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A B S T R A C T

The routine pseudo-static (PS) approach does not consider the random variability of the seismic load which
might lead to unconservative estimates of the slope failure probability in specific seismic regions and soil slopes.
This research explores the effect of random variable PS loading in the stochastic slope stability analysis by
employing the limit equilibrium method (LEM) of slices, Monte Carlo (MC) simulation and random field theory,
termed 2D-RPSLEM. Results show the sensitivity of the problem to various factors, including different levels of
uncertainty of the PS loading and the magnitude of the PS coefficient. In summary, it was observed that the
inclusion of random variability for the PS coefficient leads to more conservative results for slopes with deter-
ministic safety factors above 1.1 while resulting in lower risks for slopes with lower safety factors for larger
magnitude seismic loads.

Nomenclature

Symbol Description

μc Mean cohesion
μϕ Mean friction angle
μKh Mean PS coefficient
Γ Unit weight of soil
H Slope height
λ (= μc/

γHtanμϕ)
Stability number

D Depth factor
ΔH Horizontal coordinate of a point in the random field
ΔV Vertical coordinate of a point in the random field
ρ Autocorrelation function
δH Absolute horizontal distance between two locations within the

random field
δV Absolute vertical distance between two locations within the

random field
θH Horizontal scale of fluctuation (SoF)
θV Vertical SoF
θ Isotropic SoF
COVc Coefficient of variation of the soil cohesion
COVϕ Coefficient of variation of the soil friction angle
COVKh Coefficient of variation of the PS coefficient
θc,ϕ(H,V) Isotropic SoF for the soil parameters
θc,ϕ(Ho) Horizontal SoF for the soil parameters
θc,ϕ(V) Vertical SoF for the soil parameters

1. Introduction and background studies

In earthquake engineering practice, slope stability is most frequently
evaluated using the deterministic pseudo-static (PS) method, in which
constant horizontal PS inertial forces are included in the safety factor
calculations [1]. Of the primary requirements of the PS approach is that
no significant cyclic strength degradation should occur in the material.
The employed PS coefficients are usually based on literature values (i.e.
Table 1). For example, Marcuson [2] believed that the PS coefficient, Kh,
should be considered as (1/3–1/2)*PGA/g in the site where PGA is the
amplified version of the peak bedrock acceleration (due to the design
earthquake) measured at a critical point like the crest of an earth dam
which was used for this particular analysis.

The values of the PS coefficient in Table 1 are often derived ac-
cording to the calibration of earth dam design with 1-m displacement.
However, the corresponding values have been commonly used for the
stability assessment of natural slopes with an acceptable displacement of
0.05–0.30 m. This could be considered one of the key issues of PS sta-
bility analysis of natural slopes [3].

Meanwhile, this PS coefficient value is just an approximation of the
complex real ground motion time series for practical slope stability

* Corresponding author.
E-mail address: pooneh.shahmalekpoor.19@ucl.ac.uk (P. Shah Malekpoor).

Contents lists available at ScienceDirect

Soil Dynamics and Earthquake Engineering

journal homepage: www.elsevier.com/locate/soildyn

https://doi.org/10.1016/j.soildyn.2024.108846
Received 12 February 2024; Received in revised form 21 June 2024; Accepted 9 July 2024

mailto:pooneh.shahmalekpoor.19@ucl.ac.uk
www.sciencedirect.com/science/journal/02677261
https://www.elsevier.com/locate/soildyn
https://doi.org/10.1016/j.soildyn.2024.108846
https://doi.org/10.1016/j.soildyn.2024.108846
https://doi.org/10.1016/j.soildyn.2024.108846
http://crossmark.crossref.org/dialog/?doi=10.1016/j.soildyn.2024.108846&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Soil Dynamics and Earthquake Engineering 184 (2024) 108846

2

analysis. Although extensive studies have been conducted to establish
the rule of the PS coefficient selection, no consensus is reached for this
problem (as seen in Table 1). Thus, employing the uncertainty levels of
the PS coefficient is investigated in the literature [7–10], as it is difficult
to select a unique constant value for this.

