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A B S T R A C T   

The development of mathematical models to describe reaction kinetics is crucial in process design, control, and 
optimisation. However, distinguishing between different candidate kinetic models presents a non-trivial chal-
lenge. Recent works on this topic introduced an approach that employs artificial neural networks (ANNs) to 
identify kinetic models. In this paper, the ANNs-based model identification approach is expanded by introducing 
an optimal experimental design procedure. The performance of the method is evaluated through a case study 
related to the identification of kinetics in a batch reaction system, where different combinations of experimental 
design variables and noise level on the measurements are compared to assess their impact on kinetic model 
identification. The proposed experimental design methodology effectively reduces the number of required ex-
periments while enhancing the artificial neural network’s ability to accurately identify the appropriate set of 
equations defining the kinetic model structure.   

1. Introduction 

In process systems engineering (PSE) the mathematical modelling 
plays a key role in understanding and characterising systems behaviour 
(Klatt and Marquardt, 2009). In particular when considering the 
chemical industry, the reactor is the heart of the process, where raw 
materials are converted into products. Accurately describing the phe-
nomena taking place in reacting systems through mathematical models 
is essential for evaluating the advancement of chemical reactions within 
a reactor. This aspect holds significant importance in reactor design, 
control, and optimisation. The general description of the reaction unit 
requires several models, from the reactor model (e.g., CSTR, PFR, 
fluid-dynamics simulation) to the model of the systems dynamics (ki-
netic models). The identification of a kinetic model involves two aspects: 
i) the definition of the model structure, i.e. the mathematical formula-
tion of reaction rate equations, and ii) an accurate estimation of the 
model parameters. 

To identify a kinetic model, systematic model building approaches 
have been proposed in the literature (Asprey and Macchietto, 2000). 
However, the modelling process might pose several challenges to the 
modeller, both in terms of model structure identification and precise 
parameter estimation. For example, it might not be clear what reaction 

steps are involved in the dynamics of the system (model structure iden-
tification) or the model could be affected by parameter identifiability 
issues (Asprey and Macchietto, 2000) that do not allow a precise esti-
mation of the parameters (parameter estimation). On the other hand, 
instead of looking for a physics-based description of the systems dy-
namics, the modeller can tackle the problem using a data-driven 
approach, which is one of the foundations of machine learning (ML) 
technologies. 

In the past years there has been an increasing interest in the appli-
cation of ML techniques in many fields of science and engineering. 
Among several ML methods, especially artificial neural networks 
(ANNs) have been reported in a plethora of applications due to different 
key factors. Firstly, ANNs exhibit remarkable flexibility in approxi-
mating nonlinear continuous functions (Hornik et al., 1989). Secondly, 
there have been significant advancements in the development of effi-
cient algorithms for training ANNs (Géron, 2019). Lastly, the cost of 
computational power has steadily decreased (Russell and Norvig, 2021), 
making it more accessible and contributing to the success of ANNs. 

With respect to reaction kinetics there have been in past years 
different applications of ANNs. Neural networks can be used either as 
regressor or classifiers, but it is important to underline that most of the 
previous applications of ANNs to kinetic modelling were for regression 
(Kayala and Baldi, 2012; Amato et al., 2012; Wei et al., 2016; 
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Chakkingal et al., 2021). Kayala and Baldi (2012) proposed a machine 
learning approach to determine the reaction mechanism given the 
reactant and products by using ANNs trained on different reaction types. 
Amato et al. (2012) used an ANN regressor as a surrogate model of the 
system and then exploited it for designing informative kinetic experi-
ments, in order to avoid the multiple solution of ODEs systems. Wei et al. 
(2016) explored the use of ANNs for predicting reaction products given a 
set of reactants. Chakkingal et al. (2021) used ANNs for interpreting 
microkinetic data, demonstrating the approach on Fischer-Tropsch 
synthesis case study. 

A recent work by Quaglio et al. (2020b) presented a model selection 
approach where an artificial neural network is trained for recognising 
kinetic model structures given the available experimental data, there-
fore not using the ANN for regression but instead tackling the model 
selection as a classification problem. The method does not necessitate 
fitting kinetic parameters and is particularly suitable in scenarios where 
a large number of potential kinetic mechanisms is involved. The 
approach presented in Quaglio et al. (2020b) was characterised by a 
fixed design of the experiments, though further study showed a relevant 
impact of the experimental design on the ANN ability in correctly clas-
sifying the model structures. This led to the idea of combining the 
ANN-based kinetic model recognition method with an optimal design of 
experiments procedure, firstly introduced in Sangoi et al. (2022). The 
methodology proposed for optimal design of experiments requires an 
optimisation, such as in standard model-based design of experiments 
(MBDoE) procedures (Galvanin et al., 2016), but differs from MBDoE 
approaches on how the optimisation problem is defined and solved 
numerically. Sangoi et al. (2022) presented preliminary results on the 
application of optimal DoE to enhance the ANN accuracy in 
classification. 

This paper is an extension of the concept introduced in Sangoi et al. 
(2022), to provide a formal analysis and discussion of all the steps 
involved in the design of experiments optimisation methodology and 
new results including a) the sensitivity analysis of ANN performance to 
different sets of experimental conditions; and b) comparison of optimal 
experimental design solutions under different scenarios of experimental 
noise, degrees of freedom on the experimental variables and their 
impact on model identification. 

This paper is aimed at describing the framework proposed to opti-
mise the design of experiments for kinetic model identification and show 
extensively the results obtained on the case study considered. The 
manuscript is structured as follows. The proposed approach to design 
the experiments coupled to ANNs-based kinetic model recognition is 
detailed in Section 2. The case study on which the framework has been 
tested is described in Section 3. Results are presented and discussed in 
Section 4. 

2. Proposed optimal experimental design approach 

This section presents the proposed procedure for optimal design of 
experiments aimed at improving the performance of the ANN-based 
method for kinetic model recognition. Moreover, a comparison with 
standard model building procedures is also given in this section. 

The section is structured as follows. Firstly, an overview of ANN 
classifiers is provided in subSection 2.1. Then subSection 2.2 follows by 
presenting the proposed procedure, with a special focus on the steps 

involved in the optimisation of the experimental conditions to provide 
the reader with a comprehensive description of the experimental design 
procedure. 

