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Abstract

Multimodal machine learning with missing
modalities is an increasingly relevant challenge
arising in various applications such as healthcare.
This paper extends the current research into miss-
ing modalities to the low-data regime, i.e., a down-
stream task has both missing modalities and lim-
ited sample size issues. This problem setting is
particularly challenging and also practical as it
is often expensive to get full-modality data and
sufficient annotated training samples. We propose
to use retrieval-augmented in-context learning to
address these two crucial issues by unleashing the
potential of a transformer’s in-context learning
ability. Diverging from existing methods, which
primarily belong to the parametric paradigm and
often require sufficient training samples, our work
exploits the value of the available full-modality
data, offering a novel perspective on resolving the
challenge. The proposed data-dependent frame-
work exhibits a higher degree of sample efficiency
and is empirically demonstrated to enhance the
classification model’s performance on both full-
and missing-modality data in the low-data regime
across various multimodal learning tasks. When
only 1% of the training data are available, our
proposed method demonstrates an average im-
provement of 6.1% over a recent strong baseline
across various datasets and missing states. No-
tably, our method also reduces the performance
gap between full-modality and missing-modality
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data compared with the baseline.

1. Introduction
Humankind leverages multimodal data to make intelligent
decisions, such as vision, language and sound (Baltrušaitis
et al., 2018). Consequently, multimodal machine learning
(ML) has emerged as a pivotal learning paradigm in the
ML research community, aiming to improve the quality of
decision-making by using multimodal data in various fields,
e.g., ML-assisted healthcare (Hayat et al., 2022) and ma-
licious content detection (Kiela et al., 2020). However, a
major challenge in the application of multimodal ML is the
missing-modality issue (Suo et al., 2019; Tsai et al., 2018;
Suo et al., 2019; Ma et al., 2022), where some data samples
do not have complete modalities due to challenges in the
data collection process. For instance, in medical applica-
tions, some modalities, such as X-ray images (Johnson et al.,
2019), are more expensive and/or time-consuming to obtain
than others, e.g., Electronic Health Records (EHRs). (John-
son et al., 2023). Therefore, a multimodality dataset with
the missing-modality issue contains samples with complete
modalities, i.e., full-modality data, and also samples with
incomplete modalities, i.e., missing-modality data.

Existing research on tackling the missing-modality chal-
lenge has two pathways. Before the advent of multimodal
transformer (Vaswani et al., 2017; Kim et al., 2021), mul-
timodal learning relies on explicit information fusion with
features, the output of modality-dependent backbones. Thus,
some research work (Ma et al., 2021) proposes to learn a
parametric model to infer missing modalities. In the era of
multimodal transformers, the modality fusion starts from
the input layer as a single transformer can handle various
input formats, such as vision, language and sound (Radford
et al., 2023). A recent work (Lee et al., 2023) proposes to
learn the maximum likelihood estimation for missing modal-
ities at the token level. However, there are two limitations
in existing research. Firstly, it is frequently assumed that
the sample size during training is adequate so a parametric
model can be learned to estimate the missing modalities
(Ma et al., 2021; Lee et al., 2023), but the sample size is not
always sufficient in the real-world (Huang et al., 2021). Sec-

1



Borrowing Treasures from Neighbors: In-Context Learning for Multimodal Learning with Missing Modalities and Data Scarcity

Pretrained Multimodal 
Transformer

···

···

···

··· ··· ···
··· ···
··· ···
··· ···
··· ···m1 embedding m2 embedding

ICL 
module

ˆiy

(a) Feature extraction by pre-trained model (b) Context sample retrieval (c) In-context learning implementation

1
i
mx 2

i
mx

icls
1

i
mH 2

i
mH

icls

iH

NN
iH

( )( ) frozen learnable

Figure 1. The overview of the proposed method. (a) Assuming that each sample contains data with 2 modalities xm1
i and xm2

i , we get the
feature Hi = (Hi

m1 , Hi
m2 , clsi) of the sample by using a pre-trained multimodal transformer, note that xm1

i or xm2
i may be missed.

(b) We use the cls token to calculate the cosine similarity between the current sample and all full-modality training samples, and then
retrieve the most similar Q samples. (c) We input the pooled feature of the current sample H̃i and neighbor samples H̃NN

i into the ICL
module to predict the label ŷi. Note that only the ICL module requires to be trained and the others are frozen. The retrieval-augmented
operation is the same for both the training and inference processes. Note that the words ‘missing modality’ and ’incomplete modality’,
’full modality’ and ’complete modality’ are used interchangeably.

ondly, there is a notable absence of analysis concerning the
performance disparity between missing- and full-modality
data on multimodal learning.

To further our understanding of the missing-modality chal-
lenge in the low-data regime, our paper analyzes the per-
formance of missing- and full-modality data separately in
various tasks and training sample sizes. There are two major
observations and hypotheses in this paper: 1) The perfor-
mance of existing methods drops significantly in the low-
data regime, and the potential of limited data needs to be
more fully exploited. 2) Different tasks depend on full-
and missing modality data to different degrees. For low-
complexity tasks, the model mainly learns from missing-
modality data (Vale-Silva & Rohr, 2021; Wang et al., 2020),
leading to higher performance on missing-modality data
compared with full-modality ones. In contrast, the model
performs worse on missing-modality data compared with
full-modality ones in high-complexity tasks. Therefore, we
should not only focus on reconstructing/improving missing-
modality data. See Fig. 2 for the empirical evidence.

