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Diffusion Model-based Contrastive
Self-Supervised Learning for Human Activity

Recognition
Chunjing Xiao, Yanhui Han, Yane Hou, Fangzhan Shi, Kevin Chetty

Abstract—WiFi Channel State Information (CSI)-based activity recognition plays a crucial role for vast Internet of Things applications.
However, recognition models powered by supervised techniques are confronted with the difficulty of collecting numerous labeled data,
which is time-consuming and labor-intensive. To address this issue, we design a diffusion model-based Contrastive self-supervised
Learning framework for human Activity Recognition (CLAR) using WiFi CSI. Based on the contrastive learning framework, we mainly
propose two components for CLAR to meet the scenarios for CSI-activity recognition. To effectively enlarge the distribution of training
data, we propose a denoising diffusion probabilistic model (DDPM)-based time series-specific augmentation model, which can
combine two samples to generate diverse augmented data. To efficiently capture the difference of the sample importance, we present
an adaptive weight algorithm, which can adaptively adjust the weights of positive sample pairs for learning better data representations.
The experiments suggest that CLAR achieves significant gains compared to state-of-the-art methods.

Index Terms—Contrastive learning, self-supervised learning, diffusion probabilistic models, WiFi CSI, activity recognition.
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1 INTRODUCTION

Human activity recognition is considered a key aspect for a
variety of real-world applications, such as health monitor-
ing and smart home [1], [2]. Among a great many recog-
nition techniques, WiFi Channel State Information (CSI)-
based approaches have the potential to achieve device-free,
non-intrusive and privacy-friendly activity sensing, when
compared to camera-based or wearable sensor-based meth-
ods [3], [4]. Correspondingly, a great many studies have
been initiated on WiFi CSI-based activity recognition.

While, most of the models are powered by supervised
machine learning methods, where a large training dataset
with annotations is needed to maintain an acceptable perfor-
mance, makes the training phase time consuming, labor in-
tensive, and expensive. Consequently, collecting numerous
labeled data is one of the major hurdles in applying these
methods for practical applications [1], [5]. Contrastive self-
supervised learning can be a potential solution to overcome
the limitations associated with the lack of labels, because it
can effectively leverage an enormous number of unlabelled
samples to train the model without using labels [6]. Con-
trastive self-supervised learning has shown superior perfor-
mance in the image processing [7] [8] and natural language
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(b) DDPM-based augmentation

Fig. 1. Augmented data by different methods. (a) The augmented wave-
form (orange) by Gaussian blur is almost the same to the original one
(blue). (2) The augmented waveform (orange) by our DDPM-based aug-
mentation method can combine the characteristics of the two samples
(solid and dotted blue).

processing [9] [10]. However, directly applying contrastive
learning to activity recognition tasks is confronted with two
additional issues.

First, prevailing augmentation approaches in contrastive
learning, such as Gaussian blur and color distortion, hardly
change the shape of the CSI waveform, leading to sub-
optimal performance. General data augmentation methods
are particularly designed for image data, which focus on
manipulating pixels to generate augmented data. However,
WiFi CSI is a kind of time-series data, and manipulating
points in CSI data by these methods scarcely change its
waveform. An example is presented in Figure 1(a), which
suggests that the augmented waveform by Gaussian blur
(orange) is quite similar to the original one (blue). However,
if two augmented samples are the same in contrastive
learning, few benefits can be provided for performance
improvement [11]. Hence, these augmentation methods can
only provide limited effectiveness for CSI data.

Second, typical contrastive learning models fail to con-
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Fig. 2. Positive sample pairs extracted from an activity where the dotted
red lines are the start and end points and there is pause near the center.
Compared to positive pair (x3, x4), positive pair (x1, x2) should provide
less clues for learning data representation because they contain more
pause data.

sider the difference of the sample importance during model
training. In contrastive learning, the same weights are gen-
erally assigned to all the positive sample pairs for model
training. However, for CSI-based activity recognition, dif-
ferent positive sample pairs might provide various clues for
learning data representation. For some activities consisting
of multiple strokes, such as drawing X and lying down,
there might be a pause between two strokes. If positive sam-
ple pairs extracted from CSI data contain more pause data,
they will provide less clues for learning data representation,
and should play a minor role for model training, and vice
versa. An example of drawing X is presented in Figure 2,
where the dotted red lines are the real start and end points
of the activity. In this activity, there is a pause between the
two strokes. Compared to positive pair (x3, x4), positive
pair (x1, x2) contains more pause data and should provide
minor clues for learning data representation.

To address these issues, we propose a diffusion model-
based Contrastive self-supervised Learning framework for
human Activity Recognition (CLAR) using WiFi CSI. On
the basis of the contrastive learning model, we design
two components for the scene of CSI-activity recognition: a
denoising diffusion probabilistic model (DDPM)-based time
series-specific data augmentation model and an adaptive
weight algorithm. The designed augmentation model takes
as inputs a source sample and a reference sample from users
with different habits, and produces a new sample with the
combined characteristics of them. These augmented data
can effectively amplify training data and enhance general-
ization capacity of the model. The adaptive weight algo-
rithm adaptively computes the weights of positive sample
pairs, which are imposed on the contrastive loss to boost
model performance.

