
Citation: Chen, N.; Lin, X.; Jiang, H.;

An, Y. Automated Building

Information Modeling Compliance

Check through a Large Language

Model Combined with Deep Learning

and Ontology. Buildings 2024, 14, 1983.

https://doi.org/10.3390/

buildings14071983

Academic Editor: Heap-Yih Chong

Received: 30 May 2024

Revised: 19 June 2024

Accepted: 22 June 2024

Published: 1 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Automated Building Information Modeling Compliance Check
through a Large Language Model Combined with Deep Learning
and Ontology
Nanjiang Chen 1 , Xuhui Lin 2, Hai Jiang 1 and Yi An 3,*

1 Department of Industrial Engineering, Tsinghua University, Beijing 100084, China;
cnj22@mails.tsinghua.edu.cn (N.C.); haijiang@tsinghua.edu.cn (H.J.)

2 The Barlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
zczlxl3@ucl.ac.uk

3 Department of Engineering, Cardiff University, Cardiff CF24 3AA, UK
* Correspondence: any4@cardiff.ac.uk

Abstract: Ensuring compliance with complex industry standards and regulations during the design
and implementation phases of construction projects is a significant challenge in the building infor-
mation modeling (BIM) domain. Traditional manual compliance checking methods are inefficient
and error-prone, failing to meet modern engineering demands. Natural language processing (NLP)
and deep learning methods have improved efficiency and accuracy in rule interpretation and compli-
ance checking. However, these methods still require extensive manual feature engineering, large,
annotated datasets, and significant computational resources. Large language models (LLMs) provide
robust language understanding with minimal labeled data due to their pre-training and few-shot
learning capabilities. However, their application in the AEC field is still limited by the need for
fine-tuning for specific tasks, handling complex texts with nested clauses and conditional statements.
This study introduces an innovative automated compliance checking framework that integrates LLM,
deep learning models, and ontology knowledge models. The use of LLM is motivated by its few-shot
learning capability, which significantly reduces the need for large, annotated datasets required by
previous methods. Deep learning is employed to preliminarily classify regulatory texts, which further
enhances the accuracy of structured information extraction by the LLM compared to directly feeding
raw data into the LLM. This novel combination of deep learning and LLM significantly enhances the
efficiency and accuracy of compliance checks by automating the processing of regulatory texts and re-
ducing manual intervention. This approach is crucial for architects, engineers, project managers, and
regulators, providing a scalable and adaptable solution for automated compliance in the construction
industry with broad application prospects.

Keywords: automated compliance check; large language models (LLMs); deep learning; ontology
knowledge models; BIM; design regulations

1. Introduction

Building information modeling (BIM) has become an essential tool in the domain of
architecture, engineering and construction (AEC), revolutionizing the way projects are
planned, executed, and maintained [1]. BIM enhances project delivery efficiency, optimizes
resource allocation, and significantly improves the overall project value and performance [2].
However, as the use of BIM technology becomes more widespread, ensuring compliance
with complex and evolving industry standards and regulations during the design and
implementation phases of construction projects presents new challenges [3].

Traditional compliance checking methods, which rely on manual processes, are not
only inefficient but also prone to errors [4,5]. This inefficiency and susceptibility to errors
are contrary to the principles of lean and efficient management in engineering. As projects
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grow larger and regulations become more complex, the limitations of traditional methods
become more evident [6], creating an urgent need for more efficient and accurate methods
to address these challenges.

In promoting compliance checking in the architecture, engineering, and construction
(AEC) industry, many researchers worldwide have extensively studied automated rule
checking (ARC) systems and have established several ARC systems in different countries
and regions, such as Singapore’s CORENET, Norway’s HITOS project, Australia’s Build-
ing Codes Board project, the International Code Council project, and the U.S. General
Services Administration project. The rule-checking process can be roughly divided into
four stages: (1) rule extraction—translating rules expressed in natural language into a
computer-processable format; (2) building model preparation—preparing the necessary
information for the checking process; (3) rule execution—using computer-processable rules
to check the prepared model; and (4) reporting the checking results [4]. However, most of
the mentioned ARC systems are based on manual rule interpretation methods, which are
inefficient in maintaining and modifying hard-coded rules.

Therefore, researchers have started proposing semi-automated and automated meth-
ods to interpret regulatory texts into computer-processable formats, aiming for a more
flexible, transparent, and convenient ARC process. For example, the RASE methodology [7]
introduces a semi-automated rule interpretation method to help AEC experts analyze the
semantic structure of regulatory requirements, using document annotation techniques
to mark different components of the regulatory requirements. However, these methods
require a significant amount of manual effort to annotate regulatory documents and create
query statements or pseudo-code from them. To address this issue, researchers worldwide
have started introducing natural language processing (NLP) techniques [8], a widely used
method for processing and understanding human language-based text, to automate rule
extraction from regulatory documents. Typically, automated rule interpretation methods
based on NLP include two tasks: (1) information extraction—extracting semantic informa-
tion from textual regulatory documents, and (2) information transformation—converting
the extracted information into logical clauses to support reasoning in compliance checking.
Linking information extraction and information transformation tasks greatly facilitates
the automated rule interpretation process. However, whether using statistical methods,
word vectors, or pre-trained language models like BERT, a large amount of manually
annotated training data is still needed for specific downstream tasks, and achieving high
accuracy requires significant technical investment, such as adjusting model architectures
and hyperparameters.

With the emergence of LLMs, such as OpenAI’s GPT series [9], Meta’s Llama models [10],
and Claude, the cost of technical investment has been significantly reduced. These mod-
els, through extensive pre-training on large-scale, diverse corpora, demonstrate strong
natural language understanding and generation capabilities. In practical applications,
these models can adapt to specific downstream tasks with minimal instruction learning
or fine-tuning, resulting in an “emergent capability” phenomenon. Emergent capability
refers to the model’s ability to handle unseen data and exhibit exceptional performance,
surpassing the limitations of traditional models. This performance improvement not only
reduces development and maintenance costs but also expands the application range of the
models, which show great potential and advantages in tasks such as extracting structured
information from regulatory texts in automated BIM compliance checking. However, the
current application of LLMs in automated compliance checking (ACC) still faces challenges,
particularly in handling complex, nested, and conditional statements in regulatory texts,
where they exhibit certain limitations.

Based on this, this study proposed an innovative framework for automated BIM
compliance checking, combining LLMs, deep learning models, and ontology knowledge
models to address the challenges and limitations of traditional compliance checking. The
innovation of this framework lies in the integration of LLMs and deep learning models.
The use of LLMs was motivated by their few-shot learning capability, which significantly
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mitigates the limitation of requiring large, annotated datasets that was prevalent in previous
methods. Previous studies have typically relied on either rule-based or machine learning
methods that require extensive manual intervention and large amounts of labeled data.
Deep learning models were employed to preliminarily classify regulatory texts. This
pre-classification step, followed by feeding both the classified results and the regulatory
texts into the LLM, enhanced the accuracy of structured information extraction by the
LLM compared to directly feeding raw regulatory texts into it. Additionally, domain
ontology knowledge models provide strong support for understanding and processing
professional contexts and concepts in the construction field. By combining LLMs, deep
learning models, and domain ontology knowledge models, the innovative framework
can not only accurately understand and interpret professional and complex construction
regulatory texts but also ensure that the extracted rules and information can be accurately
applied to specific construction projects and practices.