2.1. Artificial neural network classifier 

Before starting with the description of the optimal DoE procedure, a 
brief overview of ANN classifiers is provided to the reader (Walczak and 
Cerpa, 2003) to have a clear understanding of the methods employed, 
summarising the most relevant information reported in Quaglio et al. 
(2020b). The key element in an Artificial Neural Network is the so-called 
perceptron (Rosenblatt, 1958), which is a function that transforms a Nn ×

1 input array n of real numbers into a scalar output p. The single layer 
perceptron model is mathematically described by 

p = ψ
(
wTn+ b

)
(1)  

where w is an Nn × 1 array of parameters, b is a bias parameter (scalar), 
and ψ represents the activation function of the neuron. 

In general, an ANN is composed of many perceptrons that can be 
arranged and connected in several ways. Fig. 1 depicts the structure of a 
fully connected feedforward ANN, where the perceptrons are arranged 
in different layers and every neuron in the ith layer is connected with all 
the neurons in the (i - 1)th and (i + 1)th layers. Let consider a two-layers 
ANN as shown in Fig. 1 and be Nh and No the number of neurons 
respectively in the hidden and output layer. The ANN model is then 
defined as 

p = ψo
[
WT

o ψh
(
WT

h n+bh
)
+bo

]
(2) 

In (2), p is the Nm × 1 array of output values, Wh [Nn ×Nh] and 
Wo [Nh ×Nm] are matrices of parameters (weights) associated with the 
hidden and output layer respectively, bh [Nh × 1] and bo [Nm × 1] are the 
vectors with the bias parameters. The functions ψh and ψo are the acti-
vation functions chosen for the hidden layer and output layer. 

When using an ANN for classification, the objective is to assign a 
label l ∈ {1,…, Nm} to the input array among the set of Nm available 
categories. For this application a typical choice of activation function in 
the output layer ψo is the softmax function (Arbib, 2002). With this 
choice of activation function the output p satisfies the conditions 0 ≤

pk ≤ 1 ∀k ∈ {1, …, Nm},
∑Nm

k=1pk = 1, therefore the values pk can be 
interpreted as a probability of the class k to be associated with the input 

Acronyms 

ANN Artificial neural network 
DE Differential evolution 
DoE Design of experiments 
MBDoE Model-based design of experiments  

Fig. 1. Graphical representation of a two-layers feedforward artifiacial neural 
network. Gray-coloured circles represent the perceptrons, based on Quaglio 
et al. (2020b). 
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vector n. The predicted label ̂l ∈ {1,…, Nm} is then chosen as the class 
with the highest probability associated 

l̂ = argmax
k

pk (3) 

The construction of the ANN requires the definition of some hyper-
parameters, such as the number of layers and the number of perceptrons 
in each layer. The ANN is then trained on a training dataset, so that the 
weights are adjusted based on the information available in the data. 
Subsequently, new data (testing dataset) are fed to the trained ANN to 
test its ability in making predictions on unseen data, i.e. data not used 
for training. 

2.2. Overview of the proposed procedure 

In this project the ANN classifier is used as a tool for the selection of 
kinetic models, as formulated by Quaglio et al. (2020b) that referred to 
this application of ANNs as kinetic model recognition. In general, it is 
assumed that a set of Nm candidate kinetic models are proposed to 
characterise the dynamic behaviour of a reacting system of interest. In 
the experimental setup u is defined as the Nu × 1 array of controlled 
input and y is the Ny × 1 array of measured system outputs (state var-
iables sampled over time). Time is indicated with the variable t. For 
every l ∈ {1,…,Nm} the respective model can be expressed in a general 
form as 

fl(ẋl, xl,u, t, θl) = 0
ŷ l = hl(xl)

(4)  

where xl is the array of Nx,l × 1 system state variables, ẋl is the array of 
Nx,l × 1 time derivatives of the state variables. In this formulation of the 
dynamic model, θl is the Nθ,l × 1 array of model parameters, while ŷl is 
the Ny,l × 1 array of model predictions of the measured system states. 

In the procedure proposed by Quaglio et al. (2020b) all the candidate 
models are used to build a large dataset of in silico simulated kinetic 
experiments. If Nm are the candidate models, Np is the number of 
different sets of parameter values considered per model, Ny the number 
of observed states and Nsp the total number of samples from all the 
simulated experiments, then the dataset Ψ has dimension 

[(
Nm⋅Np

)
×

(
Ny⋅Nsp + 1

)]
, since also the label is included as the last column, as 

depicted in Fig. 3. These labelled data are then used to train an ANN to 

associate the input experimental data (species concentration measure-
ments) to the kinetic model structure that was used to generate them. 
Once the ANN is trained, validated, and tested, it can be applied for the 
kinetic model recognition on the physical reacting system: the experi-
ments are conducted on the system under investigation at the same 
operating conditions of the simulated ones and the collected data are fed 
to the ANN. The softmax values obtained as output from the network are 
then taken as a probability associated to each model structure to best 
describe the reacting system. 

Since in the parametric study by Quaglio et al. (2020b) a limited 
effect of the hyperparameters was observed on the ANN accuracy, in the 
proposed procedure the optimisation is conducted to identify the 
optimal experimental conditions while the ANN architecture is not 
optimised, i.e. the network hyperparameters are an input in the pro-
posed procedure. 

The framework firstly proposed in Sangoi et al. (2022) and described 
in detail in this paper is shown in Fig. 2. More specifically, the discussion 
is here extended to formally describe the formulation of the optimisation 
problem (Section 2.2.1), the definition of the hyperparameters for the 
optimiser (Section 2.2.2), and the equations used in the generation of the 
in silico data set (Section 2.2.3). 

In the framework the ANN-based method is extended by including a 
procedure for the optimal design of experiments (step 2 in Fig. 2) before 
the kinetic model recognition (step 4) being applied on the real reacting 
system. In the scheme of Fig. 2 the main steps of the procedure are 
represented: step (1) is the definition of the inputs required to optimise 
the experiments in the context of ANN-based model recognition; step (2) 
the DoE optimization is performed which consists of three key tasks at 
every iteration of the algorithm; step (3) the results of the optimisation 
are obtained; and lastly in step (4) the kinetic model recognition 
approach introduced by Quaglio et al. (2020b) is used on the chemical 
system starting from the DoE optimisation outputs. 

The inputs required in the procedure are the following: i) the defi-
nition of the experimental design space in terms of manipulated exper-
imental design variables and their range of variability; ii) the library of 
candidate kinetic model structures formulated for describing the system; 
iii) a set of feasible parameters Θl for all the Nm candidate models; iv) a 
characterisation of the experimental noise; v) the set of hyperparameters 
describing the ANN structure (e.g., number of layers, number of nodes, 
activation functions). 

