
 

Proceedings of the 14th International Space Syntax Symposium 

 

Beyond Depth Cues: Lighting and visual complexity as factors in navigation 1 

39 

Beyond Depth Cues 

Lighting and visual complexity as factors in navigation 

Loydell, Hugo; University College London; h.loydell.16@ucl.ac.uk 

Hanna, Sean; University College London; s.hanna@ucl.ac.uk 

_________________________________________________________ 

ABSTRACT 

Spatial configuration is central to Space Syntax modelling, either implicitly in methods such as 

axial line analysis (Hillier & Hanson 1984; Hillier 1996), or explicitly in visibility graph analysis 

(Turner et al., 2001) and visual agents (Penn and Turner, 2001), and in fundamental spatial 

principles on which these are based (Benedikt, 1979). Its effect on movement via individual 

navigation is mediated by the capacity of human vision, as demonstrated in observations of the 

link between visual fixation and route selection (Emo, 2014). Vision, however, is frequently 

unable to perceive spatial configuration accurately (McElhinney et al., 2022), and may be 

affected by other aspects of the environment with relevant influence on movement, which are not 

currently accommodated by Space Syntax models. 

 

This paper investigates two variables distinct from spatial configuration, light intensity and 

surface complexity, for their effect on route choice. A 3D game-like environment, implemented 

through Grasshopper within Rhino3D, was used to record the behaviour of human navigators 

exploring an irregular pattern of orthogonally placed, intersecting corridors, for which both light 

and complexity were varied. Routes were recorded for each journey, and gaze monitored using an 

eye-tracking headset developed for this experiment.  

 

Results reveal relationships between each of the variables and gaze, and between gaze and 

subsequent path choice. Compared with a baseline of all possible isovists within the environment, 

the gaze distribution of participants for all experiments has more distant mean and peak values, 

and this is most distant when light is varied. Movement, as assessed by path choice at corridor 

junctions, shows an expected overall correlation with path angle, but the relationship with other 

spatial variables, such as visible distance, varies significantly across the experiment when light 

and complexity variables are changed. Both variables are seen to correlate positively with paths 

chosen, with the effect of surface complexity being stronger when both are varied 

simultaneously. A causal chain can be inferred that suggests higher relative light levels draw the 
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visual attention, and one or both of these then positively influence the choice of route in that 

direction. 
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1 INTRODUCTION 

Space Syntax methodology has long been foundational in the analysis of spatial configurations. 

Utilising key spatial principles, such as visible distance, connectivity, and integration among 

other configurational properties, in understanding movement patterns in the built environment 

(Penn and Turner, 2001; Turner et al., 2001; Turner et al., 2005). However, recent research 

suggests that additional environmental factors (Langenfeld et al., 2013; McElhinney et al., 2022), 

such as light and surface complexity, may influence route choice, yet remain largely unexplored 

within the Space Syntax framework. As such, there exists gaps in our understanding of how other 

variables, specifically non-spatial variables, might affect how we make decisions when moving 

through space. Furthermore, understanding whether these non-spatial variables influence 

movement directly, or indirectly via a cognitive process. This paper addresses this gap by 

investigating how these non-spatial variables affect our perception and movement within a space, 

and whether there is a causal relation between our perception and our movement within said 

space.  

 

The role of vision in navigation cannot be understated, as evidenced by the link between visual 

fixation and route selection (Emo, 2014). It is acknowledged that human perception can be 

affected by various environmental factors which in turn contribute to our perception of spatial 

depth and form (Marr, 1982). In his computational theory of vision, Marr explores how low-level 

visual features involved in the image processing of the brain also form an important part of the 

signals upon which the higher-level cognitive decision-making process acts. Therefore, it is 

essential to consider factors beyond spatial configuration in this context. The paper focuses on 

examining these effects at the lower level of cognition, to gain insights into the immediate 

perceptual processes and basic decision-making mechanisms underlying navigation. 

 

In this study, it is hypothesised that low-level visual cues, including light and surface complexity, 

will influence decision-making processes during navigation within a novel environment. It is 

inferred that these low-level visual features exert a direct influence on the higher-level cognitive 

process involved in decision-making when navigating in unfamiliar spaces. This would suggest 

that the relevance of low-level visual cues lie in their capacity to convey information essential for 

interpreting and navigating the surrounding environment effectively. 
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This will be further supported by the study of the gaze in relation to the decisions made by the 

individual when navigating. The hypothesis posits that low-level visual cues will have an impact 

on the time participants spend fixating on different choices during a decision-making task, and 

thus influence the decision made. Participants will be therefore more likely to choose the option 

they spend the most time fixating upon, indicating that low-level visual cues play a subconscious 

role in decision-making.  