Specifically, in the DDPM-based time series-specific data
augmentation model, we feed a Gaussian noise into the re-
verse diffusion process of DDPM [12] to generae a clean CSI
data by gradual denoising. During this denoising process,
we regard the source sample and the reference sample as
the conditions, and impose them into the reverse diffusion
process of DDPM to generate a new sample with compro-
mised characteristics of them. These generated samples not
only differ from the input ones in CSI waveform, but also
complement the limited training data to enhance model ro-
bustness. By combining both source and reference samples,
the generated samples have different waveforms from the
source and reference ones. Moreover, for CSI-based activity

recognition, it is difficult to gather enough training data to
cover all kinds of motions habits, since waveforms of CSI
data collected from users with different motion habits can
be different even they perform the same action [13], and
different persons have various motion habits. Our designed
augmentation method can generate augmented data with
new characteristics, which can complement limited gathered
data. A visual example of the generated sample is presented
in Figure 1(b), where the source sample is from the user with
the habit of tending to draw a small circle (solid blue), and
the reference for a large circle (dotted blue). Correspond-
ingly the generated sample is the one for a middle circle
(orange).

In the adaptive weight algorithm, we try to adjust the
weights of positive pairs in model training to capture the
difference of the sample importance and enhance model
performance. For CSI data, different positive sample pairs
provide various clues for learning data representation, i.e.,
positive sample pairs with less activity data should play a
minor role for model training since they contain less clues
for learning data representation, and vice verse. Hence, for
each positive sample pair, we first compute a response map
to reflect the amount of activity data in the positive pair,
and then calculate the weight based on the response map.
This weight will be incorporated into the contrastive loss
to enhance the model performance. By incorporating the
DDPM-based augmentation model and the adaptive weight
algorithm into the basic contrastive learning framework, our
model can efficiently boost the recognition performance.

We summarize the main contributions of this paper as
follows:

• We propose a diffusion model-based Contrastive self-
supervised Learning framework for Activity Recogni-
tion using WiFi CSI, CLAR, which can address the
problem of the shortage of labeled data.

• We design a DDPM-based time series-specific augmen-
tation method to produce augmented samples with
new characteristics, which can amplify training data to
enhance generalization capacity of the model.

• We present an adaptive weight algorithm, which can
adaptively adjust the weights of positive sample pairs
in the contrastive loss to enhance model performance.

• Experiment results illustrate that our framework out-
performs the state-of-the-art approaches.

2 PRELIMINARIES

In this section, we give necessary background information
of the contrastive learning framework and the denoising
diffusion probabilistic model.

2.1 Contrastive Learning Framework

Contrastive learning learns a representation by maximizing
similarity and dissimilarity over data samples which are
organized into similar (positive) and dissimilar (negative)
pairs, respectively. Typical contrastive learning methods
adopt the noise contrastive estimation (NCE) objective for
discriminating different instance in the dataset. Concretely,
NCE objective encourages different augmentations of the
same instance to be pulled closer in a latent space yet
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pushes away different instances’ augmentations. In general,
the framework can be summarized as the following compo-
nents: (i) A data augmentation module that transforms any
given data example randomly resulting in two correlated
views of the same example, such as random cropping, color
jittering, and random flipping. (ii) An encoder network
f which extracts representation vectors from augmented
data examples by mapping it into a d-dimensional space
Rd. (iii) A projection head h which further maps extracted
representations into a hyper-spherical (normalized) embed-
ding space. This space is subsequently used for a specific
pretext task, i.e., contrastive loss objective for a batch of
positive/negative pairs. The InfoNCE [14] objective can be
expressed as:

Li,j = − log
exp (sim (zi, zj)/τ)∑2N

k=1 I[k ̸=i] exp (sim (zi, zk)/τ)
, (1)

where sim(, ) denotes cosine similarity, z denotes the out-
puts from the non-linear projection head as used in the orig-
inal SimCLR work, and τ is a temperature hyper-parameter
scaling the distribution of distances.

2.2 Denoising Diffusion Probabilistic Model
Denoising diffusion probabilistic models (DDPM) [12] is a
class of generative models that show superior performance
in unconditional image generation. It learns a Markov
Chain which gradually converts a simple distribution (e.g.,
isotropic Gaussian) into a data distribution. Generative pro-
cess learns the reverse of the DDPM forward (diffusion)
process: a fixed Markov Chain that gradually adds noise
to data. Here, each step in the forward process is a Gaussian
translation:

q
(
zt|zt−1

)
:= N

(
zt;
√
1− βtz

t−1, βtI
)
, (2)

where β1, . . . , βT is a fixed variance schedule rather than
learned parameters [12]. Eq. (1) is a process finding zt by
adding a small Gaussian noise to the latent variable zt−1.
Given clean data z0, sampling of zt can be expressed in a
closed form:

q
(
zt|z0

)
:= N

(
zt;

√
ᾱtz

0, (1− ᾱt) I
)
, (3)

where αt := 1 − βt and ᾱt :=
∏t

s=1 αs. Therefore, zt is
expressed as a linear combination of z0 and ε:

zt =
√
ᾱtz

0 +
√
1− ᾱtε, (4)

where ε ∼ N (0, I) has the same dimensionality as data z0

and latent variables z1, . . . , zT .
Since the reverse of the forward process, q

(
zt−1|zt

)
, is

intractable, DDPM learns parameterized Gaussian transi-
tions pθ

(
zt−1|zt

)
. The generative (or reverse) process has

the same functional form [15] as the forward process, and
it is expressed as a Gaussian transition with learned mean
and fixed variance [12]:

pθ
(
zt−1|zt

)
= N

(
zt−1;µθ

(
zt, t

)
, σ2

t I
)
. (5)

Further, by decomposing µθ into a linear combination of
zt and the noise approximator εθ , the generative process is
expressed as:

zt−1 =
1

√
αt

(
zt − 1− αt√

1− ᾱt
εθ
(
zt, t

))
+ σ2

t ε, (6)
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Fig. 3. CLAR framework. During the training process, the reference and
source samples are fed into our designed DDPM-based augmentation
model to generate augmented data with new characteristics. These
augmented data are further processed by cropping and resizing to
build the contrastive loss. Meanwhile, the weight of each sample pair is
computed by our devised adaptive algorithm and further is incorporated
into the contrastive loss to enhance model performance.

which ε is a noise suggesting that each generation step is
stochastic. Here εθ represents a neural network with the
same input and output dimensions and the noise predicted
by the neural network εθ in each step is used for the
denoising process in Eq. 6.