Once all the inputs are defined, the DoE optimisation can start. The 

Fig. 2. Proposed procedure for optimal design of experiments in the ANN-based kinetic model recognition framework.  
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experimental design optimisation step (Step 2) is an iterative process 
which consists of three key sequential tasks: (1) the generation and 
evolution of a population of possible DoE, (2) the experimental condi-
tions are used to simulate kinetic experiments in order to create multiple 
datasets (one for each DoE in the population), (3) which are used to train 
and test ANNs (one per dataset). Therefore for every candidate DoE, a 
new ANN with the same structure is trained and tested, while fine-tuning 
of the network is not part of the proposed procedure. 

Two outputs are obtained from the DoE optimisation, i.e. the optimal 
experimental conditions and the respective ANN, which is the one with 
the best performance in classifying new data. These two optimisation 
outputs are then used as inputs in the kinetic model recognition step, 
where the same experiments are conducted on the chemical system 
under assessment. The data obtained from the experiments are subse-
quently used as an input to the trained ANN classifier, which provides in 
output a probability associated to every candidate model structure. 

2.2.1. Formulation of the optimisation problem 
The metric chosen to optimise the experimental design is the ANN 

accuracy on the test set, evaluated as the percentage of models correctly 
classified, so that the optimisation problem is formulated as: 

min
φ

− Γtest

s.t.
φ ∈ Φ

Γtest =
|{i ∈ {1,…,NΨtest} s.t. (ni, li) ∈ Ψtest ∧ l̂ i = li}|

|{i ∈ {1,…,NΨtest} s.t. (ni, li) ∈ Ψtest}|
× 100%

(5)  

where the objective function Γtest is the ANN accuracy in the predictions 
on the testing-set Ψtest, φ is the experimental design vector and Φ is the 
experimental space defined by the experimental design variables and 
their range of variability. 

The objective function is influenced by the intrinsic stochasticity in 
the ANN training process, therefore the optimisation turns into the 
problem of maximising a stochastic function that cannot be expressed 
mathematically as a function of the optimisation variables (i.e. the 
experimental conditions). Due to these features of the objective function 
in this context, it is chosen to apply a direct-search method to solve the 
problem rather than gradient-based algorithms. In particular, it is cho-
sen to use the differential evolution (DE) algorithm by Storn and Price 
(1997), a population-based evolutionary algorithm. Along with robust-
ness and easiness to make use of the solver, the most important 
advantage of using DE algorithm, with respect to the problem tackled, is 
that no information on the shape of the objective function is required, 
but only a measure of the cost function for every choice of the optimi-
sation variables, i.e. the ANN’s test accuracy when varying the DoE. In 
fact, DE was chosen because stochastic direct search approaches are 
particularly suitable for optimising nonlinear and non-differentiable 
objective functions. Moreover, DE algorithm satisfies the following re-
quirements: i) it is able to handle nonlinear, non-differentiable and 
multimodal cost functions, ii) it can be parallelised to deal with 
computationally expensive problems, iii) it is easy to use and iv) it has 
good convergence properties, as reported by Storn and Price (1997). On 
the other hand, a disadvantage that must be considered is that the size of 
the optimisation variables vector, i.e. the number of experiments and the 
variables defining each experiment, has to be fixed and cannot be 
optimised with the experimental conditions. However, in order to also 
minimise the number of experiments required, a possibility is to repeat 
the optimisation starting with one experiment and then gradually in-
crease the number of experiments. By doing this, the profile of the 
optimal solution as a function of the number of experiments is obtained 
and the point where the objective function first reaches its maximum can 
be chosen as the minimum number of experiments. 

The following subsections provide a more detailed description of the 
three key tasks used to solve the optimisation problem (i.e. step 2 of 

Fig. 2). 

2.2.2. Task 1: generation and evolution of DoE population 
The optimiser randomly generates a population of experimental 

designs, named individuals, which are then evolved at every iteration. 
The individuals are moved in the experimental space towards the region 
of expected optimum, aiming to make them all converge to the optimum 
within a user-specified tolerance. The general optimisation problem can 
be stated as a minimisation problem as 

min
φ

obj(φ) (6)  

subject to some constraints 

LBj ≤ φj ≤ UBj ∀j = 1,…, Nφ (7)  

where obj(φ) is the objective function, φ = (φ1,…,φNφ
)
T is the 

Nφ-dimensional array of optimisation variables and 
(
LBj, UBj

)
∀j ∈

{1,…,Nφ} are the lower and upper bounds defining the search space for 
the experimental design variables. In this study, φ is the vector of 
experimental conditions and obj(φ) is the opposite of ANN test-accuracy 
(i.e., − Γtest) as formulated in Eq. (5), so that minimising 
obj(φ) corresponds to maximising Γtest . The constraints in the form of Eq. 
(7) are given in terms of upper/lower bounds on operating conditions for 
the experimental design variables. A vectorφ satisfying Eq. (7) will be 
called feasible. 

To solve Eq. (6), the DE solver generates a number of individuals or 
target vectors, i.e. feasible vectors φi,G ∀ i = 1,…,NP, where NP is the 
number of individuals in the population and G is an integer index 
indicating the generation number, which evolve in the next generation 
through the steps of mutation, crossover and selection. For the first iter-
ation (i.e., G = 1) the target vectors are randomly selected within the 
feasible space. A detailed description of how the target vectors are 
evolved in the DE algorithm through mutation, crossover and selection 
is available in Appendix B. 

An advantageous characteristic of differential evolution optimiser is 
its flexibility and easiness of use. A few parameters of the DE solver can 
be adjusted by the user, along with the strategy as previously mentioned, 
in order to adapt the algorithm to the problem needs. Among these 
parameters, the most relevant are the number of individuals in the 
population NP , the mutation factor F and the crossover probability CR 
(Appendix B). Moreover, the tolerance and the maximum number of 
iterations over which the entire population could be evolved are other 
important factors for tuning the optimiser. The number of individuals in 
the population is usually defined through the parameter P, which is a 
proportionality factor between Nφ, characteristic of the problem, and 
NP. 

NP = P⋅Nφ (8) 

According to Storn and Price (1997) a choice of P between 5 and 10 is 
reasonable to guarantee and adequate exploration of the space of 
variables. 