In this regard, a probabilistic distribution is assigned to the PS co-
efficient. Youssef Abdel Massih et al. (2008) employed the randomness
of the horizontal PS coefficient (i.e. employing an exponential distri-
bution as well as an extreme value type II distribution with COVKh levels
of 0.1–0.8) in the reliability analysis of a strip footing subjected to a
vertical load. It was shown that for higher values of the applied load, the
effect of the random variability of the seismic load was significant. The
uncertainty of the seismic demand (i.e. PS horizontal acceleration) was
considered in the development of fragility curves of a characteristic
geostructure by Tsompanakis et al. [8] using a lognormal distribution
with a COVKh level of 0.1. Johari et al. [9] developed a probabilistic
model of seismic slope stability based on Bishop’s method using an
exponential probability density function for the PS coefficient with
COVKh level of 1. In a later study, Li et al. [10] explored the effect of
different levels of the PS coefficient variability, 0.25–0.3, in 3D homo-
geneous slope stability analysis through employing the limit analysis
considering normal and lognormal distribution types. Shah Malekpoor
and Lopez-Querol [11] put forward the application of the random fields
in modelling the PS loading spatial variability. Later, Shah Malekpoor
et al. [12] explored the effect of the PS loading spatial variability on
stochastic soil slope stability analysis.

On the other hand, soils vary spatially as a result of depositional and
post-depositional processes that entail not constant properties in the
space, which is called the soil inherent variability. Such phenomena can
be modelled through the theory of random fields [13]. Constraining the
random fields to stationary Gaussian ones (even some non-Gaussian e.g.
lognormal fields can simply be derived from Gaussian ones) equips the
researchers with easy-to-model stochastic fields that require the least
number of inputs including the mean value and coefficient of variation
(COV) of the soil property, the type of the probabilistic distribution of
that property (e.g. normal, lognormal) and the auto-correlation function
(ACF) model which represents the correlation relationship between re-
sidual components of the same property within the field [14].

Employing the soil spatial variability within the slope reliability
analyses is a quite extended approach under different numerical
schemes, including random finite difference method (RFDM), random
finite element method (RFEM) and circular and non-circular random
limit equilibrium method (RLEM). As an example, the effect of

anisotropic spatial variability of undrained shear strength in reliability
analysis of clay slopes was investigated by Jamshidi Chenari and Alaie
[15] through an RFDM approach considering both stationary and
non-stationary random fields (RFs) generated by covariance matrix
decomposition method. Burgess et al. [1] employed the random field
theory and MC simulation together with the finite element method as
the slope stability assessment technique (this combination is called
RFEM), where the slope failure benchmark was the non-convergence
within 500 iterations. However, the high computational effort
required in the strength reduction technique makes RLEMmore efficient
than RFEM, being discussed next [16].

The combination of random fields, Monte Carlo simulations, and
circular LEM termed 2D-RLEM was first introduced by Javankhoshdel
et al. [17]. Here, the stochastic soil values within the field are generated
using the LAS method by Fenton and Vanmarcke [18] and assigned to
the soil elements of a slope model for each MC iteration. In fact, the
elemental values intersecting the slice base midpoints are considered the
soil properties for that slice. Then, the critical slip surface is assessed
through the factor of safety, FS value (calculated by one of the limit
equilibrium methods of slices) of different surfaces in each MC iteration.
In fact, the slip surface with the lowest safety factor is determined at the
end of each iteration and its critical value (FS) is compared to one. The
probability of failure is finally calculated as the number of iterations
with a safety factor less than one to the total number of iterations.
Javankhoshdel and Bathurst [19] and Javankhoshdel et al. [17] utilized
the circular-RLEM to investigate the influence of soil spatial variability
on the slope probability of failure.

Non-circular RLEM was first used by Cami et al. [16] where the
Morgenstern-Price method was employed as the slope stability analysis
approach combined with the Auto Refine search method, together with
the Monte Carlo technique or ‘random walking’ as the optimization
procedure in locating the low-safety-factor non-circular surfaces. It was
shown that their non-circular RLEM approach was able to find the
weakest failure path, similarly to the failure path using the RFEM
approach, though being much more computationally efficient (i.e. 40 %
less time). Shah Malekpoor et al. [20] discussed the effect of the mesh
size of the soil random fields and the cross-correlation between the
strength parameters among other factors in stochastic slope stability
analysis using noncircular-RLEM and compared the results with those of
Burgess et al. [1] from RFEM. Mafi et al. [21] introduced the surface
altering optimization (SAO) method and provided a comprehensive re-
view of the literature on searching methods of critical non-circular slip
surfaces (e.g. Monte Carlo optimization among local optimization
methods and the cuckoo search and particle swarm optimization among
global non-circular search methods) in probabilistic slope stability
analysis. It was demonstrated that SAO is a computationally efficient
and fairly accurate method of optimising non-circular slip surfaces. In
the realm of reinforced soil slopes, Dastpak et al. [22] compared the
probabilistic and the stochastic results of noncircular and circular RLEM
for the internal and external failure mechanisms.