Motivated by our empirical observation, we propose a
data-dependent approach based on retrieval-augmented in-
context learning (ICL) (Borgeaud et al., 2022; Ram et al.,
2023), to reduce the performance drop of multimodal learn-
ing with missing modality in the low-data regime. The
proposed method exploits the value of available data and
adaptively enhances both missing- and full-modality sam-
ples by using the neighboring full-modality samples, as
Fig. 1 shows. Specifically, we train an ICL module on top
of the features of a frozen multimodal transformer, such as
ViLT (Kim et al., 2021), whose context is full-modality data
retrieved from the training set using the cosine-based simi-
larity measure. In cases where modalities are missing, their
features are integrated with similar full-modality features,
enabling the model to implicitly infer the absent modality for

enhanced performance on the target task. For full-modality
data, feature refinement is performed using neighbor infor-
mation to optimize prediction accuracy. Consequently, the
ICL module demonstrates improved performance on both
missing- and full-modality data across hard and easy tasks,
while concurrently diminishing the performance disparity
between the two data types. Our experiments validate the ef-
fectiveness of the proposed ICL method on various datasets
with extensive experiments, see Fig. 2 and Sec. 3.1. Our
main contributions are three-fold:

1. We investigate the data scarcity issue in missing-modality
tasks and unveil the drawback of the existing parametric
approach in the low-data regime, as its effectiveness of-
ten relies on a sufficient sample size. Our empirical study
also reveals that the model should adaptively focus on two
types of data as dependence on missing-modality data is not
necessarily worse than that of full-modality ones.

2. We propose a novel data-dependent in-context learning
method to improve the sample efficiency and benefit the
learning of both missing- and full-modality data, where
the nearest neighbor information of full-modality data is
exploited. To the best of our knowledge, our work is among
the first to use in-context learning to address the challenge
of missing modality in the low-data regime.

3. Our experiment demonstrates the effectiveness of the pro-
posed ICL method on four datasets, including both medical
and vision-language multimodal learning tasks. The aver-
aged performance gain on four datasets over the baseline
MAP in the low-data regime is 6.1%.

The remainder of this paper is organised as follows. Sec. 2
first introduces our empirical observation about the perfor-
mance gap and learning process difference between missing-
and full-modality data, and then elaborates on the proposed
method. Sec. 3 shows the experiment results and the anal-
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ysis. Finally, Sec. 4 summarizes this paper, its limitations
and future directions. The overview of related research are
introduced in Appendix A.

2. Proposed Method
We first describe the problem definition and then the existing
baseline to handle the missing-modality issue. Our empiri-
cal observation and the proposed method are elaborated on
later.
2.1. Problem Setting
We consider the multimodal learning problem with a dataset
D containing multimodal input samples, D can be the
training/validation/testing dataset. For notation simplic-
ity, we assume there are two modalities in the dataset, i.e.,
D = {xm1

i , xm2
i , yi}Ni=1 where the label yi ∈ {1, · · · ,K},

but note that our framework can handle any number of
modalities in principal. It is assumed that some samples
have missing data for a particular modality. For example,
some patients do not have the time or financial support for
X-rays, and some images from food reviews failed to up-
load due to network/format issues. More importantly, we
assume that the training set size N is limited as a result
of the complicated data collection process (Johnson et al.,
2023) and expensive human-expert annotations (Yang et al.,
2023). The prevalence of missing modalities and limited
data within our problem context is a common occurrence in
critical domains, such as medical data analysis, thus requir-
ing immediate resolution (Wang et al., 2023b; Zhang et al.,
2022a).

Parametric Approach to Mitigating Missing Modalities.
As described in Appendix A, parametric methods are em-
ployed widely for handling missing modalities in multi-
modal learning. We introduce this type of approach using
a representative work–missing aware prompt (MAP)(Lee
et al., 2023). In this method, empty prompt tokens are
initialized and concatenated with the input sequences for
each layer of the multimodal transformer. In this way, the
prompts for the current layer can interact with the prompt
tokens inheriting from previous layers, and thus learn more
effective instructions for the model prediction. Only the
parameters of the prompts and the final classification layer
are updated during training.

2.2. Empirical Observations in the Low-Data Regime

Fig. 2-a1 and 2-b1 show the learning curve of MAP on
two datasets with missing modalities. A discernible diver-
gence is evident in the training curve of full versus missing
modalities in the two tasks. For a relatively straightforward
task, i.e., MedFuse-I (binary classification task), the training
AUROC of full-modality data is lower than that of missing-
modality data in many learning steps. In contrast, for the
more complex Food-101 dataset (a multi-classification task
with 101 classes), the trend is reversed, where the full-

modality data have better performance. This observation
implies that whether missing-modality data are harder to
learn than full-modality data depends on the task complex-
ity. Note that although a similar observation is shown in
(Wang et al., 2020), our work contributes by unveiling this
phenomenon in the training of a multimodal transformer
model, instead of the joint encoder training in (Wang et al.,
2020). This insight leads us to conjecture that only focusing
on reconstructing information for the missing modalities is
not an optimal solution, as the missing-modality data are not
necessarily more difficult to learn than full-modality data.
Consequently, we propose an ICL-based approach, where
each sample, regardless of its modality completeness, adap-
tively benefits from its fusion with neighbor full-modality
samples. The benefit of ICL is demonstrated in the ICL
learning curve of Fig. 2-a2 and 2-b2, where the generaliza-
tion of both data types is improved.

2.3. Borrowing Treasures from Your Neighbors: A
Semi-Parametric Approach

Unlike parametric methods, we adaptively augment full-
and missing-modality samples through in-context learning
by a limited number of parameters, which fully exploits the
value of available data.

The proposed Borrowing Treasures from Your Neigh-
bors method. In-context learning enables LLMs to perform
tasks by conditioning an input prompt with exemplar exam-
ples without the need for parameter optimization. Drawing
inspiration from it, we introduce the method titled Borrow-
ing Treasures from Your Neighbors. This approach leverages
similar data with full modalities to improve the performance
on data containing full and missing modalities, aiming to
alleviate the challenges posed by missing modalities and
data scarcity. The reason why we only retrieve full-modality
training data is that the missing-modality data need a refer-
ence of full modalities to implicitly infer the missed modali-
ties, and the full-modality features can be fused with other
full-modality ones to improve the generalization. Tab. 8
shows the strength of only using full-modality neighbors
compared with using all training data and only missing-
modality data.

