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Abstract 

Statistical properties of language provide important cues for language learning and may be 

processed by domain-general cognitive systems. We investigated the relationship between 

implicit statistical learning (the unconscious detection of statistical regularities in input) and 

language production. Twenty typically developing (TD) children and nine children with acquired 

language disorders (ALD) (aged 6 to 18 years) took part in a Boston Cookie Theft picture 

description task. Using a computerized analysis, we investigated statistical properties, such as 

usage frequency of words and collocation strength of word combinations. Participants also 

completed a non-linguistic serial reaction time (SRT) task, which tested non-verbal, implicit 

statistical learning in the visual-motor modality. We determined age effects, and compared 

language production and SRT performance between both groups. Older TD children produced 

more connected language, more words, less frequent function words, more rare or novel 

combinations, and showed better statistical learning. Children with ALD produced less connected 

language, more weakly collocated combinations, displayed less lexical diversity and showed 

poorer statistical learning. Post-hoc analyses found correlations between statistical learning and 

statistical properties of spoken language. Given the rarity and heterogeneity of children with 

ALD, group size was small and the study should be considered exploratory. However, we note 

that results are compatible with the view that language production draws on statistical learning 

and that impairment of statistical learning can be related to language disorders. 

 

Keywords: acquired language disorder, typical development, paediatric, language production, 

sequential learning 
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Introduction 

Implicit statistical learning is the ability to detect probabilistic regularities from a given input 

without being consciously aware of these patterns (Christiansen & Chater, 2017; Plante & 

Gómez, 2018). It is fundamental to human behaviour and plays a role in many domains which 

involve sequencing of information or actions, such as music or identifying visual patterns in the 

environment (Turk-Browne et al., 2005). Evidence suggests that it is also relevant for language 

acquisition and use. In this study, we explored two aspects of statistical learning (1) whether, in 

typical language development, the effectiveness of statistical learning can be related to properties 

of the individual’s spontaneous language production, including statistical properties, and (2) 

whether statistical learning can be disrupted in children with acquired language disorder (ALD). 

Also known as “childhood aphasia”, ALD in children is an impairment of speech, language 

and/or communication following a neurological event, and after a pre-morbid period of typical 

language development (Dennis, 2010). ALDs occur due to neurological insults to the brain, such 

as a stroke, traumatic brain injury, tumour or infection. They often result in language deficits in 

both receptive and expressive language domains. Common characteristics of language deficits 

include difficulties with language comprehension (including inference making), learning new 

linguistic material, organising and structuring sentences, expressing more complex ideas, as well 

as features of word finding difficulties, such as perseverations and paraphasias. There are also 

often co-occurring cognitive deficits, such as problems with working memory, executive 

organisation, attention and processing speed (Gravel et al., 2007). The severity of the language 

impairment is largely variable based on the extent and location of the injury. 

Statistical regularities of language input help explain the trajectory of language acquisition, and 

some propose that children’s representation of grammar is to a substantial degree probabilistic 
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(Diessel, 2007; Erickson & Thiessen, 2015). Most of children’s early constructions reflect what 

they hear frequently, and they are produced with little variation, suggesting that high-frequency 

collocations are learned in a very holistic fashion (Dąbrowska & Lieven, 2005). The child may 

produce combinations of frequently co-occurring words, such as ‘I want’, without necessarily 

having knowledge of their internal structure. After about 20 months, the child develops greater 

generative capacity, and analytic processing starts to emerge (Bannard & Lieven, 2012). 

However, these frequency effects remain important across the lifespan. In adults, more common 

combinations (e.g., ‘I don’t know why’; Arnon & Snider, 2010) are processed faster, suggesting 

that their representation is still holistic, or at least different from rare or novel combinations 

(Arnon & Snider, 2010; Conklin & Schmitt, 2008; Siyanova-Chanturia et al., 2017). More 

frequent words and word combinations are also more likely to be preserved in adults with aphasia 

(Bruns et al., 2019; Zimmerer et al., 2018).  

The question arises whether the statistical learning network that is involved in language 

processing is specific to it, or domain general, and whether impairment of statistical learning can 

contribute to language impairment. Statistical learning has been observed in different stimulus 

modalities and experimental paradigms, including word segmentation (Saffran et al., 1996), 

visual pattern learning (Kidd, 2012), form-meaning mapping (Graf Estes et al., 2007), and serial 

reaction time (SRT) tasks (Robertson, 2007). Because of its involvement in several domains, it 

has been suggested that the statistical learning systems relevant for language are domain general 

at least to some degree (Christiansen & Chater, 2017; Conway, 2020). This view has been based 

on correlations between performance in non-linguistic statistical learning tasks, and language 

capacity (Erickson & Thiessen, 2015). Adults who more successfully learned statistical patterns 

in a visual, non-verbal artificial language learning task showed more sensitivity to word 



5 
Language and Implicit Statistical Learning 

 

 

predictability in a speech perception task (Conway et al., 2010). Learning of statistical patterns in 

visual sequences was also associated with reading ability in neurotypical children and adults 

(Arciuli & Simpson, 2012). 

Important evidence for a link between implicit statistical learning in non-verbal modalities and 

language production also comes from populations with acquired or developmental disorders. In 

adults with aphasia, particularly those with profound grammatical impairment, sequence learning 

in non-verbal artificial language tests was found to be impaired or substantially different 

(Christiansen et al., 2010; Zimmerer et al., 2014). Other evidence comes from studies using serial 

reaction time (SRT) tasks, which test implicit statistical learning in a visual-motor modality: 

Goschke et al. (2001) and Schuchard et al. (2017) concluded that statistical learning in adults 

with aphasia was generally intact, although learning effects in adults with aphasia were smaller 

than for controls. Correspondingly, Vadinova et al. (2020) found that implicit statistical learning 

mechanisms were present, but impaired, in aphasia, and found a correlation between implicit 

statistical learning mechanisms and the degree of syntactic impairment. 