The remaining parts of this paper are organized as follows: Section 2 provides a
literature review, outlining the historical progress in the field of compliance checking in
the construction industry and emphasizing the current research gaps. Section 3 constructs
the overarching framework for automated compliance checking based on the identified
research gaps. Section 4 validates the proposed framework through practical case studies.
Section 5 discusses the overall experimental results of the automated compliance checking,
its limitations, and future development directions. Section 6 concludes the entire study.

2. Literature Review

The current research landscape in automated compliance checking has explored var-
ious approaches. Early methods primarily relied on hardcoded rules and manual inter-
pretation. For instance, a 2009 survey by Eastman et al. reviewed several rule-checking
projects, including Singapore’s CORENT, Norway’s Statsbygg, and the US General Services
Administration (GSA) initiatives [4]. These methods involved experts manually extract-
ing and coding rules from legal texts. While these methods may be successful in their
implementations, they have several drawbacks: they are expensive to maintain, difficult
to modify, and lack a generalized framework for rules and regulations modeling. These
approaches are often referred to as ‘Black Box’ or ‘Gray Box’ methods [11].

To address these limitations, semi-automated methods like the RASE methodol-
ogy were introduced, improving efficiency by translating regulatory texts into machine-
processable formats using logical operators [7]. The RASE method employs four logical
operators—requirement, applicability, selection, and exception—to convert textual regu-
lations into computable rules, significantly enhancing the accuracy of rule interpretation.
However, these methods still require significant manual effort.

The introduction of natural language processing (NLP) techniques in compliance
checking marked a significant advancement [12]. Early NLP algorithms for compliance
checking can be broadly categorized into two methods: rule-based methods and statistical
methods [8]. While rule-based methods often perform better in terms of accuracy and recall,
they require more human labor. Zhang and El-Gohary pointed out that domain-specific
regulatory texts are more suitable for automated NLP compared to general non-technical
texts (e.g., news articles, general websites) [13].

In 2011, Zhang and El-Gohary proposed a semantic and syntactic information ex-
traction method for compliance checking, aimed at automatically extracting structured
information from unstructured texts [14]. Additionally, EL-Gohary et al. introduced the
concept of ontology, which is used to represent domain knowledge [15]. In 2014, Zhou and
El-Gohary introduced machine learning-based text classification algorithms as a prelim-
inary step before information extraction to categorize text in regulatory documents into
predefined categories, thus improving the efficiency of subsequent semantic information
extraction and compliance reasoning [16]. In 2015, Zhang and El-Gohary proposed an inno-
vative method for automatically extracting rules from building regulations and converting
them into logical clauses suitable for automated reasoning [17]. This method combined
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rule-based semantic NLP techniques with a set of semantic mapping and conflict resolu-
tion rules to automate the conversion process. In 2017, Zhou and El-Gohary proposed an
ontology-based information extraction method to support fully automated building energy
compliance checks [18]. This method involved classifying and preprocessing complex text
content, then using ontology pattern matching, sequential dependency extraction, and
cascading extraction techniques to handle the text’s complexity.

Despite significant progress in using NLP for automated compliance checking, espe-
cially in information extraction and rule conversion, these technologies still face challenges
in scalability and adaptability. Traditional NLP methods, while effective in specific contexts,
often require extensive manual feature engineering, necessitating significant expert time
and effort to define and adjust features. Additionally, manually developed rules may need
to be reevaluated and adjusted when applied to different types of building regulations or
when regulations are updated.

With the continuous development of deep learning, new possibilities have emerged for
interpreting regulatory texts and ensuring compliance. Deep learning models automatically
extract and learn features through multi-layer neural networks, eliminating the need for
manually defined features. This allows models to identify useful features in regulatory
texts without human intervention, thus reducing the burden of manual feature engineering.
Additionally, deep learning models typically learn in an end-to-end manner, from raw
input (text) directly to output (machine-processable form). This eliminates the need for
multiple processing stages in traditional machine learning, such as feature extraction and
feature selection.

In 2019, Zhang and El-Gohary proposed a new machine learning-based approach,
which uses recurrent neural networks to extract hierarchical information from building
regulations [19]. In 2021, Zhang and El-Gohary highlighted that deep learning models,
compared to traditional machine learning models, have more parameters and typically
require larger datasets for training. However, the AEC field lacks sufficient annotated
training datasets, and creating these datasets is costly. To address this issue, they proposed
using transfer learning strategies, allowing deep neural network models to be trained on
both general domain and AEC-specific annotated data [20]. Zheng et al. proposed a fire
compliance checking framework for building BIM models based on a knowledge model
and the BERT model [21]. This approach significantly improved the model performance
and generalization ability. However, these models require substantial computational
resources and data, and their internal mechanisms’ complexity makes interpretability a
significant issue.

However, LLMs, such as GPT-4 [9], PaLM [22], Galactica [23] and Llama [10], have
shown exceptional capabilities in few-shot learning [24] and understanding complex lan-
guage structures [25], which offers promising solutions for the above-mentioned gaps.
LLMs can address the limitations of deep learning by providing robust language under-
standing with minimal labeled data, adapting to evolving regulations, and accurately
extracting structured information from regulatory texts.

Recent advancements in automated compliance checking have introduced LLMs to en-
hance automation. Liu et al. (2023) presented a method for automated compliance checking
of building design regulations through prompt engineering, leveraging GPT-3 and GPT-3.5
models [26]. That study evaluated these models’ performance in processing building design
specifications through a series of experiments. Their research demonstrated the potential
of LLMs in handling and understanding complex text tasks, particularly in dealing with
large-scale, complex text contexts. By designing various types of prompts (such as zero-shot
learning, one-shot learning, and few-shot learning) and utilizing fine-tuning processes,
their study significantly improved model performance. However, their study primarily
focused on relatively simple regulatory texts. More complex texts with nested clauses and
conditional statements may require additional strategies for effective processing.
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To sum up, the key studies related to automated compliance checking is provided in
Table 1. Despite the progress made with NLP and deep learning technologies in automated
compliance checking, several key challenges and research gaps remain:

• Traditional Methods: Traditional methods are expensive to maintain, difficult to
modify, and lack a generalized framework for rules and regulations modeling.

• NLP and Deep Learning: These methods have improved efficiency and accuracy
in rule interpretation and compliance checking. However, NLP and deep learning
methods still require extensive manual feature engineering, large, annotated datasets,
and significant computational resources. Additionally, compared to other industries,
the AEC field has relatively less available data, making it challenging for deep learning
models to learn sufficiently.

• Large Language Models: LLMs provide robust language understanding with minimal
labeled data due to their pre-training and few-shot learning capabilities. They adapt
to evolving regulations and accurately extract structured information from regulatory
texts. However, their application in the AEC field is still limited by the need for
fine-tuning for specific tasks and for handling complex texts with nested clauses and
conditional statements.

Table 1. Key studies related to automated compliance check.