3 CLAR FRAMEWORK

In this section, we present the diffusion model-based con-
trastive self-supervised learning framework for human ac-
tivity recognition (CLAR). First, we illustrate an overview
of the recognition framework. Next, we present the DDPM-
based data augmentation method, which will generate aug-
mented data with characteristics of both the source and
reference samples. Finally, we illustrate the adaptive weight
algorithm to compute weights of different positive sample
pairs for the contrastive loss.

3.1 Overview of the Proposed Framework
To address the shortage of labeled training data, we design
a new contrastive learning framework for human activity
recognition, CLAR, whose overview is illustrated in Fig-
ure 3. The model takes a source sample and two reference
samples as inputs. The source sample and the two reference
samples are first combined by our designed DDPM-based
time series-specific augmentation mothod to generate two
augmented samples as a positive pair. Then, the augmented
samples are processed by the cropping and resizing oper-
ations for building the contrastive loss. During these pro-
cedure, the weights of sample pairs are computed by our
proposed adaptive weight algorithm, and these weights are
incorporated into the contrastive loss to enhance the model
robustness.

Compared with typical contrastive learning models such
as SimCLR [8], we design a DDPM-based data augmenta-
tion model and an adaptive weight algorithm to satisfy the
requirement of CSI-based activity recognition and enhance
recognition performance. Since the prevailing augmentation
approaches mainly focus on image and text processing,
which are ineffective for CSI data. Besides, since limited
training data cannot cover all the motion habits, augmen-
tation models for CSI-based activity recognition should be
able to generate augmented data with new motion habits.
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Fig. 4. DDPM-based data augmented model. Red arrows → indicate the
forward diffusion, blue ones → refer to the reverse diffusion, and ⊕ is the
concatenation operation.

Hence we design a DDPM-based time series-specific data
augmentation model, which can combine two samples from
users with different habits to generate a augmented sam-
ple with compromised ones. This augmentation method
is conducive to improving the generalization ability and
recognition performance of the model.

Further, for CSI data, various positive sample pairs
provide different clues for learning data representation ,
i.e., positive sample pairs with less activity data should
play a minor role for model training since they contain
less clues for learning data representation, and vice verse.
Therefore, we propose an adaptive weight algorithm to
adjust the weights of positive samples in model training.
These weights are incorporated into the contrastive loss
to enhance the data representations, and futher improve
recognition performance.

3.2 DDPM-based Data Augmentation Model
Contrastive learning algorithms try to learn representations
by maximizing agreement between differently augmented
views of the same data example via a contrastive loss in
the latent space. Hence, the data augmentation operation is
crucial in learning data representations [8]. Various augmen-
tation methods for contrastive learning, such as Gaussian
blur and color distortion, have been designed to enhance
performance of image processing [7] [8] and natural lan-
guage processing [9] [10]. However, the prevailing augmen-
tation approaches might be improper for WiFi CSI data.
For example, the typical augmentation way, Gaussian blur,
generally yields limited effectiveness for WiFi CSI-based
activity recognition, because the augmented CSI has nearly
the same waveform with the original one.

Moreover, for CSI-based activity recognition, the aug-
mentation models should generate diverse augmented sam-
ples to enhance the coverage of training data. Due to the
diversity of user habits, it is difficult to gather enough
training data to cover all kinds of user habits. However, the
limited training data might lead to inferior generalization
capacity when the test samples are from users with different
motion habits. For example, when asking two users to draw
a circle, one might draw a big circle, while another may
draw a small circle. The recognition model trained based
on the data from these two users cannot accurately identify
the data from a user who tending to draw a middle circle.
Hence, the augmentation method should be able to generate
augmented data with new characteristics.

Towards this purpose, we design a DDPM-based data
augmentation model, which can combine two samples from

users with different habits to generate a augmented sample
with characteristics of both users. Specifically, inspired by
superiority of DDPM on image and audio generation [16],
[17], [18], [19], we introduce DDPM as the basic framework
to build the augmentation model. This model takes a source
sample and a reference sample as inputs, and outputs a
compromised sample by combining both input samples.
The main idea is that the source and reference samples
are considered as the conditions, which are exerted on the
reverse diffusion (denoising) process of DDPM to generate
augmented samples. In this way, our designed augmen-
tation model iteratively exert features of the source and
reference samples on the generative process to manufacture
augmented samples. This gradual refining process can pro-
duce more suitable data.

Figure 4 presents the framework of the designed DDPM-
based augmentation model. In this model, we first feed a
Gaussian noise into the reverse diffusion process to gener-
ate a clean CSI waveform through gradual denoising, i.e.,
zT → zt → ẑt−1 → z̃t−1 → zt−1 → z0. During this
denoising process, the features of the source and reference
samples, zsrc and zref , are extracted, and iteratively injected
into the latent variable ẑt−1. As a result, the generated
(augmented) data z0 contains the characteristics of both
source and reference data, which can be regarded as a
compromise of them. Assuming the source sample refers to
CSI data performed by the user tending to draw a big circle
and the reference sample for a small circle, the augmented
data can be considered as the one for a middle circle.