As shown in Fig. 1, for each sample {xm1
i , xm2

i , yi}, the
pre-trained multimodal transformer fθX infers the feature
Hi including features for xm1

i , xm2
i and a CLS feature clsi

by Hi = {Hi
m1 , Hi

m2 , clsi} = fθX(x
m1
i , xm2

i ), Hi
m1 ∈

RL1×d, Hi
m2 ∈ RL2×d, clsi ∈ R1×d, where L1 and L2

are the number of tokens of embedded xm1
i and xm2

i , re-
spectively. d is the embedding dimension. Based on
the extracted features, the most common approach is to
directly train a classifier fθc to predict the labels ŷi =
fθc(Hi

m1 , Hi
m2 , clsi). When there is missing-modality

data, we follow MAP (Lee et al., 2023) to use default to-
kens to fill those missing tokens, see Sec. 3 for details.
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Figure 2. (a) The learning curve of ICL-CA (ours) and Missing-Aware Prompt (MAP) (Lee et al., 2023) on the Food-101 dataset in the
low data regime. (b) The learning curve of two methods on the MedFuse-I dataset. The subsampling ratio is set to be 0.01. The difference
in the learning steps is due to early stopping. During each training process, we calculate the metric of missing- and full-modality samples
separately and refer to them as ’-full’ and ’-miss’. (c) The performance of MAP and our ICL-CA on four multimodality datasets with
the missing-modality issue. The y-axis shows the dataset name and missing status. The x-axis is metrics for each dataset, AUROC for
MedFuse-I, MedFuse-P and HatefulMemes, and accuracy for Food-101. On each dataset, we compute the metric for test data with full
and missing modalities separately and show the results in dark and light color. The legend means (Method, Full/Missed-Modality). When
the task complexity is low, e.g., binary classification tasks like HatefulMemes (Kiela et al., 2020) and MedFuse-I (Hayat et al., 2022),
the performance of full-modality data lags behind that of missing-modality data, as fitting the training data does not need full-modality
information. When the task complexity is high, e.g., a multi-classification task like Food-101 (101 classes) (Bossard et al., 2014), the
full-modality performance surpasses that of the missing-modality, as the task requires all modalities to adequately model the training data.
Our ICL is significantly better than MAP on four datasets in four cases as the table below shows. See more details in Sec. 3.

Then we retrieve the most similar Q samples Hi
NN =

{Hm1
i,q , H

m2
i,q , clsi,q}

Q
q=1 from the training samples with full

modalities, where the features are arranged in descending or-
der according to the similarity. The similarity is determined
by cosine similarity and calculated with the cls tokens in our
implementation. Finally, we design the ICL module to pre-
dict labels from the mean-pooled feature H̃i of the current
sample and the mean-pooled retrieved context H̃NN

i .

2.4. In-context module design

Our proposed method does not update/add any parameters
in the pre-train multimodal model. During the training
phase, we freeze all the parameters fθX of the multimodal
transformer (including the input embedding layers). We
only update the parameters of the ICL module.

Next, we introduce the details of the ICL module.
Transformer-based structures are shown to be capable of
in-context learning (Brown et al., 2020; Dong et al., 2022).
Inspired by them, we compare two configurations of ICL
based on transformer: ICL by cross-attention and ICL by
next-token prediction. For ease of explanation, we assume
that N = 2 and use blocks with different colors to represent
tokens for different modalities.

iHNN
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Figure 3. The illustration of two ICL approaches. (a) ICL by cross
attention. (b) ICL by next-token prediction. The yellow and green
tokens denote features of two different modalities and the blue
token is the cls token.

ICL by cross attention (ICL-CA). One approach to per-
form ICL is to update the current sample’s feature using
the cross attention with nearest neighbor (NN) samples as
keys, as Fig. 3(a) shows. The cross attention function fθCA

is trained to minimize the classification loss using the clas-
sification token, i.e.,

ĉlsi = fθCA(H̃i, H̃
NN
i ), ℓ

(i)
CA = ℓcls(ĉlsi, yi), (1)

where ℓcls means a classification loss such as cross-entropy
and ℓ

(i)
CA is the loss value for the ith sample by ICL-CA

method. In the cross attention module, the sample interacts
with the tokens from similar full-modality samples, and thus
implicitly infers missing modalities for missing-modality
samples or refines the features for full-modality ones. We
give more details of ICL-CA in Section B.

ICL by next-token prediction (ICL-NTP). Another way
to apply ICL is to implement the next-token prediction by
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Table 1. Quantitative results on the MedFuse-I, MedFuse-P, Food-101, and HatefulMemes datasets under various modality-missing
scenarios (here we show the result at rsub = 0.01, see Appendix C for all sample sizes.) The bold number indicates the best performance.
F means full-modality, m1 means text/EHR and m2 means image/X-ray. In this scenario, our proposed ICL-CA method outperforms the
MAP method by an average of 6.1% over all datasets.

Datasets Missing state Metric ICL-CA ICL-NTP FT-A FT-C MAP

MedFuse-I 26% F, 74% m1
AUROC
AUPRC

0.750
0.308

0.737
0.286

0.719
0.257

0.702
0.269

0.691
0.285

MedFuse-P 18% F, 82% m1
AUROC
AUPRC

0.556
0.219

0.539
0.204

0.504
0.191

0.490
0.189

0.493
0.190

Food-101
30% F, 70% m2

30% F, 70% m1

30% F, 35% m2, 35% m1

Accuracy
0.312
0.342
0.281

0.317
0.327
0.289

0.250
0.265
0.228

0.222
0.243
0.196

0.222
0.247
0.186

HatefulMemes
30% F, 70% m2

30% F, 70% m1

30% F, 35% m2, 35% m1

AUROC
0.576
0.577
0.593

0.565
0.576
0.583

0.537
0.548
0.539

0.542
0.540
0.532

0.528
0.531
0.529

Average N.A. N.A. 0.451 0.442 0.404 0.393 0.390

transformer decoder, which is shown in Fig. 3(b). Write the
input of the transformer decoder [H̃NN

i ; H̃i] as

[h
(1)
i,1 , · · · , h

(T )
i,1 , clsi,1; · · · ;h(1)

i,Q, · · · , h
(T )
i,Q , clsi,Q; (2)

h
(1)
i,Q+1, · · · , h

(T )
i,Q+1, clsi,Q+1],

where h
(t)
i,q , q ∈ {1, . . . , Q + 1}, t ∈ {1, . . . , T} is the tth

token of the qth neighbor (the Q + 1th neighbour is the
current sample itself). clsi,q, q ∈ {1, . . . , Q+ 1} is the cls
token of the qth neighbor. The decoder function fθ(NTP) is
trained to predict the next token in an auto-regressive way,
i.e.,