 

This is tested through a series of participant-based empirical spatial experiments, conducted 

within a virtual 3D-environment for apt control and data recording. Analysing the role of these 

select cues when decision-making during navigation to establish whether they are meaningful, 

and bear weight over the actions we take. In essence, the systems being tested for are significant 

in that they are the building blocks of semantics and higher-level cognitive processes; they are 

what guide us and allow for us to informed decisions. Therefore, working to provide a greater 

understanding of factors like visual complexity, light, and gaze behaviour, will allow us to better 

understand their effect upon more complex high-level decision-making. 

 

To explore theses variables, a novel experimental setup was employed, utilising a 3D virtual 

environment wherein participants navigated through intersecting corridors with varying levels of 

light and surface complexity. By recording participant’s gaze patterns and route choices, this 

study aims to elucidate the relationships between environmental features, visual attention, and 

route selection. The findings are expected to provide insights into the complex interplay between 

these non-spatial variables and human navigation behaviour. Additionally, to ensure a focused 

examination of the influence of low-level visual cues, measures were implemented to minimise 

the influence of potential confounding variables such as memory and landmark recognition, as 

these higher-level cognitive processes have been shown to significantly impact navigation 

(Garling, Book and Lindberg, 1986; Conroy-Dalton and Bafna, 2003).  
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2 THEORY 

In the study of spatial configuration and navigation within built environments, understanding the 

role of low-level visual cues is important. Among these cues, light intensity and surface 

complexity stand out as directly visible, non-spatial components likely to influence spatial 

perception. These features not only affect the visibility and legibility of spatial layouts, but also 

attract attention and influence our perception of depth, scale, and form (Marr, 1982, p. 41). 

Similar studies have previously explored the role of non-spatial variables, such as ‘visual 

attractiveness’ on navigational behaviours and found them to have juxtaposed predicted syntactic 

behaviours (Langenfeld et al., 2013). 

 

Eye-tracking technologies will be used to investigate whether navigational decisions are directly 

influenced by these low-level visual cues pre-attentively or rely on higher-level cognitive 

processes. Measuring participants visual attention as they interact with experimental stimuli will 

help to distinguish between decisions influenced by low-level perceptual information and those 

driven by higher-level cognitive processes. 

 

2.1 Light Intensity 

Light intensity has a direct association with the signal intensity received by the retina and bares 

weight as the fundamental baseline upon which we can make navigational judgements. Increased 

light levels enhance signal contrast, increasing our ability to detect zero-crossings in the signal 

gradient and thereby improving the perception of edges, form, depth and subsequent spatial 

configuration, this is known as visual acuity (Frisby, 2011, p. 89). However, both insufficient and 

excessive light can impede the construction of an accurate spatial image due to inadequate 

information availability, and as a result we are less confident in the presented information and 

less likely to act upon it (Marr, 1982, p. 259). 

 

Prior research into the effects of lighting on route choice have typically been explored within 

real-world contexts (Unwin, Symonds and Laike, 2016). A benefit of conducting these 

observations within a virtual environment lies in the control over the semantic influence of light 

levels on navigation. Typically, darker spaces would be avoided by an individual due to an 

association of darkness with danger, uncertainty, and negative emotional responses, such as fear 

and anxiety, as explored extensively in studies involving the effects of lighting on pedestrian 

movement (Fotios, Unwin and Farrall, 2015). However, the safety and controlled nature of the 

virtual environment allows participants to act independently of these factors, or at the very least 
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at a reduced level, allowing us to better understand light’s role in non-semantically influenced 

navigation and decision-making. 

 

2.2 Visual complexity 

The role of visual complexity is explored as a general umbrella term for the role of retinal signal 

intensity brought about by the quantity of edges, zero crossings, contrast, and boundaries in the 

initial stages of visual processing (Marr, 1982, p. 37). The choice to investigate this feature is 

because, much like light intensity, it directly effects the level of information present for us to 

make decisions in an environment. In this case, we might expect visual complexity to affect 

decision-making through two separate means. One is that visual complexity allows us to further 

explore the role of cognitive load and stress introduced by an overabundance of visual 

information, wherein too much complexity might be seen as less desirable as the information 

takes longer to process. This is demonstrated in studies on the sensory memory and cognitive 

load theory (Sweller, 1988), indicating that people would prefer a reduced quantity of visual 

information, provided there is enough visual complexity and sufficient light present in the 

environment to determine depth and navigate effectively, but not too much that it obscures our 

ability to construct a 3D spatial representation of the environment. Which could instead result in 

phenomenon like visual crowding (Whitney and Levi, 2011). 