However, the application of the uncertainty of the PS coefficient in
the spatially variable soil slopes has yet to be considered being the focus
of the current study. In this regard, the safety margins of the PS approach
have been presented through employing the novel stochastic approach
presented in Shah Malekpoor et al. [23], which considers the spatially
variable attributes for slope stability analyses, i.e. soil properties, and
the random variability of the PS coefficient as the critical achievement of
the current paper. In fact, the observed trends and turning points in the
design aids reported in that research are justified hereinafter to be
dependent of the deterministic PS factor of safety range.

As the real-world application in probabilistic slope designs
(depending on the target probability of failure), this research shows that
there is significant difference between the failure probability of
spatially-variable slopes for a constant PS loading approach and
considering the uncertainty levels in the PS coefficient even in stable
slopes. This aspect should be taken into account by the designers and

Table 1
PS coefficients from different studies (after [3]).

Investigator Recommended
PS coefficient
(Kh)

Recommended
factor of safety
(FS)

Calibration
conditions

Terzaghi (1950) 0.1 (R–Fa=IX)
0.2 (R–F = X) >1.0 Unspecified
0.5 (R–F > X)

Seed [4] 0.10 (Mb = 6.50) <1 m displacement
in earth dams>1.150.15 (M = 8.25)

Marcuson [2] (0.33-0.50)
*PGAc/g

>1.0 Unspecified

Hynes-Griffin
and Franklin
[5]

(0.50*peak
bedrock
acceleration)/g

>1.0 <1 m displacement
in earth dams

California
Division of
Mines and
Geology [6]

Unspecified;
probably based on
<1 m displacement
in dams

0.15 >1.1

a R–F is Rossi-Forel earthquake intensity scale.
b M is the earthquake magnitude.
c Amplified version of the peak bedrock acceleration measured at a critical

point like the crest of the dam.
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analysers.
This paper is organized as follows: the introduction and background

on this topic is presented first, followed by the description of the nu-
merical model, geometry, soil conditions and input loading. The main
results of the analyses, in the form of design aids, are presented and
discussed next. The paper concludes with the main conclusions and
recommendations for future work.

2. Methodology

To study the random variable moderate pseudo-static input motions
in the stochastic slope stability problem, the Janbu-simplified LEM (to
consider non-circular-shape slip surfaces) is employed in the Monte
Carlo simulation and random fields to model the spatially variable soil
properties. In fact, each Monte Carlo iteration considers a distinct value
of the PS coefficient while a random field is generated for the soil pa-
rameters per iteration. As the probabilistic approach, this technique uses
Monte Carlo simulation (to estimate the slope probability of failure) due
to the numerous random variables in the field.

This approach which is called 2D-RPSLEM makes the simulations
more realistic while retaining the time efficiency feature of seismic slope
stability analyses through the PS approach and limit equilibrium
analysis.

The slopes explored in the current study are cohesive-frictional, with
a single layer/material and a simplified geometry shown in Fig. 1 where
H is the slope height, L represents the slope length, β means the slope
angle and D is the depth factor (i.e. The depth factor is simply taken as
the depth to the hard layer divided by the height of the slope).

The main aim is to focus on the effect of the random variability of the
PS loading using this methodology rather than studying a complex setup
of geometry and material. To be more conservative, no cross-correlation
is considered between the random variables and the pore pressure is
ignored as well.

The mean magnitude of the PS coefficient with lognormal distribu-
tion assumption is limited to 0.3 in the current study. In fact, Baker et al.
(2006) asserted that the use of the PS approach should be limited to
scenarios where the PS coefficient, Kh is below 0.3. The range of COV
values considered in the current study for the PS coefficient are assumed
to be (0.1–4) which is also similar to the range employed in literature (e.
g. Youssef Abdel Massih et al., 2008; [8–10]).

