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Abstract  37 

A growing number of megacities have been experiencing changes to their landscape due to rapid 38 

urbanisation trajectories and travel behaviour dynamics. Therefore, it is of great significance to 39 

investigate the distribution and evolution of a city’s urban functional areas over different periods 40 

of time. Although the smart card automated fare collection system (SCAFC) is already widely 41 

used, few studies have used smart card data to infer information about changes in urban functional 42 

areas, particularly in developing countries. Thus, this research aims to delineate the dynamic 43 

changes that have occurred in urban functional areas based on passengers’ travel patterns, using 44 

Beijing as a case study. We established a Bayesian framework and applied a Gaussian mixture 45 

model (GMM) derived from transit smart card data in order to gain insight into passengers’ travel 46 

patterns at station level and then identify the dynamic changes in their corresponding urban 47 

functional areas. Our results show that Beijing can be clustered into five different functional areas 48 

based on the analysis of corresponding transit station functions, namely: multimodal interchange 49 

hub and leisure area; residential area; employment area; mixed but mainly residential area; and a 50 

mixed residential and employment area. In addition, we found that urban functional areas have 51 

experienced slight changes between 2014 and 2017. The findings can be used to inform urban 52 

planning strategies designed to tackle urban spatial structure issues, as well as guiding future 53 

policy evaluation of urban landscape pattern use. 54 
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1. Introduction 62 

Urbanisation leads to rapid growth on a city scale, and a large number of people tend to move 63 

to the city seeking a better working and living environment. Urban immigration causes the 64 

socio-economic attributes of different regions in a city to change dramatically, and it is therefore 65 

necessary for city planners, economists and resource managers to comprehensively understand the 66 

distribution of, and changes in, urban functional areas (Pham et al., 2011). However, some 67 

traditional urban structure detection methods, such as remote sensing images (Heiden et al., 2012; 68 

Van de Voorde, Jacquet, and Canters, 2011), primarily concentrate on the changes in urban 69 

physical structure, but these cannot accurately reflect the socio-economic composition of urban 70 

areas revealed by urban mobility patterns (Chen et al., 2017). In addition, functional changes in a 71 

city happen relatively slowly. Therefore, only examining data for a single year may not precisely 72 

reflect the dynamic changes in a city’s urban functional areas. Furthermore, the systematic 73 

collection of long-term data would require a massive investment of manpower, time and material 74 

resources, which would be a significant constraint on conducting the relevant research. With the 75 

rapid development of big data, it has increasingly been applied in different fields of urban studies. 76 

These studies involve, for example, the use of mobile data (Sagl et al., 2014), social network data 77 

(Hasnat et al., 2018), and smart card data (Zhao et al., 2018), and have been validated in multiple 78 

cities. To take the smart card data as an example, it consists of a large amount of spatio-temporal 79 

information on users’ long-term activity, which makes it possible to study cities at the individual 80 

level, while the huge volume of data also increases the accuracy of the research. At the same time, 81 

these data are by-products of residents' activities, which have low acquisition costs but consist of 82 

long-term information. Therefore, methods based on big data can be seen as an effective way to 83 
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measure the dynamic changes in urban functional areas. 84 

 

 

************************Please insert Figure 1 here***************************** 85 

 86 

Beijing has a geographical area of 16,808 square kilometres. The total number of usual 87 

residents living in Beijing was 21.54 million in 2018. Transport emissions and traffic jams are 88 

currently two primary issues in the city (Wang et al., 2015; Cao et al., 2017). In order to alleviate 89 

traffic congestion caused mainly by rapid urbanisation and an increase in private car usage, the 90 

urban transit system has been dramatically developed to tackle the resulting issues (Jiang et al., 91 

2017). The Beijing transit system comprised 22 lines and 278 stations (all transfer stations are 92 

only counted once) by the end of 2017 (Fig. 1) (Beijing Transport Institute, 2018). The total 93 

mileage of Beijing transit is predicted to reach 1,000 kilometres, and the annual ridership to reach 94 

4.53 billion, by the end of 2020, according to Beijing's Urban Master Plan (2016-2030) edited by 95 

Beijing’s Municipal Commission of Planning and Natural Resources. Along with the development 96 

of the transit system, use of the smart card automated fare collection system (SCAFC) has become 97 

widespread, enabling a large amount of smart card data to be collected. In Beijing, smart cards can 98 

be used for different transport modes, such as buses and the metro, although this study primarily 99 

focuses on the data relating to travel by metro. The average amount of daily SCAFC data 100 

generated exceeds 5 million, consisting of data on more than 2.8 million passengers, which 101 

includes trips that started by bus, but involved transferring to the metro. The metro has become 102 

one of the most important sustainable transport modes for urban residents, while the large amount 103 

of SCAFC data generated from it has revealed urban mobility patterns particularly well (Pelletier 104 

et al., 2011; Wang et al., 2018).The aim of this paper is to delineate the dynamic changes that have 105 
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occurred in urban functional areas, based on passengers’ travel patterns, using Beijing as a case 106 

study. As urban functional development is a relatively slow process, in order to study the dynamic 107 

changes in urban functional areas, this paper also identifies the socio-economic attributes of urban 108 

areas for different periods of time by using multi-year smart card data and analyses the evolution 109 

of urban functional areas between 2014 and 2017. The paper is organised as follows: the relevant 110 

literature is reviewed in section 2; section 3 describes the methods used; section 4 and section 5 111 

present the modelling results and a discussion about passenger travel patterns and the resulting 112 

inferences for the corresponding urban functional areas; and the last section draws conclusions. 113 

