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Researchers have become increasingly aware that data-analysis decisions affect results. Here, we examine
this issue systematically for multinomial processing tree (MPT) models, a popular class of cognitive
models for categorical data. Specifically, we examine the robustness of MPT model parameter estimates
that arise from two important decisions: the level of data aggregation (complete-pooling, no-pooling, or
partial-pooling) and the statistical framework (frequentist or Bayesian). These decisions span amultiverse
of estimation methods. We synthesized the data from 13,956 participants (164 published data sets) with a
meta-analytic strategy and analyzed the magnitude of divergence between estimation methods for the
parameters of nine popular MPT models in psychology (e.g., process-dissociation, source monitoring).
We further examined moderators as potential sources of divergence. We found that the absolute
divergence between estimation methods was small on average (<.04; with MPT parameters ranging
between 0 and 1); in some cases, however, divergence amounted to nearly the maximum possible range
(.97). Divergence was partly explained by few moderators (e.g., the specific MPT model parameter,
uncertainty in parameter estimation), but not by other plausible candidate moderators (e.g., parameter
trade-offs, parameter correlations) or their interactions. Partial-pooling methods showed the smallest
divergence within and across levels of pooling and thus seem to be an appropriate default method. Using
MPT models as an example, we show how transparency and robustness can be increased in the field of
cognitive modeling.
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Public Significance Statement
Cognitive models are formal instantiations of psychological theories that are becoming increasingly
popular in psychology. Using multinomial processing tree (MPT) models as an example, we show how
transparency and robustness can be increased in the field of cognitive modeling. Specifically, we
conducted a large-scale meta-analysis to investigate how the choice of parameter estimation method
affects results. Overall, the choice of method resulted in small differences, with few exceptions, lending
support for the robustness of the results of MPT modeling in psychological research. Furthermore, the
most advanced method (partial-pooling, or hierarchical modeling) provided the best compromise
between methods, making it an appropriate default estimation method.

Keywords: multiverse analysis, parameter estimation, transparency, cognitive modeling, multinomial
processing tree models

Psychological research involves many decisions that may
impact the results. For example, consider a researcher who wants
to conduct a study on automatic and controlled processes in a
memory task (e.g., familiarity and recollection). Before data
collection, they need to decide on an experimental setup (e.g., how
many items to present how many times) and choose appropriate
measures to capture the relevant concepts (e.g., number of recalled
items from the study list). After data collection, they need to decide
on the processing of data (e.g., the handling of outliers and missing
data). For data analysis, they need to choose an appropriate
model (e.g., a purely statistical model, like analysis of variance
[ANOVA], or a cognitive model, like a multinomial processing
tree [MPT] model). In addition, they have to decide whether (and
how) to take into account variability in participants and items and
choose a method of inference or for parameter estimation (e.g.,
frequentist or Bayesian approach).
Each decision in the research process is a choice on one dimension

in a multidimensional decision matrix. In most situations, different
choices yield results that differ at least to some degree. However,
in a published article, typically only a single cell of this decision
matrix (or path through a “garden of forking paths,” Gelman &
Loken, 2014) is reported along with a single result, whereas
alternative (yet reasonable) cells remain undisclosed (Steegen et
al., 2016). As a consequence, the uncertainty/robustness of the
conclusions depending on these decisions is not communicated

(Wagenmakers et al., 2022). In addition, in recent years, the research
community has become increasingly aware that “researcher’s
degrees of freedom” (Simmons et al., 2011) can invite questionable
research practices such as selective reporting of desirable results.
These practices are likely linked to the low reproducibility of
research findings (Open Science Collaboration, 2015; Pashler &
Wagenmakers, 2012).