Study Method Advantages Disadvantages Key Contributions

Eastman et al. (2009)
[4]

Manual rule extraction
and coding

High maintenance cost,
difficult to modify, lack of a

generalized framework

Reviewed several
rule-checking projects

RASE Methodology
(2011) [7]

Semi-automated
rule interpretation Improved efficiency Requires significant

manual effort
Translates regulatory texts

using logical operators

Zhang and El-Gohary
(2011) [14]

Semantic and syntactic
information extraction

Automatically extracts
structured information

Requires large,
annotated datasets

Proposed an automated
compliance

checking method

Zhou and El-Gohary
(2014) [16]

Machine learning
text classification

Improved efficiency
of semantic

information extraction

Requires large datasets and
feature engineering

Improved text classification
using machine learning

Zhang and El-Gohary
(2015) [17]

Rule extraction and
logical conversion

Automates the
conversion process

Requires complex conflict
resolution rules

Innovatively extracts
building regulation rules

Zhou and El-Gohary
(2017) [18]

Ontology-based
information extraction

Supports fully automated
energy compliance checks

Difficult to handle
text complexity

Uses ontology pattern
matching and

cascading extraction

Zhang and El-Gohary
(2019) [19]

Recurrent neural
networks

Automatically
extracts hierarchical

information

Requires large datasets and
computational resources

Uses deep learning to
extract building

regulation information

Zhang and El-Gohary
(2021) [20] Transfer learning Reduces data requirements Requires high

computational resources
Combines domain-specific
and general domain data

Zheng et al. (2021)
[21] BERT model

Improved model
performance and

generalization ability
Lack of interpretability

Proposed a fire compliance
checking framework for

BIM models

Liu et al. (2023)
[26]

Prompt engineering
with GPT models

Reduces need for extensive
manual feature engineering,

adapts to evolving
regulations, accurately

extracts structured
information from
regulatory texts

Primarily focuses on
relatively simple regulatory
texts. More complex texts
with nested clauses and

conditional statements may
require additional strategies

for effective processing

Presented a method for
automated compliance

checking using GPT models

3. Materials and Methods

To address the limitations of previous research and harness the strengths of LLMs,
this study proposed an innovative automated compliance checking framework. This
framework integrated LLM, deep learning models, and ontology knowledge models to
enhance the efficiency and accuracy of compliance checks. The framework comprised four
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main components: the construction of a lightweight domain ontology model, preliminary
classification of regulatory texts using deep learning, extraction of structured information
from regulatory texts using LLM, and the implementation of compliance checks within the
ontology model.

The novelty of this approach lies in the combination of LLM and deep learning models,
which significantly reduces the need for manual intervention and enhances automation.
The rationale for using this combined approach is as follows: First, the ontology model
provides standardized knowledge representation for complex objects in the construction
industry, facilitating data sharing and reuse, while enhancing querying and reasoning
capabilities, which are critical for automated compliance checking. Second, deep learning
techniques are employed to preliminarily classify the regulatory texts, effectively handling
large volumes of unstructured data and automatically extracting useful features. This
pre-classification step improves the accuracy of structured information extraction by the
LLM compared to directly feeding raw regulatory texts into it. Finally, LLMs, through
extensive pre-training on large-scale and diverse corpora, acquire extensive language and
common-sense knowledge, allowing them to perform few-shot learning. This capability
significantly reduces the need for large, annotated datasets, adapts to evolving regulations,
and accurately extracts structured information from regulatory texts. By integrating these
technologies, the proposed framework not only enhances the efficiency and accuracy of
compliance checking but also offers a scalable and adaptable solution for the construc-
tion industry.

The proposed automated compliance checking framework is illustrated in Figure 1, de-
tailing each step from data input to compliance check result output, ensuring transparency
and efficiency throughout the process. This methodology not only enhances the efficiency
and accuracy of compliance checks but also provides a sustainable, adaptable automated
solution for the construction industry with broad application prospects and practical value.
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3.1. Standards and Regulations

The compliance checking framework matches the BIM model with specific standards
and regulations from the Residential Design Code GB-50096-2011 [27]. This code was issued
by the Ministry of Housing and Urban–Rural Development and the General Administration
of Quality Supervision, Inspection, and Quarantine of China. The standards include
quantitative clauses such as area and height requirements and qualitative clauses like
spatial functionality and building aesthetics.

3.2. Lightweight Domain Ontology Model

Ontology is defined as a formal representation of a set of concepts within a domain and
the relationships between those concepts. In this study, an ontology model for residential
building design was constructed using Protégé software (version 5.5.0, developed by the
Stanford Center for Biomedical Informatics Research at the Stanford University School of
Medicine). The concepts, relationships, and descriptions in this model were extracted and
summarized from the Residential Design Code GB-50096-2011 [27].

Classes in the ontology model represent collections of instances. To build a lightweight
ontology model, a semi-automated method proposed by Qiu et al. [28] was adopted. This
method involves the following steps:

• Term Extraction: Using term frequency-inverse document frequency (TF-IDF) to
extract relevant terms from regulatory texts;

• Semantic Clustering: Merging extracted terms using semantic clustering techniques;
• Manual Adjustment: Manually adjusting and supplementing the overall probability

and hierarchical structure to ensure accuracy and relevance.

Attributes in the ontology model define binary relationships between instances, in-
cluding data attributes and object attributes:

• Data Attributes: Connect instances with data values, typically basic data types such as
strings, integers, floating-point numbers, or dates;

• Object Attributes: Define the relationships between two instances within the ontology model.

To improve accuracy and consistency, three types of metadata were used to describe
the concepts in the building design domain:

• Concept Name: The primary name of the concept;
• Alias: Alternative names or synonyms for the concept;
• Definition: Detailed descriptions of the concept, taken from the “Terms” section

of GB-50096-2011.

By constructing this lightweight domain ontology model, a standardized knowledge
representation was provided that enhanced data sharing, reuse, querying, and reasoning ca-
pabilities, which are critical for automated compliance checking in the construction industry.

3.3. Deep Learning-Based Text Classification

One of the core challenges in automated compliance checking for building information
modeling (BIM) is accurately extracting key information from complex regulatory texts.
To enhance the precision and efficiency of information extraction by the LLM, this study
incorporated deep learning models for preliminary text classification.

3.3.1. Text Preprocessing

In the field of natural language processing (NLP), text preprocessing is a crucial step
that involves preparing and cleaning raw text by removing noise, redundancy, irrelevant,
and harmful information [29]. When dealing with regulatory texts in building design,
text preprocessing is particularly important because these texts often contain complex
structures, technical terms, and formatting norms. Through preprocessing, irrelevant
information can be removed and terms can be standardized, enabling subsequent models
to more effectively identify and extract the key information. This not only helps improve
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the efficiency of subsequent models but also ensures the accuracy and reliability of the
information extraction. The text preprocessing steps adopted in this study are as follows:

• Noise Removal: Eliminating non-essential parts such as headers, footers, page num-
bers, and dates;

• Sentence and Paragraph Segmentation: Breaking down the text into smaller units like
sentences or paragraphs to facilitate easier processing;

• Term Standardization: Normalizing professional terms, abbreviations, and non-standard
expressions to reduce ambiguity and improve model accuracy.

By implementing these detailed preprocessing steps, the regulatory texts are trans-
formed into a clean, structured, and standardized format suitable for deep learning models.
This ensures that the models can effectively identify and extract key information, improving
the accuracy and efficiency of the text classification task.

3.3.2. Training Data Preparation

A wide range of regulatory texts from building codes were collected and annotated.
The annotation process involved classifying the text based on the complexity of the infor-
mation, resulting in different layers of information:

• Single-layer Information: Simple regulations, e.g., “The area of the living room should
not be less than 10 square meters” (labeled as y = 0);

• Double-layer Information: Regulations involving two conditions or entities, e.g., “The
apartment with at least one balcony should have a minimum balcony area of 8 square
meters” (labeled as y = 1);

• Triple-layer Information: More complex regulations involving multiple conditions
or entities, e.g., “The apartment consisting of a bedroom, living room, dining room,
and balcony should have a minimum living room illumination standard of 250 lux”
(labeled as y = 2).

To enhance the model’s generalization capability and avoid overfitting, data aug-
mentation techniques such as synonym replacement and sentence reorganization were
employed. This approach increases the diversity of the training data, allowing the model
to learn from a broader set of examples.