 

Alternatively, the use of more visually complex environments might also result in navigational 

behaviour associated with reduced intelligibility and perception of visible distance, both key 

features utilised in Space Syntax models. When navigating, space-geometric measures like the 

sky area and floor area have been shown to play a key role in determining the axial lines, 

presented within a spatial configuration, as shown in empirical VR studies of this nature (Emo, 

2014). Visual complexity possesses the ability to disrupt the detection of the ground and sky-

areas through the discontinuity of shape contours (Marr, 1982, p. 215) present in a scene. The 

abundance of what is known as an occluding contour (Marr, 1982, p. 218), a type of discontinuity 

involved edge detection, might impact our ability to judge the connectivity of a space, meaning 

that an individual may be less likely to take this route. 

 

Additionally, the presence of significantly contrasting visual complexity or light may also form 

more visually salient areas through a phenomenon referred to as ‘visual pop outs’ (Treisman, 

1986), a pre-attentive lower-level visual process. This captures our attention through the selection 

process and influences our decision-making. 
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2.3 Visible Distance (Depth-Cues) 

The use of visible distance in various Space Syntax isovist models, is well documented (Turner 

and Penn, 2002). The inherent tendency of these agents is to choose directions that offer greater 

visible distance, which often correlates with the larger areas and indicates higher connectivity. It 

has also been found that this direct exosomatic information used by these isovist models 

correlates with human navigational behaviour (McElhinney et al., 2022). From this, we can infer 

that visible distance may influence participant choice behaviour, especially in its relationship 

with environmental visibility. This makes it an important metric to consider alongside the 

identified non-spatial variables, due to its relationship with our perception of spatial 

configuration. Serving as a reference point upon which the non-spatial variables can be assessed 

in relation to.  
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3 DATASETS AND METHODS 

3.1 Experimental context 

The experiment conducted involved 15 participants, who were tasked with locating a goal object 

within 3 differently configured virtual corridor networks, each composed of 50 differently sized 

corridors. Corridors were placed orthogonally so that all turns were an identical 90 degrees, in 

part to control for the spatial variable of angle impacting route choice. This resulted in a total of 

45 datasets (3 per participant), with over 1800 decisions being made at junctions and 

intersections across all participants during the study. 

 

During the experiment, participants are placed randomly in 1 of 3 possible maps and asked to 

locate a goal object (a red sphere), which they are informed is also randomly placed in the 

environment. The participants are not shown the overall map composition and are unaware of 

both their starting location and the position of the goal object. This is to mitigate the influence of 

higher-level cognitive influences from impacting the participants performance. The participant 

then repeats this process in the remaining 2 maps, with the conditions in each map varying each 

time the participant performs the task. One map varying light intensity and corridor lengths, one 

varying visual complexity and corridor lengths, and one map presenting light, complexity, and 

varied corridor lengths together. The assigning of each map to the experiment type (light, 

complexity, both) is random for each participant to reduce the effect of the maps composition on 

the decisions made. Before the experiment, each participant is assigned a ‘seed value’, which is 

input into the scripts to generate random start and goal locations for each of the three maps, 

providing a traceable pseudo-random variable. 

 

As the nature of the search task would typically result in participants strategizing to avoided 

revisiting the same areas, efforts were made in the design of the experiment to (a), limit the time 

spent in the environment to less than the time required to explore it entirely, to avoid forming a 

complete mental representation. And (b), not exposing the participant to the same environment 

more than once. Alongside this, the representation of surface complexity was designed to avoid 

the formation of memory association and landmark recognition. 

 

Considering the level of control required within the experimental environment and data being 

recorded, a bespoke game-engine and 3D computer-generated environment were developed to 

optimise data tracking and control. This environment has been developed by the authors through 

a combination of Grasshopper, configured in C# and .NET VB, and the Python scripting 

language within the Rhino3D CAD application. Utilising the realtime rendering engine VRay 
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Vantage developed by Chaos, to render the environment which the participant views and 

navigates within (Figure 2). 

 

The value of utilising a goal-oriented task while navigating, despite not tracking for navigational 

efficiency or time spent, was to encourage to participants to actively explore and navigate the 

space, incentivising them to make decisions naturally, while providing a level of abstraction from 

the primary intentions of the research. This was built upon the choice-clue wayfinding model 

devised by Martin Raubal (Raubal and Egenhofer, 1999, p. 7) for studies concerning navigation 

in the built environment. Choices referring to the decision points in wayfinding, namely the 

junctions and intersection, and the possibilities presented at each, alongside the clues, which are 

the variable conditions presented to the participant at these moments. 

 

 
Figure 1 A screen capture from Chaos Vantage depicting what the participant is viewing during the 

experiment. 

 

3.2 Game engine system and benefits of using a 3D computer-generated 

environment. 