There is now increasing effort to show how these decisions affect
conclusions on the presence and size of effects, and how the
decisions can best be made transparent (e.g., Baribault et al., 2018;
Dutilh et al., 2019; Landy et al., 2020; Starns et al., 2019; Steegen et
al., 2016). For example, Steegen et al. (2016) set up a “multiverse
analysis” in which they tested the presence of an effect across
different plausible data-processing choices (e.g., data exclusion,
data transformation). They found that conclusions drawn from the
same data set varied substantially depending on data-processing
choices. Similarly, Baribault et al. (2018) set up a “meta-study” to
systematically explore effects of choices in study design (e.g., mask
duration in a priming experiment within a reasonable range). Again,
the observed effect size varied substantially across the conducted
microexperiments. Other approaches that are less systematic but
more representative of empirical practice let different teams of
researchers design a study (“crowdsourcing hypothesis tests,”
Landy et al., 2020) or analyze a data set (“many analysts,”
Hoogeveen et al., 2023; Silberzahn et al., 2018). In addition, many-
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analysts projects have explored the impact of choice of the statistical
or cognitive model or model variant (“modeler’s degrees of
freedom”) on the robustness of results (see also Boehm, Annis, et al.,
2018; Dutilh et al., 2019; Starns et al., 2019). Again, these projects
revealed large heterogeneity in the teams’ approaches to design a
study or analyze the data.
These and similar studies promote transparency in the research

process, but they vary substantially with regard to the dimension of
the process they examine (e.g., data processing, hypothesis testing,
data analysis) and with regard to how systematically they examine
the respective degrees of freedom (e.g., if they explore all possible or
only selected decisions). Typically, in these studies, the resulting
divergence between results is documented. But what are the factors
that lead to divergence? Such further examination or test is usually
missing. Additionally, given the increasing popularity of cognitive
modeling in psychological research, the impact of cognitive-
modeling decisions on divergence in results is still underrepresented
in the current literature (but see, e.g., Boehm, Annis, et al., 2018;
Dutilh et al., 2019).
The aim of this article is to systematically explore two important

cognitive-modeling decisions—the level of pooling and the statistical
framework—and make transparent how these decisions affect the
results. In addition, this is the first study to go a step further and
examine potential sources of divergence to better understand in what
situations divergence does or does not occur, and how it can be
minimized.
The remainder of the introduction is structured as follows. In the

next section, we describe the two modeling decisions investigated
here. We will then introduce the general principle of the model
class we examined in this article: MPT models (Riefer &
Batchelder, 1988). We will proceed with defining the multiverse
for our analysis—a two-dimensional matrix resulting from the two
modeling decisions, implying a set of nine different estimation
methods. We will continue with considerations on the conditions
under which we expect divergence to (not) occur, based on basic
statistical theory. We will then summarize the goals and results of
our meta-analysis.

Cognitive Modeling Decisions

As a running example that we will return to throughout this
article, let us assume that a researcher uses a word-stem completion
task to study familiarity and recollection in memory. They have
decided on all relevant aspects of the experimental design, finished
collecting data, and now want to analyze the data. An increasingly
popular approach in experimental psychology is to use a cognitive
model to describe and explain the observed data. Cognitive models
establish a link between theory and data by formally instantiating
the mechanisms that are assumed to generate the data. Most
cognitive models have free parameters whose values are estimated
from the data. These parameters characterize the latent psychologi-
cal processes (e.g., familiarity and recollection) that are assumed to
underlie the observed behavior (e.g., responding with an item from
the study list; e.g., Jacoby, 1991). Thus, in contrast to “purely”
statistical models (e.g., ANOVA), whose parameter estimates
reflect information about manifest variables (e.g., response times,
choices, or number of recalled items), cognitive models aim to
directly address the latent psychological processes involved in the
specific paradigm under consideration (e.g., evidence accumulation

in fast two-choice tasks, Brown & Heathcote, 2008; Ratcliff, 1978;
reward sensitivity in decision making under risk, Tversky &
Kahneman, 1992; Wallsten et al., 2005; encoding and retrieval in
multitrial free recall; Alexander et al., 2016; Batchelder & Riefer,
1986). Therefore, cognitive models are useful tools for theoretical
progress as they allow the researcher to test whether theoretical
assumptions are consistent with the data and to determine to what
degree an assumed cognitive process contributes to the observed
behavior.