The mutation constant F , a real number in the range [0,2], impacts 
on both the search radius and rate of convergence. Large values of F 
allow to increase the search radius, thus reducing the probability of 
stopping in local minima; however, the larger the mutation factor the 
slowest the convergence. The factor F can also be defined through an 
interval [Fmin, Fmax], so that the mutation factor randomly changes at 
every generation G of individuals, in a process called dithering. Dithering 
can help to significantly increase the rate of convergence. Storn and 
Price (1997) suggest that values of F smaller than 0.4 or larger than 1 are 
usually ineffective. 

The crossover probability, or recombination constant, CR ∈ [0,1], 
impacts on the mutated elements that can pass to the next generation of 
individuals. A large value of crossover probability usually leads to faster 
convergence while low values of CR will lead to a more stable behaviour 
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when approaching to the solution, therefore the choice of an appropriate 
value of CR is not trivial. A good starting choice can be CR=0.1 based on 
Storn and Price (1997), however larger values could be chosen to speed 
up the convergence. 

Every time a DoE is generated or mutated, the respective value of the 
objective function is computed: the dataset is generated by simulating 
the corresponding experiments in silico, and split into training- 
validation-test sets to train the ANN, and evaluate the ANN accuracy 
(optimisation objective function) on the test dataset. 

2.2.3. Task 2: in silico dataset generation 
For every target DoE of the population, a labelled dataset Ψ is built as 

in Eq. (9) by simulating experimental measurements (see Fig. 3). The set 
of simulated measurements is the input array for the ANN, ni

[
Nsp⋅Ny ×

1
]
, and is constructed by integrating the equations of the kinetic model 

with model structure l = li. 

Ψ = {(ni, li) ∀i=1,…,Nψ s.t. li ∈ {1,…,Nm}} (9) 

To avoid the ANN predictions to be biased towards some of the ki-
netic models, it is important for the full dataset Ψ to be balanced and 
contain a comparable number of elements for each of the candidate Nm 
model structures. To reproduce real experimental conditions from the 
simulation, the elements ni of the dataset are obtained by summing two 
contributions, i.e. the array of model predictions n̂i

[
Nsp⋅Ny × 1

]
and a 

random factor ϵ(n̂i)
[
Nsp⋅Ny × 1

]
which emulates the experimental error 

on the measurements. 

ni = n̂i + ϵ(n̂i) ∀i ∈ {1,…,Nψ} (10) 

The prediction term n̂i is defined as 

n̂i =
[
ŷ l(φ1, θl)

T
, …, ŷ l

(
φNsp , θl

)T
]

θl=U(Θl), l=li
∀i ∈ {1,…,Nψ} (11) 

The Nsp samples in Eq. (11) are computed from the li-th kinetic model 
structure, using the kinetic parameters θl = U(Θl), where the function 

U(Θl) returns a randomly sampled parameter set from the feasible 
parameter domain Θl. The experimental error ϵ(n̂i) introduced in (10) is 
assumed to be normally distributed, therefore expressed as 

ϵ(n̂i) ∼ N (0, Σ(n̂i)) ∀i ∈ {1,…,Nψ} (12) 

In (12) N (0, Σ) represents a multivariate normal distribution with 
zero mean and covariance matrix Σ

[
Nsp⋅Ny × Nsp⋅Ny

]
. The covariance 

matrix is chosen as a diagonal matrix, the elements of which are defined 
in the general form as 

σjk =

⎧
⎨

⎩

σ2
r ⋅

1
100

⋅n̂i,j + σ2
c

0

if
if

j = k
j ∕= k ∀ j, k (13) 

Where ̂ni,j is the j-th element of the array n̂i, σr is a scalar representing 
the relative variance and σc is a scalar indicating the contribution of the 
constant variance to the overall noise on the simulated measurements. 

2.2.4. Task 3: ANN training and testing 
After defining the experimental design and building the dataset 

though simulated experiments, the procedure continues with the 
training and testing of the ANN. The ANN hyperparameters (e.g. number 
of layers, number of nodes, activation function) used to build the 
network are user-defined inputs, while the training process aims at 
identifying the ANN parameters, i.e. the weights associated to the con-
nections between the nodes (Wh and Wo in Eq. (2)). It must be under-
lined that the selection of the network hyperparameters is important to 
avoid overfitting or underfitting issues; however, in this paper the 
number of neurons in the hidden layer is fixed based on the results ob-
tained in the previous work by Quaglio et al. (2020b). 

The full dataset Ψ (Fig. 3, Eq. (9)) is split in three sub-datasets based 
on a 60-20-20 proportion (Géron, 2019), i.e. a training set Ψtraining, a 
validation set Ψvalidation and a testing set Ψtesting, as depicted in the 
scheme of Fig. 4. 

The two datasets Ψtraining and Ψvalidation are used in the learning stage 

Fig. 3. Structure of the full dataset built from simulated measurements. Every instance (i.e. row) of the dataset includes all the data obtained from a reacting system, 
i.e. a specific model structure and values of the model parameters. 
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for the identification of the network parameters. The profiles of accuracy 
vs. epochs and loss vs. epochs, obtained with the training and validation 
sets, are monitored to ensure that the ANN is not overfitting the training 
data. Once the network parameters are identified, the testing dataset is 
employed to test the ANN performance on new data, unseen during the 
network training process. 

The accuracy of the ANN in predicting the right label for the testing 
data is defined as in Eq. (5), which expresses the objective function for 
the DoE optimisation. This procedure of splitting the dataset and then 
training and testing an ANN is repeated for every dataset generated in 
the previous step, i.e. for every target vector in the experimental design 
space form which a dataset is built by simulating the kinetic 
experiments. 

The tasks 1 to 3 here described are iterated until the solver converges 
to a solution, i.e. until the optimal experimental conditions that lead to 
the maximum ANN test-accuracy are found. Once the optimiser has 
converged, the modelling procedure continues (steps 3 and 4 in Fig. 2) 
by conducting the experiments identified by the optimiser on the real 
reacting system. The data collected are then fed to the ANN which 
provides in output a probability associated to each one of the possible 
kinetic model structures to characterise the system under assessment. 

3. Case study 

The methodology here proposed for optimal design of experiments 
has been tested on a case study, in particular, the chemical system 
introduced in the work by Quaglio et al. (2020b) is used. 

