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Ptychography, as a powerful lensless imaging method, has become a popular member of the coherent diffractive imaging
family over decades of development. The ability to utilize low-dose X-rays and/or fast scans offers a big advantage in
a ptychographic measurement (for example, when measuring radiation-sensitive samples), but results in low-photon
statistics, making the subsequent phase retrieval challenging. Here, we demonstrate a dose-efficient automatic differ-
entiation framework for ptychographic reconstruction (DAP) at low-photon statistics and low overlap ratio. As no
reciprocal space constraint is required in this DAP framework, the framework, based on various forward models, shows
superior performance under these conditions. It effectively suppresses potential artifacts in the reconstructed images,
especially for the inherent periodic artifact in a raster scan. We validate the effectiveness and robustness of this method
using both simulated and measured datasets.
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1. INTRODUCTION

As a powerful coherent diffraction imaging method [1–4], X-ray
ptychography is now widely applied to image both material and
biological structures by leveraging advanced synchrotron X-ray
sources [5–7], X-ray free electron lasers [8–10], and high har-
monic generation sources [11–13]. As a computational method for
microscopic imaging, it enables the reconstruction of the complete
spatial information of the complex incident X-ray wavefront and
high-resolution sample information from measured intensity-only
coherent diffraction patterns. The intensity is a quantity with non-
negative real number values, as a detector collects a finite number
of photons.

Because X-rays interact with matter in a variety of ways [14],
the potential radiation-induced damage to the sample during a
ptychographic measurement may limit its resolution and applica-
tion. Meanwhile, the requirement of multiple coherent diffraction
patterns with overlapping illumination in a ptychographic mea-
surement is also time-consuming. Consequently, the utilization
of low-dose X-rays and/or fast scans has become prevalent in a
ptychographic measurement, albeit at the cost of lower photon
statistics. Therefore, reliable performance of ptychographic recon-
struction under low-photon statistics plays a critical role in the
studies of radiation-sensitive materials, particularly biological
structures where the ptychographic measurements need to be

conducted using the lowest possible X-ray doses but to achieve a
given resolution [15,16]. It can also reduce the acquisition time to
speed up the ptychographic measurement while meeting the exper-
imental requirements, such as time-resolved ptychographic study
and ptychographic tomography measurement. Additionally, it
can also facilitate the study of materials scattering weakly or, when
attempting to reconstruct high-resolution images but only a few
X-ray photons can be collected. However, ptychographic recon-
struction at low-photon statistics is a notoriously challenging task.
Especially in the presence of shot noise, which varies in each exper-
iment, necessitating different noise models for the recovery of the
high-resolution complex-valued signals from intensity-only mea-
surements further exacerbates the difficulty of the reconstruction
under this condition.

Conventional ptychographic phase retrieval algorithms typi-
cally reconstruct the sample and probe information by retrieving
the phase of a complex far-field wavefront [17]. These algorithms
employ projection-based iterative methods, where the amplitude
of the calculated far-field wavefront needs to be substituted with
the measured one (i.e., the reciprocal space constraint) at each
iteration. Among these methods, gradient-descent-based iterative
approaches, such as the extended ptychographic iterative engine
(ePIE) [18], require an explicit gradient descent strategy for each
optimizable parameter. Consequently, any change of the experi-
mental condition and/or scattering model necessitates a manual
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re-derivation of the analytical expression for each optimizable
parameter to obtain the corresponding gradient decent strategy,
which is undesirable and makes the algorithms difficult to adapt
to complex scattering models. An alternative approach to the
“manually derived” gradient descent strategy for ptychographic
reconstruction is the automatic differentiation (AD) method,
which allows the automatic numerical calculation of the gradi-
ents of a loss function with respect to its optimizable parameters.
Recently, AD-based ptychographic reconstruction methods have
been successfully applied to experimental data [19,20]. Its flex-
ibility allows it to be easily adapted to the scattering model and
experimental setup. However, to the best of our knowledge, its
advantages have not yet been demonstrated for a low-photon
statistical and low overlap scenario, especially when a complex scat-
tering model is involved (for example, mixed state ptychographic
reconstruction [19,21,22]). Meanwhile, similar to conventional
methods, the performances of AD-based algorithms rely heavily
on the initial parameters, notably such as the initial condition of
the object and probe information, the choice of the batch size, and
the learning rate for each optimizable parameter. Besides, a serious
periodic artifact can be introduced from the periodicity of a raster
ptychographic scan [23–25]. This is a long-standing problem in
raster-scan ptychography that prevents the reconstruction of high-
resolution sample information. Using a very high overlap ratio can
suppress the artifact but will significantly increase the measure-
ment time [23,26,27], which is not suitable for X-ray dose sensitive
materials. Additionally, multimodal measurements (for example,
simultaneous ptychography and X-ray fluorescence) [7,28,29],
for which raster scanning is effective, are continually growing in
importance. These multimodal measurements will benefit greatly
from improved analysis methods to reduce the periodic artifacts in
a raster scan.