Here, we consider two crucial dimensions on which researchers
have to make a decision when applying a cognitive model:
They need to decide how they take into account similarities and
differences between units of observation (i.e., pooling of data), and
whether theywant to estimate model parameters in a frequentist or in
a Bayesian statistical framework. As with any result in psychologi-
cal research, parameter estimates from cognitive models should
ideally be reproducible and robust across these modeling decisions
(Lee et al., 2019; Vandekerckhove et al., 2019). We focus on the
level of pooling and the statistical framework, because a researcher
can hardly avoid deliberating on these two aspects, whereas for other
aspects (e.g., prior distributions), the researcher can resort to
standards. We do not consider decisions that are not specific to
cognitive modeling and have been addressed elsewhere (e.g., data
processing, Steegen et al., 2016).

Pooling of Data

One of the key assumptions of commonly used statistical and
cognitive models is that of independent and identically distributed
(i.i.d.) observations or residuals. Here, we will mainly focus on the
independence assumption, which states that once the structure of the
model is taken into account, all observations should be unrelated.
Researchers often assume independence, for example, if each
observation (e.g., a response in a task) comes from a different
participant. However, in most experimental psychological research,
it is common to collect multiple observations from the same
participant. As these observations are likely to be more similar to
each other than observations from different participants, the
independence assumption is likely violated in this case, if it is
not properly accounted for in the model.1

What we describe below as the different levels of pooling are
different modeling approaches that can be used when the indepen-
dence assumption is likely to be violated. Consider a situation in
which a researcher has collected responses from multiple participants,
and the data from each participant are sufficient to estimate all model
parameters. Let us further assume this model has a parameter vector θ
of fixed length. For example, the researcher might have run an
experiment on familiarity and recollection in a word-stem completion
task with multiple participants. Each participant was first asked to
learn a list of words and then—under inclusion instructions—was
asked to complete word stems with studied words or—under
exclusion instructions—was asked to complete word stems with
another word not from the studied list. If the researcher wanted to

1 The same argument can also be made for items as a grouping factor:
Responses to the same item are likely to be more similar to each other than
responses to different items, which can also introduce nonindependence
(Matzke et al., 2015). Here, we only focus on participants as a grouping
factor, as most of the data analyzed in our meta-analysis were available only
on a by-participant level.
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predict the number of word stems completed with studied words in
both conditions using a regression or ANOVA model, θ would be of
length two (i.e., the intercept, representing, for instance, the mean
number of word stems completed with studied words under inclusion
instructions, and the slope, representing the difference between the
two conditions).
Alternatively, the researcher could apply the process-dissociation

model (Jacoby, 1991), which yields two parameters representing
different latent processes: conscious recollection, r, and automatic
activation/familiarity, a (described in more detail below). In this
case, θ would also be of length two, now representing the latent
processes that can be interpreted as probabilities of familiarity and
recollection.
The different levels of pooling describe how many θ are being

estimated in total (e.g., Gelman & Hill, 2007). The simplest approach
is complete-pooling. Complete pooling ignores the dependency in the
data and applies the model with shared parameters to the aggregated
data.2 That is, a total of one θ is estimated. In cognitive modeling,
complete-pooling is historically the most common approach (e.g.,
Ratcliff, 1978; Riefer & Batchelder, 1988), but it has at least two
major problems. First, in the case of substantial individual variation
among parameters (i.e., a violation of the identically distributed
assumption), estimates from the complete-pooling approach can be
biased resulting in aggregation artifacts (Estes, 1956; Estes &
Maddox, 2005). Second, ignoring the violations of the independence
assumption often leads to overconfident results, as uncertainty
estimates (e.g., standard errors) are too narrow due to pseudoreplica-
tion (e.g., Hurlbert, 1984; Kenny & Judd, 1986). However, complete-
pooling is still used today in situations in which it is not possible to
collect enough data at the individual level (e.g., in research on
children or clinical patients), or when some responses occur only
rarely.
An alternative to complete-pooling that avoids violations of the