Further evidence comes from studies on the paediatric population. In an artificial language 

paradigm, children with developmental language disorder (DLD) demonstrated poorer implicit 

learning than controls (Evans et al., 2009), which is consistent with the results of a meta-analysis 

of eight SRT studies (Lum et al., 2014). A follow-up analysis including SRT, but also other 

statistical learning studies, came to the conclusion that children with DLD have impaired 

statistical learning, which may account for phonological and syntactic deficits (Obeid et al., 

2016). In other language-linked developmental disorders such as developmental dyslexia, 

children have been found to demonstrate poorer sensitivity to transitional probability structures in 

both linguistic and non-linguistic stimuli (Gabay et al., 2015). Since then, new studies have found 
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no significant associations in children with DLD (Lammertink et al., 2020) and dyslexia (van 

Witteloostujin et al., 2019). 

Beyond heterogeneity within different paediatric populations, one issue which has made 

conclusions difficult is that studies use different empirical approaches while claiming to 

investigate the same subject. Implicit statistical learning has been investigated in different 

sensory modalities (auditory, visual, visual-motor), different methods of engaging with stimuli 

(e.g. grammaticality judgments, motor response), and with sequences that contain different types 

of dependencies (adjacent, non-adjacent, hierarchical) and complexity. It should not be assumed 

that all methods probe the same learning network (Conway, 2020).  

Neuropsychological studies suggest an overlap in the neural bases of statistical learning in 

language processing and statistical learning in other domains. Findings in statistical learning 

studies can vary substantially depending on which experimental paradigm is employed. Studies 

using speech-segmentation paradigms have identified the left inferior frontal gyrus and left 

superior temporal gyrus (Karuza et al., 2013; McNealy et al., 2006; McNealy et al., 2010; Plante 

et al., 2017). Artificial grammar learning studies in different sensory modalities using 

probabilistic finite-state grammars have identified, beyond activation in sensory-modality 

specific areas, frontal cortical activation, including left inferior frontal gyrus, and subcortical 

activation, particularly basal ganglia (Conway & Pisoni, 2008; Newman-Norlund et al., 2006; 

Petersson et al., 2012). 

A meta-analysis of 20 SRT studies using fMRI or PET found that only basal ganglia were 

significantly associated with learning (Janacsek et al., 2020), while in a lesion study, participants 

with damage to the basal ganglia displayed less evidence of SRT learning (Vakil et al., 2000). 
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While cortical areas such as left inferior frontal and superior temporal gyrus are frequently 

considered language areas, involvement of the basal ganglia in language has received less 

attention. Damage to the basal ganglia increases aphasia severity (Brunner et al., 1982), and has 

been associated with grammatical change in neurodegenerative conditions (Hinzen et al., 2018). 

In Parkinson’s disease, there is report of a loss of ability to use common, holistic expressions, 

such as daily prayers or social formula (Van Lancker Sidtis, 2012; Van Lancker Sidtis et al., 

2015). Ullman et al. (2020) suggest that the basal ganglia, together with the left inferior frontal 

gyrus, form the basis of procedural processing in language, and are therefore crucial for 

grammatical processing. 

 

Current study 

In the current study, we explored the relationship between implicit statistical learning and 

language production in a paediatric population, using recent concepts in language analysis and 

statistical learning paradigms. In TD children, we were interested in whether development of 

grammar is related to maturation of statistical learning. Previously, Meulemans and Van der 

Linden (1998) found no age-related differences between 6 year olds, 10 year olds and adults in a 

serial reaction time task, while Finn et al. (2016) found that the performance of 10 year olds on 

an artificial grammar learning task was comparable to that of adults. In contrast, Arciuli & 

Simpson (2011) found that visual statistical learning improved with age. With regard to learning 

across the lifespan, a large study conducted by Janacsek et al. (2012) comparing statistical 

learning performance in healthy individuals aged 4 to 85 found that learning was uniform until 

around 12 years, which was followed by a decrease and subsequently remaining uniform until 
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about age 60, which was then followed by another decrease. We were interested not only in age-

related effects on statistical learning, but also in correlations between statistical learning and 

properties of language production. 

We also examined differences between TD children and children with ALD. The scarcity of this 

population results in it being largely understudied. While there has been research on adult clinical 

populations and developmental disorders in children, to our knowledge there has been no 

evidence on implicit statistical learning in children with ALD, or the relationship between 

implicit statistical learning and language production in this population. With evidence from other 

populations such as DLD, as well as from neuroimaging and lesion studies, linking non-verbal 

statistical learning and language processing, we found it plausible to hypothesise that statistical 

learning could be affected in children with ALD. 

We employed a SRT task (Nissen & Bullemer, 1987) to test statistical learning in both groups. 

SRT studies test implicit statistical learning of adjacent dependencies in the visual-motor 

modality. In many SRT tasks, participants are first familiarized with a sequence order. Learning 

is tested by measuring reaction time (RT) increase when the order becomes random. In this study 

however, we used a Lindenmayer grammar (Geambasu et al., 2020; Prusinkiewicz & Hanan, 

1989) which generates strings with stimulus transitions which can be defined probabilistically, 

with some being more predictable than others. Rather than contrasting structured with random 

trail blocks, we examined the degree to which RT patterns mirrored the statistical predictability 

of the generated structure. A learning participant should display lower RTs where transitions 

between stimuli are more predictable. Better ‘fits’ of RT data to the statistical properties of the 

strings were interpreted as indicators of successful statistical learning. The design allows testing 

of learning of different complexities: the probability of a symbol appearing in any given position, 
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the probability of one symbol given the preceding symbol (first order), or the probability of a 

symbol given the preceding two symbols (second order). We established models to test learning 

of each level of complexity and hypothesized that groups could differ with regards to what they 

learn (which model fits best), and how well they learn (how well the model fits to the RT data). 

