0.68 0.681 0.589 0.693 0.694 0.691 0.682 0.627 0.655
video missing 0.585 0.598 0.598 0.589 0.606 0.611 0.613 0.537 0.581 0.568 0.583 0.593 0.593 0.577
text missing 0.657 0.659 0.657 0.641 0.656 0.648 0.647 0.585 0.636 0.62 0.606 0.646 0.659 0.642

audio missing 0.695 0.699 0.699 0.695 0.695 0.699 0.701 0.592 0.7 0.701 0.698 0.704 0.678 0.693

α = 0.2

normal 0.703 0.698 0.7 0.698 0.701 0.703 0.699 0.703 0.707 0.706 0.587 0.708 0.708 0.7
video noise 0.61 0.611 0.616 0.62 0.612 0.665 0.601 0.64 0.625 0.64 0.53 0.659 0.659 0.574
text noise 0.612 0.613 0.612 0.613 0.607 0.593 0.611 0.61 0.619 0.617 0.515 0.566 0.604 0.578

audio noise 0.682 0.681 0.677 0.681 0.687 0.687 0.684 0.678 0.686 0.687 0.53 0.68 0.694 0.682
video missing 0.6 0.602 0.61 0.589 0.585 0.613 0.579 0.621 0.606 0.612 0.533 0.625 0.609 0.583
text missing 0.647 0.63 0.619 0.643 0.652 0.651 0.647 0.653 0.652 0.657 0.585 0.631 0.662 0.626

audio missing 0.701 0.698 0.698 0.695 0.701 0.702 0.694 0.700 0.706 0.706 0.572 0.702 0.708 0.690

α = 0.1

normal 0.694 0.695 0.698 0.693 0.7 0.703 0.702 0.702 0.704 0.703 0.697 0.698 0.593 0.709
video noise 0.602 0.592 0.587 0.634 0.588 0.642 0.642 0.619 0.633 0.637 0.646 0.615 0.513 0.688
text noise 0.605 0.597 0.598 0.592 0.604 0.565 0.628 0.602 0.606 0.6 0.613 0.607 0.535 0.582

audio noise 0.680 0.682 0.679 0.667 0.674 0.644 0.689 0.679 0.689 0.678 0.677 0.678 0.53 0.669
video missing 0.589 0.599 0.576 0.606 0.581 0.604 0.598 0.596 0.599 0.621 0.625 0.619 0.536 0.606
text missing 0.62 0.628 0.647 0.638 0.639 0.635 0.651 0.647 0.643 0.647 0.655 0.637 0.585 0.672

audio missing 0.693 0.695 0.698 0.692 0.697 0.693 0.701 0.702 0.703 0.699 0.693 0.696 0.584 0.696
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Table 6. Results of different α and β on MOSEI dataset. Bold indicates better or equal performance than baseline, and red font is the
weight we select.

β = 0.1 β = 0.2 β = 0.4 β = 0.6 β = 0.8 β = 1 β = 1.2 β = 1.4 β = 1.6 β = 1.8 β = 2 β = 4 β = 6 β = 10

α = 5

normal 0.808 0.8 0.806 0.807 0.81 0.807 0.805 0.819 0.812 0.808 0.811 0.811 0.811 0.809
video noise 0.825 0.817 0.814 0.817 0.819 0.819 0.821 0.824 0.822 0.822 0.823 0.816 0.816 0.831
text noise 0.818 0.819 0.823 0.82 0.819 0.817 0.819 0.824 0.823 0.818 0.826 0.825 0.832 0.832

audio noise 0.808 0.8 0.806 0.807 0.81 0.808 0.806 0.818 0.812 0.808 0.811 0.811 0.811 0.809
video missing 0.809 0.804 0.805 0.807 0.81 0.805 0.806 0.82 0.813 0.812 0.81 0.81 0.812 0.817
text missing 0.819 0.815 0.823 0.823 0.825 0.821 0.822 0.824 0.824 0.825 0.825 0.827 0.829 0.826

audio missing 0.824 0.824 0.822 0.823 0.823 0.823 0.821 0.83 0.824 0.823 0.824 0.824 0.824 0.823

α = 1.0

normal 0.816 0.809 0.806 0.817 0.805 0.805 0.801 0.804 0.814 0.804 0.805 0.81 0.806 0.809
video noise 0.823 0.818 0.817 0.824 0.821 0.817 0.814 0.82 0.822 0.818 0.818 0.816 0.827 0.848
text noise 0.823 0.821 0.817 0.824 0.817 0.815 0.813 0.819 0.823 0.818 0.819 0.821 0.815 0.823

audio noise 0.816 0.809 0.806 0.817 0.806 0.805 0.802 0.804 0.814 0.804 0.805 0.809 0.806 0.809
video missing 0.817 0.809 0.806 0.818 0.804 0.803 0.8 0.805 0.814 0.804 0.805 0.809 0.807 0.812
text missing 0.823 0.827 0.822 0.822 0.821 0.822 0.822 0.82 0.827 0.82 0.823 0.827 0.823 0.823

audio missing 0.845 0.824 0.822 0.83 0.82 0.82 0.818 0.819 0.826 0.819 0.821 0.823 0.821 0.824

α = 0.2

normal 0.805 0.803 0.819 0.804 0.809 0.804 0.804 0.802 0.801 0.804 0.803 0.805 0.805 0.809
video noise 0.82 0.819 0.824 0.816 0.821 0.816 0.816 0.812 0.816 0.815 0.816 0.815 0.817 0.814
text noise 0.818 0.816 0.824 0.818 0.815 0.817 0.818 0.816 0.818 0.817 0.818 0.815 0.816 0.817

audio noise 0.805 0.804 0.818 0.805 0.809 0.804 0.804 0.802 0.802 0.803 0.803 0.805 0.805 0.809
video missing 0.804 0.803 0.819 0.804 0.81 0.803 0.803 0.804 0.801 0.803 0.802 0.806 0.806 0.808
text missing 0.821 0.821 0.823 0.82 0.824 0.821 0.82 0.821 0.819 0.821 0.819 0.822 0.823 0.824

audio missing 0.819 0.819 0.833 0.82 0.822 0.819 0.818 0.818 0.816 0.819 0.817 0.821 0.82 0.822

α = 0.1

normal 0.819 0.805 0.805 0.805 0.805 0.803 0.804 0.803 0.803 0.802 0.802 0.805 0.81 0.813
video noise 0.824 0.814 0.817 0.817 0.817 0.817 0.818 0.815 0.814 0.817 0.814 0.816 0.829 0.819
text noise 0.824 0.814 0.816 0.816 0.818 0.818 0.817 0.817 0.815 0.818 0.817 0.816 0.821 0.819

audio noise 0.818 0.805 0.805 0.806 0.806 0.804 0.805 0.803 0.803 0.802 0.802 0.805 0.81 0.813
video missing 0.819 0.803 0.803 0.804 0.804 0.804 0.803 0.802 0.801 0.804 0.802 0.804 0.812 0.809
text missing 0.823 0.822 0.821 0.82 0.821 0.82 0.821 0.821 0.821 0.82 0.821 0.822 0.823 0.826

audio missing 0.831 0.821 0.819 0.82 0.82 0.818 0.819 0.818 0.818 0.818 0.817 0.819 0.825 0.823
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