In this work, we demonstrate a dose-efficient automatic dif-
ferentiation framework for ptychographic reconstruction (DAP)
under the low-photon statistical and low overlap conditions.
Since there is no reciprocal space constraint (i.e., the replacement
of the calculated X-ray intensity with the measured one during
the reconstruction) inside the method, based on this straightfor-
ward method, physics-constrained relationships, for example,
the maximum likelihood estimation and the continuum prop-
erty of materials, can be easily applied in the model to ensure the
convergence of the algorithm. The robustness and efficiency of
the proposed method are evaluated using both simulated and
experimental ptychographic datasets, where the mixed state pty-
chographic reconstructions were applied by considering different
noise models. When evaluating, the effect of the overlap ratio and
the photon statistics on the existence of abovementioned peri-
odic artifact is also investigated. The DAP was found to not only
efficiently reconstruct high-quality images but also suppress the
periodical artifacts under these low overlap and low photon statis-
tics conditions. Furthermore, with the introduced variable-sized
mini-bath optimization and autocorrelation initialization, the
convergence has been significantly improved, resulting in higher-
quality reconstructed results. As an experimental proof of concept,
we expect this DAP approach will be widely adopted as a power-
ful and easy-to-adapt solution for ptychographic microscopes,
especially when complex coherent scattering models are involved.

2. RESULTS

A. Model Description

In a forward X-ray ptychography experiment, the resulting
complex exit wave fieldψi (r) can be generally expressed as [3,17]

ψi (r)= P (r− ri ) · O(r), (1)

where complex-valued object O(r) interacts with a complex-
valued X-ray probe beam P (r) at position ri to produce a
complex-valued product ψi (r). This “exit wavefront” propa-
gates to the far-field detector plane, approximated by a squared
Fourier transform magnitude, describing the probability that the
scattered X-ray photons from the propagated wavefront at position
ri can occur at the reciprocal-space vector q, such that

Di (q)= |FT [ψi (r)]|
2, (2)

where FT represents the Fourier transform. Based on the incident
X-ray dose, the experimentally recorded intensity-only coherent
X-ray pattern Ii (q), which is a quantity with nonnegative real
number values, is different from Di (q) because of the statistical
nature of photon counting, especially when the scattering signal
is weak. The ultimate goal of a ptychographic measurement is to
numerically retrieve the complex-valued object O(r) and probe
P (r) using all the measured coherent diffraction patterns Ii (q),
such that each Ii (q) can match the corresponding Di (q).

Figure 1 presents the computational graph of the proposed DAP
approach for ptychographic reconstruction. (See Supplement 1
for details.) As with most gradient-based approaches, it is sen-
sitive to the initial condition. Thus, since the inverse Fourier
transform of far-field intensity is the autocorrelation of the exit
wave, we propose an autocorrelation method to initialize the
complex object O(r) and X-ray probe P (r) for the DAP algo-
rithm. Briefly, the initial object is first estimated by O(r)=

β1 · [g (r)⊗
∑N

i=1 ϕi (r+ri )∑N
i=1 8(r+ri )

· e
β2·g (r)⊗

∑N
i=1 ϕi (r+ri )∑N
i=1 8(r+ri ) + ξ1], where

ϕi (r)= |FT−1(Ii )| and 8(r)= |FT−1( 1
N

∑N
i=1 Ii )|. β1 and

β2 are the scale factors to normalize the initial object. g (r) is a
Gaussian smoothing kernel. The X-ray probe is initialized by
P (r)= ζ

N [
∑N

i=1 |FT−1(
√

Ii )| + ξ2], where ζ is a scale factor
to minimize the difference between the measured diffraction
intensity and the calculated diffraction intensity calculated from
the initialized object and probe. Here, ξ1 and ξ2 are additional
Gaussian noise to avoid using the same initialization each time.
(See Supplement 1 and Figs. S1 and S2 for details.) After initializa-
tion, based on the selected forward scattering model, the calculated
X-ray scattering intensity Di (q) will be compared with its corre-
sponding experimental recorded Ii (q) through a loss function to
optimize O(r) and P (r).

As a nonlinear optimization problem, we adopt a “mini-batch”
gradient descent strategy to find the minimum of a loss function,
where a subset of the samples from the input dataset (i.e., less than
the full dataset) is used at each iteration until all the measured
coherent diffraction patterns have been used. During each itera-
tion, the target variables will be updated with each input subset.
However, it should also be noted that, unlike the conventional
mini-batch gradient descent strategy, where a fixed mini-batch
size is applied during the optimization, the mini-batch size in our
proposed DAP generally increases as the epochs increase. This
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Fig. 1. Computational graph of the proposed dose-efficient automatic
differentiation framework for ptychographic reconstruction. The input
data (measured data - Ii ) is in orange, and the backward propagation of
the loss function is represented with the green line.

approach was found to significantly improve the convergence of
the algorithm. (See Fig. S3 in Supplement 1 for more details.)