Concretely, on the basis of the reverse diffusion process
pθ
(
zt−1|zt

)
, we exert the conditions csrc and cref on the re-

verse diffusion process. Hence, we approximate the Markov
transition under the condition csrc and cref as follows:

pθ
(
zt−1|zt, csrc, cref

)
≈ pθ

(
zt−1|zt, fl

(
zt−1

)
= σ

(
fl(z

t−1
src ), fl(z

t−1
ref )

))
,

(7)

where zt−1
src and zt−1

ref are sampled by Equation 4, fl(·) is
a low-pass filter, and σ is a aggregation function which
concatenates zt−1

src and zt−1
ref based on the warping path.

Here, the warping path, produced using Dynamic Time
Warping (DTW) [20], [21], maps the elements of two data
sequences to minimize the distance between them. Here, we
adopt a warping path, instead of the default shortest path,
to concatenate them because the warping path can more
appropriately keep the shape of the waveforms [22].

Equation 7 tries to incorporate zt−1
src and zt−1

ref into the
generated data. Hence, the generated data will has the
compromised characteristics of both them. According to this
equation, in each transition from zt to zt−1, the features of
both source and reference samples are extracted and then
injected into the latent variable. To this end, we first adopt
the forward process (Euqation 4) to compute zt−1

src and zt−1
ref

from zsrc and zref, respectively:

zt−1
src ∼ q(zt−1

src |zsrc),

zt−1
ref ∼ q(zt−1

ref |zref).
(8)

Then, we adopt the reverse process (Equation 5) to compute
latent variable ẑt−1 from zt:

ẑt−1 ∼ pθ(ẑ
t−1|zt). (9)
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As a result, the augmented sample is refined by matching
fl(ẑ

t−1) of ẑt−1 with that of σ(fl(z
t−1
src ), fl(z

t−1
ref ))) as fol-

lows:

z̃t−1 =(1− γ1)ẑ
t−1 + γ1

(
fl(σ(ẑ

t−1, zt−1
src ))− fl(ẑ

t−1)
)
,

zt−1 =(1− γ2)z̃
t−1 + γ2

(
fl(σ(z̃

t−1, zt−1
ref ))− fl(z̃

t−1)
)
,

(10)

where γ1, γ2 ∈ [0, 1] denote the hyper-parameters to adjust
the weights. The matching operation by Equation 10 ensures
the conditions csrc and cref in Equation 7, which further
enables the conditional generation based on DDPM. In this
way, through injecting the features of both samples collected
from users with various habits into the latent variable in
the generative process, the generated (augmented) data
can possess compromised characteristics of them. Hence,
augmented data can be considered to be the one collected
from another users with different habits. Both augmented
samples and source samples will be used for model training.

3.3 Adaptive Weighting

In contrastive learning, cropping is a commonly used way
to extract views for building positive sample pairs [23], [24].
For each activity data, we also adopt cropping operations to
extract two views (samples) from the same activity data to
form a positive pair. While, for CSI data, the clues provided
by different positive pairs should be various in learning data
representation. For some activities, there may be a pause
among the action. For example, for drawing X, a pause
can occur between the two strokes, and for lying down,
it can occur between sitting and lying. Hence, some posi-
tive pairs extracted by cropping operations might contain
more activity data, while others might include more pause
data. Correspondingly, the positive pairs containing more
activity data should provide more clues for learning data
representation, and vice versa. An example of drawing X
is presented in Figure 2, where the positive pair (x3, x4)
should play a more important role for model training than
(x1, x2), because the former contains more activity data.

Towards this goal, we propose an adaptive weight algo-
rithm to adjust the importance of positive pairs for model
training by assigning various weights to different positive
pairs. This algorithm first computes a response map which
can reflect the amount of activity data in the positive pair,
and then computes the weights based on the response map
for constructing the contrastive loss.

Concretely, to compute the response map, we first select
a template wT with length H from the the CSI sequence
in the absence of activity data, called static template. To
avoid the selection bias, we choose multiple static templates.
Then, for each sample from positive pairs, we split it into
overlapping windows using a sliding window, each with
length H , where the sliding step is 1. For window l extracted
from sample xi, we adopt a response score to reflect the
amount of containing activity data:

Sl =
1

M

M∑
k=1

DTW(wl, w
T
k ), (11)

where M is the number of selected static templates, and
DTW(wl, w

T ) denotes the DTW distance between the wl

and wT . The bigger distance between wl and wT indicates
that wl is more different from static template wT , i.e., wl

contains more activity data. Therefore, response score Sl re-
flects the amount of activity data in window l. The response
scores of the windows in xi are merged to form the response
map of this sample.

After obtaining response maps, we calculate the weights
of sample xi for model training:

Wi =

(
1

Nw

Nw∑
k=1

I (Sk, σs)

)α

, (12)

where α denotes the power which controls the scale of
weights, Nw refers to the number of the windows extracted
from xi, and I(, ) is the indicator of the presence of activity
data, and is defined as:

I(Sk, σs) =

{
1, ifSk > σs

0, otherwise
. (13)

Here σs is a threshold to determine whether this win-
dow is regarded as data in the presence of activities. σs

can be set to the average of the response scores, i.e.,
σs = (

∑Nw

k=1 Sk)
/
Nw. Further, for a positive pair (xi, xj),

its weight is the aggregation of the weights of both samples:

W(i,j) = Aggregate(Wi,Wj), (14)

where Aggregate(, ) sums the two items. This weigh sug-
gests the amount of containing CSI data in the presence
of activities. Hence, the positive paris with a larger weight
contains more clues and should play a more significant role
in the model training.

3.4 Overall Model
Taking the augmented data and adaptive weights into ac-
count, we formulate the loss function as follows:

Laug
i,j = − log

exp
(
W(i,j) ∗ sim (ẑi, ẑj)

/
τ
)

∑k=2N
k=1 Ik ̸=i exp (sim(ẑi, ẑk)/τ)

, (15)

where N is the length of the minibatch, τ is a temperature
hyper-parameter scaling the distribution of distances. ẑi and
ẑj , which form a positive pair, are two embeddings which
are extracted from the two augmented samples derived
from the same source sample, and ẑi and ẑk, which form a
negative pair, are derived from the different source samples.