Soil parameters are assumed to follow a lognormal distribution as
well according to their nonnegative nature [17,24] and the Markovian
ACF, stated before, has been used in the simulations of the random
fields. The deterministic and statistical parameter values include H = 5
& 10 m, D = 2, soil unit weight, γ = 18(kN/m3), horizontal SoF for the
soil parameters, θc,ϕ(Ho) = 200 m, vertical SoF for the soil parameters, θc,

ϕ(V) = 1.5 & 5 m [1,25,26]. Isotropic fields for the soil parameters are
used when it is announced under the figure (e.g. θc,ϕ(H,V) = 5 m in Fig. 2);
otherwise, anisotropic fields are employed.

The stochastic values for the soil properties (i.e. cohesion and friction
angle) are generated by employing the random field theory and local
average subdivision method (LAS). These random field values are ob-
tained with the modified RFEM code of Luo et al. [27] which was
originally the developed mrslope2d code by Griffiths and Fenton [28].
These stochastic values are then imported into the authors’ homemade
code as the elemental grid values in the slope where each soil element is

assigned a specific cohesion and friction angle considering a distinct PS
coefficient value at each MC iteration. The midpoint of the base of each
slice is located element-wise, and the corresponding random values are
then assigned to the whole slice, leading to the calculations of the factor
of safety for that slip surface. The noncircular slip surfaces are generated
from the circular ones as is defined by the Auto Refine search method in
Slide2 [29]. The final probability of failure is computed as the number of
iterations with the resulting minimum factor of safety less than 1 to the
total number of iterations.

The validation of the methodology was conducted by comparing the
results with Slide2 [29] software for some cases (when the PS loading is
non variable) considering different factors including the optimal num-
ber of slices, surfaces and the similarity of the mechanism of failure. The
optimal number of slices (which also is representative of the optimal
slice width) and surfaces were determined based on comparing the
minimum factor of safety values from the code with Slide2 results, using
the same input random field when the soil is stochastic, but the PS co-
efficient is taken as constant. It is observed that the minimum factor of
safety does not change significantly after considering more than 100
slices and 20,000 surfaces which was also confirmed by Slide2. More-
over, the mesh size of the random fields is chosen according to the
smallest SoF value used. Huang and Griffiths (2015) recommended
using a mesh size of less than half of the correlation length (or SoF), e.g.
0.5 m*0.5 m when SoF is 1.5 m. In a later research, Chu et al. (2016)
showed that the ratio of mesh size to the SoF should be confined to 0.4,
here the requirements of the mesh = 0.5 m ≤ 1.5*0.4 (0.6) is satisfied.

To make sure of the similarity of the mechanism of failure and the
generated random fields from the current method to Slide2, a compar-
ison has been made for two different iterations and the results are shown
in Figs. 2 and 3 where two different cohesion random fields are shown
together with the critical non-circular slip surfaces resulting from Slide2
and this methodology for two different types of failure mechanisms (i.e.
toe failure in Fig. 2 and base failure in Fig. 3). This comparison confirms
the validity of the current methodology in terms of the failure mecha-
nism and accurate mapping of the random values in the field as well.

A comparison has also been conducted between the resulting critical
circular and noncircular surfaces for two iterations which shows the
more critical output (i.e. minimum safety factor) of the Janbu-simplified
(Figs. 4 and 5).

A flowchart has been shown in Fig. 6 which describes the procedure
in developing this methodology. Finally, a different number of MC
samples were tried to find the optimal number of samples (in terms of
time and accuracy) for this type of analysis. It was observed that 2000
samples were enough for all failure probabilities (Figs. 7 and 8), as a
higher number of iterations does not have a significant influence on the
probability of failure.

3. Results and discussion

As previously mentioned, the methodology newly developed and
presented in the previous sections of this paper is employed to reflect
more realistic outputs as it considers the random variability of the input
motion. This method is employed to investigate the effect of different
mean values and uncertainty levels of the single random variable PS
coefficient and the soil vertical spatial variability on the probability of
failure of the theoretical stochastic slopes. The results have been pre-
sented in this section.

As expected, an elevation in the stability number, signifying higher
soil cohesion while maintaining a constant slope height and friction
angle, results in a diminished probability of failure (i.e. increased
deterministic factor of safety) for a given slope angle under random
variable PS loading. Conversely, an increased mean magnitude for the
PS coefficient is associated with a heightened risk of failure for a specific
slope as this reduces the safety level of the slope (refer to Figs. 9 and 10).