Utilising a computer-generated environment facilitated an adequate level of control, replication 

and the ease of data collection and analysis (Dombeck and Reiser, 2012). This is particularly 

relevant in this study, wherein the space must be designed with aims to reduce one’s ability to 

both drawn upon and attach memory to the space. Participants are thus incentivised to make 

decisions based on the limited information supplied and invoke a decision-making process 

derived from low-level visual cues, while mitigating the effects of semantic and high-level 

cognitive influence over the space. For example, if one were to utilise a real-world environment, 
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extraneous variables, and inconsistencies within said environment, such as sounds or defects, 

might influence their decision-making process. Limiting the variables as much as possible, while 

still providing enough information to elicit a more natural response to the stimulus within a direct 

context, suggests that the data gathered would be more conducive to decisions made within a 

real-world environment. 

 

3.3 Experimental metrics 

While typical considerations in navigational tasks may include metrics like the time to complete 

the task and consideration of overall route taken to the goal object, we are concerned with how 

low-level visual cues influence the decisions made in an environment on an options-choice basis. 

Thus, instead of considering how these factors might affect navigational efficiency, we consider 

the impact these factors have on decision-making to establish the weight each variable bares. The 

metrics are outlined as follows: 

 

Decisions made at junctions: At each junction or intersection, the possible options that can be 

selected by the participant and the choice made are recorded, alongside the presented values of 

light, visual complexity, or depth (visible distance). Other recorded measures include the 

angularity, choice order, choice type (intersection/junction) and the conditions the participant 

originated from. 

 

Eye-tracking data: The eye-tracking data is used to infer the distribution of the gaze across the 

options and decisions made on a qualitative level, but also to assess the distribution of the gaze 

across the differing conditions. Furthermore, we can also investigate navigation behaviour 

through gaze depth to establish how each variable affects our perception of a space. 

 

Angularity and Map Design: While studies into the effects of angularity in route choice (Dalton, 

2003), specify that route choice trends towards a minimal change in angularity when navigating, 

we have designed the virtual environment within an ortho-linear grid. This also affects visibility, 

wherein the forwards condition at an intersection or junction would present greater immediate 

visibility despite not necessarily being the greatest visible distance. While this may result in that 

the navigator choosing to proceed forwards more frequently, rather than take a 90-degree turn, 

the experiment will maintain a better architectural relationship with the nature of the built 

environment. 

 

3.4 The Grid System and Map Generation Script 

The maps generated through the script abide to a 100 by 100-meter grid system, with a minimum 

corridor width and depth of 2 metres. Having a minimum distance present prevents corridors 
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forming too close to each other and resulting in decisions being made too hastily. Generating the 

maps upon a grid system allows for easier parametric scripting and generation of the visual 

complexity and lighting variables. This also provides the ability to analyse the data using a 

simple grid cell system, denoting the possible decisions that could be made at a junction. 

 

The maps are generated from a simulated network of lines from random seed values through the 

substate algorithm (Tarbell, 2003). The generated line network is then offset by a randomly 

assigned value or 2, 3, 4 or 5 meters to determine the corridor width, and extruded by an integer 

value of 3, 4, 5 or 6 to determine height. The random variation of the corridors width and height 

are implemented to provide more natural variation to the environment, thus make the space more 

comparable to a natural setting. 3 Individual maps are generated through the script, each with 50 

corridors in a randomised arrangement. Ensuring a varied set of conditions while maintaining a 

consistent level of overall navigational complexity through each map. By nature of the algorithm 

used to generate each map layout, the length of the corridor positively correlates with how well 

connected the corridor is. 

 

A plain, grey palette by each map, designed to mitigate unwanted colour variance in the map, 

reduces the involvement of the semantic influence of colour in the experiment. The intention was 

to develop a novel and unfamiliar environment, while still abiding to a standardised architectural 

logic.  
 

3.5 Visual Complexity 

The generation of a controlled and measurable level of visual complexity was achieved through 

the manipulation of the density of edges, orientation, and resulting contrast fluctuation. This 

process informed the use of a regular grid system and ortho-linear map composition, which 

allows the map to be subdivided iteratively to break up the surface geometry. The subdivided 

walls are then randomly extruded to values relative to the subdivisions, resulting in an 

incremental increase in the level of visual complexity and thus signal intensity. This method 

ensures an abstract, but consistent and traceable level of visual complexity to be implemented, 

without providing so much variance that participants would be able to differentiate individual 

corridors from one another, whilst also ensuring that the depiction of complexity mitigates any 

similarity to recognisable forms. This could assist participants in recognising areas which they 

have already explored through landmark formation and recognition. Each corridor in the map is 

assigned a subdivision value of either 0, 1, 2 or 4 subdivisions, 0 representing no additional 

complexity (Figure 2). 
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3.6 Lighting Control 

The corridors generated by the map generation script have their top-most face used to generate 

rectangular directional lights through VRay, providing a consistent lighting condition throughout 

each corridor. Using a random number generator, stepped values of 1%, 33.3%, 66.6%, or 100% 

lighting intensity, are assigned randomly to the rectangular lights (Figure 2). With 66.6% 

lighting intensity being considered a well-lit corridor, 1% being almost entirely pitch black, 

100% presented as an upper bound or ‘brighter’ than necessary condition. When, testing for 

visual complexity in isolation, light level 3 was used uniformly to maintain a consistently ‘well-

lit’ condition throughout the environment. 