3.3.3. Text Classification

For accurate text classification, three commonly used models were compared (TextCNN [30],
LSTM [31], and BERT [32]) and a hybrid model that combined their strengths was proposed:

• TextCNN Model: The TextCNN model was constructed with a 100-dimensional word
embedding layer, followed by three one-dimensional convolutional layers with ker-
nel sizes of 3, 4, and 5, each having 150 feature maps. These layers capture local
features through sliding windows, which are then max-pooled and fed into a fully
connected layer;

• LSTM Model: The LSTM model used a 100-dimensional word embedding layer,
followed by an LSTM layer with an output dimension of 50. The LSTM layer processes
the sequential data, and its output is flattened and fed into a fully connected layer;

• BERT Model: The BERT-base-Chinese model was used as the base, tokenizing the
text using the AutoTokenizer and fine-tuning the model with the collected dataset.
BERT’s architecture includes multiple transformer layers that capture deep semantic
relationships within the text;

• Hybrid Model: The hybrid model integrated BERT for deep semantic feature extrac-
tion, CNN for local feature capture, and LSTM for sequence dependency. The outputs
of these models were combined using a transformer encoder layer, followed by fully
connected layers for the final classification.

By combining these models, their individual strengths were leveraged to improve the
accuracy and efficiency of text classification, which is critical for the subsequent structured
information extraction.
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3.4. Structured Information Extraction Using Large Language Model

In order to extract structured information from regulatory texts, GPT-4 from OpenAI
was utilized. Based on the classification results from the deep learning model, “one-shot
learning” approach was adopted, setting labels and providing examples to guide the LLM
in extracting structured information.

3.4.1. Label Design

In the field of building design, regulatory texts typically contain two types of con-
ditions: (1) Quantitative conditions, such as “The area of the living room should not be
less than” and (2) Existence conditions, such as “Each apartment should have a balcony”.
Regulatory texts usually comprise four parts:

• The object to be checked;
• The property of the object to be checked;
• The relationship between the first two, either a quantitative condition or an exis-

tence condition;
• The actual value for quantitative conditions or a T/F Boolean value for existence conditions.

Based on these characteristics, this study set four labels for regulatory texts: “Object”,
“Property”, “Condition”, and “Value”. The definitions for each label are shown in Table 2.

Table 2. Label Definitions.

Name Title 2

Object (object) The object to be checked in the regulatory text
Property (prop) The property of the object to be checked
Condition (cmp) The condition to be met, either quantitative or existence

Value (value) The actual value for quantitative conditions or T/F Boolean
for existence conditions

In this study, the selected regulatory text clauses can be divided into three types
based on the information hierarchy level according to the classification results from the
previous sections:

• Regulations containing one layer of information: For instance, “The area of the living
room should not be less than 10 square meters” belongs to this category, including
one set of “Object-Property-Condition-Value” labels;

• Regulations containing two layers of information: For example, “The apartment
consisting of a bedroom, living room, kitchen, and bathroom should have a minimum
total area of 30 square meters” belongs to this category, including two sets of “Object-
Property-Condition-Value” labels;

• Regulations containing three layers of information: These are more complex regu-
lations involving multiple conditions or entities, resulting in three sets of “Object-
Property-Condition-Value” labels.

As shown in Figure 2, these labeling categories help in structuring the regulatory texts
effectively, ensuring accurate information extraction and compliance verification.
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3.4.2. One-Shot Learning with LLM

In this study, a “one-shot learning” approach was employed to fine-tune the LLM
for structured information extraction. This method involves providing the model with
a few annotated examples for each label category. By doing so, the LLM can learn to
generalize from these examples and accurately extract structured information from new,
unseen regulatory texts.

The process includes the following steps:

• Annotation of Examples: A small set of regulatory text examples are manually anno-
tated with the designed labels;

• Model Fine-Tuning: The annotated examples are used to fine-tune the LLM, enabling
it to recognize and extract the labeled components from similar texts;

• Extraction and Structuring: The fine-tuned LLM processes the regulatory texts, ex-
tracting the relevant components and organizing them into a structured format.

By using LLM for structured information extraction, the need for manual intervention
is significantly reduced, enhancing the automation and efficiency of compliance checking.
This approach ensures that regulatory texts are accurately processed and converted into
actionable queries, facilitating effective compliance verification.

3.5. Compliance Check in Constructed Ontology

After extracting the structured information, the next step is to implement compliance
checking within the ontology model using SPARQL queries. This involves a rule-based
algorithm that translates the extracted components into a query format suitable for compli-
ance verification.

The conversion process is rule-based and follows these steps:

• Mapping Labels to Ontology Classes: Each label (object, property, condition, value) is
mapped to corresponding classes and properties in the ontology model. For example,
the label “Object” might be mapped to a class such as living room, and the label
“Property” might be mapped to a property such as area;

• Formulating SPARQL Queries: Using the mapped classes and properties, SPARQL
queries are formulated to check compliance. The structured information extracted
from the regulatory texts is used to construct these queries;
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• Executing Queries: The formulated SPARQL queries are executed against the ontology
model to verify whether the instantiated objects comply with the regulatory requirements.

4. Results

To validate the proposed automated compliance checking framework, a case study on
representative construction projects was conducted. The case study involved applying the
developed framework to real-world BIM models and analyzing the compliance results. A
nine-story residential building was selected as the primary case study to demonstrate the
effectiveness of the proposed approach.

4.1. BIM Model and Ontology Integration

Due to the confidentiality of building BIM models, a custom residential design model
was constructed for this study to validate the proposed compliance checking framework.
The model represents a nine-story residential building, with each floor containing four
residential units and a public area. The overall model and the floor plan of one of the floors
is depicted in Figure 3.
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To map the information from the building BIM model into the constructed ontology
model, it is necessary to convert the visual information into data. Industry foundation
classes (IFC) is a common collaboration format in BIM projects, supported by most BIM
software. Therefore, using IFC files as the base format for data exchange enhances scalability.
However, since IFC uses the EXPRESS Schema, it cannot be directly parsed by ontology
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reasoning engines. Additional steps are required to convert IFC data into the RDF format
usable by the ontology model.

First, based on the constructed ontology model, concepts in the IFC schema were
aligned with those in the ontology model using a predefined mapping table. This alignment
and extraction process was conducted in Python, where the information was organized
and stored in dictionary form. This preparation is essential for mapping the information
into the ontology knowledge model. The key information extracted includes “Room”,
“Room Number”, “Floor Number”, “Utilization Area”, and “Apartment Type”, as this
study primarily focuses on area requirements in residential design.

Next, to match the building model information with regulatory information in the
ontology knowledge model, the extracted data were mapped into the ontology knowledge
model. This process involved writing the model information into RDF format using the
.ttl language based on the designed classes, properties, and descriptions in the ontology
knowledge model. The RDF format file was then mapped into the constructed ontology
knowledge model, as shown in Figure 4. This step converted objects in the building model
into instantiated objects in the ontology knowledge model, with corresponding “data
properties” and “object properties”. A brief description of the structure of the constructed
ontology model is illustrated in Figure 5.
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By integrating the BIM model with the ontology model, the framework ensures that
the visual and data information from the building model are accurately represented and
can be used for effective compliance checking.