 114 

2. Literature review 115 

 The application of smart card data in analysing travel behaviours does not have a long 116 

history, largely because the new data sources like smart card data have only recently been 117 

available. The large volume of individual level data provides us with a new lens through which to 118 

examine the dynamics of human movement (Zhong et al., 2014), and thus a more comprehensive 119 

view of urban dynamics. Taking advantage of the disaggregated spatio-temporal information (Gan 120 

et al., 2018), studies using smart card data have been divided into various sub-types, such as travel 121 

behaviours (Zhao el al., 2017; Kieu et al., 2015), urban structure (Zhong et al., 2014), station 122 

hierarchies (Roth et al., 2011; Zhang et al., 2019) and local environment inferences (Chen et al., 123 

2009). However, the ideas underlying these applications are the same, that is to use human 124 

movement as a sensor with which to disclose intangible urban patterns.  125 

The fundamental aim of studies that use smart card data is to reveal passengers’ travel 126 

patterns, including their origin-destinations, journey length, travel frequency etc. Because different 127 
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travel purposes exhibit various travel patterns, the purpose of trips can be inferred and detected 128 

(Zou et al., 2018) by differentiating the regularity and variability of spatiotemporal characteristics. 129 

The most intuitive case is that trips relating to work and education usually take place during peak 130 

times, while entertainment trips are made during off-peak times (Lee and Hickman, 2014). For 131 

example, Alsger and colleagues (2018) proposed the logical inference framework with which to 132 

infer the purposes of trips on public transport and deduced five different trip purposes (work, 133 

home, education, shopping and recreational) in Brisbane, Queensland. Furthermore, classifying 134 

passengers into different clusters derived from their travel patterns can infer their socio-economic 135 

attributes (Goulet-Langlois., 2016; Zhu et al., 2018), and enable analysis of potential factors which 136 

may affect passengers’ travel elasticity (e.g. avoid travelling at peak times) (Halvorsen et al., 2016; 137 

Huang et al., 2019). 138 

In addition, to some extent, knowledge about the association between transit passengers' 139 

travel patterns and their travel purpose can be extended to reveal the dynamics of the surrounding 140 

urban functional areas based on the corresponding transit stations (Alsger et al., 2018). More 141 

specifically, the frequencies with which passengers visit transit stations can be used to infer which 142 

areas they live or work in (Hasan, 2013). Furthermore, information about regional clustering of 143 

job-housing distribution around transit stations can be obtained by analysing high-frequency 144 

passengers’ individual job-housing distribution (Ma, 2017; Huang et al., 2018). Moreover, transit 145 

stations located in a transport hub (i.e. multimodal interchange hub) or entertainment areas are 146 

more likely to attract low-frequency passengers, and the regularity of passengers' travel patterns 147 

for this type of transit station is weaker compared to commuters’ travel patterns. 148 

Station ridership patterns means the time series of ridership entry to and exit from the station. 149 
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The regularity of a ridership pattern often changes over time (Zhong et al., 2016; Li et al., 2017). 150 

Some studies show that the built environment around transit stations is statistically significantly 151 

associated with station ridership patterns (Ma et al., 2018; Taylor et al., 2009; Thompson and 152 

Brown, 2006). Similar results have also been found in the case studies of Shenzhen (Gong, 2017), 153 

Nanjing (Gan et al., 2020), and Sydney (Blainey, 2013). In the case of Beijing, Zhu et al. (2019) 154 

also pointed out that there is a significant relation between station ridership patterns and the built 155 

environment during peak times. Meanwhile, Zhong et al. (2014) investigated passenger volume at 156 

station entrances and exits to infer the dynamics of the urban functional areas around the 157 

corresponding transit stations. Similar results were also obtained by Long and Thill (2015) using 158 

combined smart card and household travel survey data to provide a new approach to identifying 159 

the dynamics operating in urban functional areas, particularly with regard to jobs-housing 160 

relationships in Beijing. 161 

In summary, we can see that smart card data can be used to help analyse travel patterns at 162 

both disaggregated and aggregated levels. Passengers’ travel patterns can also further reflect the 163 

dynamics of urban functional areas, particularly around transit stations. That is to say, the built 164 

environment around the transit station shows an association with its ridership pattern; inferences 165 

about the urban functional areas can be made by analysing ridership patterns for the corresponding 166 

transit stations. Previous empirical studies (e.g., Ma et al., 2017; Alsger et al., 2018; Gan et al., 167 

2020) have shown the validity of these deductive results.  168 

However, most existing literature has two limitations. First, it only considers either an 169 

analysis of individual travel behaviour pattern or a station-oriented clustering analysis of ridership 170 

patterns when attempting to detect characteristics of stations. Second, most existing literature has 171 
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focused more on high-frequency passengers. Less attention has been paid to low-frequency 172 

passengers, mainly due to a lack of sufficient spatio-temporal information, which may reduce the 173 

extent to which it can accurately reflect the dynamics of urban functional areas. Therefore, to 174 

bridge these gaps, this paper also contributes to the existing theories in two ways. Firstly, we 175 

include both individual travel patterns and station ridership patterns in the analysis, in order to 176 

provide planners and policymakers with a more finely-grained picture of station functional areas 177 

and their dynamic changes. Secondly, we consider both low-frequency and high-frequency 178 

passengers’ travel patterns. The particular significance of considering different types of travel 179 