ĥ
(t)
i,q/ĉls

(t)

i,q = fθNTP(h
(1)
i,1 , · · · , h

(t−1)
i,q ), (3)

ℓ
(i)
NTP = λNTP

Q+1∑
q=1

T∑
t=1

(ĥ
(t)
i,q − h

(t)
i,q)

2 +

Q+1∑
q=1

ℓcls(ĉlsi,q, yi,q),

(4)

where λNTP = 0.1 is an adjustable hyperparameter to intro-
duce the loss of feature reconstruction. yi,q is the label of
the qth neighbour. ℓ(i)NTP is the loss value for the ith sample
by ICL-NTP method. While ĉlsi,Q+1 is used to predict ŷi,
we incorporate other tokens (h’s) in the loss computation to
improve the prediction ability of ICL-NTP. This approach
ensures that the outcomes of prior predictions continuously
inform the subsequent token prediction, compelling the cur-
rent sample to assimilate the rich context provided by its
neighbors, i.e., each prediction is learned from the accumu-
lation of preceding ones. The detailed settings are described
in Section B. Note that the reason why we explore different
ICL configurations is to provide a comprehensive under-
standing of the in-context learning in our problem setting.
3. Experiment
We first introduce the experimental settings and then present
the experimental results of our methods and baselines on

four datasets, demonstrating the effectiveness of our method
in missing modality and low-data tasks. Please see details
about experiment settings in Appendix B.

3.1. Main Results
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Figure 4. The performance of MAP and ICL-CA on MedFuse-
I and MedFuse-P when using different training set sizes. Our
proposed ICL method is highly competitive under low data cases
(rsub from 0.01 to 0.1). Crucially, our approach enhances the
performance in both full- and missing-modalities, outperforming
the MAP baseline.

Table 1 presents quantitative results across a range of sce-
narios, where the target dataset’s downsampling ratio rsub
is 1%. See Appendix C for the performance of all downsam-
pling ratios. From Table 1, Appendix C, Figures 4 and 5, we
draw the following observations. (1) Across various datasets
and scenarios of missing data, a consistent trend emerges:
With sufficient target dataset size (notably for rsub > 0.1),
FT-A exhibits superior performance, attributed to the update
of all parameters in the target domain. MAP follows closely,
achieving competitive results by updating fewer parameters.
In contrast, when the target data is limited, our proposed
ICL method, particularly ICL-CA, demonstrates remarkable
efficacy (especially for rsub ≤ 0.1), surpassing most base-
line approaches. This trend intensifies as rsub decreases.
(2) A notable performance difference is observed between
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complete and missing modalities across tasks. In simpler
binary classification tasks, such as MedFuse-I and Hate-
fulMemes, the performance with full-modality information
falls behind that achieved with missing modalities, indicat-
ing that complete modality data isn’t always necessary for
fitting the training data. In contrast, for more complex tasks,
such as the multi-label classification in MedFuse-P and
the multi-class classification in Food-101, the full-modality
data exhibit dominant performance. Our ICL method shows
remarkable adaptability under these varying conditions. Fur-
thermore, we observe that ICL reduces almost all the per-
formance gap between the two modalities, as detailed in
Tab. 2.

See more details about the ablation study(ICL by Masked
Feature Modeling, The Impact of the Number of Neigh-
bors Q, The Effect of Pooled Feature Length T , Groups
for retrieving neighboring samples and Inference Time and
parameters number) in Appendix D.

Table 2. The relative performance gap between missing-modality
and full-modality samples on four datasets. The relative perfor-
mance gap of all settings is shown in Appendix C, where ICL-CA’s
averaged relative performance gap (22.1%) is lower than that of
MAP (24.1%). For the exception in Food-101, We hypothesize this
is because Food-101 is a high-complex multi-classification task
that heavily relies on full-modality data, so using full-modality
neighbors in our proposed method enhances the performance of
full-modality samples and widens the performance gap.

Dataset HatefulMemes Food-101 MedFuse-I MedFuse-P30% F, 70% m1 30% F, 70% m1

MAP 28.9% 26.6% 13.8% 2.0%
ICL-CA 3.3% 33.1% 11.6% 1.8%

4. Conclusion
This paper investigates a pivotal challenge in multimodal
learning: missing modalities in the low-data regime. Our
analysis examines the learning process of both full and miss-
ing modalities across tasks of various complexity. Stemming
from our findings, we introduce a semi-parametric, retrieval-
augmented in-context learning framework to address the
challenges. This approach is designed to condition each
sample with neighboring full-modality data. The effective-
ness of our method is corroborated across diverse datasets,
including medical and vision-language prediction tasks. Re-
markably, our approach achieves an average performance
boost of 6.1% over the baseline in the low-data regime. Fur-
thermore, it effectively narrows the performance disparity
caused by modality absence. Our future work will focus on
efficient and accurate retrieval methods. We will also extend
the method to tasks with more modalities.
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A. Related work
Missing Modality in Multimodal Learning.

Multimodal models usually assume that the input samples have complete modalities. However, the problem of missing
modalities exists in various applications. In ML for healthcare, combining EHR and X-ray as input excels in mortality
prediction and phenotype classification task (Hayat et al., 2022), but some patients do not have the time or financial support
for X-rays. In ML with vision-language data, a model may not receive image input from the user as a result of network/format
issues (Lee et al., 2023). The model fails to perform as expected in these situations (Ma et al., 2022). Consequently, much
work has been devoted to improving the robustness of multimodal models under modal absence. (Tsai et al., 2018) optimizes
a joint generative-discriminative objective for multimodal data and labels which contain the information required for
generating data for missed modality. In (Ma et al., 2021), multimodal learning with severely missing modalities (SMIL)
is designed to reconstruct the missing modalities using modality priors and Bayesian Meta-Learning. (Lee et al., 2023)
introduced two types of missing-aware prompts that can be seamlessly integrated into multimodal transformers. (Ma et al.,
2022) proposes a unified strategy based on multi-task optimization to deal with missing modalities in the transformer-based
multimodal model. (Zeng et al., 2022) proposes a tag encoding module to assist the transformer’s encoder learning with
different missing modalities. In much of the existing work, the parametric approach is adopted, which learns a model
to handle samples with missing modalities and only uses that model to infer the missed modalities during the test stage.
Its drawback is that learning such a model requires sufficient training data so the parametric approach cannot perform
well when the sample size is low, see Sec. 3.1. In contrast, our paper uses the semi-parametric approach to deal with the
missing-modality issues. In our approach, we enhance the current data by retrieving similar samples during both the training
and inference phases. This strategy emphasizes the quality of the samples, thereby reducing reliance on sample size.