We investigated statistical properties of language production using the Frequency in Language 

Analysis Tool (FLAT), which has previously been applied in investigations of adults with 

aphasia (Bruns et al., 2019; Zimmerer et al., 2020; Zimmerer et al., 2018). The FLAT analyses 

orthographic transcripts by extracting each word, bigram (two-word combination) and trigram 

(three-word combination) and determines their usage frequency using the 10 million word spoken 

corpus of the British National Corpus (BNC; The British National Corpus, 2007). The BNC 

reflects typical language use as it is based on utterances collected from a range of speakers with 

different backgrounds. Based on frequency, FLAT also computes the collocation strength of each 

word combination, which indicates how strongly words co-occur relative to their usage 

frequency. Similar to the SRT task, this measure therefore describes the statistical association 

between adjacent units. In adults with aphasia, increased values were interpreted as a sign of 

language impairment as individuals relied more on familiar forms and word combinations that are 

easier to process. It is, to our knowledge, the only software that allows analysis of word 

combinations in such a manner. However, it was designed primarily for adult language and the 

BNC is an adult corpus. We think that for children, higher values may reflect successful 

acquisition and alignment to adult patterns as children pick up the statistical properties of their 

language. The FLAT software also provides word counts, measures for word and combination 

diversity (type/token ratios; TTR), the proportion of content words in each sample, and a measure 

of fluency, so we also examined the effect of age and group on these variables. 
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Research questions and hypotheses  

Our main research questions were: 

1. Are there any age effects of general production variables (word count, fluency, 

content word ratio, type/token ratio), as well as frequency and collocation strength of 

produced language forms? 

2. How does language production differ between TD children and children with ALD? 

3. Are there any age effects in implicit statistical learning abilities? 

4. How does implicit statistical learning differ between TD children and children with 

ALD?  

5. Is there a relationship between language production and implicit statistical learning? 

Our hypotheses were nondirectional as we expected changes in age and between groups, but had 

insufficient grounds to predict a direction given that we used novel methods and there is very 

little research on children with ALD.  
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Methods 

Participants 

This study was approved by the University College London Research Ethics Committee and the 

SingHealth Centralised Institutional Review Board. It took place in Singapore and informed 

consent for participation in the study was obtained from all participants. 

Twenty Singaporean TD children were recruited via a recruitment poster. They had no reported 

history or diagnosis of speech or language impairment, including dyslexia. There were eight 

males and 12 females, aged 6 to 18 years (mean = 11.5; standard deviation (SD) = 2.56), and 19 

were right-handed and one left-handed. All had English as their first language. 17 children were 

bilinguals who spoke English and Mandarin Chinese, one of which also spoke basic Malay in 

addition to English and Mandarin Chinese. The remaining three children were monolinguals and 

only spoke English. 

Nine Singaporean children with ALD secondary to neurological events were recruited through a 

Speech-Language Pathology neurology clinic in a hospital. The group consisted of six males and 

three females aged 7 to 15 years (mean = 11.6; SD = 4.04). Six were right-handed and three were 

left-handed. English was the first language for all but one participant, P4, who spoke English as a 

sequential bilingual, with Mandarin Chinese being her first language. There were a total of six 

bilingual children (three spoke English and Mandarin Chinese, one spoke English and Malay and 

the remaining child spoke English and Tagalog). One of the bilingual children also spoke very 

basic dialect (Teochew). There was a total of three monolingual children, one of whom spoke 

very basic Mandarin Chinese. The groups did not differ significantly by age, t(27) = 0.401, p = 

0.691, d = 0.15. 
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Four of the children with ALD suffered from a traumatic brain injury (TBI), three had cancer and 

two had ruptured arteriovenous malformations (AVMs). The age of onset of the neurological 

events ranged from one year to approximately 14 years. As at the time of the study being 

conducted, the post-onset duration ranged from less than a month to seven years. The 

participants’ language abilities had been assessed prior by Speech-Language Pathologists via 

various formal and/or informal assessment tools which may include formal assessments such as 

the Pediatric Test of Brain Injury (Hotz et al., 2010) and Clinical Evaluation of Language 

Fundamentals (4th edition; Semel et al., 2003), and/or informal assessments (e.g. picture 

description tasks, narrative language samples). Information on participant characteristics for the 

ALD group can be found in Table 1.
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P1 M 14 R 

Traumatic Brain Injury 

(TBI; Left Temporo-

Parietal Haematoma) 

14 years 

4 months 

Less than 1 

month 

Moderate 

Non-Fluent Aphasia, with 

cognitive difficulties 

P2 M 9 R 

TBI (Right Subdural/ 

Subarachnoid 

Haemorrhage) 

6 years 5 

months 

1 year 5 

months 

Moderate 

Reduced receptive and 

expressive language skills, 

with cognitive difficulties 

P3 F 10 R 

TBI (Diffuse Axonal 

Brain Injury) 

8 years 2 

months 

2 years 6 

months 

Moderate 

Reduced expressive language 

skills, with cognitive 

difficulties  

P4 F 13 L 

Cerebellar 

Medullablastoma 

6 years 

11 

months 

6 years 11 

months 

Moderate 

Reduced receptive and 

expressive language skills, 

with reduced memory 
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P5 M 15 L 

TBI (Left Subdural 

Haemorrhage) 

15 years 

3 months 

6 months Mild 

Reduced receptive and 

expressive language skills, 

with reduced memory 

(Mild Dysarthria also present) 

P6 M 8 R 

Ruptured AVM (Right 

Parietal Lobe) 

7 years 8 

months 

1 year 3 

months 

Mild 

Mildly reduced receptive and 

expressive language skills, 

with reduced attention, 

motivation and cognitive 

difficulties 

P7 M 7 R 

Anaplastic Astrocytoma 

(Grade III) Brain Tumor 

in Left Parieto-Occipital 

Lobe 

1 year 6 years Moderate 

Reduced receptive and 

expressive skills 

P8 M 10 R 

Posterior Reversible 

Encephalopathy 

Syndrome secondary to 

4 years 7 years Mild 

Functional receptive skills and 

mildly reduced expressive 

skills 



15 
Language and Implicit Statistical Learning 

 

 

 

Table 1: Background information for Children with ALD

Acute Lymphoblastic 

Leukemia 

P9 F 13 L 

Ruptured AVM (Left 

Sylvian Fissure) 

6 years 7 years Moderate 

 

Fair receptive skills and 

moderately reduced expressive 

language skills 
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Stimuli and procedure 

Participants completed two tasks: spoken narrative production (Boston Cookie Theft picture 

description, Goodglass et al., 2001) and a SRT task. Methods and protocols in our study were 

simple, short, and suitable for a paediatric population. Due to experimenter error, five TD 

children completed the SRT task first, while all other participants completed the picture 

description task first. 