4.2. Text Classification

This section explores the performance of the Text Convolutional Neural Network
(TextCNN), Long Short-Term Memory Network (LSTM), Transformer model, BERT model,
and BERT-TextCNN-LSTM fusion model in the task of text classification. To objectively
evaluate the performance of each model, statistical analysis methods including accuracy,
loss value graphs, classification reports (such as precision, recall, F1 − score), and confu-
sion matrices were used. The formulas for calculating precision, recall, and F1 − score are
as follows:

precision =
true positive

true positive + f alse position

recall =
true positive

true positive + f alse negative

F1 − score = 2 × precision × recall
precision + recall

4.2.1. TextCNN

The TextCNN model constructed in this study uses standard architecture. It first con-
verts the input text into fixed-dimensional vector representations through a 100-dimensional
word embedding layer (nn.Embedding). Then, the model employs three one-dimensional
convolutional layers (nn.Conv1d) with kernel sizes of three, four, and five, each having 150
feature maps. The convolution layers use a sliding window mechanism to extract local fea-
tures from different regions of the text, enhancing the model’s sensitivity to key semantics
through activation functions. These features are then integrated to comprehensively un-
derstand the text content in subsequent layers. The convolution layers process text data in
parallel, capturing local information of different lengths in sentences. After the convolution
layers, max pooling (F.max_pool1d) is used to extract the most significant features, which
are concatenated to form the input to a fully connected layer (nn.Linear), mapping the
features to classification labels. To prevent overfitting, a dropout layer (nn.Dropout) with a
rate of 0.1 is applied before the fully connected layer. During training, the model used cross-
entropy loss function (nn.CrossEntropyLoss) and Adam optimizer (torch.optim.Adam).
Specific learning rates and training epochs were chosen based on preliminary experiments
to balance learning efficiency and computational resource usage.

During training, the model’s performance was evaluated through accuracy and loss
values. Figure 6 (left) shows the accuracy of the performance of the model on the training
and validation sets, exhibiting an overall upward trend despite slight fluctuations on the
validation set after 10 training epochs. Similarly, Figure 6 (right) shows the loss values on
the training and validation sets, demonstrating an overall downward trend.

The final performance of the model was measured by precision, recall, and F1-score,
with the calculated results shown in Table 3. Additionally, the confusion matrix (Figure 7)
provides a visual representation of the model’s prediction accuracy across different clas-
sification labels. The results indicate that TextCNN performed excellently in extracting
local text features, with near-perfect precision for Class 0 (one-layer information regulatory
texts). Specifically, all samples predicted as Class 0 by the model were correct. Recall was
also very high, with only one sample misclassified. The F1-score for Class 0 was close to 1,
showing excellent performance for this category. However, the model showed limitations
in capturing long-distance text dependencies. For Class 1 and Class 2 (two-layer and
three-layer information regulatory texts), the model’s precision and recall decreased. The
confusion matrix revealed significant confusion between Class 1 and Class 2, with 18% of
Class 1 misclassified as Class 2, and 25% of Class 2 misclassified as Class 1. This result
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highlights TextCNN’s advantage in capturing local features and its deficiency in capturing
sufficient context information.
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Table 3. TextCNN Performance Metrics.

Precision Recall F1-Score Sample

0 1.000 0.990 0.995 100
1 0.759 0.820 0.788 100
2 0.806 0.750 0.777 100

Buildings 2024, 14, x FOR PEER REVIEW 15 of 29 
 

and three-layer information regulatory texts), the model’s precision and recall decreased. 

The confusion matrix revealed significant confusion between Class 1 and Class 2, with 

18% of Class 1 misclassified as Class 2, and 25% of Class 2 misclassified as Class 1. This 

result highlights TextCNN’s advantage in capturing local features and its deficiency in 

capturing sufficient context information. 

Table 3. TextCNN Performance Metrics. 

 Precision Recall F1-Score Sample 

0 1.000 0.990 0.995 100 

1 0.759 0.820 0.788 100 

2 0.806 0.750 0.777 100 

 

Figure 7. TextCNN confusion matrix. 

Overall, the TextCNN model shows significant differences in performance across dif-

ferent categories. It performs excellently in simple text classification tasks (one-layer in-

formation), but its performance decreases with increasing information layers in the text. 

To further improve the model performance, adjustments to kernel sizes, increasing the 

convolutional layer depth, exploring different regularization techniques, or combining it 

with other models can address TextCNN’s limitations in capturing long-distance depend-

encies. Additionally, given the data distribution characteristics of regulatory texts—most 

being one-layer information—the strong performance of TextCNN in processing these 

texts justifies its use as a baseline model for evaluating subsequent models. 

4.2.2. LSTM 

In this study, an LSTM-based neural network model was designed to handle and 

classify regulatory texts. Similarly, the model first converts each word in the regulatory 

text into 100-dimensional vector representations through an embedding layer (nn.Embed-

ding). Following this, an LSTM layer (nn.LSTM) with an output dimension of 50 processes 

the output of the embedding layer, capturing the sequential characteristics of the text. The 

output of the LSTM layer is flattened (nn.Flatten) across time steps to form the input to a 

fully connected layer (nn.Linear), mapping the 2500-dimensional data to classification la-

bels. Like the TextCNN model, the LSTM model was optimized using the cross-entropy 

loss function (nn.CrossEntropyLoss) and Adam optimizer (torch.optim.Adam), ensuring 

efficient gradient descent and parameter updates. 

The LSTM model was trained over 10 epochs, with the accuracy and loss values on 

the training and validation sets shown in Figure 8 (left) for accuracy and Figure 8 (right) 

for loss values. The figures indicate a smooth training process, with overall increasing 

Figure 7. TextCNN confusion matrix.

Overall, the TextCNN model shows significant differences in performance across
different categories. It performs excellently in simple text classification tasks (one-layer
information), but its performance decreases with increasing information layers in the text.
To further improve the model performance, adjustments to kernel sizes, increasing the
convolutional layer depth, exploring different regularization techniques, or combining it
with other models can address TextCNN’s limitations in capturing long-distance depen-
dencies. Additionally, given the data distribution characteristics of regulatory texts—most
being one-layer information—the strong performance of TextCNN in processing these texts
justifies its use as a baseline model for evaluating subsequent models.

4.2.2. LSTM

In this study, an LSTM-based neural network model was designed to handle and
classify regulatory texts. Similarly, the model first converts each word in the regulatory text
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into 100-dimensional vector representations through an embedding layer (nn.Embedding).
Following this, an LSTM layer (nn.LSTM) with an output dimension of 50 processes the
output of the embedding layer, capturing the sequential characteristics of the text. The
output of the LSTM layer is flattened (nn.Flatten) across time steps to form the input to
a fully connected layer (nn.Linear), mapping the 2500-dimensional data to classification
labels. Like the TextCNN model, the LSTM model was optimized using the cross-entropy
loss function (nn.CrossEntropyLoss) and Adam optimizer (torch.optim.Adam), ensuring
efficient gradient descent and parameter updates.

The LSTM model was trained over 10 epochs, with the accuracy and loss values on the
training and validation sets shown in Figure 8 (left) for accuracy and Figure 8 (right) for loss
values. The figures indicate a smooth training process, with overall increasing accuracy and
decreasing loss values across 10 epochs, showing no signs of overfitting or underfitting.
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The statistical analysis results of the model’s performance are shown in Table 4,
presenting precision, recall, and F1-score. The confusion matrix (Figure 9) further provides
a detailed view of the model’s predictions across different categories. For Class 0, the
model’s performance was similar to TextCNN, showing perfect precision. Specifically,
all samples predicted as Class 0 by the model were correct, with high recall as well,
misclassifying only eight samples. The F1-score for Class 0 is 0.995, indicating excellent
performance for this category. In capturing long-distance text dependencies, the LSTM
model showed superior performance to TextCNN but still has limitations. For two-layer
and three-layer information regulatory texts (Class 1 and Class 2), the precision and recall
decreased, with the confusion matrix showing significant confusion between Class 1 and
Class 2. Specifically, 12% of Class 1 were misclassified as Class 2, and 11% of Class 2 were
misclassified as Class 1.