independence assumptions when there is only a single source of
nonindependence is no-pooling. No pooling means estimating
separate models for each participant, thus obtaining one θ for each
participant (i.e., the total number of parameters is the length of θ times
the number of participants). Many no-pooling applications also
include a second analysis step in which the individual-level parameter
estimates are themselves analyzed statistically (e.g., by using a t test).
No pooling can only be applied if there are ample data on the
individual level. With little data, individual-level parameter estimates
can be biased (MLE estimates are only asymptotically unbiased; e.g.,
Riefer & Batchelder, 1991) or the precision can be too low for them to
be of any practical use. Even with sufficient data, the no-pooling
approach has the drawback of ignoring information about the
similarity between participants, which can lead to an overestimation
of the group variance (e.g., Boehm, Marsman, et al., 2018). There are
two more problems with no-pooling when combined with a second
analysis step: First, uncertainty surrounding each of the individual
parameter estimates (i.e., their standard errors) is not properly
propagated to the subsequent analysis step; when taking the role of
data, the parameter point estimates are all treated alike, regardless of
their precision (but see Jobst et al., 2020). Second, if the hypothesis of
interest involves two or moreMPT parameters jointly, the subsequent
analysis can become statistically nontrivial and is only straightfor-
ward if the hypothesis pertains only to a single MPT parameter (in
that case a t test or similar can be used).

Finally, partial-pooling represents the most recently developed
approach, which accounts for both differences and similarities
between participants by simultaneously estimating parameters at the
individual level and at the group level (also known as a hierarchical,
ormultilevel approach; e.g., Boehm,Marsman, et al., 2018; Gelman
& Hill, 2007; Lee, 2011). Partial-pooling estimates one θ for each
participant plus one group-level θ (plus parameters of the group-
level distribution, such as variances or covariances). The individual-
level parameters are constrained by a specified group-level
distribution, leading to hierarchical shrinkage (e.g., extreme values
are “shrunk” toward the overall mean). On average, partial-pooling
improves parameter accuracy by exploiting the information
available from the other participants (Efron & Morris, 1977).
Partial-pooling has become increasingly popular in psychology in
the last two decades, either in the form of linear mixed-effects
models (e.g., Singmann & Kellen, 2019) or hierarchical Bayesian
models (e.g., Lee & Wagenmakers, 2013) and is often considered
the “gold standard,” because it avoids the problems of the two other
(nonhierarchical) approaches. However, there are also drawbacks to
partial-pooling. First, partial-pooling requires an assumption about
the distribution of individual-level parameters, which can be false
(e.g., Bartlema et al., 2014). In many applications, individual-level
parameters are assumed to be unimodally distributed (e.g., Klauer,
2010). Violations of this assumption might lead to imprecision
and bias in parameter estimation (e.g., Schielzeth et al., 2020), and
“true” outliers, multimodal distributions, latent classes, or groups of
participants with different mixtures of cognitive processes are
difficult to detect. Second, the benefits of partial-pooling fail to
realize, if there are strong interdependencies among parameters
(Scheibehenne & Pachur, 2015). In such situations, a no-pooling
approach would be more flexible, as individual-level estimates are
not constrained by (or shrunk toward) the group-level estimates.
Third, estimating all parameters in a fully parameterized partial-
pooling model (i.e., with a maximal random effects structure; e.g.,
Matzke et al., 2015) can be computationally challenging.

Statistical Framework

The second important data-analysis decision we consider here
concerns the statistical framework. The frequentist and Bayesian
frameworks provide different bases for statistical inference and
parameter estimation (for overviews, see Dienes, 2008; Kruschke &
Liddell, 2018). In the frequentist framework, probabilities correspond
to expected outcomes of repeated sampling (i.e., a relative frequency).
Parameter estimation is typically based onmaximum likelihood (ML)
methods or—more generally—on minimum power divergence
methods (e.g., Read & Cressie, 1988). ML methods aim at finding
the set of parameter values θ that maximizes the probability of
observing the data D given those parameters, PðDjθÞ. The result of
maximum likelihood estimation (MLE) is a point value, the ML
estimate, with an associatedmeasure of uncertainty, the standard error
(e.g., Pawitan, 2014).