 

The lighting itself is rendered through Chaos Vantage, a real-time raytraced visualisation engine. 

Allowing for the realtime calculation of light bounces using a GPU to provide a far more accurate 

lighting set-up than typical lighting engines. 
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Figure 2 Corridor light and complexity levels as presented to participants in the experiment  
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3.7 Eye-tracking and Mapping 

A custom eye-tracking headset and 3D mapping tool was developed upon the PupilLabs 

framework in Python and Grasshopper for use in the experiment. This allows for the 

implementation of eye-tracking and it’s mapping in realtime across 3D space. 

 

This process operates using April Tags (Olson, 2011), a fiducial marker system, to define the 

bounds of a surface captured by the eye-tracking headset and map the eye-tracking data as a 

normalised coordinate. In this circumstance, the surface tracked is the bounds of the computer 

monitor the participant views while navigating in the experiment. The participants virtual 

viewport bounds and positional are tracked within Grasshopper as a physical geometry instance. 

From here, the tracked viewport surface is evaluated with the normalised coordinates sent from 

the headset to the Pupil Core host application, and then to the receiver script in Grasshopper. 

This now presents us with two points; the camera (user) position and the gaze’s location on the 

viewport. A vector is calculated between these two points and is used to project the gaze’s 

location upon the physical geometry in the scene. 

 

Each participant was calibrated to the headset prior to each experiment to maintain accuracy, for 

a total of 3 times. If the calibration resulted in a gaze tracking accuracy of >2 degrees, the 

calibration process was repeated until the accuracy was <2 degrees. 

 

3.8 Game-engine Script 

A simple game engine was developed in Grasshopper to allow for the use of a game-controller 

input system within the experiment and basic physics, through a series of transformations to 

control the camera location and target within the Rhino3D virtual environment. This input 

method was chosen for its simplicity and accessibility for the participants. 

 

The viewing angle of the virtual camera was of primary concern, as it directly affects the 

perception of options presented to participants at each junction. Optimally, the 170-degree FOV 

utilised by the EVA-agents developed by Turned and Penn would be utilised, as they found that 

these agents perform most similarly to humans in navigational tasks (Penn and Turner, 2003). 

This corresponds with existing research into the real-world FOV of the human visual field of 

around 210-degrees (without eye-movement). However, when presented in a virtual environment 

on a flat display, a viewing angle of 170-degress distorts the view substantially, which would in 

turn impede participant performance. As a result, a horizontal viewing angle of 130-degrees was 

utilised, striking a good visual balance between distortion and visibility, while providing slightly 

more information than the 114-degree horizontal binocular visual field of humans (Howard and 
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Rogers, 1995). This was informed by an investigation into the minimum FOV for user search 

tasks in 3D virtual environments (Osman et al., 2014), which recommends a minimum FOV of 

30-degrees, with no substantial difference in task performance between 30-degrees through 110-

degrees. However, this must be considered when interpreting data, as in a real-life context, 

decisions could alter based on cues presented within the peripheral vision. 

 

3.9 Data Processing and Analysis 

 

To analyse the participant data, a suite of scripts were developed in Grasshopper and linked to 

Microsoft Excel to assess the participant data accurately and consistently across all conditions. 

One set of scripts analysed the participant gaze behaviour, while another set looked solely at the 

decisions made at junctions and intersections by each participant. Assessing the conditions of the 

corridors presented alongside each decision, including a categorisation of the options presented, 

the choice made, and the condition the participant is currently in. The recorded conditions 

included the variable value (light/complexity), the length of each corridor, the angularity of the 

choice and which corridors were observed as well as how long each option was considered as a 

percentage distribution. Certain contextual data, such as the angularity and view-depth had to 

calculated at each junction individually, as this data varied depending on the approach direction 

of the participant. 