patterns is that it improves the accuracy of identifying the dynamics operating in urban functional 180 

areas. 181 

  182 

3. Methods 183 

3.1. Spatio-temporal travel probability 184 

Each passenger's long-term travel data reflects his/her travel pattern, which is derived from 185 

the frequency of the passenger's visits to different transit stations (Hasan, 2013). However, the 186 

aforementioned type of research has not taken different time periods into consideration. Building 187 

on the aforementioned basic approach, this paper takes into account visiting frequencies during 188 

different periods of time for different transit stations, and calculates travel probability under 189 

different spatio-temporal circumstances, following Bayesian theory (Zhong et al., 2014; Alsger et 190 

al., 2018). 191 

More detailed processes are described below: 192 

(1) Record the long-term travel database of each passenger identified by different smart card 193 

numbers based on SCAFC data, which contains all the travel records of the passenger during 5 194 
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working days from 2014 to 2017, respectively. 195 

(2) Calculate the number of days on which they used the metro, and the frequencies of entry 196 

and exit for different transit stations during different periods for each passenger. 197 

(3) Use the aforementioned statistical data to calculate the probability of visiting frequencies 198 

of the station for each passenger during a given period of time. 199 

Taking the calculation of the probability of a passenger entering the station S during the time 200 

period T, given as ( , )P Entry S T , as an example, first let: 201 

 ( ) metro allP Metro T Day Day=  (1) 

Equation (1) shows the probability of a passenger using the metro during the time period T.  202 

Where  203 

allDay indicates the number of days of SCAFC data.  204 

aymetroD  is the number of days the passenger used the metro to travel during the time period T. 205 

We then select the passenger's travel record for using the metro during the time period T to 206 

calculate the entry frequency oR from the station S.  207 

 ( , , ) o allP Entry S T Metro R R=  (2) 

 208 

Equation (2) shows the probability of a passenger entering the station S during the time period T. 209 

Where  210 

oR indicates the entry frequency for the station S. 211 

allR is the total amount of entry frequencies for all stations. 212 

 213 
 ( , )

( , , )

( ) ( , , )

P Entry S T

P Entry S T Metro

P Metro T P Entry S T Metro

=

= 

 (3) 
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Therefore, the probability of a passenger entering the station S during the time period T can be 214 

obtained as shown in equation (3). 215 

Likewise, the probability of a passenger exiting a station during a given time period T’ can also be 216 

calculated following the same steps. 217 

 218 
3.2. Gaussian mixture model (GMM) 219 

In recent years, mixture models have been widely applied in the field of SCAFC data mining 220 

(Briand et al., 2017; Mohamed et al., 2017). Unlike the traditional clustering method, for instance, 221 

based on Euclidean distance, mixture models assume that different indicators follow a specified 222 

distribution, and complete the clustering process by analysing multiple mixed distributions. In this 223 

paper, we use the Gaussian mixture model (GMM) to complete the cluster process (Reynolds et al., 224 

2000; Zivkovic., 2004). 225 

The underlying principle of the GMM is to fit the data with multiple Gaussian distributions 226 

which is shown as follows: 227 

 1 ( , )i ik k kX Z N  =   (4) 

In formula (4), 1=ikZ  means the sample i belongs to the cluster k, then the sample i 228 

follows the corresponding Gaussian distribution with the parameter k  and k . 229 

When a sample obeys the Mixture Gaussian Distribution, it can be represented by several 230 

Gaussian distributions with different parameters, each of which is called component i (i=1,2,…, k) 231 

and is denoted by ( , )k kN   .  232 

We use k  to represent the probability that sample i belongs to component k, which means 233 

that the sample obeys the Gaussian distribution with the parameter k  and k . If we take the 234 

sum of all the components ( , )k kN    and multiply by the probability k , we can obtain the 235 
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probability of sample iX  which is shown in equation (5): 236 

 ( , )i k k kk
X N    (5) 

If we multiply the probability of samples i (i=1,2,…,I), where I indicates the total number of 237 

samples, we can obtain the likelihood functions ( )L X  of the total samples as shown in equation 238 

(6): 239 
 ( ) ( , )k k kk

I

L X N  =   (6) 

 240 

When the likelihood functions achieve the maximum value, this enables us to obtain the 241 

cluster result and the centre of each cluster. The expectation-maximisation algorithm (EM) is used 242 

to analyse the model, and the Davies-Bouldin Index (DBI) and Silhouette Coefficient (SC) are 243 

used to decide on the number of clusters (Davies & Bouldin, 1979; Rousseeuw, 1987). 244 

 245 

4. Data description and parameter selection 246 

4.1. Data description 247 

The dataset in this paper is comprised of Beijing rail transit AFC data from 2014 to 2017, for 248 

the same week of each year, and contains more than 0.1 billion travel records and more than 10 249 

million different card holders. The data is divided into five categories, namely: smart card ID 250 

(Grant_Card_Code); trip start time (Entry_Time); trip end time (Deal_Time), trip start station 251 

(Entry_Station) and trip end station (Exit_Station). As shown in Table 2, the AFC data contains the 252 

spatio-temporal information about rail transit passengers. 253 

 254 

************************Please insert Table 1 here***************************** 255 

 256 

 257 



 

10 
 

4.2. Time period selection 258 

The ridership pattern is roughly the same for the different working days in each of the four 259 

years when the passenger flow is measured at 30 minute intervals. As shown in Figure 2, there is a 260 

peak in ridership both in the morning and in the evening, while the ridership between the morning 261 

and evening peaks remains stable. Therefore, we chose 6:00 to 10:00 for the morning peak period, 262 