Further, we also adopt the original data without the
process of our designed augmentation model to build the
contrastive loss to capture the characteristics of original
training data. This loss is defined as:

Lori
i,j = − log

exp
(
W(i,j) ∗ sim (zi, zj)

/
τ
)

∑k=2N
k=1 Ik ̸=i exp (sim(zi, zk)/τ)

, (16)

where zi, zj and zk are the embeddings of the original sam-
ples without being processed by our augmentation model,
and the other parameters are the same to Eqation 15. As a
reult, the overall loss is the sum of them:

Lall
i,j = Laug

i,j + Lori
i,j . (17)

After obtaining the trained model, it is used to extract
representations of activity samples. Further, a linear clas-
sifier is adopted to classify the representations into corre-
sponding activity categories.
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4 EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of the proposed
CLAR by comparing it with the several baselines with
different techniques. Also, we conduct ablation studies and
inspect the role of the augmentation model and labeled data
size. The data and code are available online1.

4.1 Experiment Setup
For the evaluation, we conduct the experiments on two WiFi
CSI-based behavior recognition datasets. SignFi data [25]
consists of 1,250 CSI sequences, each of which represents
a sign language gesture. These activities are performed by
4 users with each activity repeated for 10 times. DeepSeg
data [26] is composed of 1,500 human activities from 5
users with various shapes and ages. For these experiments,
We will use 80% of all data as the training set and the
rest as the test set. In the training set, we select 30% and
20% of data as labeled data for fine-tuning the classifier on
SignFi and DeepSeg, respectively. For selection of source
and reference samples, if they are labeled, we select two
samples from the same activity category as the source and
reference ones. If they are unlabeled, for a source sample,
we randomly select one sample from its top 10 most similar
samples as the reference one. Here, we adopt DTW to
compute the similarity degree between samples. For the
DDPM-based augmentation model, we use 1,000 diffusion
steps considering both efficiency and effectiveness. During
the optimization process of CLAR, the learning rate and
batch size are set to 0.0001 and 50, respectively. The hyper-
parameters α in Equation 12 and τ in Equation 15 are set 0.5
and 0.1, individually, for both datasets. For all the follow-
ing experiments, the accuracy and F1-score are adopted as
metrics for performance comparison.

4.2 Baselines
To prove the effectiveness and superiority of the proposed
model, we choose activity recognition methods with differ-
ent technologies as the baselines, including GAN-based [27],
[13], Meta learning-based [28], [29] and self-supervised con-
trastive learning-based [30], [8], [31] appoaches:

• ManiGAN [27]: A GAN-based semi-supervised learn-
ing method incorporating manifold regularization. The
method exhibits obvious merits on image classification
compared to other GAN-based and non-GAN-based
semi-supervised methods.

• CsiGAN [13]: A GAN-based activity recognition model
using WiFi CSI. This model introduces a new com-
plement generator and optimizes the outputs and loss
functions of the discriminator to improve performance
of activity recognition.

• RF-Net [29]: A unified meta-learning framework for
RF-enabled one-shot activity recognition. It delivers the
capability of being adaptive to new environments with
very few labeled data.

• MetaAct [28]: A meta learning-based adaptable ac-
tivity recognition model. This approach is specifically
designed for recognizing activities across scenes and
categories using WiFi CSI.

1. https://github.com/ChunjingXiao/CLAR
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Fig. 5. The activity recognition performance for SignFi data
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• MultiSSL [30]: A self-supervised learning method for
human activity recognition. MultiSSL learns accelerom-
eter representations by training a temporal convolu-
tional neural network to recognize the transformations
applied to the raw input signal.

• SimCLR [8]: A simple framework for contrastive learn-
ing of visual representations. SimCLR learns represen-
tations by maximizing agreement between differently
augmented views of the same data example via a con-
trastive loss in the latent space.

• AutoFi [31]: A self-supervised learning activity recog-
nition model using WiFi CSI. AutoFi fully utilizes unla-
beled low-quality CSI samples to learn the knowledge,
which is further transfered to specific tasks.

4.3 Recognition Performance Comparison

Figure 5 and 6 report the results of our model and the base-
line models across the two datasets: SignFi and DeepSeg.
From these results, we have following observations. First,
ours model CLAR consistently yields better performance on
the two datasets. For example, compared to SimCLR, CLAR
exhibits improvements of more than 3% and 2% on the
SignFi and DeepSeg datasets, respectively. CLAR achieves
more distinct improvement on SingFi. The reason is that
there are more activity categories on SingFi, meaning fewer
labeled samples per category. The limited labeled samples
lead to inferior performance for the baselines. However,
by generating augmented data and taking advantage of
unlabeled data, our method CLAR can efficiently address
this issue and achieve higher performance.

Second, meta learning-based methods, RF-Net and
MetaAct, exceed the two GAN-based semi-supervised base-
lines, CsiGAN and ManiGAN. Since meta learning-based
methods are designed for the scenarios with a few labeled
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Fig. 7. The performance with different design choices for SignFi data
and DeepSeg data.

samples. Therefore, under the environment with limited
labeled samples, the meta learning-based models can obtain
better performance than the semi-supervised models, which
generally require a given number of labeled sample to
obtain expected performance.

Third, self-supervised models outperform the others
baselines. In particular, SimCLR, which is designed for
image processing, also achieve relatively good performance,
compared with the GAN-based models. This indicates that
the self-supervised techniques can effectively benefit WiFi
CSI-based human activity recognition especially for the sce-
narios with limited training data. However, by incorporat-
ing our designed augmentation model and adaptive weight
algorithm, our model CLAR significantly outperforms these
baselines.