2 In the case of categorical (i.e., multinomial) data, which are the
focus of the present article, complete pooling means summing all
observations across participants and items. In the case of other models
(e.g., regression models), multiple approaches are possible, such as treating
all observations as independent, or aggregating the observations within
participants first (the latter approach does not violate the independence
assumption).
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In the Bayesian framework, uncertainty for θ is conveyed by
probability distributions (e.g., Gelman et al., 2013). The researcher
can express relative uncertainty before seeing the data in the form
of the prior distribution P(θ). The prior is then updated in light of
the observed data D via Bayes’ theorem, resulting in a posterior
probability distribution, PðθjDÞ. In a Bayesian framework, the
posterior distribution of a parameter provides all information
available about the parameter after seeing the data. For example, the
mean, median, or maximum of the posterior distribution can be used
as point estimates, whereas specific intervals (such as the 2.5% and
the 97.5% quantiles) can be used as measures of uncertainty. In
contrast to the frequentist framework, parameter estimation in the
Bayesian framework requires a commitment about the prior belief
regarding which parameter values are plausible. However, in
practice, the choice of prior is often inconsequential for parameter
estimation as long the prior is sufficiently noninformative and there
is a sufficient amount of data.
The frequentist statistical framework has long dominated research

in psychological science (including cognitive psychology), but
Bayesian methods are becoming increasingly popular (e.g., Lee &
Wagenmakers, 2013; van de Schoot et al., 2021; Vandekerckhove
et al., 2018). In part, the growing prominence of Bayesian methods
is due to advances in computer-driven sampling methods such as
Markov Chain Monte Carlo (MCMC; e.g., Gilks et al., 1996; van
Ravenzwaaij et al., 2018). Thesemethods allow researchers to sample
from the posterior distribution, which is often difficult to obtain
analytically.
For both dimensions—level of pooling and statistical framework—

researchers might have good reasons to make a specific choice.
Regarding the level of pooling, when the amount of data per
individual is limited, a no-pooling approach is often impossible.
Conversely, when wishing to investigate individual differences,
the choice of a no-pooling or partial-pooling approach is neces-
sary. Regarding the statistical framework, frequentist estimation
is often computationally cheaper (i.e., faster) than Bayesian
estimation, and therefore often preferred during iterative model
building, when analyzing many data sets, or for teaching. On the
other hand, to date, implementations of partial-pooling methods
for cognitive models only exist in a Bayesian statistical frame-
work; choosing partial-pooling therefore currently implies
choosing a Bayesian estimation approach (but see Nestler &
Erdfelder, 2023). In many situations, however, different choices
are similarly appropriate.
Before we elaborate our approach for systematically investigating

divergence in modeling results that arise as a consequence of
deciding on the level of pooling and statistical framework, we will
first introduce the general principle of the MPT model class, which
we will focus on in this meta-analysis.

General Principle of MPT Models

MPT models are stochastic measurement models for categorical
data (i.e., data that follow a multinomial distribution). They
allow researchers to explain participants’ behavioral responses in
experimental tasks—specifically, the observed frequencies across
different response categories—by estimating the contribution of
different latent psychological processes that underlie these responses
(Batchelder & Riefer, 1999; Erdfelder et al., 2009; Hütter & Klauer,
2016). MPT models are tailored to specific experimental paradigms,

so that each model implies a different set of unique latent processes
leading to different response categories. MPT models can be flexibly
used to formulate and test psychological theories of cognition, for
example, in the areas of memory (e.g., Batchelder & Riefer, 1986;
Bayen et al., 1996; R. E. Smith & Bayen, 2004), judgment and
decision making (e.g., Erdfelder & Buchner, 1998; Gawronski et al.,
2017; Hilbig, Erdfelder, & Pohl, 2010), reasoning (e.g., Klauer et al.,
2000), and implicit-attitude measurement (e.g., Conrey et al., 2005;
Meissner & Rothermund, 2013). For a recent tutorial on MPT-
modeling methods and guidelines, see Schmidt et al. (2023).

MPT models can be depicted as processing trees in which the root
node signals the start of the processing sequence for each item type
and the leaf nodes represent the observable response categories. The
intermediate nodes represent latent cognitive processes or mental
states. The edges beginning in each node are associated with a set of
model parameters that represent the probabilities with which the
subsequent node (or mental state) is reached. Each path from the root
node to a leaf node describes one possible sequence of latent
cognitive processes leading to a specific observable response in the
task. For some MPT models, a distinction can be made between
parameters that represent relevant theoretical processes (henceforth
referred to as core parameters) and parameters that are important for
the model’s architecture, but are theoretically less important (referred
to as auxiliary parameters).

