
Figure 1. Comparison between the original network (a) and 
the corresponding line graph (b)
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Figure 2. A general framework of PINNs

Figure 2. A general framework of PINNs
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Amidst global climate change, the increasing severity of flood disasters on transportation network systems 
has become a pressing concern. Existing methods to predict and manage traffic flow changes during floods 
often lack a comprehensive understanding of the dynamic alterations in complex transportation networks, 
particularly in real-time response situations. These models face significant challenges in addressing uncer-
tainties and dynamic changes, such as road closures and emergency evacuation routes. There is a critical 
need for advanced predictive models that can accurately and dynamically capture the effects of floods on 
transportation networks to enhance flood resilience and improve decision-making in urban planning and dis-
aster response.

This paper aims to develop a novel traffic flow prediction model that combines Physics-Informed Neural 
Networks (PINNs) and Graph Neural Networks (GNNs), PINNs-GNN, to overcome these limitations. By 
integrating physical equations and GNNs, the model abstracts the transportation network as a graph and in-
troduces a diffusion equation describing traffic flow propagation within the GNN to enhance physical con-
sistency. Inspired by field theory, the model also defines a field effect term to represent the impact of floods, 
which is extracted from node and edge features by the GNN, thereby improving the model's adaptability to 
dynamic environments. A new loss function combining data fitting errors and physical equation residuals is 
designed to optimize the model further. Through experiments on real flood event datasets, the proposed 
model demonstrates superior accuracy, real-time performance, and robustness compared to existing meth-
ods, proving its effectiveness in enhancing urban flood response capabilities. This innovative approach not 
only provides a new solution for traffic flow prediction but also explores the integration of physical knowl-
edge and graph learning, contributing to the development of resilient urban transportation systems.

Future work involves several key areas for enhancing the PINNs-GNN model. 1) introducing additional 
physical constraints, such as the conservation equation of traffic flow and velocity-density relationships, can 
further improve prediction accuracy and reliability. Incorporating other domain knowledge like traffic regu-
lations and driving behavior patterns can also enrich the model's knowledge representation capabilities. 
2) optimizing the model structure by exploring different types of graph neural networks, such as graph atten-
tion networks and graph autoencoders, is expected to offer stronger feature extraction and generalization 
abilities. Additionally, optimizing the model's physical equation solver and adopting higher-order numerical 
methods are promising directions for improvement. 3) validation with more public datasets and corre-
sponding benchmarks is crucial for comprehensively evaluating the generalization performance of the 
PINNs-GNN model. Extensive comparisons with other advanced traffic flow prediction models are neces-
sary to objectively assess the proposed method's advantages and limitations.
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Dataset:  

Description:  

This architecture integrates multiple layers: an 1) Input Layer for node and edge features, a 2) GNN Layer 
for message passing and feature updates, and field effect to capture cumulative impacts, a 3) PINNs Layer 
for incorporating physical diffusion equations, and a 4) Loss Function Layer to combine data errors and 
physics residuals, ensuring accurate and physically consistent traffic flow predictions during floods.

Aggregates information from neighboring nodes and edges

- Data Error This component of the loss function quantifies the discrepancy between the 
predicted traffic flow and the actual observed data, guiding the model to mini-
mize this error.

- Physics Equation Residual This component of the loss function quantifies the discrepancy between the pre-
dicted traffic flow and the actual observed data, guiding the model to minimize 
this error.

- Total Loss Function The total loss function is a weighted sum of the data error and the physics residu-
al, balancing the need to fit the data accurately with the need to comply with 
physical principles.

Incorporates the field effect into the physics-informed model.

Updates node features based on aggregated messages.

The final output of the GNN, representing the field effect.

This layer encapsulates the cumulative impact of the node's neighbors and its own fea-
tures over multiple layers of message passing and feature updates.

Each node gathers information from its neighboring nodes and the edges connecting them. This 
process helps in capturing the local context and relationships within the network.

After message passing, each node's features are updated using a neural network layer, 
which combines the original features with the aggregated messages, applying weights 
and biases to refine the feature representation.

The PINNs layer integrates the field effect into the traffic flow diffusion equation, en-
suring that the model adheres to the underlying physical principles governing traffic 
flow. This equation models how traffic density evolves over time and space, influenced 
by diffusion and external factors represented by the field effect.

The PINNs-GNN model, by simultaneously modeling the topology of the road network and the message 
passing based on filed theory, learns the propagation patterns of flood impact within the road system. The 
generated time series accurately depict the dynamic evolution of the impact across different regions, reflect-
ing both the interactions between nodes and the varying resilience of each area.

PINNs enhance this research by embedding 
physical laws(e.g. Partial differential equation, 
PDE) into the model, resulting in more accu-
rate and reliable traffic flow predictions, espe-
cially with limited data. It improves generali-
zation to new situations, such as dynamic flood 
conditions, and reduce the dependency on ex-
tensive historical data. Ensuring consistency 
with physical laws prevents unrealistic predic-
tions, increase robustness and reliability.

The dataset comprises 542 road nodes in Shoreditch(London's East End), with a time step of 1 hour, 
covering the period from 2020.09 - 2020.10. It includes days with rainfall exceeding 20 mm/h.

These figures demonstrate the PINNs-GNN model's superior performance in predicting traffic 
flow during floods, effectively capturing spatiotemporal dynamics and reducing errors.

Treating roads as nodes and the connections 
between nodes as edges (line graph, Fig 1b of 
the original graph, Fig 1a) allows for detailed 
road-level feature modeling, naturally captures 
interactions between roads, effectively handles 
complex intersections, and enhances the physi-
cal consistency of the model. This approach 
improves the model's adaptability to dynamic 
traffic conditions, resulting in more accurate 
and reliable traffic flow predictions.

Figure 5. Spatiotemporal impact diffusion sequence of road network under flood impact generated by field theory-inspired PINNs-GNN

Figure 3. Frameork of field theory-inspired PINNs-GNN