 

Boston Cookie Theft picture description 

The Boston Cookie Theft picture description from the Boston Diagnostic Aphasia Examination is 

a widely used tool to elicit discourse in individuals with disorders of language function or aphasic 

syndromes (Goodglass et al., 2001). It depicts a mother washing dishes at an overflowing sink, 

while two children are attempting to get cookies from a cookie jar up on a shelf, with the boy 

about to fall from a stool. It was chosen as it is a short, simple task that caters to our ALD group, 

as well as younger participants in both groups.  

The experimenter showed the picture to the participant and gave the prompt: ‘I am going to show 

you a picture. Can you tell me what’s happening in the picture?’ Descriptions were audio-

recorded. At the end of the description, the experimenter asked the participant if they had 

anything else to add. Additional prompts were only given if the participant showed obvious 

difficulty in production. In these cases, the experimenter would ask the participant a prompting 

question similar to the initial question (e.g. ‘What’s happening?’, ‘Anything else?’). Spoken 

language samples were subsequently orthographically transcribed and processed by the FLAT 

according to transcription guidelines described in Zimmerer et al. (2018).  
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Table 2 describes the measures that were obtained. They include frequency in relation to our 

questions about statistical features of language production, and other measures which investigate 

quantity of output, fluency and lexical diversity. Combination ratio (i.e. trigram count divided by 

word count) was used as a measure of connected language. For word combinations, we chose 

collocation strength (t-scores), which quantifies how often words appear together considering 

their individual usage frequency. Differences in collocation strength therefore more likely reflect 

real differences at the level of combinations instead of single words. We focused on bigrams 

rather than trigrams, as the former yielded larger effect sizes in comparisons between clinical and 

control groups (Bruns et al., 2019; Zimmerer et al., 2020; Zimmerer et al., 2018), and included 

bigrams with a frequency of one or higher. For frequency and collocation strength measures we 

averaged values for each type, not token, produced by a participant. The reason for this decision 

is that token averages are confounded by repetitions within samples, which we captured 

independently by determining type/token ratios (TTR) for words and bigrams.  

While we excluded variables with a frequency of zero from the collocation strength measure, the 

production of these is useful for profiling language production. As in previous FLAT studies, we 

computed the proportion of combinations that occur in the BNC (‘BNC ratio’). This variable too 

is an indicator of how much an individual relies on familiar, as opposed to rare or novel, language 

forms. A higher value indicates reliance on more familiar combinations. Bigrams that are 

ungrammatical were excluded from analysis, with the exception of missing third person marking 

in verbs (e.g. ‘the water fall’), which we considered dialectically correct. 
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Measure Description 

Word count Quantity of verbal output. 

Combination ratio 

Measure of connected language (trigram count divided by word 

count). 

Content word ratio 

Proportion of content (open class) words as part of the total word 

count. 

Content word 

frequency 

Usage frequency of content (open class) words, per million words. 

Function word 

frequency 

Usage frequency of function (closed class) words, per million words. 

Bigram t-score Collocation strength of combinations with frequency > 0. 

Bigram BNC ratio 

Proportion of bigrams that occur in the BNC, i.e. have a frequency > 

0. 

Word/Bigram TTR Measures of diversity of linguistic forms. 

 

Table 2: Measures determined by automated FLAT analysis. Frequency, t-scores and BNC ratios 

measured based on the spoken subsection of the BNC. 

 

SRT task 

The SRT task was written using DMDX (Forster & Forster, 2003). SRT stimuli were dots that 

appeared on the left (‘A’) or right (‘B’) side of a computer screen. The screen was split into 

sections by a large ‘X’ (Figure 1). Stimulus A was mapped to the left button on the right hand 
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pad of a Logitech Precision Gamepad, stimulus B to the right button. The stimuli remained on 

screen until the participant pressed a response button. Button selection and RT was recorded. 

Participants were shown a visual representation of the button-stimulus mapping and asked to 

press the corresponding button as quickly as possible when the stimulus appeared. The 

interstimulus interval was 500ms, during which a blank grey screen was presented. The 

experiment contained seven trial blocks with a self-timed break between blocks. 

Each block contained 55 stimuli and lasted about two minutes. Of the 55 stimuli, 21 were 

stimulus A and 34 stimulus B. In the first block, the order was random. In the other blocks the 

order was determined by a Fibonnaci grammar. The Fibonacci grammar belongs to the family of 

Lindenmayer systems (Prusinkiewicz & Hanan, 1989). Typically, it contains two symbols A and 

B, which were matched to stimuli A and B respectively, and consists of two rewrite rules: A -> 

B, B -> BA. Starting with the symbol A, the grammar generates the following sequences with 

each generation: A, B, BA, BAB, BABBA, BABBABAB, etc. (the length increase follows the 

Fibonacci number series). The structure for trial blocks 2-7 was generated by randomly extracting 

a section of 55 stimuli from a 26th generation Fibonacci sequence (75025 symbols long). 

In longer sequences, statistical regularities quickly emerge (Appendix A). These regularities are 

the basis for determining which information about the sequence structure a participant extracted, 

and how successfully it was implemented. The simplest statistical model focuses only on a single 

symbol. After some exposure, it can learn that the probability of any symbol being A is ca. 