 

The gaze data was processed in tandem with the positional data. The 3D gaze data was mapped 

onto the space via a vector between the user locations (camera location) and the gaze point. The 

projected gaze points were then used to assess relevant gaze data involved in the decision-making 

process, such as the corridors which were observed during the decision-making process and the 

distribution of time spent looking at each option. This was calculated by taking the gaze data 

from 2 decisions prior through to the decision point (the junction or intersection) and calculating 

the distribution of intersections between the gaze path and openings of each corridor at the 

decision point being evaluated (Figure 3). 
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Figure 3 An example of the 3D gaze data (yellow), and the participant route choice (red) for the lighting 

experiment of map 1. 
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4 RESULTS 

4.1 Choice Based Decision Making Statistics 

The main body of the analysis was conducted by assessing the choices made by each participant 

at each junction or intersection. The data was processed to consider the choice as normalised 

relative to the presented options at each decision point, again relative to the frequency the options 

appeared. Any choice involving a backwards decision was omitted from this analysis. This 

decision was informed by an analysis of the normalised mean angularity choice distribution made 

by the participants across all experiments, which found participants only opted to move 

backwards 1.49% of the time during the study. 

 
Angularity % Distribution 

Backwards 1.49% 

Right 30.49% 

Left 31.77% 

Forward 36.24% 

 

 

This data acts as an important control variable in showing there to be a rough symmetry between 

angularity selection. While much Space Syntax precedent (Turner and Penn, 2002; Hillier and 

Iida, 2005; Hanna, 2021) would suggest that angularity has a greater impact on route choice, this 

data shows that this isn’t the case in this rectilinear 3D virtual environment, and therefore we can 

concentrate on the other variables presented in this experiment. 

 

To assess the effect of visual complexity and lighting across the experiments, the data each at 

decision point was normalised, remapping the values between 0-1 across the measured variables 

to assess the relative weighting of the choice to the presented variables at each choice area. 

Additionally, this allows trends to be gauged across the different data sets. The normalised data 

was sorted into frequency bins to judge the extent to which a participant was making the choice 

to move into a condition relatively greater or less, proportionally to the presented options. Again, 

the bin frequency was calculated relative to the frequency at which the bins appeared to each 

participant, thus accommodating for decisions which were made because they appeared more 

frequently. Bins of .2 intervals were chosen due to the limited range of normalised data present 

by the 4 (0,1,2,3) varying conditions, despite the continuous nature of spatial variables, such as 

visible distance, allowing trends in the data to be seen more clearly. 
 

This process also allows us to assess the effects of spatial variables, such as visible distance in 

navigation, by parcelling instances in each experiment where no variability in light or complexity 

is presented at an intersection or junction, but a variation in visible distance is. This provides 



 

Proceedings of the 14th International Space Syntax Symposium 

 

Beyond Depth Cues: Lighting and visual complexity as factors in navigation 17 

further insight into whether the behaviour of agent movement flow, which have been shown to 

demonstrate a bias towards greater visible distance (Penn and Turner, 2001), correlates with 

human navigational behaviours within this experimental environment. 

 

These occurrences appear in the experiment where a participant is presented with either a T-

Junction type decision, or certain intersections, as the complexity and light levels vary by 

corridor ID. Therefore, while at these junctions these complexity or light level will remain 

constant, the visible distance will vary. With a choice sample size of 445 it was found that 

participants in this particular experimental set-up displayed no preference towards greater visible 

distance in their decision making (Figure 4a). While work on Syntax agents (Hillier and Iida, 

2005) and gaze behaviour in VR (Emo, 2014) suggest a bias in many environments towards the 

longest line of sight, this was found not to be the case within the controlled nature of this specific 

search task and environment. The fact that it was not, suggests again that we are able to read 

differences in the non-spatial variables that follow without being confounded by these variables. 

 

(a)  

(b)  (c)  
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(d)  (e)  

 
Figure 4 Normalised distribution of relative light (yellow), complexity (blue) and depth (grey) chosen by 

participants in the in each experiment type. The x-axis denotes the relative magnitude of the bin value, with 
bins below 0.4-0.6 (centre) indicating a relative ‘less than’ choice, the central bin indicating that 

participants chose a relative ‘middle ground’, and the bins greater than 0.4-0.6 indicating a relatively 
‘greater than’ choice. The y-axis denotes a normalised percentage distribution of the selection. Lines of best 

fit are shown in red. 