Fig. 9 illustrates that varying levels of uncertainty in the horizontal
PS coefficient minimally impact the vulnerability of a stochastic slope atFig. 1. Sample slope section (after [1]).
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low mean input load levels (μKh = 0.1). However, this aspect becomes
significantly crucial at higher loads for all slope angles, as depicted in
Fig. 10. This can be justified through the low standard deviation values
resulting from low mean magnitudes of the PS coefficient, thus different
simulations (considering different COVKh levels) do not hold significant
differences in results (Fig. 9).

For both mean PS coefficient values (i.e., μKh = 0.1 and 0.3), the
critical or worst-case COVKh value, leading to a higher probability of
slope failure compared to other COVKh values, transitions from 0.1 to 0.5
for slopes with a risk of failure below approximately 40 %. For instance,

in the case of a slope with a high stability number (λ = 0.7), increasing
the mean value of the PS coefficient to 0.3 results in much higher
probabilities of failure for COVKh equal to 0.5 when compared to a
constant Kh approach (see Fig. 10). This matter can be explained through
the safety factor approach in Figs. 11–13.

It is worth noting that the constant Kh approach (i.e., no uncertainty
in the input load) exhibits a compatible trend with the curves repre-
senting different uncertainty levels (ranging from COVKh = 0.1 to COVKh
= 0.5) (refer to Figs. 9 and 10). The Janbu simplified PS safety factor is
also accessible through these two charts for a range of slope angles. In

Fig. 2. Mapped results with β = 45◦, H = 10 m, Kh = 0.1(constant), μc = 16(kPa), μϕ = 20◦, COVc = COVϕ = 0.2, θc,ϕ(H,V) = 5, RF1 (solid curve: Slide2 with FSmin =

1.017, plus curve: this study with FSmin = 1.0598).

Fig. 3. Mapped results with β = 45◦, H = 10 m, Kh = 0.1(constant), μc = 16(kPa), μϕ = 20◦, COVc = COVϕ = 0.2, θc,ϕ(H,V) = 5 m, RF2 (solid curve: Slide2 with FSmin =

0.956, plus curve: this study with FSmin = 0.9468).

Fig. 4. Comparison between the circular and noncircular mechanisms with β = 45◦, H = 10 m, Kh = 0.1(constant), μc = 16(kPa), μϕ = 20◦, COVc = COVϕ = 0.2, θc,ϕ(H,

V) = 5 m, RF4 (solid circular curve with FS (Bishop) = 1.1, non-circular plus-line curve with FS (Janbu simplified) = 0.95).

P. Shah Malekpoor et al.
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fact, PS factor of safety of a slope with β = 40◦, λ = 0.3, μϕ = 20◦, and μKh
= 0.1 (deterministic parameter values) is 1.14 which is shown by the
green arrow pointing to the right in Fig. 9. On the other hand, the
pointing to the left green arrow in the same figure represents the
probability of failure for this slope in a spatially variable context with
statistical parameters mentioned in the caption and is estimated to be

9.8 % when COVKh is 0.5.
Another representation of the results will be discussed here with

respect to both mean magnitude of 0.1 and 0.3 for the PS coefficient. To
include a variety of range of slope inclinations, the effect of different
levels of the random variability of the PS coefficient has been explored
considering different levels of COVKh (i.e. 0.2, 0.5 and 4 as justified

Fig. 5. Comparison between the circular and noncircular mechanisms with β = 45◦, H = 10 m, Kh = 0.1(constant), μc = 16(kPa), μϕ = 20◦, COVc = COVϕ = 0.2, θc,ϕ(H,

V) = 5 m, RF11 (solid circular curve with FS (Bishop) = 0.99, non-circular plus-line curve with FS (Janbu simplified) = 0.94).

Fig. 6. Flowchart of the procedure in developing the methodology.