10:00 to 16:00 for the off-peak period, and 16:00 to 20:00 for the evening peak period, which 263 

correspond to the red, green and blue areas in Figure 2. 264 

 265 
 266 
************************Please insert Figure 2 here***************************** 267 

 

 268 

4.3. Travel probability division 269 

The travel probability calculated by the method described in section 3.1 is continuous, and it 270 

is therefore difficult to obtain a full and accurate understanding of passengers’ travel patterns from 271 

it. Therefore, the travel probability is divided into three levels, based on two assumptions: 272 

Assumption 1: Most passengers travel by rail transit in the morning and evening periods only 273 

once. 274 

Assumption 2: Most passengers have only one Origin-Destination (OD) in the morning and 275 

evening periods. 276 

To verify the two assumptions, we calculate the proportion of passengers with different travel 277 

times during different periods and the proportion of passengers who visited different stations at 278 

different times during each year, and we then calculate and use the average value. 279 

 280 
 

************************Please insert Figure 3 here***************************** 281 
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 282 

As shown in Figure 3, more than 90% of passengers travelled only once in the morning and 283 

evening periods, and more than 75% of passengers used only one entry station and one exit station, 284 

indicating that most of the passengers have a stable OD in the morning and evening periods; 285 

therefore, the aforementioned two assumptions have been verified. For most of the passengers, the 286 

travel probability only relates to the number of travel days based on the two assumptions. 287 

Therefore, this paper takes typical passengers who travelled only once and had a stable OD in the 288 

morning and evening periods as normal, to determine the passenger travel probability. 289 

In this paper, travel probability is defined as either a low probability (0, 0.4], a mid 290 

probability (0.4, 0.7], or a high probability (0.7, 1]. For typical passengers, low probability (0,0.4] 291 

means that they travel by rail transit no more than two days a week during that period. This type of 292 

travel is mostly for shopping or entertainment (Goulet-Langlois., 2016). Mid probability (0.4, 0.7] 293 

indicates that the passenger travels on three days a week, and high probability (0.7, 1] indicates 294 

that the passenger travels on at least four days a week, most of whom are commuters (Huang et al., 295 

2018). 296 

 297 

4.4. Passengers’ travel patterns 298 

Figure 4 shows the number of passengers with different travel probabilities during different 299 

time periods from 2014 to 2017. As can be seen from the figure, there are a large number of low 300 

probability passengers travelling during different time periods. These passengers travelled in a 301 

more random way and did not exhibit stable travel patterns. However, the ridership pattern 302 

measured at 30 minute intervals is relatively stable, as shown in Figure 2, which indicates that 303 

although the travel mode choice at the individual level was irregular, the ridership pattern within 304 
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the network as a whole remained regular. 305 

 306 

************************Please insert Figure 4 here***************************** 307 
 308 

The number of high probability passengers in the morning period is the largest among the 309 

three types of travel probability, indicating that rail transit ridership during the morning period is 310 

regular, while the number of low probability passengers also indicates that rail transit provides an 311 

important alternative method of travel. During the evening period, the number of low probability 312 

passengers is largest, while the number of high probability passengers is lower than during the 313 

morning period, which indicates that the regularity of ridership in the evening period is weaker 314 

than that in the morning period, suggesting that passengers were more likely to use other modes of 315 

travel during the evening period. Low probability passengers form the majority during the 316 

off-peak period, which indicates that most passengers only occasionally travel by metro during 317 

that time, unlike during the morning and evening period when most passengers are regulars. 318 

5. Urban functional area detection  319 

5.1. Feature selection 320 

Information about the characteristics of a transit station can be obtained from both passenger 321 

travel patterns and the station ridership pattern. Therefore, this paper uses two types of indicators 322 

to identify the characteristics of a station. Table 2 shows how the station characteristics were 323 

selected and identified. 324 

 325 

************************Please insert Table 2 here***************************** 326 
 327 
 328 

Following Geng and Yang (2017), Entry and Exit represent the total number of passengers 329 
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entering and exiting the station in three different time periods. The Interval covers morning, 330 

off-peak and evening time periods. The entering station flow entropy value, given as 331 

EntryEntropy , and exiting station flow entropy value, given as ExitEntropy , are calculated as 332 

shown below: 333 

 334 

       interval 3 interval
interval

( / )*log ( / )EntryEntropy Entry Entry Entry Entry= −        (7) 335 

 336 

          interval 3 interval
interval

( / )*log ( / )ExitEntropy Exit Exit Exit Exit= −          (8) 337 

 338 

For the passenger travel pattern indicators, the proportion of high probability passengers and 339 

low probability passengers reflects the regularity of passengers visiting each of the stations. The 340 

higher the proportion of high probability passengers is, the stronger the ridership regularity of the 341 

station. This indicates that the station is more likely to be used for commuting purposes. 342 

Conversely, the higher the proportion of low probability passengers is, the weaker the ridership 343 

regularity of the station. This infers that the station is more likely to be used for a transport hub 344 

(i.e. multimodal interchange hub) and/or an entertainment purpose. 345 

For the station ridership pattern indicators, the proportion of passengers who enter the station 346 

either in the morning or evening periods gives an indication of the characteristics of that station. 347 