Table 4. LSTM performance metrics.

Precision Recall F1-Score Sample

0 1.000 0.920 0.958 100
1 0.822 0.880 0.850 100
2 0.881 0.890 0.886 100

The LSTM model shows better recognition capability for different levels of information
compared to TextCNN, achieving slightly lower performance in handling simple one-layer
information but showing improvement in handling complex regulatory texts. Despite
performance improvements, the LSTM model still shows some degree of misclassification,
suggesting that even LSTM cannot fully capture all complex dependencies. Future work
can explore more advanced regularization techniques, such as variational dropout, or try
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more complex LSTM variants like bi-directional LSTM and consider combining LSTM with
other types of networks to further enhance its ability to handle complex texts.
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4.2.3. BERT

BERT (Bidirectional Encoder Representations from Transformers) [19] is a pre-trained
model based on the Transformer architecture. It learns rich language representations
through pre-training on a large corpus and can be fine-tuned for various NLP tasks. The
unique aspect of BERT is its bidirectional training structure, allowing the model to consider
both the left and right context of each word in the text, capturing deeper semantic informa-
tion. In regulatory text classification tasks, BERT’s advantage is significant as regulatory
texts typically have rich context crucial for understanding and classification. Additionally,
BERT has shown excellent performance in processing Chinese texts, making it an ideal
choice for this study.

This study used the BERT-base-Chinese model as the foundation, a BERT model
pre-trained on Chinese corpora. First, the text was processed using BERT’s tokenizer
(AutoTokenizer), converting it into a format understandable by the model. Then, the
pre-trained BERT model block (AutoModelForSequenceClassification) was fine-tuned to
output the specified number of classification labels. The model was fine-tuned using the
same dataset as the previous models.

The model is defined as a wrapper class (bertModel), encapsulating the pre-trained
BERT module. During training, the model was optimized using the cross-entropy loss
function and AdamW optimizer, designed specifically for fine-tuning pre-trained models.
The learning rate was set to 2 × 10−5 through cross-validation. The model’s performance on
the training and validation sets is shown in Figure 10 after 10 training epochs. The figures
demonstrate BERT’s excellent performance in text classification tasks after fine-tuning.

The statistical analysis results of the model’s performance are shown in Table 5, includ-
ing precision, recall, and F1-score. The confusion matrix (Figure 11) provides a detailed
view of the model’s predictions across different categories. Statistical analysis results
showed that for one-layer information regulatory text classification tasks, the BERT model
achieved 0.969 precision and 0.94 recall, slightly lower than the TextCNN model but still
presenting high performance. In complex regulatory text classification tasks, the BERT
model’s performance far exceeded TextCNN and previous models, achieving 0.865 preci-
sion and 0.900 recall for two-layer information regulatory texts, and 0.929 precision and
0.920 recall for more complex tasks. Overall, the BERT model presents the most balanced
and best overall performance among all models.
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Table 5. BERT performance matrices.

Precision Recall F1-Score Sample

0 0.969 0.940 0.954 100
1 0.865 0.900 0.882 100
2 0.929 0.920 0.925 100
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Overall, BERT outperforms previous models such as TextCNN and LSTM in handling
complex regulatory text classification tasks. BERT’s superior performance in complex tasks
is due to its bidirectional training structure and pre-training context, which can deeply
understand the complexity and diversity of language. However, in simple regulatory text
classification tasks (one-layer information), BERT’s metrics are slightly lower than TextCNN,
but still high. This might be because TextCNN is more efficient in handling simple tasks
with obvious local features. For these tasks, complex models like BERT may not provide
additional advantages, and their high complexity may not be as effective as models focused
on local feature extraction. Simple tasks may not fully utilize BERT’s context understanding
capability, which is its advantage in complex tasks. Therefore, in future work, combining
BERT with models focusing on different aspects, such as TextCNN’s local feature extraction
and LSTM’s sequential feature understanding, may provide a more balanced solution for
efficiently handling tasks of varying complexity.
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4.2.4. Proposed Fusion Model

The three deep learning models constructed in the previous subsections demonstrate
different performance levels in regulatory text classification tasks. Specifically, the TextCNN
model performs excellently in simple regulatory text classification but shows lower accu-
racy for texts with multiple layers of information. This may be due to the limitations of
convolutional neural networks in capturing long-distance dependencies. The LSTM model
performs better than TextCNN in classifying complex texts due to its ability to handle
sequential data, especially long-term dependencies. However, its overall accuracy still has
room for improvement. The BERT model shows the best overall performance among all
models, demonstrating strong feature extraction capability and excellent generalization
performance, especially in complex regulatory text classification tasks.

Based on the above analysis, this subsection constructed a fusion model based on
TextCNN, LSTM, and BERT, aiming to combine the advantages of each model, such as
TextCNN’s fast feature extraction and excellent local feature capturing ability, LSTM’s
ability to handle sequential dependencies, and BERT’s strong contextual understanding, to
improve the model’s classification performance for multi-layer information regulatory texts.

Specifically, this study first initialized the BERT model, using the pre-trained Hfl/Chinese-
MacBERT-base model to extract deep semantic information from the text. Then, a CNN
module was constructed, containing multiple convolutional layers to capture key local
features of the text through different convolution kernels. For the LSTM module, its
recursive nature was used to process and memorize long-distance dependencies in the
text. The features output by these three models were sent to a Transformer encoder layer,
which enhanced the interaction between features from different sources through the self-
attention mechanism. Finally, the combined features were classified through a series of
fully connected layers. The entire network was optimized using the cross-entropy loss
function and the AdamW algorithm, aiming to achieve higher classification performance
by combining the strengths of different models.

The accuracy and loss value changes of the model over 10 training epochs are shown
in Figure 12, demonstrating the excellent performance of the model after training. The
fusion model achieved an accuracy of 0.99 and a loss value of 0.06 on the training set and
an accuracy of 0.97 and a loss value of 0.14 on the validation set. These results outperform
the individual models in the previous experiments.
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In terms of statistical metrics, as shown in Table 6, for one-layer information regulatory
text classification tasks, the fusion model’s performance matches the best performance of
the individual models, namely TextCNN. For complex text classification tasks, the fusion
model’s precision, recall, and F1-score outperform all previous individual models. The
confusion matrix (Figure 13) further shows that the fusion model outperforms previous
models across various types of clauses.
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Table 6. Fusion model performance matrices.

Precision Recall F1-Score Sample

0 1.000 0.990 0.995 100
1 0.933 0.970 0.951 100
2 0.969 0.940 0.954 100
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In summary, the fusion model excels in regulatory text classification tasks, fully
demonstrating the integration capability of different models’ strengths. The combination of
TextCNN’s local feature extraction, LSTM’s sequential dependency handling, and BERT’s
contextual understanding makes the model particularly effective in handling complex texts.
Despite significant achievements, further exploration of new fusion strategies and learning
techniques is needed to optimize the model, especially in data-scarce or insufficiently
diverse situations. Future research can focus on improving the model’s generalization
ability or customizing improvements for specific regulatory texts to achieve more precise
text classification and information extraction in practical applications.