38.1%, and the probability of it being B is ca. 61.8%. The next complex model is a bigram (or 

first order) model. A bigram model can learn that if a symbol is A, it will always be followed by 

B (i.e. the representation of probability during exposure approaches 100%), and that if the 

symbol is B, it is followed by A with a probability of ca. 61.8%. A trigram (second order) model 
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can also learn that a bigram sequence AB is followed by A with a ca. 38.1% probability, and that 

the bigram BB is followed by A with a probability approaching 100%. 

As the statistical models become more complex, they become able to predict the next symbol 

with greater certainty on the basis of preceding symbols. Since RT can be expected to be faster 

the closer the prediction gets to certainty, RT patterns can be modelled to determine the most 

likely probabilistic representation of a given participant, and how successful the model is. We 

therefore determined which model was the best fit, and compared groups on the fit of the model. 

RT patterns mirroring more complex representations (bigrams, trigrams) can be seen as evidence 

for better learning. To our knowledge, this novel method has not been used with children. 

However, a pilot study (Zimmerer et al., 2013) suggested that for adults, trigram models were the 

best representation of statistical learning.  

 

        

Figure 1: SRT stimuli A (left) and B (right) 
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Results 

Shapiro-Wilk tests for normality were carried out on all variables. All data were not normally 

distributed, except for function word frequency in the TD group and word count in the ALD 

group. We categorized effect sizes according to Cohen’s (1988) criteria for interpretation (small 

effect: d ≥ 0.2; intermediate effect: d ≥ 0.5; large effect: d ≥ 0.8). We associated each outcome 

variable with a different property of language, and therefore a separate hypothesis, with the 

exception of bigram t-score and bigram BNC ratio which both tested familiarity of word 

combinations. In the latter case one could argue for Bonferroni adjusted thresholds, and we report 

them to signal that the two variables tested the same hypothesis. However, we advise caution 

since Bonferroni adjustments have been criticized to introduce an ‘unacceptable’ risk of Type II 

errors especially in exploratory studies with limited n, in which effect sizes may be more 

informative than p value statistics (Nakagawa, 2004; Perneger, 1998). 

Table 3 displays results from both groups. For each variable we report the effect of both age and 

group separately, followed by a rank analysis of covariance (a variant of the ANCOVA for non-

parametric data; Quade, 1967), in which we residualized the effect of group over age. Because 

groups did not differ significantly on age, the ranked ANCOVA serves as a way of noise-

reduction. The effects of group and group residualized over age were similar, which suggest that 

variances explained by age and group do not overlap.  For word and bigram TTRs we 

additionally entered word and bigram count (respectively) as covariates, since TTRs can be 

confounded by differences in sample size. We chose this solution over alternatives to TTR (such 

as vocd; Harris Wright et al., 2003) because samples were overall short and for bigrams, such 

alternatives have not been developed. 
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Age had a significant effect on several variables as older children had a higher word count and 

combination ratio, produced function words with lower frequency and had a lower bigram BNC 

ratio, i.e. older children produced more words, had more connected output, used rarer function 

words and more combinations which were rare or novel. Figure 2 shows that the relationship 

between age and these variables was driven by patterns within the TD group. 

 

 

Figure 2: The effect of age on word count, function word frequency, combination ratio (a 

measure of connected language) and Bigram BNC ration (the proportion of bigrams with a 

frequency > 0). The linear best fit line is based on data from both ALD and TD groups. LOESS 

curves for each group, which are more sensitive to outliers, show that age effects were driven by 

distributions within the TD group. 
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After residualizing over age, TD children and children with ALD differed significantly on a 

number of variables. Children with ALD had a lower combination ratio, lower bigram t-scores 

and word TTR. The differences in t-scores would not be significant under a Bonferroni-adjusted 

threshold (p = 0.025; however, note our reservations above). Effect sizes were large. Note 

however that because of the smaller size of the ALD group, other large effects were not 

statistically significant, namely differences for content word ratio and bigram TTR; children with 

ALD produced more content words in relation to function words and showed less diversity for 

word combinations.  

 

Variable TD (IQR) 

ALD 

(IQR) 

Age effect Group effect 

Group 

residualized 

over Age 

*Word count 70 (64.5) 38 (60) 

t(27) = 3.758, 

p = 0.001,  

β = 0.59 

t(27) = 1.390, 

p = 0.176,  

d = 0.57 

t(27) = 1.454, 

p = 0.157,  

d = 0.67 

*,†Combination 

ratio 

0.81 (0.11) 0.75 (0.26) 

t(27) = 2.330, 

p = 0.028,  

β = 0.41 

t(27) = 3.325, 

p = 0.003,  

d = 1.28 

t(27) = 2.728, 

p = 0.011,  

d = 1.26 

Content word 

ratio 

0.39 (0.05) 0.43 (0.13) 

t(27) = 1.123, 

p = 0.271,  

β = 0.21 

t(27) = 1.926, 

p = 0.065,  

d = 0.81 

t(27) = 1.861, 

p = 0.074,  

d = 0.82 
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Content word 

frequency 

341 (284) 

per million 

316 (474) 

per million 

t(27) = 0.291, 

p = 0.773,  

β = 0.06 

t(27) = 0.559, 

p = 0.581,  

d = 0.25 

t(27) = 0.534, 

p = 0.597,  

d = 0.24 

*Function word 

frequency 

120 (45) 

per million 

119 (76) 

per million 

t(27) = -2.804, 

p = 0.009,  

β = -0.48 

t(27) = 0.606, 

p = 0.550,  

d = -0.25 

t(27) = -0.447, 

p = 0.658,  

d = -0.20 

†Bigram t-score 19.63 (9.4) 