The higher the proportion of passengers entering a station in the morning and evening periods is, 348 

the higher the likelihood that the station serves residential passengers, meaning that the station is 349 

located in a residential area. However, the station could serve working passengers, which means 350 

that it is more likely to be located in an employment area. 351 

The entropy value for entering or exiting the station reflects the distribution of all-day 352 

ridership. The smaller the entropy value is, the more likely it is that the station will have an 353 
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unbalanced distribution of all-day ridership. This indicates that there would be a peak time for 354 

ridership each day. In contrast, the larger the entropy value is, the more likely the station is to have 355 

a balanced distribution of all-day ridership, meaning that there is no obvious peak time for 356 

ridership each day. 357 

 358 
 359 

5.2. Cluster analysis 360 

We calculated statistics for 11 features of each station for each year and input them into the 361 

model. The meanings of the features, denoted as F1 to F11, can be found in Table 2. Because the 362 

same station may belong to a different cluster during different years, in order to compare the data, 363 

each station for each year is treated as the sample unit in this paper. 364 

As mentioned in Section 3.2, the Davies-Bouldin Index (DBI) and Silhouette Coefficient (SC) 365 

were used to decide on the number of clusters and evaluate the cluster performance of the GMM 366 

model (Davies & Bouldin, 1979; Rousseeuw, 1987). The smaller the DBI and the greater the SC, 367 

the greater the clustering result. 368 

 369 
 370 
************************Please insert Figure 5 here***************************** 371 
 372 
 373 

As shown in Figure 5, when the number of clusters is 5, the DBI of the GMM has the 374 

smallest value, while the SC of the GMM has the greater value.Therefore, we classified the 375 

stations into 5 clusters based on the GMM model. The cluster centres of travel and ridership 376 

pattern indicators are shown in Figures 6 and 7, respectively.  377 

 378 
 379 
************************Please insert Figure 6 here***************************** 380 
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 381 
 382 
************************Please insert Figure 7 here***************************** 383 

 384 
 385 

Cluster 1：Multimodal interchange hubs and leisure cluster.  Cluster 1 is shown by a 386 

yellow bar in Figure 6 and Figure 7. In Figure 6, F1 and F2 represent the proportion of low 387 

probability passengers in the evening and morning periods, and the F1 and F2 values of Cluster 1 388 

ranked the highest among the five clusters, which indicates that these types of stations have the 389 

highest proportion of low probability passengers and the lowest proportion of high probability 390 

passengers in the morning and evening period out of the five clusters. F6 denotes the proportion of 391 

low probability passengers out of the total passengers within a day, and the value of this cluster is 392 

approximately 0.8, which means 80 per cent of the passengers are classified as low probability 393 

passengers throughout the day and visit these station irregularly. In Figure 7, F10 and F11 394 

represent the entropy value for entering and exiting a station, both the entry and exit entropy 395 

values of stations in Cluster 1 are high, and the exiting station entropy of this cluster is the highest 396 

out of the five clusters, which indicates that the distribution of ridership is balanced throughout the 397 

day and there is no obvious peak period. Cluster 1 stations include Beijing south railway station 398 

(Fig.8 (A)), Beijing west railway station (Fig.8 (B)), Tiananmen east station and Tiananmen west 399 

station (Fig.8 (D)), which are typical traffic hubs and scenic areas where tourist attractions are 400 

located. Therefore, the stations in Cluster 1 are characterised as multimodal interchange hubs and 401 

leisure clusters, and the areas where these stations are located comprise traffic hubs and/or 402 

entertainment areas of the city. 403 

Cluster 2：Residential cluster. This cluster is shown as a blue bar in Figure 6 and Figure 7. 404 

In Figure 6, F1 and F2 represent the proportion of low probability passengers in the evening and 405 
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morning period, while F3, F4 and F5 represent the proportion of high probability passengers in the 406 

evening period, morning period and throughout the day. The F1 and F2 values of Cluster 2 are low, 407 

indicating that these types of stations have a lower proportion of low probability passengers in the 408 

morning and evening periods, while the F3 and F4 values of this cluster are high, indicating that 409 

these types of stations have a higher proportion of high probability passengers in the morning and 410 

evening periods. The F5 value of this cluster is the highest among the five clusters, which means 411 

that these types of stations have the highest proportion of high probability passengers in the 412 

whole-day period. All of the five features show that passengers who visit these stations follow a 413 

regular travel pattern. In Figure 7, F8 and F9 indicate the proportion of passengers entering a 414 

station out of the total passengers during evening and morning peak times. The F8 value of Cluster 415 

2 is the lowest, while the F9 value of Cluster 2 is the highest among the five clusters. This means 416 

the station ridership pattern of these kinds of stations is dominated by entry-station passengers in 417 

the morning, and by exit-station passengers in the evening. Moreover, the passenger flow in and 418 

out of these stations varies greatly during the two periods. F10 and F11 represent the entropy 419 

values for entering and exiting a station. Stations in this cluster have the lowest F10 and F11 420 

values, indicating that the ridership is concentrated throughout the day. The Cluster 2 stations 421 

include Tiantongyuan station, Huilongguan station, and Pingguoyuan station, which are located in 422 

typical residential areas. Therefore, the key characteristic of stations in Cluster 2 is that they are 423 

residential, and stations in this cluster are located in urban residential areas. 424 

Cluster 3：Employment cluster. This cluster is shown as a light blue bar in Figure 6 and 425 