P. Shah Malekpoor et al.
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before) for mild, medium and steep slope geometries (i.e. 20◦, 40◦ and
60◦). Uncertainty levels in the determination and choice of Kh in pre-
liminary stages of seismic design for slopes with PS factors of safety
above around 1.1 show unconservative behaviour of the constant Kh
approach for all slope angles and both mean magnitudes of the PS co-
efficient (Figs. 11–17). In fact, the higher the value of the deterministic
PS safety factor, the more critical is a higher level of the uncertainty and
a staged pattern in Pf corresponding to different levels of the COV of the
PS coefficient is observed in the following graphs (Figs. 11–17). This can
be interpreted as different worst-case COVKh levels for different ranges of
the deterministic PS safety factors (or different ranges of probability of
failure). For example, green arrows in Fig. 14 show that a constant level
of the PS coefficient leads to a probability of failure of 15.2 %, while
uncertainty levels of 0.2, 0.5 and 4 result in 27.2 %, 30.4 % and 17 %
corresponding to a PS safety factor of 1.12 (thus the worst-case COV is
0.5 for this safety factor). The red rectangular boxes in Figs. 11–17
indicate the range of PS deterministic safety factor of slopes where a
constant approach is unconservative. This matter underlines the
importance of considering different levels of the PS uncertainty in
probabilistic seismic slope stability designs. This also explains the trends
in Figs. 9 and 10 where the worst case COV levels of the PS coefficient
changes by increasing the slope angle (i.e. lowering the factor of safety).
In fact, a constant approach corresponds to higher probabilities of fail-
ure compared to other COV levels for slopes with safety factors less than
about 1.1 while a high variability level for the PS coefficient is the worst-

Fig. 7. Optimal number of MC samples for Pf under 10 % (assuming β = 20◦, μϕ = 20◦, λ = 0.9, μKh = 0.3, H = 5 m, γ = 18 kN/m3, COVc = 0.3, COVϕ = 0.15, COVKh
= 0.5, (θc,ϕ)Ho/H = 40, (θc,ϕ)V/H = 0.3).

Fig. 8. Optimal number of MC samples for Pf over 10 % (assuming β = 20◦, μϕ = 20◦, λ = 0.3, μKh = 0.3, H = 5 m, γ = 18 kN/m3, COVc = 0.3, COVϕ = 0.15, COVKh =

0.5, (θc,ϕ)Ho/H = 40, (θc,ϕ)V/H = 0.3).

Fig. 9. The effect of various levels of COVKh and λ for μKh = 0.1, μϕ = 20◦, COVc
= 0.3, COVϕ = 0.15, (θc,ϕ)Ho/H = 40, (θc,ϕ)V/H = 0.3 with a Markovian ACF.

P. Shah Malekpoor et al.
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case scenario for slopes with higher safety factor levels explaining the
turning points in previous design aids (Figs. 9 and 10).

Totally, a constant approach is not safe and reasonable for slopes
with certain ranges of the deterministic PS factors of safety in moderate
seismic areas with PS coefficients of 0.1 and 0.3. It is vital to consider
different uncertainty levels of the PS coefficient and choose the suitable
graph among others considering the slope angle, the value of the PS
coefficient and the slope PS safety factor (Figs. 11–17). Considering this
limitation of the constant approach (i.e. uncertainty in the PS coefficient
value) can serve as a better seismic probabilistic design of the slopes e.g.
Fig. 15 which shows that for a slope with deterministic safety factor of

1.37, a constant approach yields a desirable close to 0 probability of
failure while an uncertainty level of 0.2 leads to the Pf of 7 %. Impor-
tantly, Fig. 17 confirms the broader relevance of the results considering
a higher slope.

To observe the effect of the soil vertical spatial variability on the
results, a longer value (i.e. 5 m) has also been tried as the vertical spatial
correlation length of the soil as the soil is expected to have a lower
correlation length in the vertical direction (i.e. anisotropic behaviour in
real), thus the effect of the horizontal variation can be discarded. The
analyses have been repeated for three different levels of the COV of the
PS coefficient in addition to the constant approach. As it can be

Fig. 10. The effect of various levels of COVKh and λ for μKh = 0.3, μϕ = 20◦, COVc = 0.3, COVϕ = 0.15, (θc,ϕ)Ho/H = 40, (θc,ϕ)V/H = 0.3 with a Markovian ACF.

Fig. 11. Comparison between deterministic and probabilistic seismic approaches (β = 20◦, H = 5 m, μKh = 0.1, COVc = 0.3, μϕ = 20◦, COVϕ = 0.15, (θc,ϕ)Ho/H = 40,
(θc,ϕ)V/H = 0.3).

P. Shah Malekpoor et al.
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Fig. 12. Comparison between deterministic and probabilistic seismic approaches (β = 40◦, H = 5 m, μKh = 0.1, COVc = 0.3, μϕ = 20◦, COVϕ = 0.15, (θc,ϕ)Ho/H = 40,
(θc,ϕ)V/H = 0.3).