As the mini-batch size varies in our proposed DAP during
the optimization, in a particular case where its mini-batch size is
set to 1, the DAP approach is similar to the traditional gradient-
descent-based iterative methods such as ePIE. However, different
from these algorithms, where a sequential update for each optimiz-
able parameter needs to be made after calculating the gradients at
each illuminated position, the updates in DAP are made for each
position within a mini-batch, allowing for a parallel calculation.
Furthermore, when using the total number of the input datasets
as the mini-batch size, the DAP has the most stable gradient for
each optimizable parameter. Thus, variation of the mini-batch size
during optimization will affect the uncertainty in the gradient for
each parameter. The noise gradient is helpful for jumping out of
local minima while a stable gradient will benefit the convergence of
the reconstruction. In each epoch, once all the measured coherent
diffraction patterns have been used, the X-ray probe P will be
recentered to remove any global translation ambiguity, and its
mean phase will be set to zero. In the meantime, the complex object
O will be renormalized to remove any uncertainty of the scaling
effect between the object O and X-ray probe P . Additionally, the
phase range of object O will also be constrained if a range is set.

The correct selection of the learning rates for each optimizable
parameter is important for a successful reconstruction. High val-
ues of learning rates can make the optimization scheme unstable
and cause the divergence of the optimizable parameters, while
low values of learning rates can impede the convergence of the
optimizable parameters (for example, causing slow convergence).
For the proposed DAP, the initial learning rate for the object is
generally around 0.15 as the initialized object O is normalized.
However, for the X-ray probe, its initial learning rate is adjusted
based on the mean value of its amplitude. During the optimization,
the learning rate for each parameter will be dynamically reduced
by its corresponding scheduler using the loss metrics quantity
when no improvement is seen for a “patience” number of epochs.
Here, we use adaptive moment estimation (Adam) as the optimizer
to update the underlying variables, such as O and P , which is a
modification of the RMSProp optimizer, using moving averages
on both the gradient and the second moment of the gradient [20].
To make the optimization process more flexible, each optimizable

parameter will be optimized with its independent optimizer so that
a different schedule can be set up for each parameter.

The loss function is the central feature of an optimization
process. The measured coherent diffraction intensity is generally
a quantity with a nonnegative real number value. Due to finite
photon counting, the recorded coherent diffraction intensity will
differ from its corresponding scattering probability, especially
when the scattering signal is weak, regardless of the external noise.
Figure 2 demonstrates this effect using a numerical simulation,
where the implementation is based on an acceptance–rejection
method [30,31]. (See Supplemental 1 for details.) The simulations
were performed using the test object given in Fig. 2(a), based on a
database photograph [32], and the X-ray probe given in Fig. 2(b).
Here, the X-ray probe is obtained by propagating a circular shape to
a certain distance using the angular spectrum method. Figure 2(c)
presents the corresponding theoretical scattering probability
[i.e., probability density function (PDF)], which is proportional
to the modulus square of the Fourier transform of the test object
weighted by the X-ray probe. As presented in Figs. 2(d)–2(f ), when
the number of scattered photons is increased from 103 to 106, the
effect of photon statistics is reduced but is still clearly visible. The
difference between the simulated coherent diffraction and the
theoretical one becomes more apparent as the X-ray photon statis-
tics is low. In consequence, for a ptychographic reconstruction, a
more accurate scattering model at low-photon statistics can reduce
the number of unknowns that need to be estimated and, hence,
should produce higher reconstruction quality.

In X-ray ptychographic imaging, the recorded intensity of
coherent diffraction patterns is typically related to the number of
photons that strike a detector pixel within a fixed exposure time.
The collected X-ray photons at the detector are random in nature.
The standard picture of this photon counting statistic shows that
the measured pixel counter recordings (or intensity) Ii (q) follow
the Poisson probability distribution function. (See Supplemental
1 for details.) Thus, considering the negative log-likelihood
minimization for a Poisson distribution, the corresponding loss
function for one coherent diffraction pattern in a ptychographic
reconstruction can be expressed as

`P,i (q)=
1

J

∑
J

Di (q)− Ii (q)+ Ii (q) log

[
Ii (q)
Di (q)

]
, (3)

where J is the number of pixels of the diffraction pattern. Here, an
extra constant was introduced to the function above to make the
Poisson log-likelihood estimation nonnegative. (See Supplement 1
for details.) Further, when dealing with counting statistics, if the
measured data are corrupted by an additive thermal noise to the
square root (or amplitude) of the expected intensity [33,34], where
the noise can be approximated by an asymptotic form Gaussian
counting model, the loss function, in this case, can be given as