Data scarcity in transfer Learning.

Multimodal learning based on pre-training and fine-tuning has become popular (Xu et al., 2023; Kim et al., 2021; Radford
et al., 2021; Li et al., 2021; Wang et al., 2022). The performance of the pre-trained model on the target task is highly
dependent on the size of the fine-tuning dataset, which is particularly problematic in certain scenarios. For example, scarce
positive samples are recorded for some rare diseases (Mazurowski et al., 2008), or, a small amount of text data is available
for some low-resource language tasks (Hedderich et al., 2021). Many existing works focus on facilitating transfer learning
under low-data situations. (Evci et al., 2022) proposes to select features from all layers of the source model to train a
classification head for the target domain, which matches performance obtained with fine-tuning on average while reducing
training and storage costs. Similarly, (Zhang et al., 2022b) introduces the algorithm for the large-scale pre-trained models
during low-data fine-tuning, which adaptively selects a more promising subnetwork to perform staging updates based on
gradients of back-propagation. From the data perspective, (Liu et al., 2022) proposes a novel selection strategy to select a
subset from pre-training data to help improve the generalization on the target task. Likewise, the prototypical fine-tuning
approach is proposed in (Jin et al., 2023), which automatically learns an inductive bias to improve predictive performance
for varying data sizes, especially low-resource settings. In contrast, we explore the application of a data-centric approach
within the domain of multimodal learning, specifically addressing scenarios involving missing modalities and data scarcity.
Our work demonstrates the effectiveness of the data-centric approach in this novel domain.

In-context learning (ICL).

ICL has emerged as a potent transfer learning approach in natural language processing (NLP), where large language models
(LLMs) leverage context augmented with a few examples to make predictions, circumventing the need for parameter
updates typical in supervised learning (Dong et al., 2022). Demonstrating versatility, LLMs apply ICL to perform complex
tasks, including mathematical reasoning and commonsense answering (Wei et al., 2022). The success of ICL in NLP
has recently spurred its adoption in diverse modalities, such as visual (Bar et al., 2022; Wang et al., 2023c;d; Gupta &
Kembhavi, 2023), speech (Wang et al., 2023a; Zhang et al., 2023), and multimodal domains (Alayrac et al., 2022; Huang
et al., 2023; Hao et al., 2022; Koh et al., 2023; Tsimpoukelli et al., 2021). In the work of (Tsimpoukelli et al., 2021), a vision
encoder trained on aligned image-caption data represents images as sequences of continuous embeddings. This approach,
using a frozen language model, surprisingly adapts to new tasks through ICL conditioning. Similarly, Flamingo (Alayrac
et al., 2022), trained on extensive multimodal web corpora, showcases few-shot learning capabilities via ICL. Our paper
specifically targets scenarios characterized by missing modalities and limited data, aiming to harness contextual features
from full-modality samples. To the best of our knowledge, our work is among the first to use in-context learning to address
such a challenge, offering a novel perspective on improving sample efficiency and reducing the performance gap between
missing- and full-modality.
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B. Experimental Settings
Datasets. We follow existing works using two-modality datasets for a standard comparison (Lee et al., 2023). Specifically,
we use two medical multimodal datasets containing EHR and X-ray images, i.e., MedFuse-In-hospital mortality (MedFuse-I)
(Hayat et al., 2022) and MedFuse-Phenotype (MedFuse-P) (Hayat et al., 2022), and two general vision-language datasets
(UPMC Food-101 (Bossard et al., 2014) and Hateful Memes (Kiela et al., 2020)) in our experiment. The details of each
dataset are as follows:
• MedFuse-In-hospital mortality (MedFuse-I) (Hayat et al., 2022). This dataset contains EHR and X-ray data for each
patient. The target of this binary classification task is to predict in-hospital mortality after the first 48 hours spent in the ICU.
The EHR is time-series data with 17 clinical variables, among which five are categorical and 12 are continuous. Each EHR is
paired with the last chest X-ray image collected during the ICU stay. The numbers of the samples in the training/val/testing
dataset are 18845, 2138 and 5243.
• MedFuse-Phenotype (MedFuse-P) (Hayat et al., 2022) This dataset has the same data types as in MedFuse-I. The
difference is that this dataset has a larger sample size and the task is multi-label classification to predict whether a set of 25
chronic, mixed, and acute care conditions are assigned to a patient in a given ICU stay. The numbers of the samples in the
training/val/testing dataset are 42628, 4802 and 11914.
• UPMC Food-101 (Bossard et al., 2014). This dataset contains the noisy text-image paired data for 101 kinds of food. The
target is to predict the type of food, which is a multi-classification task. The numbers of the samples in the training/val/testing
dataset are 61127, 6588 and 25250.
• Hateful Memes (Kiela et al., 2020). This is a binary classification task. The dataset represents a challenging blend of
visual and textual content, specifically designed to tackle the detection of harmful content online. The dataset comprises
meme images that are often used in social media contexts, containing layers of nuances in meaning that combine text and
imagery. The numbers of the samples in the training/val/testing dataset are 8500, 500 and 1000.

Baseline. We compare our method with the most recent baseline to tackle the missing-modality issue in multimodal
transformers, i.e., missing-aware prompts (MAP) (Lee et al., 2023). We also compare with two methods commonly used in
transfer learning: 1) fine-tuning all layers of the pre-trained model on the target dataset (FT-A), and 2) only fine-tuning the
classifier of the pre-trained model on the target dataset (FT-C) which is equivalent to removing the ICL module from our
proposed method.

Metrics. We set the metrics for each dataset according to the tasks. For MedFuse-I and MedFuse-P, we use the AUROC and
AUPRC as evaluation metrics. For Food-101 and Hateful Memes, we use the accuracy and the AUROC respectively.