In this system, three species, generically denoted as A, B, and C, are 
reacting in liquid phase within a perfectly mixed isothermal batch 
reactor. Direct reactions are assumed, such that 

A →
r1 B; A →

r2 C; B →
r3 C (14)  

where rj (mol m− 3 s− 1) is the reaction rate of the j-th reaction. The 
material balances that describe the dynamic evolution of the concen-
tration Ci (mol m− 3) of the three species are expressed as 

dCi

dt
=

∑Nr

j=1
νijrj ∀i = A,B,C (15) 

In (15) the symbol νij (-) indicates the stoichiometric coefficient of 
species i in reaction j. The functional form of the kinetic model is un-
certain, and Nm = 8 candidate model structures are formulated as 
summarised in Table 1. Models with label l = 1,…,4 are describing a 
system where the reactions occur in series, while l = 5,…, 8 are 

associated to parallel reactions mechanism. The kinetic rates kjare 
expressed as Arrhenius-type constants as in (16), where Aj and Ea,j are 
the model parameters, respectively pre-exponential factor and activa-
tion energy. 

kj = Aj exp
(

−
Ea,j

RT

)

∀j = 1,⋯,Nr (16) 

It is important to underline that all the kinetic models, formulated as 
in Table 1 are structurally non-identifiable: on the one hand, the kinetic 
constant k2 is multiplied by zero in the models with series mechanism, l 
∈ {1, …4}, thus the value of parameters A2 and Ea,2 cannot be uniquely 
determined; on the other hand, the kinetic factor k3 is multiplied by zero 
when parallel mechanism of reaction is modelled, i.e. for label l ∈ {5, 
…,8}, so that the value of parameters A3 and Ea,3 cannot be uniquely 
estimated. Therefore, sequential model discrimination methods 
(Schwaab et al., 2008) would need a reformulation of the models to be 
applied, since non-identifiability issues translate into large variances in 
the parameter estimates and as a consequence also on the model pre-
dictions. Conversely, the structural non-identifiability of the candidate 
models is not an issue for the ANN-based model recognition since the 
fitting of kinetic parameters is not required. The proposed approach 
focuses on the identification of the kinetic model structure (i.e. set of 
equations), not on the estimation of the parameters. If a non-identifiable 
model structure is selected as an output of the ANN method, a repar-
ameterisation (Quaglio et al., 2020a) of the model to satisfy the 
parameter identifiability requirements is needed. 

3.1. Definition of experimental design space 

The methodology presented in Section 2 requires as input the defi-
nition of the experimental design space. The manipulated variables in 
the batch reactor experiments here considered with the respective range 
of variability are: i) temperature T in the reactor [520 – 720] K, ii) 
sampling time t [50 – 350] s, and iii) initial concentration of reactant A, 
CA0 [0 – 250] mol m-3 . The initial concentration of B and C is 0 mol m-3, 
i.e. A is the only species initially present in the reaction system. 

In practical applications, when defining the experimental design 
variables and their range, the user has to make use of prior knowledge 
on the system to be modelled, imposing physically meaningful con-
straints. In this case study, since experiments are conducted in silico, no 
information on a real system is assumed to be available, therefore the 
experimental space has been arbitrarily chosen. 

Fig. 4. Dataset organization on a 60–20–20 basis for ANN training, validation and testing.  

Table 1 
Power-law rate expression for the candidate kinetic models. Models with label l = 1,…,4 consider a series mechanism, while models l = 5, …,8 consider a parallel 
mechanism.   

Series Parallel 

Label: 1 2 3 4 5 6 7 8 

r1 k1⋅CA k1⋅CA k1⋅C2
A k1⋅C2

A k1⋅CA k1⋅CA k1⋅C2
A k1⋅C2

A 
r2 k2⋅0 k2⋅0 k2⋅0 k2⋅0 k2⋅CA k2⋅C2

A k2⋅CA k2⋅C2
A 

r3 k3⋅CB k3⋅C2
B k3⋅CB k3⋅C2

B k3⋅0 k3⋅0 k3⋅0 k3⋅0  
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3.2. Experimental noise 

A noise factor is added to the simulated measurements to mimic real 
experimental conditions as presented in Eq. (10). For this case study, 
three different scenarios of experimental error are considered, 
respectivelyσ=1.00 mol m-3 , σ=4.00 mol m-3, and σ=10.00 mol m-3 

which will be referred to as low, medium, and high noise level scenarios. 
The effect of the noise level on the concentration profile, obtained from 
simulated experiments, can be observed in Fig. 5. Graphs are obtained 
from the simulation of a system modelled through a label-1 kinetic 
model structure, where first-order reactions occur in series. It can be 
observed how the noise level impacts on the quality of measurements, 
thus on the data that are fed to the ANN. 

3.3. Feasible parameter values and dataset generation 

The dataset generation step requires to simulate a high number of 
reacting systems, in order to consider parametric uncertainty in the 
model identification framework. In this case study, 125 different choices 
of feasible parameter values are used for each candidate kinetic model. 
Therefore, the cardinality of the dataset is equal to 1000 (NM = 8, Np =

125), where each instance (i.e. a row in the dataset, see Fig. 3) corre-
sponds to a simulated reacting system, i.e. a kinetic model and a set of 
parameter values for that model, and contains all the simulated mea-
surements sampled for that reacting system. The 1000 instances in the 
dataset are randomly ordered and then split in training-validation- 
testing sets on a 60-20-20 base. Therefore, the training set contains 

600 elements, while validation and testing sets are built with 200 
simulated chemical systems each. 

The feasibility condition for the kinetic model parameters is 
expressed as 

Θl= {θl ∈ RNθ,l s.t. 100 ≤ Aj ≤ 200 ∀j = 1,…,Nr ∧

45, 000 ≤ Ea,j ≤ 90,000 ∀j = 1,…,Nr ∧

0.05 ≤ X̂A,l ≤ 0.95 ∀φ ∈ Φ ∧

0.05 ≤ ŜB,l ∀φ ∈ Φ ∧

0.05 ≤ ŜC,l ∀φ ∈ Φ }

∀l = 1,…,Nm

(17)  

where θl ∈ Θl is a feasible choice of parameter values for kinetic model l, 
for all l = 1,…,Nm. 