`G,i (q)=
1

J

∑
J

[
D1/2

i (q)− I 1/2
i (q)

]2
. (4)

Additionally, if the Gaussian noise is additive to the expected
intensity directly with its corresponding variance approximated
by the measured intensity, the loss function in this situation can be
expressed as [34,35]

`R,i (q)=
1

2J

∑
Ii (q)6=0

[
Di (q)− Ii (q)

I 1/2
i (q)

]2

+
1

J

∑
Ii (q)=0

Di (q), (5)
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Fig. 2. Effect of photon statistics on the experimental coherent diffraction pattern. (a) Test complex sample in HSV format. (b) X-ray probe used in the
optical simulation. (c) Calculated theoretical coherent X-ray diffraction pattern using (a) and (b). Simulated X-ray diffraction patterns with the amount of
scattered photons of (d) 103, (e)104, and (f ) 105.

where the last part in the equation above is introduced to constrain
the zero intensity for reducing noisy solutions.

In a forward ptychographic measurement, the finite X-ray
photon statistics and inevitable noise in the measured coherent
X-ray diffraction patterns may lead to artifacts in the reconstructed
object. Especially under low-photon statistics, it will become more
significant. However, it can usually be assumed that the projected
refractive index of the sample is continuous in a ptychographic
measurement, and the corresponding measured amplitude and
phase information of the sample has a similar distribution. Thus,
to minimize the potential artifacts, one popular idea is to introduce
an additional regularization total variation (TV) [36] term to the
negative log-likelihood function by penalizing variations in the
complex object O. However, simply minimizing the TV of an
image could lead to blurring [34,37–40] and the best quality of the
reconstructed image may not be achieved. Therefore, inspired by
several image-denoising works, an adaptive L p -norm based TV
(ATV, i.e., L p norm to the power of q ) denoising is applied in our
proposed DAP, which is written as

ATV (O)=
1

HV

H∑
h=1

V∑
v=1

(
|∇x O|p +

∣∣∇y O
∣∣p
+ ε

) q
p , (6)

where ∇x and ∇y denote the finite difference operations along
the horizontal and vertical direction of the complex object O,
respectively. H and V are the corresponding quantity of pixels
along the horizontal and vertical direction of the complex object
O, respectively. ε is an exceedingly small constant set to prevent
singular gradient error. Unlike the classical TV model, the pro-
posed ATV doesn’t blindly pursue smoothness. It is adaptive and
can be adjusted for every pixel of the reconstructed image, which
can preserve the subtle features of the reconstructed object O
better. Especially, when p = 1 and q = 1, it becomes the classical
L1 TV, where it may treat noise as edges and generate false edges,
giving a “ladder” effect. When p = 2 and q = 1, it becomes L2

TV denoising model, which can prevent the ladder effect without
generating false edges. Besides, for the ATV, the other combination
of the p- and q -value also impacts different images differently. (See
Figs. S4 and S5 in Supplement 1 for more details.)

Finally, the loss function used in the proposed DAP for a single
state ptychographic reconstruction is a combination of maxi-
mum likelihood estimation and ATV, averaged over all the probe
positions in l th mini-batch, which is given as

Lα,l =
1

L

∑
i∈�

`α,i (Di , Ii )+ γ · ATV (O) , (7)

where � contains the indices of coherent diffraction patterns
in a mini-batch with the size of L , which generally increases as
the epoch increases. Here, the subscript α stands for P , G, and
R (i.e., different statistical models under consideration). γ is a
coefficient that is dynamically changed to keep the ratio between
the maximum likelihood estimation and ATV fixed. Different
from using a constant, we found this dynamical adjustment of the
coefficient γ can significantly enhance the convergence of the DAP
algorithm and allow one to have large learning rates during the
reconstruction. Since γ is dynamically adjusted to keep the ratio
fixed, at the beginning of the reconstruction, the ATV will have a
strong effect on the object. However, as the loss decreases, the effect
of ATV will decrease. This optimization seeks a solution that fits
the maximum likelihood model but also has a limited TV for the
reconstructed object.