Input data processing. For MedFuse-I, we use linear embedding to map EHR to token embeddings and the number of
embedded EHR tokens is 48. The number of tokens from X-ray image patches is 144. For MedFuse-P, the token numbers
are 96 and 96 for EHR and X-rays. The maximum length of text inputs is 512 for the Food-101 task and 128 for Hateful
Memes, and the image processing of the input images is the same as (Lee et al., 2023).

Pretrained Multimodal Transformer. We use the pre-trained multimodal transformer, ViLT (Kim et al., 2021), to extract
features following (Lee et al., 2023). For medical data, we use a pre-trained ViLT model and fine-tune all model parameters
on one dataset and then use the fine-tuned model on the other dataset. The reason is that there is a huge gap between
the pre-training data, i.e., images and texts, and the downstream data, i.e., EHR and X-ray. Thus, fine-tuning all model
parameters helps the model to adapt to the medical data. For the Food-101 task and Hateful Memes, we directly use the
ViLT model since there is no such domain gap as in the medical data. For medical datasets, we initialize two kinds of empty
tokens and update them in the fine-tuning phase, and then use these tokens on another dataset to represent the missing
modality. For Food-101 and HatefulMemes datasets, if the image is missing, we create an image with all pixel values equal
to one as dummy input, and if the text is missing, we use an empty string as dummy input by following (Lee et al., 2023).

ICL module settings. We use a 2-layer transformer and 4 context samples. For computational efficiency, we pool the
feature tokens H from ViLT before the input into ICL. The number of pooled tokens is 8. Before the training/testing process,
we saved the features inferred by the pretrained multimodal transformer for all full-modality samples in the training set.
Then, for each input sample, we first obtain its features by the pretrained multi-modal transformer and only use the cls
token to retrieve neighbors through the saved features. Finally, the features of the current sample with its neighbors are
input into the ICL module for classification. Note that we only use full-modality training data during the NN search so the
computational cost is much less than using all training data.

Setting of Missing Modalities For MedFuse-I and MedFuse-P, both of them provide the missing setting: 74% and 82% of
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patients have missing X-rays, respectively. For the other two tasks, we follow the setting in (Lee et al., 2023) where three
kinds of missing states are designed: 1) 30% samples have complete modalities and 70% samples are missing images, 2)
30% samples have complete modalities and 70% samples are missing texts, and 3) 30% samples have complete modalities,
35% samples are missing images and 35% samples are missing texts.

Subsampling. We subsample a full dataset to simulate a low-data downstream task. For medical data, we subsample
the training dataset to 0.01, 0.02, 0.04, 0.1, 0.2, 0.4. For the other two tasks, we subsample the training dataset to 0.01,
0.02, 0.04, 0.1. We maintain the original missing-modality rate setting during subsampling. We use rsub to refer to the
subsampling ratio in the later content.

C. More Experimental Results
The performance of our method and baselines on all test samples. The main paper presents the performance on full-
modality and missing-modality test samples separately in the figures. Here we give the performance of our method and
baselines on all test samples as in (Lee et al., 2023). Table 4 presents quantitative results of all test samples across all
datasets, methods, and missing states under rsub ≥ 0.1. Table 5 presents the results under rsub < 0.1.

The relative performance gap between missing- and full-modality on all datasets. The main paper presents the relative
performance gap, i.e., (Metrichigh−Metriclow)/Metriclow), between missing-modality and full-modality data on four missing
states under rsub = 0.01. Here we show the details of the performance of missing-modality and full-modality data on all
missing states and all datasets in Table 6.

The performance on 3-modalities dataset. We conduct an experiment on the 3-modalities dataset, MOSEI. MOSEI
contains more than 23500 sentence utterance videos from more than 1000 online YouTube speakers. The vision, audio and
text are involved for sentiment level classification. In this experiment, we set the rsub < 0.1 and compare the proposed
ICL-CA with FT-A and MAP. We select Mean Absolute Error (MAE) as the metric, where smaller values indicate better
perfor025 mance. m1, m2, and m3 refer to the text, vision, and audio modalities, respectively. The results in Table 3
demonstrate the superiority of our proposed ICL-CA method.

Table 3. The performance of the proposed ICL-CA, FT-A and MAP under severe data scarcity and missing modalities on MOSEI dataset.
Method Missing rate rsub=0.01 rsub=0.02 rsub=0.04

ICL-CA
70%m1 missed
70%m2 missed
70%m3 missed

1.001
0.985
1.016

0.837
0.834
0.865

0.829
0.827
0.857

FT-A
70%m1 missed
70%m2 missed
70%m3 missed

1.092
0.996
1.114

0.938
0.904
0.993

0.864
0.860
0.891

MAP
70%m1 missed
70%m2 missed
70%m3 missed

1.128
1.058
1.224

1.113
1.003
1.159

0.998
0.972
1.068

D. Ablation study
ICL by Masked Feature Modeling (ICL-MF). We explore the efficacy of ICL by employing masked feature modeling
with a transformer encoder. In this approach, we randomly mask a certain number of the input tokens with the mask tensor
(clsi is forced to be masked) and calculate the loss separately. For feature tokens H , we calculate the MSE loss between
the reconstructed token and the original token. For cls tokens, we train a classifier and compute the loss of the output
of the classifier concerning the ground-truth labels. The results of these experiments are in Table 7. We compare the
performance of ICL-MF against ICL-CA, ICL-NTP and MAP. This comparison is conducted across four distinct dataset
settings: MedFuse-I, MedFuse-P, Food-101 (comprising 30% F and 70%m1 ), and HatefulMemes (with the same missing
state as Food-101). Additionally, we evaluate them under two subsampling scenarios, specifically at rsub of 0.01 and 0.1.