4.4 Ablation Study

Here we investigate the contribution of the two important
components in CLAR, i.e., the augmentation model and
adaptive weight algorithm. Specifically, we investigate the
role of different components by considering the following
variants of our model: (1) CLAR-Base is the basic contrastive
learning framework that removes the DDPM-based time
series-specific augmentation model and the adaptive weight
algorithm. (2) CLAR-Aug is the contrastive learning frame-
work with the DDPM-based augmentation model but with-
out the adaptive weight algorithm. (3) CLAR-Weight is the
contrastive learning framework with the adaptive weight
algorithm but without DDPM-based augmentation model.
(4) CLAR-Full is our proposed model fully incorporating all
the components.

The experimental results using SignFi data and DeepSeg
data are presented in Figure 7. We summarize the ob-
servations from this figure as follows. First, CLAR-Full
performs the best, while CLAR-Base is the worst model,
which implies that the main components we proposed can
significantly improve the recognition performance. Second,
when incorporating the DDPM-based augmentation model,
CLAR-Aug obtains better results than CLAR-Base. This is
because that the limited samples are augmented by our
designed method, which can benefit the model in improv-
ing generalization capacity on the test data. Third, CLAR-
Weight outperforms CLAR-Base by a certain margin. The
results prove the motivation of our model, i.e., introducing
the adaptive wights can enable the model to capture more
characteristics of activity data and further significantly en-
hance recognition performance.
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Fig. 8. The performance with/without the augmented data for SignFi
data.
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Fig. 9. The performance with/without the augmented data for DeepSeg
data.

4.5 Role of the Augmentation Model

The analyses in the previous section suggest our designed
augmentation model can effectively contribute to the per-
formance improvement. Here, we futher inspect the efficacy
of the augmented data when applying them to other activ-
ity recognition models. We select four baseline approaches
which are specially designed for WiFi CSI-based activity
recognition under cross scenes: CsiGAN [13], RF-Net [29],
MetaAct [28] and AutoFi [31]. We evaluate the model perfor-
mance with/without the augmented data for model train-
ing, named as one-with-aug/one-non-aug. To inspect the gen-
eralization capacity, we conduct these experiments under
the left-out scene, i.e. the data of one user are extracted as
the test data, and others as the training data.

Figure 8 and Figure 9 show the accuracy and F1 for these
four baselines and our CLAR with/without the augmented
data generated by our DDPM-based augmentation model.
As shown in Figure 8, the performance of one-with-aug
substantially exceeds that of one-non-aug for all the models
on SignFi data. For example, the F1 of one-with-aug for
AutoFi is about 3.2% higher than that of one-non-aug. The
DeepSeg dataset, presented in Figure 9, also exhibit the sim-
ilar trends. This results indicate that our DDPM-based aug-
mentation model can generate effective augmented smaples
by combining multiple samples. The generated data can
enlarge the distribution of training data and further enhance
generalization capacity. Also, our augmentation model can
be applied to other similar recongition models.

4.6 Role of Labeled Data Size

Our model requires a number of labeled data to fine-tune
the classifier. Here we investigate the role of labeled data
size. For these experiments, we select p = [40, 60, 100]% of
the training samples as unlabeled data, and select q% as the
labeled data.

As shown in Figure 10 and Figure 11, for all the p values,
our model achieves increasing accuracy and F1 score with
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Fig. 11. The performance with different size of labeled data on DeepSeg
data

the rise of the labeled data size on both datasets, which
indicates that the labeled data size has an important impact
on recognition performance for our model. While, when
selecting 30% and 20% of the labeled data on SignFi and
DeepSeg, individually, the performance becomes stable on
both datasets, i.e., their accuracies are almost the same with
that at 60%. This suggests that our model can efficiently
take advantage of a few labeled samples to obtain expected
performance.

Moreover, the growth rates of the two datasets are
different. The accuracies on SignFi data increase sharply,
while they are relatively stable on DeepSeg data. The reason
behind is because the number of labeled samples per class
is very different for the two datasets. In fact, there are 10
and 30 labeled samples per category for SignFi data and
DeepSeg data, individually. Hence, the same ratio means
the various number of labeled data for these two datasets,
which further leads to different performance. These results
suggest that our model needs a certain amount of training
data to achieve better performance. However, the number
of labeled data, such as 10 per category, is easily affordable
by human labeling.

5 RELATED WORK

This work is mainly related to two research areas: CSI-
based activity recognition and contrastive self-supervised
learning. Here, we will present an overview of the most
closely related works in each area, and highlight the major
differences between our study and these works.

5.1 CSI-based Activity Recognition
The studies on WiFi CSI-based activity recognition can be di-
vided into two genres according to the number of available
labeled data: supervised and semi-supervised approaches
and few-shot learning-based methods.