4.3. Structured Information Extraction

In this study, GPT-4 from OpenAI was used. For the classification results from the
deep learning fusion model, a “one-shot learning” approach was adopted, where a labeled
training sample was provided for each category to the LLM for in-context learning (ICL),
as shown in Figure 14. These samples were designed to guide the LLM in accurately
identifying and understanding the specific structure of different categories of regulatory
texts. Specifically, each training sample contained examples of representative regulatory
texts and their corresponding labels, enabling the model to recognize the categories these
texts belong to during the learning process.

Next, based on the classification results from the deep learning fusion model, appro-
priate prompts were assigned to each type. This can be achieved using custom Python
functions. These prompts further guide the LLM in making accurate classification decisions
based on contextual information when processing actual texts. By inputting these precisely
labeled samples, the LLM learns how to map regulatory texts to predefined label systems.
Additionally, the model parameter “temperature” was set to 0. In AI language models,
the “temperature” parameter controls the randomness of the generated content, with a
value range between 0 and 1. Setting this parameter to 0 makes the model more likely
to choose the highest probability words, generating more deterministic and consistent
text. This means the model’s responses will be the most likely and least variable, suitable
for applications requiring high accuracy and consistency, such as structured information
extraction from the regulatory texts used in this study. Conversely, a value closer to 1
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would result in more diverse and creative text generation. Therefore, setting this parameter
to 0 ensures that the output information is precise and reliable, reducing uncertainty and
variability, thus improving efficiency and accuracy in structured tasks.
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Finally, the output from the LLM needs to be converted from a string format to JSON
format for easier subsequent processing. This step can also be achieved using custom
Python JSON libraries. This way, the structured information generated by the LLM can
be directly integrated into subsequent data processing and analysis workflows. Figure 15
shows some of the structured information extracted from GPT-4. This information includes
different categories of regulatory texts and their corresponding labels, clearly demonstrating
the efficiency and accuracy of the LLM in identifying and classifying regulatory texts.
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4.4. Compliance Check

This section demonstrates how to implement rule queries using SPARQL in the ontol-
ogy model constructed in Protégé to identify instances imported from the Revit model that
conflict with regulatory clauses.

Based on the output results from the LLM, the regulations to be queried in this
study are mainly divided into three types: single-layer information regulations, double-
layer information regulations, and triple-layer information regulations. For single-layer
information regulations, which involve a single entity type and its attributes, such as
“The area of the living room should not be less than 10 square meters”, the corresponding
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SPARQL query retrieves all living room entities and filters out instances with an area
less than 10 square meters. For double-layer information regulations, which introduce
relationships between entities, such as “The total area of an apartment consisting of a
bedroom, living room, kitchen, and bathroom should not be less than 30 square meters”,
the corresponding SPARQL query retrieves apartments meeting the area requirement and
ensures they contain all specified room types. For triple-layer information regulations,
which involve combinations of multiple entities and attributes, such as “The minimum
usable area of an apartment consisting of a bedroom, living room, kitchen, and bathroom
should not be less than 30 square meters”, the corresponding SPARQL query retrieves
not only the kitchens and their areas but also confirms that these kitchens are part of a
compliant apartment.

Based on the characteristics of these three types of regulations, rule-based Python
code was developed to convert the output from the LLM into SPARQL query syntax. The
query results from the ontology knowledge model constructed in this study are shown
in Figure 16. It can be seen that for the regulatory clause “The minimum usable area of
an apartment consisting of a combined living room and bedroom, kitchen, and bathroom
should not be less than 22 square meters”, the automated compliance checking framework
constructed in this study can quickly identify non-compliant objects in the BIM model used
in this research and locate their respective floors, facilitating subsequent adjustments and
modifications to the design.
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This section demonstrates through specific rule query examples how to use SPARQL
in Protégé to implement rule queries and identify instantiated objects in the BIM model
that conflict with regulatory clauses. By carefully designing the queries, the information
extracted from the LLM was successfully mapped to the ontology model and effectively
conducted compliance checking. This result proves the practicality and efficiency of the
automated compliance checking framework proposed in this study, especially in handling
complex regulatory information.

The overall case flow from the initial regulatory text to the final compliance checking
example is shown in Figure 17. The experimental results reveal the strong potential of
the method proposed in this study. Even when faced with complex queries containing
multi-layer information, our method can quickly locate and identify non-compliant BIM
objects. This not only improves the accuracy of compliance checking but also significantly
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shortens the time required for the review process, demonstrating the high efficiency of our
method in practical engineering applications.
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5. Discussion

In this study, an innovative framework combining ontology models, deep learning
models, and LLMs for automated compliance checking of building BIM was proposed.
The framework consists of four main components: lightweight domain ontology model
construction, deep learning for preliminary classification of regulatory texts, LLMs for
structured information extraction, and compliance checking within the ontology model.
Compared to previous studies, the main innovation of this research lies in the combination
of LLMs and deep learning models for structured information extraction from regulatory
texts. LLMs, with their few-shot learning capabilities acquired through pre-training on
large corpora, address the research gaps of requiring large, annotated datasets, scalability,
and computational resources. The integration of deep learning improves the accuracy of
structured information extraction by LLMs compared to using LLMs alone. This innovative
approach enhances the automation and accuracy of the entire compliance checking process,
overcoming the limitations of previous methods reliant on manual interpretation and
operations, significantly improving the processing speed and efficiency.

5.1. Discussion of Deep Learning Model Text Classification

This study explored the application and performance of various deep learning models
in the classification task of building BIM regulatory texts. By conducting a detailed analysis
of the performance of different models, we aimed to identify the strengths and limitations
of each model in handling regulatory texts with different levels of information complexity.
This analysis not only provides us with a deeper understanding of the models’ capabilities
in processing complex texts but also offers crucial insights for future model selection and
optimization. A comparison of the accuracy and loss performance of the four different
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models on the training and testing sets is shown in Figure 18. Below is an evaluation and
analysis of the performance of TextCNN, LSTM, Transformer, BERT, and the fusion model
in this study:
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• TextCNN Model: The TextCNN model showed excellent performance in handling
texts with simple structures (i.e., regulatory texts with only one layer of information)
but gradually declined in performance when dealing with texts containing more layers
of information. To improve the model’s performance, adjustments can be made by
modifying the convolution kernel size, increasing the depth of convolution layers,
adopting different regularization techniques, or combining with other models to
compensate for TextCNN’s limitations in capturing long-distance dependencies.

• LSTM Model: LSTM demonstrated a more balanced capability in handling different
levels of information. Although its performance was slightly inferior to TextCNN
for simple information layer regulations, LSTM showed a significant advantage in
handling complex regulations containing two or more layers of information due to
its ability to capture long-term dependencies. Future research could consider using
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variants such as bidirectional LSTM or combining it with other network types, such as
attention mechanisms, to further enhance its ability to handle complex texts.

• BERT Model: BERT outperformed the other models in handling complex regulatory
texts, thanks to its bidirectional training structure and deep contextual understanding.
However, its performance was slightly lower than TextCNN when dealing with simple
regulations, indicating that complex models might not bring additional performance
improvements in simple tasks and might be less efficient due to their complexity.

• Fusion Model: The fusion model combined the local feature extraction of TextCNN,
the sequential dependency handling of LSTM, and the contextual understanding of
BERT, showing excellent performance in multi-layer information text classification
tasks. Future work should continue to explore new fusion strategies and algorithms
to further improve the model’s accuracy and generalization capabilities, especially in
data-scarce or insufficiently diverse situations.