 

Figure 4b and Figure 4c present interesting data when considering the light in contention with 

depth. With the lighting trend-line contending roughly equally with depth during navigation. This 

behaviour might be explained by the reduced level of information presented at low-lighting 

conditions, requiring participants to select longer, more well-lit corridors. However, participants 

did opt for a relatively unchanging depth-choice more frequently, indicating a more balanced 

influence of corridor length. Perhaps due the varying intelligibility presented by the varied 

lighting conditions. In the complexity experiment (Figure 4d, Figure 4e), participants exhibited 

no preference for visible distance and a strong preference for greater complexity. While it might 

be expected for participants to opt for less complex routes, where corridor entrances are not 

occluded by the surface complexity, and it is easier to infer depth and assess the intelligibility of 

a space, this appears to not be the case in this instance. This could be a result of the visual 

saliency of the more complex corridors (Treisman, 1986). 
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This is particularly apparent when assessing the experiment where participants were presented 

with both light and complexity variables. With participants trending towards relatively shorter 

corridors and greater complexity, prevailing over the influence of light intensity, and resulting 

the in more irregular data shown in Figure 5. This could be a result of the combined effects and 

resulting reduced intelligibility of the space presented by the varying lighting and complexity 

conditions. 

 

(a)   

(b)  (c)  

 
Figure 5 Normalised distribution of relative light (yellow), complexity (blue) and depth (grey) chosen by 
participants in the lighting & complexity experiment. The x-axis denotes the relative magnitude of the bin 

value, with bins below 0.4-0.6 (centre) indicating a relative ‘less than’ choice, the central bin indicating that 
participants chose a relative ‘middle ground’, and the bins greater than 0.4-0.6 indicating a relatively 

‘greater than’ choice. The y-axis denotes a normalised percentage distribution of the selection. Lines of best 
fit are shown in red. 

 

4.2 The Role of the Gaze in High-Level Cognitive Decision Making 

The analysis also incorporated the nature of the participants gaze to evaluate the gaze behaviour 

in response to the conditions of each experiment. One example of this is gaze distance, calculated 

by measuring the distance between each fixation and the participants location in all candidates 

across the three experiments. To assess the expected mean expected gaze depth across the 

experiments, an isovist control placed randomly at 1000 different points in each map and 

measured the possible gaze depth in increments of 10 degrees. The result indicated a mean gaze 
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depth of 6.45 meters. The mean depths across the experiments loosely correlate with this control 

mean, with the lighting experiment trending towards a greater than expected mean gaze depth. 

 

However, Figure 6 reveals that the gaze-distance distribution does not align with the isovist 

control. The isovist control’s simulated gaze is uniformly distributed in all directions, which 

combined with the layout of the map’s narrow corridors, results in data peaking in the 1m bin. 

However, the navigational task necessitates searching down the length of the corridors for the 

goal object, implying optimal search strategies should entail longer gaze distance. Hence, we see 

peaks in the 4-5m bins for the participants, which coincides more closely with this mean. 

 
Experiment Type Mean Gaze Distance 
Complexity 6.66m 
Control 6.45m 
Light 7.44m 
Light & Complexity 6.23m 

 

 
Figure 6 Gaze distance across each experiment compared to an isovist control, which was placed at 1000 

random points in each map with sampling rays at 10-degree increments to estimate the gaze distance 
distribution and the mean gaze distance across all maps of 6.45m 

 

Notably, the collected data is intriguing due to the distinct gaze behaviour exhibited in the 

lighting experiment, which differed from the ‘complexity’ and ‘lighting & complexity’ 

experiments. As complexity variation was not present in the light experiment, it is reasonable to 

hypothesise that the manipulation of complexity had more of an impact on participants' gaze-

distance behaviour than lighting. This might suggest that the varying complexity levels within the 

environment are more likely to divert participant’s attention away from the more ‘search optimal’ 

gaze depth observed in the lighting-only experiment. 

 

This data can be interrogated further through an inspection of the effects of the individual 

variable levels upon the gaze distance behaviour in each experiment (Figure 7). Within the 
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lighting experiment there is a much clearer correlation between the light level and gaze distance, 

wherein participants displayed a consistently greater mean gaze distance the better lit the 

environment, as demonstrated by the correlation between gaze distance and light level. This 

agrees with the results in the previous section, in which increased light coincides with increased 

route selection based on visible distance, thus suggesting that greater light draws the eye. 

Suggesting that participants would demonstrate more optimal search behaviour in better lit 

conditions. In the complexity experiment, the mean gaze distances by levels suggest no distinct 

correlation between gaze distance and complexity level. When considered in conjunction with the 

route selection data, this might suggest that complexity choice is unrelated to gaze distance 

behaviour. 