Fig. 13. Comparison between deterministic and probabilistic seismic approaches (β = 60◦, H = 5 m, μKh = 0.1, COVc = 0.3, μϕ = 20◦, COVϕ = 0.15, (θc,ϕ)Ho/H = 40,
(θc,ϕ)V/H = 0.3).

Fig. 14. Comparison between deterministic and probabilistic seismic approaches (β = 20◦, H = 5 m, μKh = 0.3, COVc = 0.3, μϕ = 20◦, COVϕ = 0.15, (θc,ϕ)Ho/H = 40,
(θc,ϕ)V/H = 0.3).

P. Shah Malekpoor et al.
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Fig. 15. Comparison between deterministic and probabilistic seismic approaches (β = 40◦, H = 5 m, μKh = 0.3, COVc = 0.3, μϕ = 20◦, COVϕ = 0.15, (θc,ϕ)Ho/H = 40,
(θc,ϕ)V/H = 0.3).

Fig. 16. Comparison between deterministic and probabilistic seismic approaches (β = 60◦, H = 5 m, μKh = 0.3, COVc = 0.3, μϕ = 20◦, COVϕ = 0.15, (θc,ϕ)Ho/H = 40,
(θc,ϕ)V/H = 0.3).

Fig. 17. Comparison between deterministic and probabilistic seismic approaches (β = 45◦, H = 10 m, μKh = 0.2, COVc = COVϕ = 0.2, μϕ = 20◦, (θc,ϕ)11
(H,V)/H = 0.5).

P. Shah Malekpoor et al.
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observed, a greater vertical correlation length for the soil led to minimal
changes in the results, especially the trend is similar (Fig. 18).

4. Conclusion

This research includes a novel viewpoint towards the PS approach in
seismic stochastic slope stability analyses. The methodology employed,
i.e. 2D- RPSLEM, asserts the necessity of considering various levels of
COV of the PS coefficient as it is shown that there is a disparity between
the results when adopting different values as the COV of the seismic
input load. In this regard, theoretical slope models have been analysed
to understand the influence of the different levels of input motion and its
uncertainty levels. The most important conclusions derived from this
research are listed next.

1. Uncertainty of the seismic load plays a bolder role for higher mean
magnitude of the PS coefficients (or higher PGA values).

2. It is routine to apply a constant PS load in probabilistic slope stability
analyses according to previous references. This method is justifiable
and safe for slopes with FS less than about 1.1 (failure probabilities
above about 40 %). However, this approach is unrealistic as different
researchers have presented different relationships for the calculation
of the PS coefficient, thus showing great uncertainty for its value.
More importantly, it has been shown that this constant approach
may have an unconservative performance for deterministic PS safety
factors above 1.1 or failure probabilities less than about 30 % for all
slope angles and PS coefficient values investigated in the current
research. Thus, different uncertainty levels of the PS coefficient must
be taken into account for such slopes.

3. This research shows a significant difference between the failure
probability of spatially-variable slopes for a constant PS loading
approach and considering the uncertainty levels in the PS coefficient
value even in stable slopes (for both mean PS coefficient values of 0.1

and 0.3). This difference in the failure probability should be
considered by the designers who consider a target probability of
failure.

4. Analysis of a higher slope (10 m) has led to similar trends and
confirmed the constant PS approach being unconservative for slopes
with deterministic safety factors above around 1.1. This shows the
broad relevance of the PS approach safety margins and this research
results in engineering practice.

5. The soil vertical spatial variability does not have a significant in-
fluence on the boundary value deterministic PS safety factor (i.e.
1.1).

6. The difference between the results due to different uncertainty levels
of Kh is found to be more significant for lower safety factors or when
the slope is highly vulnerable.

7. The worst case COVKh value (which results in the greater vulnera-
bility of the stochastic slope or a higher probability of failure
compared to other COVKh values) changes from 0.2 to 4 for all slope
angles and soil vertical spatial variability values as the safety factor
increases.

This matter might revolutionize the applications of the PS approach
in the realm of seismic probabilistic slope stability analysis as the
routine might compromise the safety of the design for specific slopes
(with PS safety factor above around 1.1) in seismic regions of the world.
It is suggested to consider the effect of the cross-correlation between the
soil parameters, the existence of different soil profiles within the slope
geometry as well as the pore pressure effect in future research studies.
Importantly, this revolutionary methodology is the first step to the
development of a complete set of design charts which require further
analyses of different geometries and soil types.
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