Figure 7. In Figure 6, all seven features of Cluster 3 are approximately equal to those of Cluster 2, 426 

which means that passengers visiting stations in Cluster 3 exhibited a regular travel pattern, like 427 
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those who visited stations in Cluster 2. In Figure 7, the ridership pattern for Cluster 3 stations 428 

contrasts with that of Cluster 2 stations, with the former having the highest F8 and the lowest F 9 429 

values, indicating that the ridership patterns of these stations are comprised mainly of exit-station 430 

passengers in the morning and entry-station passengers in the evening, while the passenger flow in 431 

and out of the stations varies greatly. Both entry-station and exit-station entropy values are greater 432 

only than those of Cluster 2. Cluster 3 stations include Zhongguancun station (Fig.8 (E)), and 433 

Guomao station (Fig.8 (G)), which are located in typical employment areas. Thus, stations in 434 

Cluster 3 are characterised as employment clusters and stations in this cluster are located in urban 435 

employment areas. 436 

Cluster 4：Mixed but mainly residential cluster. This cluster is shown by an orange bar in 437 

Figure 6 and Figure 7. The proportion of high probability passengers using such stations, which is 438 

indicated by F3, F4 and F5, is lower than for stations in Cluster 2 and Cluster 3; however, 439 

compared to Cluster 1, Cluster 4 has lower F1, F2, and F6 values and higher F3, F4, and F5 values, 440 

which means these stations have more high probability passengers and fewer low probability 441 

passengers. To an extent, passengers who visited such stations display a regular travel pattern. 442 

However, compared to passengers at stations near employment or residential areas, they have 443 

more choice of travel modes, apart from rail transit. From the perspective of station ridership 444 

patterns, that of stations in Cluster 4 is similar to Cluster 3, which is characterised as residential. 445 

However, the entropy values are at a middling level, suggesting that the ridership concentration 446 

distribution was not significant throughout the day. Therefore, the key characteristic of these 447 

stations is residential-oriented and stations in this cluster are located in urban mixed but mainly 448 

residential areas. 449 
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Cluster 5：Mixed employment and residential cluster. This cluster is shown by a gray bar 450 

in Figure 6 and Figure 7. In Figure 6, all seven features of Cluster 5 are approximately equal to 451 

those of Cluster 4, indicating that the passenger types served by these kinds of stations are similar 452 

to those of Cluster 4. In Figure 7, the F8 and F9 values are around 0.5, which means the number of 453 

passengers entering and exiting these types of stations is roughly the same during the peak period. 454 

At the same time, in Figure 7, the F10 and F11 values are the highest among the five clusters, 455 

indicating that the entropy of passengers is large and the passenger flow distribution is relatively 456 

average throughout the day. Stations in this cluster serve both working and residential passengers. 457 

Therefore, these kinds of stations are classified as mixed residential and employment stations, and 458 

hence they are located in mixed employment and residential areas. 459 

 460 

************************Please insert Figure 8 here***************************** 461 
 462 
 463 

5.3. Spatial distribution 464 

The characteristics of stations reflect the function of the city around the station (Gan et al., 465 

2018; Zhao et al., 2018; Zhu et al., 2018). Figure 8 shows the spatial distribution of stations in 466 

different clusters. The results enable us to gain greater insight into the evolution of urban 467 

functional areas in Beijing between 2014 and 2017. 468 

From 2014 to 2017, the city had a clear circular structure and this has not changed 469 

significantly. The core area of the city (also the centre of the rail transit network) is the most 470 

scenic area, containing world-famous landmarks such as Tiananmen Square. It also includes 471 

transportation hubs such as Beijing West Railway Station and Beijing South Railway Station. 472 

There are two typical urban employment areas located in the area between the core area and the 473 
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fourth ring road (Fig.8): Zhongguancun Technology Park (Fig.8 (E)) and Guomao (central 474 

business area of Beijing), Fig.8 (G)). The remaining areas are mainly mixed employment and 475 

residential areas adjacent to the two typical employment areas. It is worth noting that mixed 476 

employment and residential areas are mainly distributed in the north of Beijing, while the south is 477 

mainly residential. The outer ring of the city's fourth ring road is comprised mainly of residential 478 

areas, while another typical employment area, called Wangjing (Fig.8(F)), is located in the 479 

northeast. There is also an isolated mixed employment and residential area surrounded by 480 

residential areas in the southwest, known as Fengtai Technology Park (Fig.8 (H)). Beijing 481 

Economic-Technological Development Area (Fig.8 (I)), which is made up of an employment area 482 

and two surrounding mixed employment and residential areas, is located in the southeast. These 483 

two areas are important employment areas in the south of the city; however, they have not been 484 

identified as typical employment areas, like Zhongguancun Technology Park (Fig.8 (E)) and 485 

Guomao (Fig.8 (G)), for many years.  486 

According to the spatial distribution of various urban functional areas in Beijing over the 487 

years studied, we found that threre is a significant imbalance between jobs and housing in Beijing 488 

in general. More jobs are concentrated in the urban central areas, while only a small proportion of 489 

jobs are distributed in the outer part of the city. The outer part of the city contains more residential 490 

areas. Therefore, this may also lead to long distance commuting and traffic congestion (Zhao and 491 

Hu, 2019), and cause air pollution, particularly for people who travel by private vehicles (Cao et 492 

al., 2017). To some extent, these results also reflect the combined issue of car dependence and 493 

housing affordability (Cao and Hickman, 2018; Dewita et al., 2018, 2020), as well as inferring 494 

potential issues associated with transport-related social inequity (Cao, 2019; Cao and Hickman, 495 
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2019, 2020; Zhao and Cao, 2020; Zhang et al., 2018). On the other hand, the expansion of jobs 496 

from the typical employment area to the surrounding area has relieved traffic congestion in the city. 497 