B. Performance on Simulated Data

In an attempt to highlight the performance of our proposed DAP
approach and demonstrate the intrinsic merit of different loss
functions on the final reconstructed results, we first performed
a numerical study based on Eq. (7). Based on the introduced
acceptance–rejection method (Supplement 1), the ptychographic
datasets with different photon counts were simulated using the
X-ray probe beam from Fig. 2(b) with an array size of 64× 64 pix-
els. The raster grid was obtained by translating a test photographic
object with a total phase range of π radians. The step sizes in the
horizontal and vertical direction are both 18 pixels. The corre-
sponding overlap ratio is 50%, defined by the ratio of the scanning
step size to the diameter of the probe. (See Fig. S6 in Supplement 1
for details.) A total of 225 diffraction patterns with an array size
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Fig. 3. Performance of the DAP on simulated ptychographic datasets with different photon statistics. (a)–(d) Obtained results using the LP,l loss
function. (e)–(h) Using the LG,l loss function. (i)–(l) Using the LR,l loss function. (m)–(p) Corresponding results using the conventional ePIE algorithm.
(q)–(t) Corresponding results using the ADMM algorithm. Here, the scanning overlap ratio is 50% for all images.

of 15× 15 was generated for each ptychographic dataset. As the
X-ray probe scans on the sample, each diffraction pattern will have
a different amount of scattered photons, which was determined
by the corresponding optical properties of the illuminated region
of the sample. Since there is no noise added, the simulated X-ray
intensity in each coherent diffraction pattern obeys the intrinsic
Poisson statistics. As shown in Fig. 3, the DAP algorithm was
applied to four different simulated ptychographic datasets from
the same sample with different amounts of scattered photons.
Here, the labels of 103, 104, and 105 photons in Fig. 3 indicate
the number of scattered photons of a coherent diffraction pattern,
which is the maximum among all the coherent diffraction pat-
terns in one ptychographic dataset. (See Fig. S7 in Supplement 1.)
They are also equal to the amount of the incident photons when
assuming scattering efficiency of the material equals 1. For min-
imization, some loss functions may undergo strong degradation
when the initialization of the algorithm (for example the initial
object), is far from the final solution. Thus, during the reconstruc-
tions, to reduce the impact of the optimization method on the
reconstructed results, we use the LG,l loss function in the first 100
epochs to get a quick estimation and then switch to the target loss
function for further minimization with another 100 epochs. (See
Fig. S8 in Supplement 1 for details.) An estimated scale factor is
also applied to the following loss function to reduce the effect of a

sudden gradient difference when switching. See Appendix A for
the estimations.

As shown in Figs. 3(a)–3(l), the DAP approach can achieve
a decent reconstruction result with ∼103 photons. However,
in sharp contrast, the conventional ePIE algorithm suffers from
periodic artifacts in both the reconstructed object and X-ray probe,
making it difficult to identify the subtle features inside the object,
as shown in Figs. 3(m)–3(p). Additionally, by utilizing the alter-
nating direction method of multiplier (ADMM) algorithm [41],
similar behaviors are also observed, as shown in Figs. 3(q)–3(m).
Also see Figs. S9–S14 in Supplement 1 for more comparisons
with more different algorithms using different overlap ratios
(i.e., 50%, 40%, 30%, and 25%). By further comparing the images
in Figs. 3(a)–3(l) obtained with different models, we find the
feature in Fig. 3(a) is the sharpest, and Fig. 3(i) shows a relatively
blurred image. When the amount of scattered photons is increased
to ∼104, the images obtained by the DAP approach still show
the best-reconstructed results, compared to the corresponding
result obtained with ePIE. The features in Fig. 3(b) are still better
reconstructed. As it is further increased to ∼105, the difference
between these images obtained with DAP using different loss
functions becomes insignificant. However, the ePIE algorithm
still shows its weakness in the periodic artifact. When the ideal
diffraction pattern is used, there is no trend seen and this effect
can be mitigated. To have a quantitative comparison, we further
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use the complex Pearson correlation coefficient (see Appendix A
for its definition) to evaluate the quality of the reconstructed
object from different reconstruction methods used in this paper.
As presented in Fig. S15, by comparing the reconstructed object
with its ground truth, it further confirms that DAP shows best
performance. This is because most of the conventional iterative
methods compared in this paper generally don’t have an explicit
smoothness constraint like ATV for the object, which makes it dif-
ficult for the method to get rid of the periodic artifact arising from
the symmetric scan trajectory. However, with ATV regularization
and its dynamical adjustment applied in the DAP, the periodic
artifact can be significantly suppressed. As given by Eqs. (6) and
(7), the ATV is a measure of the complexity of the object with
respect to its spatial variation using both real and imaginary parts
of the gradient of the object. During the optimization, any sudden
change of the gradient in the object will increase the value of ATV.
By changing the coefficient γ , we can control the penalty term
in Eq. (7). The higher the γ coefficient, the more it reduces the
variation of the object’s gradient, resulting in a smoothed object.
As the maximum likelihood estimation is generally large at the
beginning of an optimization, utilizing this dynamical adjustment
strategy, the ATV will have a strong effect on the object. As the
algorithm is converging, the effect from ATV is then reduced by
tuning the γ coefficient. With this strategy, the ultimate conver-
gence of the algorithm is preserved, while keeping the periodic
artifact mitigated. (See Fig. S16 in Supplement 1 for details.)
With the comparison above, the proposed DAP shows a much
better performance than conventional algorithms. Even when the
X-ray photon statistic is low, the DAP not only can give a well-
distinguishable object image but also can suppress the factorization
artifact that degrades the ptychography. Additionally, it should be
noted that for different photon statistics, each noise model behaves
differently.