The definition of feasibility conditions for model parameter values 
should be based on some prior knowledge on the system behaviour at 
the reference experimental conditions defined by Φ (preliminary ex-
periments). It is here assumed that the model parameters must satisfy 
the following feasibility constraints: i) pre-exponential factors and 
activation energies lie between lower and upper physical bounds; ii) the 
conversion of species A predicted by the model l, X̂A,l (mol/mol), is 
between 0.05 and 0.95 at the experimental conditions defined by Φ; iii) 
the predicted selectivity of product B, ŜB,l (mol/mol), and the predicted 
selectivity towards species C, ŜC,l (mol/mol), are above 0.05 at all the 
reference conditions φ ∈ Φ. The definition used for conversion of reac-
tant A, XA, and selectivity of product i, Si, are 

Fig. 5. Concentration profiles at different noise levels obtained with CA,0 = 100 mol/m3 and T = 620 K from a kinetic model of label 1. The standard deviation values 
considered in the experimental error model are (a) low σ=1.00 mol/m3, (b) medium σ=4.00 mol/m3 and (c) high σ=10.00 mol/m3. 
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XA =
CA,0 − CA

CA,0
; Si =

Ci − Ci,0

CA,0 − CA
(18) 

In this case study, Φ defines two simulated experiments, each one 
characterised by two sampling times. The reference experimental con-
ditions for the first experiment are: i) temperature T equal to 573 K; ii) 
the initial concentration of reactant CA,0 is 100 mol m− 3; iii) samples 
taken after 100 s and 300 s. The reference experimental conditions 
defining the second experiment are: i) temperature T equal to 673 K ii) 
initial concentration of reactant CA,0 equal to 100 mol m− 3; iii) sampling 
times equal to 100 s and 300 s. 

Conducting the experiments outside of the conditions imposed by Φ 
could lead to limiting cases, such as complete or almost null reactant 
conversion. However, in this case a wider range for the experimental 
variables (see Section 3.2) has been assumed to extensively explore the 
experimental space while optimising the DoE. 

3.4. Artificial neural network hyperparameters 

For this study a two-layers feedforward artificial neural network is 
used, structured with one hidden layer and one output layer, based on 
the study presented in Quaglio et al. (2020b). The hyperparameters 
characterising the ANN architecture and how the training process is 
carried out are summarised in Table 2. Following Quaglio et al. (2020b), 
the hidden layer is built with Nh=100 neurons. For the activation 
function in the hidden layer nodes, rectified linear unit (ReLU) function 
is used. The activation function in the output layer is the softmax 
function. The size of the input array Nn depends on the number of ex-
periments to be conducted and on the number of samples in each 
experiment: for every sample, 3 concentration values are measured (CA,

CB, CC), and accordingly the input array size is Nn = 3⋅N, where N is the 
total number of samples. The number of nodes in the output layer, No, is 
the same as the number of candidate kinetic model structures for the 
classification problem, therefore No=8. 

3.5. Optimisation settings 

The optimal DoE methodology has been implemented in Python. The 
optimisation algorithm differential evolution (Storn and Price, 1997) is 
available in the python library “scipy.optimize” (Virtanen et al., 2020), 
which requires the specification of certain parameters as input. The 
values used in this case study are reported in Table 3 along with the 
description of the parameters. 

4. Results and discussion 

A sensitivity analysis is conducted to study the effect of the design 
variables on the ANN performance, before implementing and testing the 
optimal DoE procedure described in Section 2 of this paper. The results 
of the sensitivity analysis are available for the reader in Appendix A. 

From the analysis it emerged that the experimental design chosen had a 
strong impact on the ANN accuracy and the regions of maximum ac-
curacy in the design space emerged clearly, supporting the idea of using 
the ANN accuracy as the objective function. 

In this section, the optimally designed experiments are reported 
along with the respective ANN accuracy obtained and the major 
achievements are discussed for different cases depending on the set of 
experimental design variables. For each case also then effect of the noise 
level on the measurements is investigated. 

4.1. Optimal design of experiments 

The preliminary results presented in Sangoi et al. (2022) are 
extended by comparing optimal experimental design solutions under 
different scenarios of experimental noise and degrees of freedom on 
experimental variables. The DoE optimisation has been conducted for 
three cases characterised by different sets of experimental design 
variables:  

• Case A: temperature and sampling time, i.e. φ = [T, t];  
• Case B: temperature and initial concentration of reactant A, i.e.φ =
[
T, CA,0

]
; 

• Case C: temperature, initial concentration of reactant A, and sam-
pling time, i.e. 

φ =
[
T, CA,0, t

]
. 

For each case different noise levels are considered as discussed in 
Section 3.3, identified by standard deviations equal to σ=1.00 mol m-3, 
σ=4.00 mol m-3, and σ=10.00 mol m-3 which are referred to as low, 
medium, and high noise. Results are also discussed considering an 
increasing number of experiments to be simultaneously optimised, 
ranging from 1 to 6 points in the experimental design space. 

4.1.1. Case A: temperature and sampling time 
The first case considered for testing the proposed DoE optimisation 

approach is characterised by experiments defined by temperature and 
sampling time. The amount of reactant A, the only species present in the 
batch reactor at time zero, is fixed, assuming a value of 100 mol/m3 for 
each simulated experiment. It is assumed that only one sample is 
collected per experiment at the sampling time defined by the 
optimisation. 

The results of the DoE optimisation are shown in Fig. 6 for the low 
and high noise scenarios, with 1, 3 and 6 experiments. Given that the 
ANN employed for model recognition is a black-box model, the inter-
pretation of the chosen experimental design is not straightforward; 
however, some insights can still be extracted from the distribution of the 
designed experiments in the search space. Looking at Fig. 6, it is 

Table 2 
Artificial neural network hyperparameters defining the structure and training 
process.  

Variable Value/selection 

Number of nodes in the input layer Depends on the input array size 
Number of nodes in the hidden layer 100 
Number of nodes in the output layer 8 
Activation function in the hidden layer Rectified linear unit (ReLU) 
Activation function in the output layer Softmax 
Optimiser Adaptive moment estimation (Adam) 
Initialiser Normal 
Loss function Categorical cross-entropy 
Dropout size 0.1 
Learning rate 0.1 
Batch size 40 
Epochs 100  

Table 3 
The optimization settings choosen for the differential evolution algorithm in this 
case study.  

Parameter Value/ 
selection 

Description 

strategy ‘best1bin’ The strategy used by the optimiser for evolving the 
individuals to the next generation. 

maxiter 30 The maximum number of iterations (generations). 
popsize 15 The factor defining the population size. 

The number of individuals is “popsize” times the 
number of variables to be optimised. 

tol 0.1 The tolerance defining the stopping criterion for 
the algorithm. 

mutation (0.5, 1) The mutation factor employed in the mutation 
step of the algorithm. A random value is chosen 
from the range at every iteration. 

recombination 0.7 The recombination factor used for the crossover. 
workers -1 The solver uses multiprocessing to exploit the 

maximum computational power.  
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observed that one experiment was always designed at a temperature 
around 705 K (high temperature) with the sample collected at about 75 s 
for all the 6 cases considered. This area of the design space corresponds 
to the maximum ANN-accuracy for a single experiment observed in the 

preliminary studies (Appendix A, Figure A.1), therefore indicating a 
good performance of the methodology in identifying the optimal DoE 
conditions. 