Supervised methods mainly aim to adopt a number of
labeled data to train classification models for activity iden-
tification. The researchers principally exploit different fea-
tures or/and techniques to enhance recognition perfor-
mance. For example, Chen et al. [32] extract information
from both time and frequency domains for an end-to-end
neural network model to conduct activity recognition, and
they apply point-wise grouped convolution and depth-wise
separable convolutions to confine the model scale and speed
up the inference execution time. Zhang et al. [33] present
a data augmentation method to transform and synthesize
CSI data for alleviating the influence of motion inconsis-
tency and subject-specific issue, and adopt a Dense-LSTM
to classify activities. Sruthi et al. [34] propose a multi-stage
deep learning model consisting of a convolutional neural
network and other popular deep neural architectures, such
as Alexnet, Googlenet and Squeezenet, for WiFi sensing-
based human activity recognition. Xiao et al. [26] explore
the interaction between the activity segmentation and clas-
sification to improve activity recognition performance. Chen
et al. [35] design an attention based bi-directional long short-
term memory model for passive human activity recognition
using WiFi CSI signals. Shi et al. [36] propose an innovative
scheme, which combines an activity-related feature extrac-
tion and enhancement method and matching network. The
proposed scheme can be directly applied in new/unseen
environments without retraining. Semi-Supervised approaches
try to leverage unlabeled data to compensate for the short-
age of labeled data for activity recognition. For instance,
Xiao et al. [13] proposed a semi-supervised generative ad-
versarial network to exploit unlabeled data for CSI-based
activity recognition. Yuan et al. [37] propose a human conti-
nuity activity semi-supervised recognizing method in multi-
view IoT network scenarios. They combine supervised ac-
tivity feature extraction with unsupervised encoder-decoder
modules, which can capture continuity activity features
from sensor data streams.

Few-shot learning-based methods intend to recognize a set
of target classes by learning with sufficient labeled samples
from a set of source classes but only with a few labeled
samples from the target classes [38]. Due to the difficulty of
collecting numerous labeled data in the target domain, this
technique is widely applied to the field of activity recog-
nition. For instance, Zhang et al. [28] present an adaptable
CSI activity recognition framework based on meta-learning,
which can apply to new environments or new types of ac-
tivities by fine-tuning the model with very little train effort.
Zhang et al. [39] propose a graph-based few-shot learning
framework with dual attention mechanisms for human
activity recognition. The model uses a feature extraction
layer, including the convolutional block attention module, to
extract activity related information from CSI data. Wang et
al. [40] propose a multimodal CSI-based activity recognition
framework, which leverages existing WiFi infrastructures
and monitors human activities from CSI measurements.
Wang et al. [41] propose a few shot learning-based human
activity recognition framework, which can achieve expected
performance in recognizing new categories through a small
amount of samples to fine-tune the model parameters and
avoid retraining the network from scratch. Shi et al. [42]
design a human activity recognition scheme using matching
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network with enhanced CSI to perform one-short learning
for recognizing human activities in a new environment.
Feng et al. [43] propose a few-shot human activity recog-
nition method, which leverages a deep learning model for
feature extraction and classification and implements knowl-
edge transfer in the manner of model parameter transfer.

Difference: These supervised and semi-supervised meth-
ods require a number of labeled samples to obtain con-
siderable performance. Meanwhile, the few-shot learning-
based methods need sufficient labeled data from the source
domain for model training. Instead, we introduce con-
trastive learning for CSI-based activity recognition, which
can exploit unlabeled data to derive reliable recognition
for scenarios where only small amounts of labeled training
samples can be collected.

5.2 Contrastive Self-Supervised Learning

Contrastive self-supervised learning is an improtant divi-
sion of self-supervised learning [44]. This technique tries
to transform one item into multiple views, minimizes the
distance between views from the same item, and maximizes
the distance between views from different items in a feature
map [8]. Contrastive methods have been applied to multiple
fields, such as image processing, voice and natural language
processing, and activity recognition.

In the field of image processing, various methods have
been initiated to augment data and build effective views.
For example, SimCLR [8] proposes the composition of mul-
tiple data augmentations, e.g., Grayscale, Random Resized
Cropping, Color Jittering, and Gaussian Blur, to make the
model more robust. InfoMin [45] introduces an information
maximization principle which suggests that a good aug-
mentation strategy should reduce the mutual information
between the positive pairs while keeping the downstream
task-relevant information intact. To explore the use of nega-
tive samples, InstDisc [46] proposes a memory bank to store
the representation of all the images in the dataset. Mean-
while, SwAV [47] proposes to compute cluster assignments
online while enforcing consistency between cluster assign-
ments obtained from views of the same image. MoCo [48]
increases the number of negatives by using a momentum
contrast mechanism that forces the query encoder to learn
the representation from a slowly progressing key encoder
and maintains a long queue to provide a large number of
negative examples. SupCon [49] shows that the positive and
negative instances created by SimCLR do not take into ac-
count the correlation of features between different pictures
belonging to the same class. Clusters of points belonging
to the same class are pulled together in embedding space,
while simultaneously pushing apart clusters of samples
from different classes. WCL [50] proposes a k-nearest neigh-
bor based multi-crops strategy. They store the feature for
every batch and then use these features to find the K closest
samples based on the cosine similarity at the end of each
epoch. CLSA [51] proposes to build stronger augmentation
by a random combination of different augmentations.

In addition, contrastive learning is also widely used for
voice and natural language processing. For example, in the
field of voice, Yakura et al. [52] introduces self-supervised
contrastive learning to acquire feature representations of

singing voices. Tang et al. [53] proposes a novel one-shot
voice conversion framework based on vector quantization
voice conversion and AutoVC. In the domain of natural lan-
guage processing, Qin et al. [10] utilized contrastive learn-
ing to explicitly align similar representations across source
language and target language. Han et al. [54] proposed a
cross-lingual contrastive learning framework to learn FGET
models for low-resource languages.