C. Application to Experimental Data

Because the experimental illumination condition is more compli-
cated by the presence of multiple optical modes [18,42], we further
applied the DAP approach to experimental ptychographic datasets
to demonstrate its capability. Assuming that the physical object
and X-ray probe can be effectively modeled by M independent
object states and N independent probe states (see Supplement 1 for
more details), the corresponding loss function for this mixed state
ptychographic reconstruction can be written as

Lα,l =
1

L MN

∑
i∈�

M∑
m=1

N∑
n=1

`α,i

[
D(m,n)

i , I (m,n)i

]

+
γ

M

M∑
m=1

ATV(Om), (8)

where D(m,n)
i is the calculated coherent diffraction pattern from

the far-field wavefront of the m-th state of the object and n-th
state of the X-ray probe at the scanning position ri and I (m,n)i is the

corresponding experimental pattern with I (m,n)i = Ii
D(m,n)i∑

m,n D(m,n)i

.

Particularly, when M = 1 and N = 1, Eq. (8) can be simplified
to Eq. (7). The ptychographic experiments were performed with
the Hard X-ray Nanoprobe (HXN) beamline at the National
Synchrotron Light Source II (NSLS-II) using focused X-ray

beams from the Multilayer Laue Lenses (MLLs) and Fresnel Zone
Plate (FZP), respectively. (See Appendix A for more details.)
The incident X-ray beam filtered by a double crystal Si (111)
monochromator was pre-focused at the secondary source aperture
plane, which is about 15 m in front of the nanofocusing optics. A
Siemens Star test pattern made of Au was used to acquire ptycho-
graphic datasets with different exposure times. Each scan was taken
in a fly-scan mode. For the MLLs, the energy of the incident X-ray
beam was 15 keV, and it was 10 keV for the FZP.

Figure 4 shows the comparison of the reconstructed results
using our proposed DAP with LG,l loss function and the con-
ventional ePIE and ADMM algorithms from the acquired
experimental datasets; also see Fig. S17 in Supplement 1 for its
performance on simulated data. Both datasets are obtained with
a defocus X-ray beam from the MLLs. When performing the
reconstructions, one object state and two probe states were applied.
(See Fig. S18 in Supplement 1 for obtained probes.) As presented
in Figs. 4(a)–4(f ), the used experimental ptychographic dataset
was measured with a 0.003 s exposure time for each pattern, where
the average amount of scattered photons for each coherent pat-
tern is only∼5778 (i.e.,∼0.12 photons per pixel). The proposed
DAP yields high-quality reconstruction where the small features
can still be well distinguished at this low-photon statistics con-
dition. However, in contrast, the corresponding reconstructed
images from ePIE and ADMM algorithms show visible noisy fea-
tures, especially in the obtained amplitude information of the Au
Siemens star. Further, Figs. 4(g)–4(l) presented the reconstructed
results, where the dataset was obtained with a 0.2 s exposure time.
The corresponding number of scattered photons per pattern is
∼385175 (i.e.,∼7.96 photons per pixel). Still, the reconstructions
from the DAP algorithm present a much better resolution. (See
Fig. S19 in Supplement 1 for the calculated phase retrieval transfer
function.) Thus, the proposed DAP can achieve a decent resolu-
tion under low-photon statistics, which can greatly facilitate low
dose and/or fast scan ptychographic measurement.

Furthermore, as various noises in experimental data are mixed
with the diffracted signals on the detector, some of them can trans-
form into artifacts in reconstructed images. Meanwhile, when the
overlap ratio is low, the periodic artifacts arising from the factori-
zation effect between the object and the probe, is a well-known
problem in raster scan ptychography [24]. Ptychographic recon-
struction under these realities becomes a challenging task. Since the
traditional iterative reconstruction methods suffer from periodic
artifacts, several approaches have been proposed to remove or sup-
press the grid pathology in raster-scan ptychography [23,43,44].
However, these methods generally require prior knowledge of the
experiment. For example, the size of an X-ray probe is required
to estimate its corresponding support, which is not suitable for a
highly structured X-ray beam. To further demonstrate the capabil-
ity of the proposed DAP, Figure 5 shows the reconstructed results
using the dataset measured from the FZP with a very low overlap
ratio. When performing the reconstructions, one object state and
four probe states were applied for DAP, ePIE, and ADMM. (See
Fig. S20 in Supplement 1 for the obtained probes.) The results
from DAP were obtained with a LG,l loss function. As shown in
Figs. 5(a) and 5(b), the spokes can be well recognized. However,
as shown in Figs. 5(c)–5(f ), the reconstructed images from the
ePIE and ADMM algorithms were destroyed by periodic artifacts.
Thus, with the proposed DAP, the periodical artifacts are seen to
be significantly suppressed, which further endorses the advantage