From the comparison of low and high noise levels with multiple 

Fig. 6. Optimally designed experiments with temperature and sampling time as experimental design variables. Results are reported for low (6.a-c) and high (6.d-f) 
experimental noise scenarios, and for the optimisation of 1, 3 and 6 experiments. The respective ANN test-accuracy is also reported. 
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experiments (Fig. 6b, c, e and f), it is observed that higher temperature 
values are chosen in the case of high noise. In fact the minimum tem-
perature value observed in the low noise case is 560 K, while in the high 
noise case the minimum reaction temperature value is 600 K. A possible 

explanation for this is that higher temperature leads to higher conver-
sion, therefore higher concentration values for the reaction products. 
Since the measurement error is defined by a constant variance model, 
choosing high temperature values turn into a lower relative impact of 

Fig. 7. Optimally designed experiments with temperature and initial concentration of species A as experimental design variables. Results are reported for low (7.a-c) 
and high (7.d-f) experimental noise scenarios, and for the optimisation of 1, 3 and 6 experiments. The respective ANN test-accuracy is also reported. 
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the noise with respect to the experimental data fed to the ANN. 
In Fig. 6 the respective values of ANN accuracy (Eq. (5)) in identi-

fying the correct model structures are reported for every scenario of 
noise and number of experiments. It is observed that the noise level, so 
the data quality, has a strong impact on the performance: the maximum 
accuracy achieved in the low noise case is 86% (Fig. 6.c), while in the 
high noise scenario it is 59% (Fig. 6.f), both obtained with 6 

experiments. In all the noise scenarios a sharp increase in performance is 
observed from 1 to 3 optimal experiments, while the additional data 
from 3 to 6 experiments lead to a small increase in ANN accuracy (79.5% 
to 86% for low noise, 56% to 59% for high noise). 

4.1.2. Case B: initial concentration of A and temperature 
The second scenario considered for testing the proposed DoE 

Fig. 8. Optimally designed experiments with temperature, initial concentration of species A and sampling time as experimental design variables. Results are reported 
for low (8.a-c) and high (8.d-f) experimental noise scenarios, and for the optimisation of 1, 3 and 6 experiments. The respective ANN test-accuracy is also reported. 
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optimisation approach is characterised by experiments where the 
controlled variables are the initial concentration of reactant A and the 
temperature. For a fair comparison with case A, also in case B one 
sample per experiment is collected, and in this case the sampling time is 
fixed at 100 s. In this way the dimension of the dataset used for ANN 
training and testing is kept the same for a given number of experiments. 

Fig. 7 shows the optimally design experiments in case B for the low 
and high noise scenario, and for 1, 3 and 6 experiments simultaneously 
optimised. Similarly to case A, also in this case the optimal experimental 
conditions identified for a single experiment are located in the region of 
maximum observed in the preliminary studies (Appendix A, Figure A.2), 
supporting the choice of the optimiser for this task. 

When 3 experiments are simultaneously optimised (Fig. 7b and e) it 
is observed that design points are spread in the design space and higher 
temperature values are preferred when the noise level increases. 
Conversely, when 6 experiments are designed (Fig. 7c and f), some ex-
periments are defined by very similar conditions. By analysing the ANN 
accuracy, in the low noise scenario an accuracy of 99% is achieved with 
only 3 experiments and the accuracy can be improved further to 100% if 
3 additional experiments are designed. 

In the high noise level scenario instead the ANN accuracy increases 
from 79.5% to 81% from 3 to 6 experiments. The fact that the objective 
function improvement is marginal from 3 to 6 experiments is indicative 
of a saturation in the amount of information that can be obtained on the 
kinetic models for the ANN. It is expected therefore that different 
choices of the experimental design can lead to the same objective 
function value when the number of experiments is increased further. 

When comparing Case B and Case A results it can be concluded that, 
for a fixed number of experiments, controlling the initial concentration 
of A as an experimental design variable is more important than con-
trolling the sampling time to obtain more informative data for the ANN. 

4.1.3. Case C: initial concentration of A, temperature, and sampling time 
The last scenario considered for testing the proposed DoE optimisa-

tion approach is characterised by experiments where all the experi-
mental design variables can be manipulated. Also in this case one sample 
is collected per experiment to keep the consistency with case A and B, 
therefore an experiment is defined by its constant temperature, the 
initial concentration of species A and the sampling time that will be 
reported with the triplet (T, CA,0, st). 

Fig. 8 shows the optimally design experiments in case C for the low 
and high noise scenario, and for 1, 3 and 6 experiments simultaneously 
optimised. Comparing the optimisation of a single experiment, the 
designed experiment in the low noise case Fig. 8a is defined by moderate 
temperature, high reactant concentration and low sampling time(T =
652 K, CA,0 = 229 mol/m3, st = 68 s), while in the high noise scenario 
Fig. 8d the DoE is (T = 714 K, CA,0 = 249 mol/m3, st = 79 s). It is 
observed that higher temperature and concentration of A are preferred 
when higher noise levels are affecting the measurements. 

When Nexp is increased to 3 and 6, the designed experiments are 
widely distributed, showing a tendency to extensively explore the design 
space to gain more information about the kinetic system. 

It must be noted that in the high noise case the initial concentration 
of A is generally chosen at higher values compared to the low noise case. 
It is also observed in Fig. 8f (high noise scenario, Nexp=6) that the 
maximum sampling times chosen is 265 s, while in Fig. 8c (low noise 
scenario, Nexp=6) the boundaries of the design space are reached (349 s). 

In Fig. 8 the performance in terms of ANN accuracy is reported. 
When a single experiment is designed the accuracy that can be obtained 
is similar in the two noise scenarios, i.e. 64% (low noise scenario) and 
60.5% (high noise scenario). This result is remarkable considering that 
the ANN is able to classify correctly 60% of the 200 model structures in 
the testing set based on the data collected from a single experiment with 
one sample. When Nexp is increased, the noise has a significant impact on 
the achievable accuracy. In the low noise scenario 99.5% accuracy is 
obtained with just 3 experiments, while in the high noise scenario the 

accuracy increases to 87.5% with 3 experiments and then to 89% when 6 
experiments are designed. 