To remain with our introductory example from episodic memory,
let us consider the process-dissociation model (Jacoby, 1991;
Figure 1) as an example.3 The process-dissociation model
disentangles automatic from controlled processes in various
paradigms. Here, we consider conscious recollection and
automatic activation in an indirect memory task (word-stem
completion). Participants study a list of words and, at test, are given
to-be-completed stems (e.g., “ap_________” may be completed to
form the word “apartment”). In the process-dissociation procedure,
there are two testing conditions (see also Pooling of Data section).
In the inclusion condition, participants are asked to complete the
stem with a word from the study list; in the exclusion condition,
participants are asked to complete a stem with a word that was not
in the study list. In both the inclusion and the exclusion condition,
responses can belong to one of two response categories: The stem
is completed with a studied item, or the stem is completed with an
item not studied.

Figure 1 shows how the model assumes that the latent processes
combine to produce observable behavior in the response categories.
There are two processing trees, one for the inclusion condition and
one for the exclusion condition. Stem completion with a studied
item in the inclusion condition results either from conscious
recollection, with probability r, or from automatic activation, with
probability a, given a recollection failure, (1 − r). Stem completion
with a studied item in the exclusion condition results only from
automatic activation with probability a, given a recollection failure,
(1 − r). The model thus assumes two latent states: With probability
r, a studied item is consciously recollected. With probabi-
lity a, a studied item is automatically activated (given that it is
not consciously recollected). By contrasting the inclusion and

3 Note that the process-dissociation procedure and model originated
independently of the MPT framework, but subsequent extensions (e.g.,
Buchner et al., 1995) extensively relied on the MPT framework to estimate
parameters and test hypotheses.
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exclusion conditions, estimates of these latent processes can be
obtained. A formal introduction to the MPTmodel class is provided
in Appendix A.

Defining the Multiverse of MPT Estimation Methods

In our meta-analysis, we will explore themagnitude of divergence
between MPT parameter estimates across the multiverse of
estimation methods. The multiverse results from crossing the three
levels of pooling (complete-pooling, no-pooling, partial-pooling)
with the two statistical frameworks (frequentist, Bayesian) and is
shown in Figure 2. The majority of the methods in this multiverse
are established methods for MPT modeling that have evolved over
the past decades in response to methodological discussions (e.g.,
problems associated with violations of assumptions) and technical
advancement (e.g., MCMC sampling). Striving to systematically
examine the complete MPT estimation multiverse, we also included
any feasible and plausible combination of estimation method and
level of pooling, regardless of whether they had been discussed or
used previously.
To facilitate a multiverse analysis of MPT data, we have

developed a freely available software tool, MPTmultiverse
(Singmann et al., 2020) that simultaneously applies up to nine
different methods to a given data set. Here, we present an application

of this tool to more than 160 data sets and nine different MPT
models.

One of the challenges of such a multiverse analysis is to ensure
that the results from the different methods can be appropriately
compared with one another. For example, a frequentist analysis
provides an MLE point estimate with a standard error, whereas a
Bayesian analysis provides an entire posterior distribution from
which point estimates and uncertainty information need to be
derived. Further, whereas a complete-pooling result refers to the
group level, a no-pooling result refers to the individual level, and
a partial-pooling result yields estimates on both the individual
level and the group level. Thus, in order to be able to evaluate
the divergence between results across the multiverse, it is necessary
to derive quantities that can be compared across estimation
approaches. For example, one might compare the mean of the
group-level posterior distribution to a complete-pooling ML point
estimate. Our multiverse analysis shows how such commensurabil-
ity can be achieved (for details, see Summary Measures and
Methods of Synthesis section).