 
Level Mean Gaze Distance (Light) Mean Gaze Distance (Complexity) 
0 6.42m 7.04m 
1 7.19m 6.85m 
2 7.32m 5.58m 
3 8.23m 6.99m 

 

 

 
Figure 7 Gaze distance distribution across each condition level in the lighting-only (yellow) and 

complexity-only (blue) experiments 
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The nature of the gaze data across participants was also assessed through the distribution of time 

spent considering the choice variable, comparatively to the options presented to the participant at 

each choice. This was done to test the hypothesis that the time spent looking at a choose would 

affect the decision made. To ensure the validity of the data, a data confidence value was 

calculated. Where data accuracy was below 70%, the data was omitted from the distribution 

calculation. This was calculated by assessing the difference in the quantity of positional and gaze 

data, resulting from the omission of data from the eye-tracking headset when gaze confidence 

readings were lower than 90%. Here, it was found the that the choice gaze-distribution correlates 

across all experiment conditions (Figure 8). With participants tending to look at their choice for 

average of 65.25% of the time at junctions across 983 samples with a standard deviation of 

28.83%, and an average of 53.93% of the time at intersections across 579 samples with a 

standard deviation of 27.35%. 

 
Choice Type Expected % of Gaze Upon Choice Observed % of Gaze Upon Choice 

Junctions 50% 65.25% 

Intersections 33.33% 53.93% 

 

 

   
 
Figure 8 Mean participant gaze distribution percentage upon the chosen option for intersections (left) and 

junctions (right) across all participants for the light, complexity, and light & complexity experiments 

 

As this observed mean differs from the expected means presented in alternative hypothesis, 

which would indicate an expected equal distribution of 33.3% for intersections and 50% for 

junctions if participants were to consider each option equally before deciding. This might suggest 

that the time spent looking at an option does correlate with the choice. 

 

However, as the gaze distribution is not changing across the differing non-spatial variables, this 

implies that while we look at our choice for longer, this a factor is independent of effect of the 
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various low-level visual features. This suggests that, despite participants showing a preference 

for either more complex or well-lit options, they evaluate each turning option independently of 

the low-level visual cues. Considering the data in Figure 7, it appears that while the gaze may be 

affected by light overall, it doesn’t play a role when making a choice. It is also important to 

consider the practical difference between the choice mean and expected mean, as the large 

standard deviation of the data further implies that other factors affected this distribution. 

 

This observation is further supported by Figure 9. Which indicates the percentage distribution of 

the gaze across the different conditions of light and visual complexity are roughly equal. Further 

implying that while the time spent looking at a condition correlated with the selection process, 

this was also independent of the low-level visual cues. 

 

  
Figure 9 Normalised gaze distribution across each light (left) and complexity (right) levels while making 

choices at junctions/intersections in the lighting experiment and complexity experiment respectively. 

 

5 CONCLUSION 

5.1 Re-evaluating the role of low-level cognition in navigation. 

These results suggest that low-level visual cues have an impact on decision making and higher-

level cognitive processes. Implying that low-level cognitive processes, such as the signal 

intensities of our environment, provide the necessary perceptual information required for higher-

level cognitive processes, such as decision-making, to occur. High-level processes, contrastingly, 

might evaluate and integrate this lower-level perceptual information to make an informed 

decision, based upon the overall goal. This in turn, is supported by theories that visual attention 

isn’t necessarily tied to the physical eye movements, but rather an internal cognitive mechanism 

(Posner, 2012), and the idea that the effect of these low-level cues are a pre-attentive process 

(Treisman, 1986). Thus, highlighting the importance of the visual saliency and impact of these 

cues at the lower level, in that they bare weight the decision-making process despite not 

necessarily baring an impact on the attentive nature of the eye’s fixations. 



 

Proceedings of the 14th International Space Syntax Symposium 

 

Beyond Depth Cues: Lighting and visual complexity as factors in navigation 24 

 

These findings therefore highlight the importance of exploring the impact of these non-spatial 

cues upon human behaviour and the complex interplay of low and high-level cognitive processes 

in navigation and decision-making. Utilising both approaches provides a more complete 

understanding of navigational behaviour from the lowest through the highest cognitive levels.  

 

From this data, we can infer that these low-level visual cues do have an impact on navigational 

behaviour, supporting the hypothesis. The variables of angle and visible distance, which have 

been seen to influence movement in existing cities and spaces in which these are highly varied, 

appear to have little effect in the case of this data from a controlled, orthogonal environment. 

However light and complexity, when varied, do appear to have an effect on decision-making and 

movement through space. The gaze is also affected by these non-spatial variables overall, 

particularly by light, but not when deliberating at junctions and intersections. Thus, suggesting 

that this may not be through immediate visual attention, rather an indirect mechanism. This is 

further supported by data in Figure 8 and Figure 9, which demonstrates that while participants 

might have spent more time fixating upon their choice when making decisions, this was 

unaffected by the differing levels of light and visual complexity. 

 

This research into the impact of non-spatial low-level visual cues on navigation thus provides a 

valuable insight into the basic cognitive and perceptual processes that underlie navigational 

behaviour in humans, ultimately suggesting these variables can be individually meaningful and 

bare significance over the way we interpret and respond to our environment. 
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