https://doi.org/10.6084/m9.figshare.25705371
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Fig. 4. Experimental ptychographic reconstruction of a Siemens star object with MLLs using different exposure times. (a) Reconstructed amplitude
using the proposed DAP with 0.003 s exposure. (b) Corresponding reconstructed phase. (c) Reconstructed amplitude using ePIE. (d) Corresponding
reconstructed phase. (e) Reconstructed amplitude using ADMM. (f ) Corresponding reconstructed phase. (g) Reconstructed amplitude using our pro-
posed DAP with 0.2 s exposure. (h) Corresponding reconstructed phase. (i) Reconstructed amplitude using ePIE. (j) Corresponding reconstructed phase.
(k) Reconstructed amplitude using ADMM. (l) Corresponding reconstructed phase. Here, the insets show enlarged views of the red-boxed region.

Fig. 5. Experimental ptychographic reconstruction of a Siemens star object with FZP. (a) Reconstructed amplitude using the proposed DAP.
(b) Corresponding reconstructed phase. (c) Reconstructed amplitude using ePIE algorithm. (d) Corresponding reconstructed phase. (e) Reconstructed
amplitude using ADMM algorithm. (f ) Corresponding reconstructed phase. Here, the insets show enlarged views of the red-boxed region.

of the DAP algorithm. Additionally, we also applied these three
algorithms to another ptychographic dataset with different scan-
ning step sizes, obtained with one sub-micron gold crystal from

a dewetted gold film. As shown in Fig. S21 in Supplement 1, the
periodic artifacts are still present in these reconstructed images
from ePIE and ADMM. However, the artifacts are avoided by

https://doi.org/10.6084/m9.figshare.25705371
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DAP, which further endorses the advantage of our proposed
method.

3. DISCUSSION

As a straightforward optimization method, one significant distinc-
tion between our DAP algorithm and conventional methods is
that no reciprocal space constraint (i.e., using the measure X-ray
intensity to substitute the calculated one during reconstruction)
is applied during the optimization. The gradient is automati-
cally numerically computed for the DAP method and no explicit
knowledge of the gradient descent strategy for each optimizable
parameter is needed. Thus, the DAP has a unique advantage to
incorporate a more complex scattering model of a ptychographic
experiment by a simple change of the loss function, especially
when applied to some scattering models where the corresponding
gradient descent strategy cannot be manually derived. Conversely,
exact gradient descent knowledge is required for the conventional
iteration methods. Also, as demonstrated, in low-photon counting
ptychographic imaging experiments, the correct choice of the noise
model plays a crucial role in the reconstruction of high-quality
images. Currently, most of the ptychographic experiments are con-
ducted using fly scans. We believe the proposed DAP will perform
better by further considering the continuous movement of the
X-ray beam on the sample and combining it with other physical
processes (for example, partial coherence). The extra constraint on
the X-ray probe may also improve DAP’s performance. However,
these models will consume more computational resources where
a balance between reconstruction accuracy and computational
cost may need to be considered. Because the DAP can significantly
mitigate the periodic artifacts, it allows ptychographic measure-
ment under low overlap ratios using a simple raster grid scan,
which can help the related measurement a lot. Another impor-
tant feature of our DAP method is its variable-size mini-batch,
which interleaves the advantages of the traditional ePIE and DM
methods. Additionally, within each mini-batch, the maximum
likelihood estimation for each diffraction pattern is independent.
Therefore, the proposed DAP can be easily adapted for parallel
computation, reducing the reconstruction time. As the mini-batch
size increases, the computational time will be significantly reduced.
One may need to tune the parameter for the ATV and variable-size
minibatch sequence to reconstruct better results when different
data is applied. In the future, DAP’s performance on the probe
position refinement, multi-slice ptychography, and X-ray intensity
fluctuation can be further explored.

4. CONCLUSION

In this paper, we have demonstrated a dose-efficient automatic dif-
ferentiation framework for ptychographic reconstruction (DAP)
by considering various noise models. The DAP can converge faster
with higher accuracy over current state-of-the-art algorithms. As
there is no requirement for the analytical expression of the gradient
descent strategy for each optimizable parameter, the DAP can
greatly simplify the design of a reconstruction process and allow
the incorporation of the different complex scattering models (for
example, the mixed state ptychographic reconstruction with differ-
ent noise models), as we demonstrated in the paper. Meanwhile, by
varying the mini-batch size during the reconstruction, the method
can interleave the advantages of the conventional methods, such
as ePIE and DM, and can achieve much better resolution under

low-photon statistics. Especially, as demonstrated in the paper, the
existence of the generalized total variation in the loss function and
its dynamical adjustment can greatly enhance the convergence of
the reconstruction and mitigate the long-standing periodic artifact
for conventional methods when a raster scan grid with large step
size is used. The inclusion of adaptive total-variation constraint
will allow our proposed DAP to perform well in future applications
with sparse or noisy data.