On the frequentist side, we implemented complete-pooling and
three different variants of no-pooling. MPT modeling has long relied
on MLE complete-pooling (CP-MLE) as the method of choice (e.g.,
Batchelder & Riefer, 1986; Hu & Batchelder, 1994; Riefer &
Batchelder, 1988). In some cases, researchers have also used MLE

Figure 1
Multinomial Processing Model Tree Representing the Process-Dissociation Model
for Recollection and Automatic Activation in Word-Stem Completion

Exclusion
Stem completed with

studied item

Stem completed with
item not studied

Stem completed with
item not studied

Studied item
recollected

Studied item
not recollected

Studied item
automatically activated

Studied item not
automatically activated

r

a1-r

1-a

Inclusion
Stem completed with

studied item

Stem completed with
item not studied

Stem completed with
studied item

Studied item
recollected

Studied item
not recollected

Studied item
automatically activated

Studied item not
automatically activated

r

a1-r

1-a

Note. r = probability that a studied item is consciously recollected; a = probability that a
studied item that is not recollected is automatically activated.
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no-pooling (NP-MLE; Figure 2, top left; e.g., Meissner &
Rothermund, 2013; Simons et al., 2002). To address the problem
that no-pooling can lead to unstable estimates and standard errors
in studies with low numbers of observations, we additionally imple-
mented no-pooling with parametric bootstrap (NP-PB) and nonpara-
metric bootstrap (NP-NPB). Both methods are readily available in
standard MPT software (e.g., Moshagen, 2010; Singmann & Kellen,
2013).4 All frequentist methods used in the current multiverse
analysis were implemented via MPTinR (Singmann&Kellen, 2013).
On the Bayesian side, we implemented methods for each level

of pooling. In response to some of the problems associated with
complete-pooling and no-pooling, several (Bayesian) partial-
pooling methods for MPT models have been developed (e.g.,
Klauer, 2010; Matzke et al., 2015; J. B. Smith & Batchelder, 2010).
These methods differ with respect to the assumption of the group-
level distribution. The beta-MPT approach (PP-B; J. B. Smith &
Batchelder, 2010) assumes that the different types of individual-
level parameters are independent and follow beta distributions on
the group level. The latent-trait approach (PP-LT-C; Klauer, 2010)
represents individual-level parameters as displacements from a
group-level mean, drawn from a zero-centered multivariate normal
distribution (in probit space). While parameter correlations are not
part of PP-B (they can only be estimated in a subsequent step), they
are specified as free parameters in PP-LT-C and can therefore be
estimated directly. As an example for parameter correlations,

consider that the probability of recollection and the probability of
automatic process activation could be positively correlated across
individuals in the process-dissociation model.

In addition to the established methods PP-B and PP-LT-C, we
implemented a latent-trait variant without parameter correlations, PP-
LT-NC. This method can inform whether divergence between the
two partial-pooling methods, PP-B and PP-LT-C, is associated with
distributional assumptions or covariance parameters. We furthermore
included Bayesian variants of complete-pooling (CP-Bayes) and
no-pooling (NP-Bayes). Although these latter two methods are not
commonly used, they complement the existing multiverse. All
Bayesian methods were implemented via TreeBUGS (Heck et al.,
2018), either using JAGS (Plummer, 2003) or a custom MCMC
sampler.

Figure 2
The MPT Multiverse of Estimation Methods

Note. MPT = multinomial processing tree; NP-MLE = no-pooling, maximum likelihood estimation; NP-PB = no-pooling,
parametric bootstrap; NP-NPB = no-pooling, nonparametric bootstrap; NP-Bayes = no-pooling, Bayesian parameter
estimation; PP-LT-C = partial-pooling, latent-trait with correlation parameters; PP-LT-NC = partial-pooling, latent-trait
without correlation parameters; CP-MLE= complete-pooling, maximum likelihood estimation; CP-Bayes= complete-pooling,
Bayesian parameter estimation; PP-B = partial-pooling beta. Names in bold are used throughout this article to refer to a given
estimation method.

4 When performing our multiverse analyses, the latent-class approach by
Klauer (2006) was, to the best of our knowledge, the only readily available
frequentist implementation of a partial-pooling approach (assuming that each
participant belongs to a subgroup of participants with a fixed set of
parameters). We initially implemented analyses with this approach but were
not able to obtain reliable parameter estimates for a majority of data sets
because of numerical overflow/underflow problems. We therefore did not
include results from this approach into our analyses. Only after finalizing all
our analyses, we became aware that Nestler and Erdfelder (2023) recently
proposed an alternative partial-pooling approach based on marginal ML
methods.
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Under What Conditions Can We Expect Divergence
Versus Perfect Agreement Between MPT
Estimation Methods?