In the near future, it will be necessary to continue to create and extend job opportunities to the 498 

outer areas, at least in Beijing. Mixed employment and residential cluster areas, in which mixed 499 

employment and residential cluster stations are located, are important in terms of creating more 500 

jobs, because these areas already have a relatively good supply of jobs close to residential areas. 501 

Thus, encouraging the expansion of jobs within the outer part of the city is an effective way to 502 

reduce urban traffic congestion, as well as reducing transport-related social inequity, particularly 503 

for the low-income migrants (Zhao and Cao, 2020). 504 

In terms of the residential areas, it is necessary to constantly improve the surrounding 505 

services and facilities, such as shopping malls, hospitals, and schools, etc., as this can effectively 506 

enhance the living standards of local residents, and can also generate a large number of job 507 

opportunities, which can be filled by local residents in order to reduce the travel distance between 508 

their workplace and home, and thus in turn reduce traffic congestion. 509 

With regards to transport interchange hubs and tourism business areas, the management of 510 

floating populations should be improved. More services and facilities need to be provided in these 511 

areas, such as information centres, restaurants, and hotels, etc.  512 

 513 
5.4. Evolution process 514 

 515 
 516 
************************Please insert Figure 9 here***************************** 517 

 518 
 519 

The evolution of each area’s urban function is shown in Figure 9. For example, the areas that 520 

were residential areas in 2014 were mainly still residential in 2015, while a few areas had 521 
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transformed into mixed but mainly residential areas. The general trend of evolution is that the 522 

urban functional areas are in accordance with the order of their spatial distribution. As shown in 523 

Figure 9, residential areas (Cluster 2) can only transform into mixed but mainly residential areas 524 

(Cluster 4) in four years, and only the mixed but mainly residential areas (Cluster 4) can transform 525 

into residential areas (Cluster 2). Mixed employment and residential areas (Cluster 5) are more 526 

complicated. On the one hand, they can transform into employment areas (Cluster 3) or mixed but 527 

mainly residential areas (Cluster 4). On the other hand, the aforementioned two areas can 528 

transform into mixed employment and residential areas. 529 

The aforementioned phenomenon indicates that the evolution of urban functional areas has to 530 

follow a process, and this process is longest in relation to the transition from a residential area to 531 

an employment area. Therefore, it is difficult to transform a residential area into an employment 532 

area in a short time, but mixed employment and residential areas often have a good foundation, 533 

making it easier to change the urban function of these areas. Currently, the development of the 534 

southern part and the northern part of Beijing is unbalanced. A large number of employment areas 535 

are concentrated in the north, while the southern part of the city is comprised mainly of residential 536 

areas. In order to achieve a better balance between the north and the south, the development of the 537 

southern part of the city should focus on the Fengtai Technology Park and Beijing 538 

Economic-Technological Development Area according to the general law of evolution. These two 539 

areas both have mixed employment and residential areas, and the Beijing Economic-Technological 540 

Development Area already has an employment area. The aim should be to improve transportation, 541 

policy, and other factors in theses two areas, so that they will attract more jobs, and effectively 542 

change the function of the southern part of the city. 543 
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 544 

6. Conclusions 545 

This paper identified the characteristics of stations based on SCAFC data, and then detected 546 

the spatial distribution of different urban functional areas. Using multi-year data enabled us to 547 

arrive at the general law of urban functional areas spatial distribution and dynamics. Advice was 548 

given on the further development of Beijing’s urban areas. 549 

This research makes a fivefold contribution. First, smart card data have long been used to 550 

analyse passenger capacity, and visualise and predict travel behaviour, such as the origin and 551 

destination (OD) trajectories. This study extended the aforementioned research to infer urban 552 

functional areas based on passengers’ travel patterns and ridership patterns at metro stations. 553 

Second, different types of unsupervised machine learning approaches/clustering approaches have 554 

been employed to assist in finding and increasing the accuracy of the number of clusters. Third, 555 

most of the existing research only considers high-frequency passengers, and pays little attention to 556 

low-frequency passengers (Ma, 2017; Huang et al., 2018). This paper applied a method for 557 

calculating the spatio-temporal travel probability by following Bayesian theory, which measured 558 

the travel patterns of low-frequency passengers and high-frequency passengers according to the 559 

same rule. Fourth, in this paper, 11 features were selected: features 1 – 7 reflect the travel patterns 560 

of passengers who visited the station based on spatio-temporal travel probability; while features 8 561 

– 11 reflect the station ridership patterns. The GMM cluster method was used to identify the 562 

characteristics of the station based on the 11 features so that both individual travel patterns and 563 

station ridership patterns could be considered. Finally, we identified the function of the urban 564 

areas based on the station cluster results. Using multi-year SCAFC data allowed us not only to 565 
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determine the function of the urban areas across the spatial distribution of each year, but also to 566 

chart the evolution process. Through undertaking cluster analysis using the features of individual 567 

travel patterns and station ridership patterns, we found that Beijing's functional areas can be 568 

divided into five categories, namely: multimodal interchange hub and leisure area; residential area; 569 

employment area; mixed but mainly residential area; and a mixed residential and employment area. 570 