Table 7, reveals that ICL-MF either underperforms or marginally surpasses ICL-NTP and has a clear gap with ICL-CA
across all tested settings. It is speculated that this outcome stems from the intrinsic nature of ICL-MF’s use of self-attention,
which treats each token uniformly. This approach differs from the mechanism employed in cross attention and next-token
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Table 4. Quantitative results of the whole test set on the Medfuse-I, Medfuse-P, Food101, and HatefulMemes datasets with different
missing rates under various modality-missing scenarios under rsub ≥ 0.1. Bold number indicates the best performance. With sufficient
target dataset size (notably for rsub > 0.1), FT-A exhibits superior performance, attributed to the update of all parameters in the target
domain. MAP follows closely, achieving competitive results by updating fewer parameters. FT-C, on the other hand, performs the worst at
all moments, due to the limited number of updated parameters.
rsub Datasets Missing state Metric ICL-CA ICL-NTP FT-A FT-C MAP

0.1

Medfuse-I 26% F, 74% m1
AUROC
AUPRC

0.793
0.352

0.789
0.355

0.790
0.356

0.771
0.321

0.788
0.338

Medfuse-P 18% F, 82% m1
AUROC
AUPRC

0.578
0.234

0.565
0.224

0.592
0.246

0.556
0.219

0.561
0.224

Food101
30% F, 70% m2
30% F, 70% m1

30% F, 35% m1, 35% m2
Accuracy

0.595
0.625
0.571

0.576
0.619
0.566

0.562
0.603
0.535

0.417
0.450
0.409

0.463
0.489
0.453

Hateful
Memes

30% F, 70% m2
30% F, 70% m1

30% F, 35% m1, 35% m2
AUROC

0.607
0.617
0.618

0.598
0.612
0.618

0.601
0.609
0.614

0.577
0.575
0.579

0.585
0.586
0.599

0.2

Medfuse-I 26% F, 74% m1
AUROC
AUPRC

0.802
0.353

0.792
0.370

0.832
0.411

0.782
0.339

0.801
0.370

Medfuse-P 18% F, 82% m1
AUROC
AUPRC

0.590
0.243

0.580
0.231

0.651
0.290

0.576
0.232

0.581
0.237

0.4

Medfuse-I 26% F, 74% m1
AUROC
AUPRC

0.810
0.388

0.806
0.399

0.840
0.451

0.793
0.351

0.815
0.410

Medfuse-P 18% F, 82% m1
AUROC
AUPRC

0.602
0.251

0.593
0.242

0.688
0.325

0.583
0.237

0.609
0.259

1.0

Medfuse-I 26% F, 74% m1
AUROC
AUPRC

0.820
0.420

0.819
0.431

0.850
0.490

0.804
0.372

0.838
0.444

Medfuse-P 18% F, 82% m1
AUROC
AUPRC

0.611
0.261

0.596
0.244

0.704
0.347

0.591
0.243

0.630
0.273
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Table 5. Quantitative results of the whole test set on the Medfuse-I, Medfuse-P, Food101, and HatefulMemes datasets with different
missing rates under various modality-missing scenarios. Bold number indicates the best performance. When the target data is limited,
our proposed ICL method, particularly ICL-CA, demonstrates remarkable efficacy (especially for rsub < 0.1), surpassing most baseline
approaches. This trend intensifies as rsub decreases.
rsub Datasets Missing state Metric ICL-CA ICL-NTP FT-A FT-C MAP

0.01

Medfuse-I 26% F, 74% m1
AUROC
AUPRC

0.750
0.308

0.737
0.286

0.719
0.257

0.702
0.269

0.691
0.285

Medfuse-P 18% F, 82% m1
AUROC
AUPRC

0.556
0.219

0.539
0.204

0.504
0.191

0.490
0.189

0.493
0.190

Food101
30% F, 70% m2
30% F, 70% m1

30% F, 35% m1, 35% m2
Accuracy

0.312
0.342
0.281

0.317
0.327
0.289

0.250
0.265
0.228

0.222
0.243
0.196

0.222
0.247
0.186

Hateful
Memes

30% F, 70% m2
30% F, 70% m1

30% F, 35% m1, 35% m2
AUROC

0.576
0.577
0.593

0.565
0.576
0.583

0.537
0.548
0.539

0.542
0.540
0.532

0.528
0.531
0.529

0.02

Medfuse-I 26% F, 74% m1
AUROC
AUPRC

0.761
0.328

0.764
0.328

0.754
0.299

0.728
0.293

0.722
0.308

Medfuse-P 18% F, 82% m1
AUROC
AUPRC

0.559
0.221

0.552
0.212

0.530
0.207

0.524
0.198

0.522
0.198

Food101
30% F, 70% m2
30% F, 70% m1

30% F, 35% m1, 35% m2
Accuracy

0.397
0.402
0.387

0.373
0.389
0.355

0.352
0.338
0.315

0.287
0.310
0.262

0.302
0.295
0.278

Hateful
Memes

30% F, 70% m2
30% F, 70% m1

30% F, 35% m1, 35% m2
AUROC

0.590
0.593
0.602

0.581
0.587
0.603

0.550
0.570
0.564

0.545
0.556
0.549

0.545
0.557
0.548

0.04

Medfuse-I 26% F, 74% m1
AUROC
AUPRC

0.778
0.344

0.777
0.336

0.787
0.328

0.752
0.308

0.767
0.319

Medfuse-P 18% F, 82% m1
AUROC
AUPRC

0.569
0.228

0.557
0.219

0.561
0.213

0.542
0.209

0.545
0.211

Food101
30% F, 70% m2
30% F, 70% m1

30% F, 35% m1, 35% m2
Accuracy

0.494
0.508
0.484

0.464
0.489
0.460

0.448
0.458
0.422

0.352
0.391
0.338

0.397
0.405
0.387

Hateful
Memes

30% F, 70% m2
30% F, 70% m1

30% F, 35% m1, 35% m2
AUROC

0.595
0.600
0.601

0.591
0.585
0.607

0.583
0.577
0.579

0.561
0.559
0.562

0.558
0.567
0.574

Table 6. The relative performance gap between missing-modality and full-modality data on four datasets and all missing states under
rsub = 0.01. Bold number indicates the best performance. In most of the settings, our proposed ICL-CA shows smaller relative gap
compared to the baseline MAP. ICL-CA’s averaged relative performance gap (22.1%) is lower than that of MAP (24.1%).