Each model demonstrated unique characteristics and applicability in regulatory text
classification tasks. TextCNN is suitable for handling simple structured texts, while LSTM
and BERT show stronger performance in handling multi-layer information texts. Despite
Transformer theoretically having high processing efficiency, practical applications require
more data support to overcome overfitting issues. The fusion model, by integrating the
strengths of different models, exhibited outstanding performance in handling complex text
processing tasks. Future research should build on these findings to further explore new
model structures and training strategies, particularly in situations with limited data, to
effectively improve the model’s generalization capability and accuracy. This will not only
enhance the efficiency of automated compliance checking but also promote the broader
application of deep learning in the field of building information management.

5.2. Discussion of Large Language Model Structured Information Extraction

This study utilized the large language model GPT-4 for structured information ex-
traction from building BIM regulatory texts. Before information extraction, texts were
pre-classified using the deep learning fusion model, helping the model to more effectively
understand and process different categories of regulatory texts. Additionally, the in-context
learning (ICL) strategy was employed, providing two different prompts for each category
of regulatory texts, significantly improving the performance of the LLM. The following
sections provide a detailed analysis of the main advantages of GPT-4 in this study:

• Few-shot Learning Capability: GPT-4 exhibited excellent few-shot learning capability,
quickly learning and adapting to new tasks from a limited number of examples.
Through the ICL strategy, even for less common regulatory categories, the model
could correctly understand and execute information extraction tasks by analyzing the
provided few prompts. This capability is particularly useful for regulatory texts where
specific information expression may vary across different documents.

• Language Generation and Understanding: Due to its extensive training on a wide
range of language structures and contexts, GPT-4 excelled in understanding complex
language expressions and generating accurate information. When processing building
regulatory texts, the model accurately identified and extracted key information such
as performance standards and design requirements, while generating clear and precise
outputs, crucial for automated document processing.

• Broad Knowledge Base: The extensive and diverse datasets encountered during the
training of GPT-4 endowed it with a broad knowledge base. This enabled the model to
better understand and handle diverse building regulations and technical terms. This
characteristic is especially important when dealing with building project documents
involving multi-disciplinary knowledge.

GPT-4 demonstrated strong capabilities in structured information extraction from
building BIM regulatory texts, particularly in few-shot learning, language understanding
and generation, and leveraging its broad knowledge base. Future work can explore further
optimizing prompt design, enhancing the model’s sensitivity to specific building terms,
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and implementing and testing the model’s performance in broader building information
management systems. Additionally, instructional fine-tuning of the LLM can be considered
to eliminate the preliminary classification step by the deep learning fusion model, further
improving the efficiency of compliance checking. Through continuous optimization and
adjustment, it is expected that this LLM will play a greater role in automated compliance
checking and other related fields.

5.3. Limitations and Future Directions

This study successfully achieved an innovative framework combining ontology mod-
els, deep learning models, and LLMS for automated compliance checking of building
BIM. Although the model demonstrated efficiency and accuracy in handling multi-layer
information regulatory texts, especially in structured information extraction using GPT-4,
there are still some limitations that need to be addressed in future research:

• Expansion to Quantitative and Qualitative Regulations: This study mainly focused
on quantitative clauses of regulatory texts, such as area and height requirements,
which are parameters that can be directly evaluated through numerical values. These
quantitative clauses were effectively handled in the current model. However, the com-
prehensiveness of building regulations extends beyond this. Qualitative clauses, such
as building aesthetics, spatial functionality, or the appropriateness of building layouts,
offer more interpretative space and require subjective judgment. For example, “The
kitchen should be located near the entrance of the apartment” involves considerations
of spatial layout and functionality, which are not only difficult to quantify but may also
vary in applicability depending on different contexts. Future research could explore
combining qualitative analysis, such as using Natural Language Generation (NLG)
technology, to process and interpret these qualitative clauses. This might require
developing new algorithms or improving existing models to better understand and
apply abstract concepts in these clauses. Additionally, combining qualitative analysis
with user experience and expert knowledge could play a key role in automated com-
pliance checking, providing architects and engineers with deeper and more intuitive
decision support.

• Testing Across Different Aspects of Building Design: This study primarily focused on
compliance checking of residential area requirements in building design regulations.
To verify the effectiveness of the proposed innovative framework, further testing is
required in other aspects of building design, such as structural integrity, electrical
installations, and mechanical installations. These areas present different types of
regulatory challenges and complexities and testing the framework across these do-
mains will help ensure its robustness and generalizability. Future research should
aim to apply the model to these additional areas to fully validate its effectiveness
and versatility.

• Instructional Fine-tuning of Large Language Models: While GPT-4 demonstrated
significant potential in structured information extraction from regulatory texts in
this study, its performance still relies on the preliminary classification of regulatory
texts using the deep learning fusion model. Future research could focus on more
refined “instructional fine-tuning” of these LLMs, aiming to eliminate the preliminary
text classification step, further improving efficiency. Instructional fine-tuning is a
specific training technique where the model is retrained using a small number of
targeted training samples designed to reflect instructions and expected responses in
specific application scenarios. Although instructional fine-tuning typically requires
high computational power due to the substantial modification of model parameters,
techniques like low-rank adaptation (LoRA), which introduce low-rank matrices
into the pretrained weights, can significantly reduce the number of parameters to
be adjusted, maintaining model performance while greatly improving training and
inference efficiency.
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By delving into these directions, the current system’s limitations can be overcome,
continuously enhancing the performance and flexibility of automated compliance check-
ing and promoting the widespread application of deep learning in the field of building
information management.

6. Conclusions

This study explored an innovative framework for automated compliance checking of
building BIM based on LLMs and ontology knowledge models. By integrating advanced
natural language processing techniques and deep domain knowledge, this study success-
fully proposed and implemented an innovative framework for automating and intelligent
processing of compliance checking in the building design process.

First, the technical innovation lies in introducing a combination of deep learning and
LLMs into the compliance checking of building BIM models, improving the efficiency and
accuracy of compliance checking. This integration not only simplifies the understanding
and processing of complex regulatory texts but also makes the extraction of structured
information from regulatory texts more accurate and efficient. This methodological de-
velopment provides a new perspective for handling highly specialized and structured
building regulatory texts, enhancing the capability of automated processing.

Second, in practical applications, this study demonstrated the effectiveness of the
innovative framework in BIM projects through case studies on specific building projects.
These practical application cases not only validated the practicality of the method but also
showcased the potential for applying this technology in real-world scenarios.

Furthermore, this study promoted interdisciplinary research and technological de-
velopment. It demonstrated how to bridge the fields of architecture, computer science,
and philosophy, providing innovative ideas for solving complex industry challenges.
This interdisciplinary collaboration offers valuable references for future research and
technological innovations.

Future research can expand in several directions. On the one hand, since the case
studies in this research currently focus on quantitative regulatory clauses such as area
and height requirements, the framework can be extended to qualitative regulatory clauses,
such as how to automatically identify and process provisions like “The kitchen should be
located near the entrance of the apartment”, which requires more detailed analysis and
understanding of deep semantics in the text. On the other hand, the framework should be
tested across different aspects of building design beyond residential area requirements to
ensure its robustness and generalizability, like structural integrity, electrical installations,
and mechanical installations. Additionally, compared to in-context learning (ICL), instruc-
tional fine-tuning of LLMs can be explored to eliminate the preliminary deep learning
fusion model classification step, further improving the efficiency of compliance checking.
These potential research directions will not only expand the scope and depth of automated
compliance checking but also promote the practicality and flexibility of this method in
building information model management.

In summary, this study provides an effective method for automated compliance
checking of building BIM models, not only contributing to the automation and intelligence
of the construction industry but also offering valuable experience and insights for research
and practice in other related fields.
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