Residential or mixed but mainly residential areas served by transit stations were primarily 571 

distributed in outer Beijing between the fourth ring road and the sixth ring road, whereas mixed 572 

residential and employment areas were located in inner Beijing. Meanwhile, urban functional 573 

areas experienced slight changes between 2014 and 2017.  574 

The results derived from this paper could be very useful for Beijing’s urban planners. 575 

According to the research results, the Fengtai Technology Park and Beijing’s 576 

Economic-Technological Development Area  could perhaps provide the key to effectively 577 

alleviating the imbalance between the north and the south of the city . These two areas already 578 

account for a significant number of jobs, and they would be likely to attract more jobs if 579 

transportation links and policy measures were improved, thereby promotingthe development of the 580 

southern part of the city and achieving a more equal balance between north and south Beijing. 581 

Furthermore,it would provide an incentive for people tomove to the south of the city, thus helping 582 

to reduce the pressures on urban land and traffic congestion. 583 

In terms of policy implications, this research would enable urban planners to understand the 584 

urban functional area dynamics more accurately and easily. Urban planners could formulate 585 

appropriate policies for different functional areas to promote city development in order to improve 586 

the living standards of residents, and provide better travel services for floating people and tourists, 587 
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while reducing traffic congestion. The effects of policies on different areas could also be evaluated 588 

by detecting functional areas dynamics after policy implementation. 589 

However, the paper has two limitations. First, observable urban dynamics often take place 590 

over a long time span. Thus, the four year time span from 2014 to 2017 used in this research could 591 

be seen as a relatively short time window and only small changes were detected, as was apparent 592 

from the results shown in Figure 9. We were limited by the data availability, but analysis covering 593 

a longer time period of, for example, ten years could be undertaken in a future study when data 594 

becomes available. Second, the model that we propose for identifying urban functional area 595 

dynamics based on smart card data produces the results that simulate urban functional area 596 

dynamics without testing and comparing them to actual changes that occurred during the years 597 

between 2014 and 2017. This limitation could be addressed in future research.  598 

 599 

Data Availability  600 
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 747 

Table 1.  

Examples of AFC data 

Grant_Card_Code Entry_Time Deal_Time Entry_Station Exit_Station 

1020 2016/2/29 17:25 2016/2/29 17:36 Hujialou Qingnianlu 

1020 2016/3/2 17:29 2016/3/2 17:42 Hujialou Qingnianlu 

1020 2016/3/3 17:21 2016/3/3 17:30 Hujialou Qingnianlu 

1032 2016/2/29 7:35 2016/2/29 8:01 Jinsong Huixinxijie 

1032 2016/2/29 18:04 2016/2/29 18:28 Taiyanggong Jinsong 

1032 2016/3/1 7:42 2016/3/1 8:07 Jinsong Huixinxijie 

…… 
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 750 
Table 2. 
Feature selection and identification of station characteristics 

Scale Index Name Meaning Range 

Passenger travel 

pattern 

F1 
Proportion of low probability passengers to total 

passengers at evening peak time 
[0,1] 

F2 
Proportion of low probability passengers to total 

passengers at morning peak time 
[0,1] 

F3 
Proportion of high probability passengers to total 

passengers at evening peak time 
[0,1] 

F4 
Proportion of high probability passengers to total 

passengers at morning peak time 
[0,1] 

F5 
Proportion of high probability passengers to total 

passengers within a day 
[0,1] 

F6 
Proportion of low probability passengers to total 

passengers within a day 
[0,1] 

F7 
Proportion of mid probability passengers to total 

passengers within a day 
[0,1] 

Station ridership 

pattern 

F8 
Proportion of passengers entering station to total 

passengers at evening peak time 
[0,1] 

F9 
Proportion of passengers entering station to total 

passengers at morning peak time 
[0,1] 

F10 The entropy value for entering station  [0,1] 

F11 The entropy value for exiting station  [0,1] 
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Fig. 1. Metro stations and lines in Beijing (2014-2017) 

(Please note that T2\T3 terminal stations are not included in the map) 

(A: Beijing south railway station; B: Beijing west railway station; C: Beijing zoo; D: Tiananmen square; E: Zhongguancun 

technology park; F: Wangjing; G: Guomao; H: Fengtai technology park; I: Beijing economic-technological development area; J: 

Xierqi) 

 

Fig. 2. Distribution of ridership for weekdays in each of the 4 year 
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Fig. 3. Travel times and number of stations visited during different time periods 

 

 

 

Fig. 4. Ridership travel probabilities during different periods 
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Fig. 5. DBI and SC for different numbers of clusters and different models 
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Fig. 6. Travel pattern indicators of each cluster centre 

 

 

Fig. 7. Ridership pattern indicators of each cluster centre 
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(a)  

(b)  
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(c)  

(d)  

Fig. 8. Spatial distribution of different clusters 

(a:2014, b:2015, c:2016, d:2017) 

(A: Beijing South Railway Station; B: Beijing West Railway Station; C: Beijing Zoo; D: Tiananmen Square; E: 

Zhongguancun Technology Park; F: Wangjing; G: Guomao; H: Fengtai Technology Park; I: Beijing Economic-Technological 

Development Area; J: Xierqi) 
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Fig. 9. The evolution process of different clusters of stations 

(Cluster1: Multimodal interchange hub and leisure Area, Cluster 2: Residential area, Cluster 3: Employment area, Cluster 4: 

Mixed but mainly residential area, Cluster 5: Mixed residential and employment area, No Data: Stations not open yet) 
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