APPENDIX A: METHODS

1. Ptychography Measurements

The ptychography experiment was performed at the Hard X-ray
Nanoprobe beamline (HXN) of National Synchrotron Light
Source II at Brookhaven National Laboratory. The microscope
sits about 15 m downstream from the secondary source aperture,
and a Fresnel zone plate (Applied Nanotools Inc.) with 30 nm
outmost zone width or multilayer Laue lenses (MLLs) was used to
focus the beam to a nano spot. After the nanofocusing optics, there
was an order-sorting aperture blocking all undesired background
signals. The Au sample was mounted inside the specially designed
microscope with high stiffness and thermal stability. The incident
X-ray beam energy for FZP is 9 KeV, and it is 15 KeV for MLLs. A
pixel-array detector (Merlin, Quantum Detectors) was positioned
0.5 m downstream for FZP to record the transmitted far-field
diffraction patterns. It was positioned at 1 m for MLLs. For FZP,
we performed a 2D raster grid scan with a range of 10× 10 µm2

um. The scanning step size is 100 nm in each direction. The cor-
responding diffraction pattern size is 128× 128 pixels and there
are 101× 101 frames inside the dataset. For MLLs, 2D raster
grid scans with a range of 2× 2 µm2 were performed. The corre-
sponding scanning step size is 10 nm in each direction. The size of
the far-field diffraction pattern is 220× 220 pixels and there are
201× 201 frames inside each ptychographic dataset.

2. DAP Implementation and Ptychographic
Reconstruction

The DAP algorithm was implemented based on the PyTorch pack-
age (i.e., version 2.1.2), where the gradient calculation is obtained
using Wirtinger calculus for the complex-valued array. When
doing the reconstruction, the abovementioned autocorrelation
approach will be first used to initialize the complex object and
probe for the DAP algorithm. Then, to minimize the difference
between the experimental diffraction pattern and the calculated
diffraction pattern Di,init, using the initialized object and probe,
the scale factor ζ of the X-ray probe will be optimized with a least
squares fitting [i.e., ζ = argminζ (

∑N
i=1

√
Ii −

√
Di,init)

2].
During the reconstruction, the ptychographic reconstructions
were completed using the Adam optimizer. The learning rate is ini-
tialized to 0.15 for the object, and it is adjusted for the probe based
on the mean of its amplitude. Both learning rates are dynamically
reduced by the scheduler using the loss metrics quantity when no
improvement is seen for a “patience” number of epochs. The mini-
batch size generally increases as the reconstruction epoch increases.
For each epoch, based on the corresponding mini-batch size,
the experimental coherent diffraction will be divided randomly
into different groups. When switching from one loss function

to another, due to lim
Di (q)→Ii (q)

[
D1/2

i (q)−I 1/2
i (q)

]2

Di (q)−Ii (q)+Ii (q) log
[

Ii (q)
Di (q)

] = 1/2,
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lim
Di (q)→Ii (q)

Di (q)−Ii (q)+Ii (q) log
[

Ii (q)
Di (q)

]
1
2

[
Di (q)−Ii (q)

I
1/2
i (q)

]2 = 1 and lim
Di (q)→Ii (q)

1
2

[
Di (q)−Ii (q)

I
1/2
i (q)

]2

[
D1/2

i (q)−I 1/2
i (q)

]2 = 2, a scale factor for the following loss func-

tion will be applied to avoid the sudden jump of the gradient,
which was found that this can make the reconstruction more
stable. When doing the reconstruction with ATV constraints,
we set p = 2 and q = 1 for both simulated and experimental
ptychographic datasets. The ptychographic reconstructions with
conventional iterative phase-retrieval methods were completed
using GPU-accelerated codes with Python [6,7]. The complex
Pearson correlation coefficient (cPCC) is used as a quantitative
metric to evaluate the quality of the reconstructed complex object,
defined as

cPCC(x1, x2)=

∑S
s=1

(
x1,s − x1

) (
x ∗2,s − x ∗2

)
√∑S

s=1

(
x1,s − x1

)2 ∑S
s=1

(
x ∗2,s − x ∗2

)2
,

(A1)

where x1 and x2 are the complex images being analyzed. S is the
corresponding pixel number. {·} represents the mean value oper-
ation. {·}∗ is the complex conjugate operator. The magnitude
of cPCC describes the strength of the linear similarity between
the two input images, and its phase angle describes the average
correlation direction difference of the two images.
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