4.2. Maximum artificial neural network accuracy 

This section wants to analyse the dependency of the ANN perfor-
mance with respect to the number of designed experiments. Table 4 
reports the value of objective function achieved with the optimally 
designed experiments for the three cases A, B and C and at the three 
noise levels considered. In each one of these experiments only one 
sample of the mixture was collected. Results are also illustrated in 
Fig. 8a-c for the three cases described above. 

Through the comparison of different scenarios based on the set of 
experimental variables to be optimised, the new results included in this 
paper show that both the specific choice of experimental design vari-
ables and the noise level show a relevant influence on the ANN ability in 
classifying the kinetic models. Regardless of the noise level, the best 
results are obtained with a larger set of experimental design variables to 
be optimised (case C), while the worst performance is achieved in case 
A, where the initial concentration of reactant A is fixed. From these 
observations it is concluded that the information in the data useful for 
the ANN to recognise the model structures is mainly dependent on 
temperature and initial concentration of A, while the sampling time has 
a lower impact. However, from the comparison of the ANN test accuracy 
results of case B and C, it can be observed that optimising also the 
allocation of sampling points in time in the experimental design vector 
can significantly improve the ANN performance when the data are 
affected by high noise. 

From Fig. 9 and Table 4 the impact of the experimental error on the 
objective function is clearly evident. The best results are obtained when 
all the experimental variables are optimised (Fig. 8c) where 100% ac-
curacy in ANN predictions is achieved in the low noise case; with me-
dium noise levels the accuracy of 95% is reached, while in the high noise 
scenario the maximum ANN test-accuracy recorded is 90%. These re-
sults are valuable, considering that the ANN was employed for recog-
nising the right kinetic model among a set of 8 candidate models 
characterised by similar structures, and that the test was conducted on 
200 different simulated reacting systems. It must be remarked also that 
these results are obtained with a limited number of experiments and 
with just one sample per experiment. 

Fig. 9 show that in all the scenarios considered the accuracy of the 
ANN reaches a plateau after 3 or 4 optimally designed experiments and 
cannot be increased further. Still, small fluctuations in the objective 
function values are observed, e.g. for the case C - low noise level scenario 
(Table 4), a slight decrease is observed from 100% to 99.5% with 5 and 6 
experiments. A 0.5% decrease in the accuracy means that 1 of the 200 
reacting systems in the test-set was misclassified, a variation considered 
to be due to the intrinsic randomness in the ANN training. Similar 
considerations can be done for the other scenarios. 

5. Conclusions 

This work extends the analysis on the framework for optimal design 
of experiments using artificial neural networks by detailing the formal 
definition of the optimisation problem, the in silico dataset structure, and 
the adjustable optimiser settings. The optimal DoE is coupled with the 
artificial neural network-based method for the identification of kinetic 
model. The proposed method requires as inputs the definition of the 
experimental design space, the library of candidate kinetic model 
structures, a set of feasible parameter values, the characterisation of the 
experimental noise, and the ANN hyperparameters. A genetic algorithm 
(differential evolution) is then employed to perform the DoE optimisa-
tion, aiming to find the conditions that lead to the best performance in 
classifying the kinetic model structures, i.e. maximising the ANN test- 
accuracy. 

The method was demonstrated on a simulated case study, 
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considering a three-species reacting systems in a batch isothermal 
reactor and eight candidate model structures. In the case study, the 
choice of the set of free experimental design variables resulted of strong 
importance for achieving the best performance in the model selection. 
The analysis on the distribution of optimal experimental design vari-
ables in the experimental design space underlined that at low noise 
lower temperature values are chosen, compared to the high noise case 

where the optimal experiments are characterized by higher temperature 
values. The results obtained when optimising all the possible experi-
mental variables (case C) showed that not only high temperature, but 
also high initial concentration of reactant is preferred at high noise 
conditions. 

Moreover, it was shown the impact of the system noise on the ANN 
test-accuracy on unseen data, i.e. not used for ANN training. Notable 

Table 4 
Highest value of ANN test-accuracy obtained after the design of experiments optimisation. Results for the three scenarios A, B,C (set of expeirmental design variables) 
and at the different noise levels. Green colour highlights conditions where the accuracy was higher than 95%, black between 80 and 95%, red is for accuracy below 
80%.  

Scenario Noise level  Optimal ANN test-accuracy (%)   

# Experiments: 1 2 3 4 5 6 

A Low 50.5 96.0 97.0 98.5 98.0 97.0 
Medium 46.5 79.0 79.5 84.0 83.0 86.0 
High 34.5 54.0 56.0 55.0 53.0 59.0 

B Low 55.0 96.5 99.0 99.0 99.0 100 
Medium 53.5 87.5 93.5 93.0 94.0 96.5 
High 52.5 75.5 79.5 79.0 81.5 81.0 

C Low 64.0 97.5 99.5 100 99.5 99.5 
Medium 64.0 94.0 93.0 95.0 95.5 95.0 
High 60.5 79.0 87.5 88.0 90.0 89.0  

Fig. 9. Profiles of optimal ANN accuracy with respect to the number of experiments, reported for the three noise levels: low noise in black, medium noise in red and 
high noise in blue. Experimental design variables: (a) temperature and sampling time, (b) temperature and initial concentration of A, (c) temperature, initial 
concentration of A and sampling time. 
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results were that i) the ANN accuracy increased sharply with the number 
of experiments reaching a plateau after four optimally designed exper-
iments in all the scenarios considered in this study, ii) optimising the 
sampling time is less important than temperature and reactant concen-
tration, however its effect is relevant for noisy systems, iii) the algorithm 
tend to prefer experiments conducted at high temperatures when the 
noise is high. The highest values of ANN accuracy registered for the 
three noise levels were 100% (low noise), 96.5% (medium noise) and 
90% (high noise). 

Future research will assess the comparison between sequential and 
parallel strategies for the design of multiple experiments within the 
framework presented in this paper, considering the pros and cons in 
terms of computational burden and the robustness of the optimal solu-
tion with the two approaches. Future work needs also to include the 
application of the proposed DoE framework for ANN kinetic model 
recognition to more complex reacting systems (e.g. kinetics in multi-
phase systems and in the presence of catalysts) and to real chemical 
systems to validate the methodology. 

In this work the methodology proposed starts from a fixed ANN ar-
chitecture and focuses on optimising the DoE, which led to good results 
for the ANN accuracy. Another possible extension of the work by Qua-
glio et al. (2020b) is to evaluate the benefit of optimising the ANN ar-
chitecture (Zhang et al., 2023) instead, leading to a comparison between 
the optimal DoE and optimal ANN architecture approaches. 
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