15.57 

(12.26) 

t(27) = 0.563, 

p = 0.578,  

β = 0.11 

t(27) = 2.097, 

p = 0.046,  

d = 0.86 

t(27) = 2.051, 

p = 0.05,  

d = 0.84 

*Bigram BNC 

ratio 

0.91 (0.06) 0.89 (0.11) 

t(27) = -2.083, 

p = 0.047,  

β = -0.37 

t(27) = 0.441, 

p = 0.662,  

d = 0.19 

t(27) = 0.656, 

p = 0.517,  

d = 0.27 

†Word TTR 0.63 (0.19) 0.61 (0.17) 

t(27) = -0.114, 

p = 0.91,  

β = -0.02 

t(27) = 2.608, 

p = 0.015,  

d = 1.21 

t(27) = 2.596, 

p = 0.015,  

d = 1.20 

Bigram TTR 0.94 (0.07) 0.85 (0.19) 

t(27) = 0.268, 

p = 0.791,  

β = 0.58 

t(27) = 1.730, 

p = 0.095,  

d = 0.81 

t(27) = 1.770, 

p = 0.088,  

d = 0.83 

 

Table 3: Medians and interquartile ranges (IQRs) of FLAT variables for each group, as well as 

inferential measures of group difference and age effect. Because the majority of distributions 

were non-parametric, we ranked all variables to maintain comparability. We calculated the 

effects of age and group separately, as well as the effect of group residualized over age to 
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determine how much the variances explained by the variables are shared. Where the effect of 

group and group residualized over age are similar, there is little shared variance. For word and 

bigram TTRs, we additionally residualized over word and bigram count (respectively). 

*significant age effect, †significant residualized group difference; α-level = 0.05. 

 

For RT analysis we excluded wrong button presses and RT values which we identified as outliers 

i.e., values higher or lower than 2 SDs from the individual’s mean. In total, 8.86% of responses 

were excluded after applying these criteria (6.86% in the TD group, 10.36% in the ALD group). 

To determine the complexity of statistical learning we assigned each symbol in the SRT sequence 

probabilities based on single item, bigram and trigram models (Appendix A). For example, the 

symbol A in a trigram BBA has a probability of 38.1% in a single symbol model (since As occur 

38.1% of the time), a probability of 68.1% in a bigram model (since A follows B 68.1% of the 

time) and a probability of 100% in a trigram model (since A always follows BB). We then 

conducted for each model a linear regression for each participant for blocks 2-7 with the 

probabilities as dependent and RTs as the independent variable. Because we assumed a negative 

correlation between probabilities and RTs (i.e. fastest for 100% certainty), negative t values 

indicated strong evidence that a given model represented the statistical representations of an 

individual. While we focussed on response times, we also checked whether statistical models 

could predict whether trials were more likely to be excluded. For each group, we computed the 

percentage of accurate responses within 2 SDs of the individual’s average RT for a given trial 

stimulus and used linear regressions with single symbol, bigram and trigram probabilities as 

independent, and the percentage of accurate responses as the dependent variable. 
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In the ALD group, we excluded participant P7 because he seemed very distracted during the task 

and displayed an abnormally high error rate (54.5%). Shapiro-Wilk tests for normality found 

non-parametric distributions for mean RT in the TD group and number of errors in the ALD 

group. Distributions were parametric for fit to single symbol, bigram and trigram models. For 

greater comparability, we again used non-parametric tests on all variables. Success in learning the 

pattern was measured using two variables, namely bigram and trigram models. We therefore note 

that Bonferroni adjustments can be applied in comparisons of learning, however, see above for 

reservations regarding use of Bonferroni in exploratory studies. 

Table 4 shows SRT data from both groups, as well as inferential group comparisons and 

investigations of age effects. The data show that the bigram model was the best fit for both 

groups, suggesting that participants most reliably learned the probability of a stimulus based on 

the previous stimulus. There was no substantial overlap between variances explained by age and 

group. 

Older children had faster responses and better statistical learning. Figure 3 shows the relationship 

between age and SRT learning in both groups, and suggests that the age effect was driven by TD 

children.  

There were large differences between groups as children with ALD were slower and showed 

worse bigram learning. Both effects were large, and the latter withstands correction for multiple 

comparisons (see above; adjusted threshold p = 0.025). 

We were interested in whether the slower RT of children with ALD was an effect of less efficient 

learning, or of possible motor coordination impairment as the result of neurological damage. We 

compared average RTs from block 1 (in which stimulus order was randomized). TD children’s 
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average RT was 468ms (SD = 198), while the average RT for children with ALD was 530ms (SD 

= 135). Groups did not differ significantly in block 1, t(27) = -.856, p = .40, d = .31, which 

suggests that differences in learning capacity contributed to RT differences in the other trial 

blocks. 

We further examined learning within each group in each trial block. The aim was to explore 

whether group comparisons revealed differences in the ability to attain a certain level of 

statistical representation, or were rather caused by differences in maintaining performance. We 

considered that the ALD group could have taken longer to reach a performance peak, or that 

performance dropped off earlier because of difficulties with maintaining attention. Figure 4 

shows that learning performance in the ALD never reaches the level of the TD group. Further, 

performance in the ALD group peaks in Block 5 and then drops off, while the TD group 

performance peaks in Block 6. 