Recently, contrastive learning is adopted to enhance the
performance of sensor-based activity recognition. For exam-
ple, Jain et al. [55] present a collaborative self-supervised
learning method for senor-based activity recognition, which
leverages natural transformations in the sensor datasets col-
lected from multiple devices to perform contrastive learn-
ing. Khaertdinov et al. [56] combine a transformer-based en-
coder into a contrastive self-supervised learning framework
to learn effective feature representations for sensor-based
human activity recognition. Haresamudram et al. [57] intro-
duce masked reconstruction as a viable self-supervised pre-
training objective for wearable sensing device-based human
activity recognition. Saeed et al. [30] design a multi-task self-
supervised approach, which presents a multi-task temporal
convolutional network to learn generalizable features from
sensory data. Xu et al. [58] design a dual-stream contrastive
learning model that can process and learn the raw WiFi CSI
data in a self-supervised manner. Liu et al. [59] introduce
a short-time fourier neural network-based contrastive self-
supervised representation learning framework, which takes
both time-domain and frequency-domain features into con-
sideration. Koo et al. [60] devise a self-supervised learning
task that pairs the accelerometer and the gyroscope em-
beddings acquired from the same activity instance. Wang
et al. [61] propose a sensor data augmentation method
for contrastive learning, which introduces variable domain
information and simulates realistic activity data by varying
the sampling frequency to maximize the coverage of the
sampling space. Wang et al. [62] present a new contrastive
learning framework for sensor-based human activity recog-
nition, which first clusters the instance representations, and
for each instance, samples from different clusters are re-
garded as negative pairs.

Difference: Compared to these methods, we present a
novel diffusion model-based augmentation way for con-
trastive learning, which can combine two samples from
users with different habits into a new one with compro-
mised characteristics. Different from these augmentation
methods, our augmentation method can generate effective
samples to fill the gap among limited training data, and
further enhance the generalization capacity of the model.
Also, we propose an adaptive weight algorithm to as-
sign appropirate weights to different positive sample pairs,
which is ignored in the aforementioned approaches.

6 CONCLUSIONS

In this paper, we presented a diffustion model-based con-
trastive self-supervised learning framework for human ac-
tivity recognition using WiFi CSI, CLAR. In this framework,
we designed a DDPM-based time series-specific augmen-
tation model, which can merge two samples from users
with different motion habits to generate augmented samples
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with combined characteristics for amplifying training data
and enhancing generalization capacity. Also, we presented
an adaptive weight algorithm, which can adaptively adjust
the weights of positive sample pairs for learning better data
representations. Based on two datasets, experimental results
illustrate that CLAR significantly outperforms the stateof-
the-art baselines.
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J. Hoffman, and T. Plötz, “Masked reconstruction based self-
supervision for human activity recognition,” in Proceedings of the
2020 ACM International Symposium on Wearable Computers, 2020,
pp. 45–49.

[58] K. Xu, J. Wang, L. Zhang, H. Zhu, and D. Zheng, “Dual-stream
contrastive learning for channel state information based human
activity recognition,” IEEE Journal of Biomedical and Health Infor-
matics, vol. 27, no. 1, pp. 329–338, 2023.

[59] D. Liu, T. Wang, S. Liu, R. Wang, S. Yao, and T. Abdelzaher, “Con-
trastive self-supervised representation learning for sensing signals
from the time-frequency perspective,” in International Conference
on Computer Communications and Networks, 2021, pp. 1–10.

[60] I. Koo, Y. Park, M. Jeong, and C. Kim, “Contrastive accelerometer–
gyroscope embedding model for human activity recognition,”
IEEE Sensors Journal, vol. 23, no. 1, pp. 506–513, 2022.

[61] J. Wang, T. Zhu, J. Gan, L. L. Chen, H. Ning, and Y. Wan, “Sensor
data augmentation by resampling in contrastive learning for hu-
man activity recognition,” IEEE Sensors Journal, vol. 22, no. 23, pp.
22 994–23 008, 2022.

[62] J. Wang, T. Zhu, L. Chen, H. Ning, and Y. Wan, “Negative selection
by clustering for contrastive learning in human activity recogni-
tion,” IEEE Internet of Things Journal, pp. 1–13, 2023.

Chunjing Xiao received the Ph.D. degree from
the University of Electronic Science and Tech-
nology of China, Chengdu, China. He is cur-
rently an Associate Professor with the School of
Computer and Information Engineering, Henan
University, Kaifeng, China. He was a Visiting
Scholar with the Department of Electrical Engi-
neering and Computer Science, Northwestern
University, Evanston, IL, USA. His current re-
search interests include recommender systems,
representation learning, and Internet of Things.

Yanhui Han received the B.E degree from the
School of Computer and Information Engineer-
ing, Henan University, China, in 2021. She is cur-
rently pursuing the M.S. degree in the School of
Computer and Information Engineering, Henan
University. Her current research interests include
Internet of Things, wireless networks and data
analytics.

Yan-e Hou received the Ph.D. degree from
Henan University, Kaifeng, China. She is cur-
rently an Associate Professor with the School of
Computer and Information Engineering, Henan
University, Kaifeng, China. Her research inter-
ests currently include intelligent optimization al-
gorithms, artificial intelligent and its relative ap-
plications.

Fangzhan Shi received the B.Eng. in Telecom-
munication Engineering in 2017 and M.Sc. in
Robotics in 2018 at Hangzhou Dianzi Univer-
sity, China and University College London re-
spectively. He worked as an artificial intelligence
engineer at Supcon, China in 2019 and 2020.
He is currently a PhD student in the department
of security and crime science, University College
London. His research interest is joint communi-
cation and sensing.



12

Kevin Chetty is an Associate Professor at Uni-
versity College London where he leads the Ur-
ban Wireless Sensing Lab. He has pioneered
work in passive WiFi sensing; an area of radar
research expected to drive advancements in
ubiquitous sensing and smart environments. Dr.
Chetty has developed patented techniques for
high-throughput data processing in passive wire-
less systems to facilitate real-time operation, and
demonstrated the first through-the-wall detec-
tions using the technology. He has over 100

conference and journal publications in the application of radar systems
and signal processing techniques for situational awareness and human
behaviour classification using micro-Doppler signatures, machine learn-
ing and software-defined sensors.