ICL-CA MAP

Dataset Missing state Metric missing
modality

full
modality

relative
gap (%)

missing
modality

full
modality

relative
gap (%)

Medfuse-I 26% F, 74% m1
AUROC
AUPRC

0.769
0.326

0.689
0.286

11.6
14.0

0.719
0.337

0.632
0.237

13.8
42.2

Medfuse-P 18% F, 82% m1
AUROC
AUPRC

0.545
0.203

0.555
0.254

1.8
25.1

0.496
0.186

0.506
0.221

2.0
18.8

Food101
30% F, 70% m2
30% F, 70% m1

30% F, 35% m1, 35% m2
Accuracy

0.298
0.311
0.214

0.344
0.414
0.435

15.4
33.1
103.3

0.215
0.229
0.152

0.240
0.290
0.251

11.6
26.6
65.1

Hateful
Memes

30% F, 70% m2
30% F, 70% m1

30% F, 35% m1, 35% m2
AUROC

0.577
0.591
0.569

0.578
0.572
0.646

0.2
3.3

13.5

0.521
0.576
0.478

0.551
0.447
0.601

5.8
28.9
25.7

Average 22.1 24.1
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Figure 5. The performance of MAP and ICL-CA on HatefulMemes and Food-101 when using different training set sizes. The performance
of our ICL-CA is much better than that of MAP in the low-data regime (rsub from 0.01 to 0.1).

Table 7. Comparison of ICL-CA, ICL-NTP, ICL-MF and MAP under different datasets. The bold number indicates the best performance.

Datasets Metric rsub = 0.01 rsub = 0.1
ICL-CA ICL-NTP ICL-MF MAP ICL-CA ICL-NTP ICL-MF MAP

MedFuse-I AUROC
AUPRC

0.750
0.308

0.737
0.286

0.733
0.293

0.691
0.285

0.793
0.352

0.789
0.355

0.791
0.349

0.788
0.338

MedFuse-P AUROC
AUPRC

0.556
0.219

0.539
0.204

0.526
0.199

0.493
0.190

0.578
0.234

0.565
0.224

0.569
0.228

0.561
0.224

Food-101
30% F, 70%m1

Accuracy 0.342 0.327 0.326 0.247 0.625 0.619 0.564 0.489

HatefulMemes
30% F, 70%m1

AUROC 0.577 0.576 0.561 0.531 0.617 0.612 0.608 0.586

prediction, which inherently distinguishes between current and similar samples. However, it is noteworthy that ICL-MF
demonstrates a significant performance advantage over the MAP approach.

The Impact of the Number of Neighbors Q. We examine the influence of the number of neighbors on our ICL-CA, as
depicted in Fig. 6a. In this analysis, we vary the number of neighbors (1, 2, 4, 8, 16) and observed their effects on two
datasets, MedFuse-I and Food-101, under rsub of 0.1 and 0.01. Our findings indicate a marked performance improvement
when the number of neighbors is increased from 1 to 4 in all experiments. However, further increases in the number of
neighbors do not sustain this upward trend in performance. Therefore, we use Q=4 in our experiment to strike a balance
between computational efficiency and efficacy.

The Effect of Pooled Feature Length T . We assess the impact of varying pooled feature lengths (the number of pooled
feature tokens in each sample) on our ICL-CA, as illustrated in Fig. 6b. Pooled features of greater length can provide more
comprehensive feature information but concurrently increase computational demands. We test pooled feature lengths of 0, 4,
8, 16, and 32 under rsub of 0.01 and 0.1 in the MedFuse-I and Food-101 datasets. A pooled feature length of 0 implies
reliance solely on the cls token from all samples for ICL. A substantial increase in performance is observed when the
pooled feature length is increased from 0 to 8. When the pooled feature length exceeds 8, the gain in performance becomes
negligible. Thus, we set the pooled feature length to 8 in this paper.

Groups for retrieving neighboring samples. We compare different groups of samples in training datasets for retrieving
neighboring samples, i,e. all the samples, full-modality samples and missing-modality samples. We select the ICL-CA
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Figure 6. Comparison of the effect of the number of neighbors and the pooled feature length in the ICL-CA model. (a) Comparison of the
effect of the number of neighbors. (b) Comparison of the effect of pooled feature length. We suggest setting the number of neighbors to 4
and the pooled feature length to 8.

method under rsub = 0.01 for this experiment, as shown in Table 8. It shows that employing samples with full modality
as the retrieval group yields superior results. This observation indicates that our proposed ICL method can effectively
utilize the context provided by the full-modality samples. In addition, using full-modality samples as neighbors enhances
computational efficiency due to the reduced sample size of neighbors.

Table 8. Performance of ICL-CA by different groups for retrieving neighboring samples under rsub = 0.01. NN-all, NN-full and NN-miss
refer to using all training data, full-modality data and missing-modality ones respectively, in the retrieval process.

Datasets Missing state Metric NN-all NN-full NN-miss

MedFuse-I 26% F, 74% m1
AUROC
AUPRC

0.732
0.269

0.750
0.308

0.721
0.248

MedFuse-P 18% F, 82% m1
AUROC
AUPRC

0.533
0.191

0.556
0.219

0.520
0.184

Food-101
30% F, 70% m2

30% F, 70% m1

30% F, 35% m2, 35% m1

Accuracy
0.294
0.346
0.266

0.312
0.342
0.281

0.265
0.311
0.247

HatefulMemes
30% F, 70% m2

30% F, 70% m1

30% F, 35% m2, 35% m1

AUROC
0.549
0.569
0.575

0.576
0.577
0.593

0.523
0.553
0.566

Average N.A. N.A. 0.432 0.451 0.414

Inference Time and parameters number. One major concern for the retrieval-based approach is the inference latency. We
test the inference time of ICL-CA and MAP on MedFuse-I. We set the batch size to 1 and record the inference time for 100
batches. The average inference time of ICL-CA is 34.41ms with a std of 4.52ms. In contrast, MAP has a mean inference
time of 40.59ms and a std of 5.40ms. The difference in inference time is because MAP has a larger number of tokens
(missing-aware prompts) in the transformer. We also calculate the number of trainable parameters in Table 9. Although our
method has more parameters than MAP, it is less overfitting to the training data in the low-data regime compared with MAP.

Table 9. Number of trainable parameters for different models.
Model MAP ICL-CA FT-A FT-C

num/million 2.8 5.1 113 0.6
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