 

Variable 

TD 

(IQR) 

ALD 

(IQR) 

Age effect Group effect  

Group 

residualized 

over Age 

*,†Mean 

RT 

332ms 

(237) 

528ms 

(147) 

t(26) = -4.074, 

p < 0.001,  

β = -0.624 

t(26) = -2.043, 

p = 0.051,  

d = -0.53 

t(26) = -2.627, 

p = 0.014,  

d = -1.23 

Error 

count 

10 (0.95) 9.5 (23.25) 

t(26) = -3.400, 

p = 0.002,  

β = -0.555 

t(26) = -0.451, 

p = 0.655,  

d = 0.11 

t(26) = -0.466, 

p = 0.645,  

d = -0.20 
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Single 

symbol 

learning 

-0.35 

(4.75) 

-0.78 (3.03) 

t(26) = 0.268, 

p = 0.791,  

β = 0.052 

t(26) = -0.100, 

p = 0.921,  

d = -0.06 

t(26) = -0.106, 

p = 0.916,  

d = -0.04 

*,†Bigram 

learning 

-9.19 

(6.05) 

-3.31 (4.36) 

t(26) = -2.678, 

p = 0.013,  

β = -0.465 

t(26) = -3.699, 

p = 0.001,  

d = -1.89 

t(26) = -4.378, 

p < 0.001,  

d = -1.89 

Trigram 

learning 

1.53 

(3.26) 

0.82 (2.42) 

t(26) = -0.329, 

p = 0.744,  

β = -0.329 

t(26) = 1.453, 

p = 0.158,  

d = -0.71 

t(26) = 1.465, 

p = 0.155,  

d = -0.59 

 

 

Table 4: Medians and IQRs of SRT variables for each group, as well as inferential measures of 

group difference and age effect. Negative values for SRT models indicate a better fit, and better 

learning of the respective representation. We calculated the effects of age and group separately, 

as well as the effect of group residualized over age to determine how much the variances 

explained by the variables are shared. Where the effect of group and group residualized over age 

are similar, there is little shared variance.  

*significant age effect, †significant residualized group difference; α-level = 0.05. 
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Figure 3: Relationship between age and SRT learning (bigram model) in both participant 

groups. Negative values imply better learning. The linear best fit line is based on data from both 

ALD and TD groups. 
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Figure 4: SRT learning over trial blocks of each 55 stimuli, divided by group. The x-axis denotes 

trial blocks (Block 1 was a training block and is not shown). The y-axis denotes fit to learning 

models of different complexities (single symbol, bigram, trigram). The axis is inverted and lower 

values reflect better fit to the learning model. 
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Accuracy data further suggest that the bigram representation is the most likely predictor of 

participant performance. Using the percentage of accurate trials within the group as independent 

variable in a linear regression, it was the best fit for controls, β = .45, p < .001, and children with 

ALD, β = .331, p < .001. In both groups, higher certainty was associated with greater accuracy. 

After finding that age affected both language variables and statistical learning, and that groups 

differed at both levels, we looked for more direct relationships between language production and 

SRT. We selected the bigram model as it best captured SRT performance and correlated 

individual’s t values with their language variables, using the Kendall’s rank correlation. Note that 

this analysis must be considered a post-hoc exploration since we made this selection after the 

previous analysis step. 

As a joint group, SRT bigram learning correlated significantly only with one variable, 

combination ratio, τ = -0.358, p = 0.008, meaning that children who showed better learning 

produced more connected language. Split into separate groups, TD children who showed better 

learning had a higher bigram BNC ratio, τ = 0.432, p = 0.008, i.e. produced more rare or novel 

combinations. Children with ALD who showed better SRT learning produced lower-frequency 

function words, τ = -0.714, p = 0.013, and produced more words τ = 0.571, p = 0.048. 
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Discussion 

Language acquisition and processing may be supported by domain-general statistical learning. In 

this exploratory study, we investigated statistical properties of language production and statistical 

learning capacities in TD children and children with ALD. We were interested in age effects 

suggesting a developmental trajectory, and in whether performance in both domains is correlated. 

We also hypothesized that children with ALD would not only differ in language production, but 

also in statistical learning. We used a SRT paradigm which tested implicit learning of adjacent 

statistical dependencies in the visual motor modality. Our results touch upon a range of issues 

concerning child development and language, some of which, especially with regards to ALD, 

have barely been examined. 

With regard to language production, we found that older TD children produced more connected 

language, less frequent function words and more word combinations which were rare or novel. 

The results are consistent with greater grammatical expressivity in older children and an 

increased use of generative processes. Children with ALD produced less connected language. 

Their samples also showed less lexical diversity. While both groups produced similar proportions 

of rare or novel combinations, when children with ALD produced combinations that occur in the 

BNC, the combinations were more weakly collocated. This points towards a decrease in use of 

holistic forms. While there has been much attention to generative aspects of language and its 

ability to produce new utterances, common collocations often have important pragmatic functions 

(e.g. conversational formulas; Wray, 2012), and a disrupted ability to acquire or process these 

may have a substantial effect on the ability to communicate effectively. 
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With regards to statistical learning, we found that children most likely extracted bigram (first 

order) probabilities from the SRT stimuli. A correlation between age and learning model fit in 

our SRT design provides corroborating evidence that statistical learning improves during 

childhood and adolescence (Arciuli & Simpson, 2011). If the capacities relevant for learning in 

this non-verbal, visual motor task are used in language, this would mean that language maturation 

would not only be driven by the emergence of more abstract knowledge (e.g. phrase structure 

rules), but also by the improved ability to track statistical regularities. Comparisons across blocks 

suggest that children quickly extracted statistical regularities and maintained their representations 

until the end of the experiment, as witnessed by the fit to learning models plateauing quickly. 

This very rapid learning has been observed in previous SRT experiments (Kóbor et al., 2018; 

Simor et al., 2019), however, one should not conclude that representations of probabilities could 

not have changed (e.g. to a more complex trigram/second order model) if the experiment had 

been longer.  

Children with ALD also most likely learned bigram representations, but displayed weaker 

statistical learning in the SRT task, reflected in SRT data fitting less to the learning models, and 

in a performance drop-off earlier in the experiment. Overall poorer learning was predicted and 

our SRT results fit with impaired learning in SRT task performance with children with specific 

language impairment or DLD. However, in this population, recent evidence has also shown that 

learning can be achieved at a comparable rate to controls when given more time (Lum et al., 

2014). Given the importance of implicit statistical learning and visual motor learning in skill 

acquisition, SRT and similar paradigms could be important tools for determining strengths and 

weaknesses of children with neurological damage, and supporting their development, for example 

in education. 
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A post-hoc analysis found some correlations between statistical learning and properties of 

language production, supporting the general notion that statistical learning capacity, even in a 

non-verbal domain, is involved in language processing. However, the picture is not clear since 

correlations in the TD group, where better learners produced more rare and novel combinations, 

differed substantially from correlations in the ALD group, where better learners produced rarer 

function words and more words. Correlational analyses are particularly vulnerable to 

heterogeneity within groups, especially in children with ALD. The general impression from the 

data is that in development, better statistical learning is associated with the ability to produce 

rarer forms, perhaps reflecting the individual’s capacity to acquire more than just the strongest 

patterns, but also form novel combinations. 

The debate about the involvement of statistical learning in language is complex. Statistical 

learning can involve implicit or explicit learning paradigms (where the latter involves feedback or 

conscious choices), different modalities, different structures, and varying levels of attention and 

conscious processing. Different statistical learning can be at work dependent on task demand 

(Conway, 2020). Language, too, involves different types of structures and probabilistic 

relationships, such as the relationship between speech sounds, between lexical and semantic 

representations, or between words, word categories and phrases. More research is required to 

determine which aspects of statistical learning are related to which aspects of language (Erickson 

& Thiessen, 2015).  

Our study is limited by its group size and within-group heterogeneity, especially in the ALD 

group with regards to type of neurological damage, time post-onset and the effects of 

bilingualism, which is very common in Singapore. The effect of task order (SRT and language 

elicitation) also could not be determined. These limitations not only mean that results call for 
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replication, but also that more complex relationships, such as the interaction between neurology, 

the trajectory of language acquisition and statistical learning could not be investigated. 

There is a general worry about the impact of comorbidities in SRT studies. Perceptual and motor 

limitations may affect RTs and reduce the reliability in measuring learning (Ostegaard, 1998: 

West et al., 2018). In our study, such confounds would be more expected in the ALD group, 

however, data suggest that, with the exception of one participant whose data we excluded from 

this part of the study, our group performed well in the SRT task. Children with ALD did not 

make significantly more errors than TD controls, and we found no RT differences between 

groups in our first, randomized trial block. This suggests that in our study, RT differences in the 

latter blocks reflect differences in learning as detected by our models. However, to address 

confounding factors in SRT tasks, Bogaerts et al. (2020) argue for the need of separate control 

tasks. 

With these limitations in mind we suggest a careful conclusion: The comparison between TD and 

ALD is also consistent with a proposed relationship between the two domains. However, the 

effect of ALD in childhood on statistical properties of language appears to be very different from 

the effect of aphasia in adults. In adults with aphasia, production is marked by more frequent and 

strongly collocated forms (Bruns et al., 2019; Zimmerer et al., 2018), indicating that speakers are 

restricted to more formulaic expressions (Van Lancker Sidtis & Postman, 2006). Children with 

ALD on the other hand produced combinations which were more weakly collocated. This may 

reflect difficulties acquiring language formulas, which may be related to impaired statistical 

learning.  
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Figure 5: Possible model of frequency and collocation strength over the lifespan and the impact 

of ALD. 

 

Figure 5 presents a possible model for language production over the lifespan, as captured by 

frequency and collocation strength, and the impact of early ALD and aphasia in adults. Two 

processes affect this aspect of language use: the learning of familiar, highly collocated forms, and 

the more generative ability to produce rare and novel forms. In a first stage, language 

development is driven by the former, in a second stage by the latter. Our results suggest that ALD 

in children interferes with acquisition of familiar forms, while aphasia in adults results in the 

language system being limited to these forms. We emphasize that this model is to a large degree 

speculative, and that more data are needed in order to test it. 
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While individuals with language impairment often show decreased capacity for statistical 

learning, statistical learning is commonly found. Our results show that this is also the case for 

children with ALD. Clinically, it is possible to employ implicit statistical learning in language 

intervention (Plante & Gómez, 2018), and studies on individuals with DLD have shown 

promising results. In some populations such as Williams syndrome, ‘rule-based’ generalizations 

may be impaired, meaning that statistical processing becomes even more important for 

acquisition (Stojanovik et al., 2018). 

This exploratory study has explored learning mechanisms in a relatively understudied population. 

There are corroborations with current literature in developmental disorders of language with 

regard to statistical learning abilities. Yet, the data indicate possible differences in performance 

abilities across time and differences in language production as compared to adults with acquired 

language disorders. Future research should not only consider recruiting more children with ALD 

(which is a challenge given the low prevalence), but also collect samples from TD participants 

from across the lifespan. Correlations between deficits and the lesion site also require further 

investigation. The complexity of statistical processing should also be continued to be explored. 

For instance, the FLAT investigates frequencies of specific word forms and combinations 

thereof, but co-occurrence patterns can be described at other levels such as morphemes, lemmas 

or word classes, and multilevel models may better capture age effects and differences between 

clinical and non-clinical populations. Future studies could also employ tools that use child 

corpora for reference and more accurately reflect a child’s linguistic environment. Despite 

limitations, the findings provide direction for further research into the relationship between 

statistical learning and typical and impaired language development, as well as for the 

development of tools for linguistic and cognitive assessment.   
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Appendix A. Probabilities for each stimulus according to models of varying complexity. 

Example sequence One symbol model Bigram model Trigram model 

A 0.381 0.381 0.381 

B 0.618 1 1 

B 0.618 0.381 0.618 

A 0.381 0.618 1 

B 0.618 1 1 

A 0.381 0.618 0.381 

B 0.618 1 1 

B 0.618 0.381 0.618 

A 0.381 0.618 1 

B 0.618 1 1 

A 0.381 0.618 0.381 

B 0.618 1 1 

B 0.618 0.381 0.618 

A 0.381 0.618 1 

B 0.618 1 1 

B 0.618 0.381 0.618 

A 0.381 0.618 1 

B 0.618 1 1 

A 0.381 0.618 0.381 

 