If different methods can reasonably be applied to a given data set for
a given model, to what extent are cognitive-modeling results robust
across, or differ between, methods? An important first step toward
answering that question is to identify properties of MPT models that
we expect to affect the degree of divergence between different
estimation methods based on theoretical considerations. We have
identified one such property, the structural-aggregation invariance of
MPT models. Structural aggregation invariance holds for an MPT
model if none of the model parameters (or its complement) occurs
more than once in any of the branches of the model (Erdfelder et al.,
2023). By contrast, structural-aggregation invariance does not hold
for an MPT model if at least one model parameter occurs repeatedly
on a branch. We provide an example, the pair-clustering model,
in Appendix A. In this model, parameter u repeats within multiple
branches for word pairs. As shown in Appendix B, structural-
aggregation invariance is a necessary condition for predicting perfect
agreement between estimation methods under conditions we will
outline below. Thus, we expect larger divergences forMPTmodels for
which structural-aggregation invariance does not hold compared to
models for which this property holds.
If structural-aggregation invariance holds for a given MPT model,

we can derive the following empirically testable prediction of perfect
agreement from basic statistical theory (see Appendix B, for the
formal proof): Assuming that a structurally aggregation invariant
MPT model holds for each participant (with parameter values that
may vary between individuals), the agreement between any pair of
consistent estimation methods considered in our multiverse analysis
should be perfect (i.e., there should be no divergence between group-
level parameter estimates), if all correlations between parameters that
occur on the same branch are approximately zero and if both the
number of participants and the number of responses per participant is
sufficiently large so that standard errors of the estimates approach
zero. Note that whereas structural-aggregation invariance is a
property of an MPT model-independent of the actual data, the
prediction of perfect agreement is specific to the interplay of MPT
model and data (i.e., the correlation as well as the standard error are
empirical statistics).
With the large data set obtained in our meta-analysis, we are in the

position to indirectly test one assumption that is shared among all
commonMPT estimation methods, but generally cannot be tested in
a specific application of an MPT model: That the model holds for
each participant.5 This indirect test relies on the fact that the
prediction of perfect agreement only holds if all of the four
assumptions mentioned above (i.e., the MPT model holds for each
participant, structural-aggregation invariance, correlations and
standard errors of approximately zero) hold. If any of the four
assumptions does not hold, then perfect agreement is not expected.
Importantly, only with a large data set there is the possibility to come
across conditions where three of the four assumptions hold (i.e., all
but the assumption that the MPT model holds for each participant).
Thus, the large data set obtained in this meta-analysis allows us to
test the prediction of perfect agreement. If the three assumptions
hold, but the prediction of perfect agreement does not hold, this
would indicate that the MPT does not hold for each participant.6

Such an outcome would threaten the validity of many results

previously obtained with MPT models, as all estimation methods
assume the same model holds for each participant. By contrast, if the
remaining three assumptions hold and the prediction of perfect
agreement also holds, this would provide corroborating evidence for
the validity of this central assumption.

Can We Identify Moderators That Explain
Divergence Between Methods?

Even though the prediction of perfect agreement provides an
important test bed for the MPT model class, this prediction only
applies in a limited set of circumstances.Whereas mostMPTmodels
are structurally aggregation invariant, in the vast majority of MPT
applications in psychology, there is a nonzero correlation among
parameters that occur on the same branch and/or a nonzero standard
error. An important additional goal of this article is therefore
to identify empirical conditions that lead to larger or smaller
divergences among different estimation methods in situations that
fall outside the scope of the prediction of perfect agreement.

Our empirical approach for identifying such conditions can be
seen as complementary to parameter recovery simulation studies in
which the “ground truth” is known. For example, Chechile (2009)
found that across different generic MPT models, complete-pooling
(based on MLE) produced more accurate results than no-pooling
(partial-pooling was not considered; see also Batchelder & Riefer,
1986). Groß and Pachur (2020) found that partial-pooling methods
yielded more accurate estimates than complete-pooling or no-
pooling methods for two exemplary MPT models (see also Jobst
et al., 2020; Rouder & Lu, 2005; Shiffrin et al., 2008); however,
within the partial-pooling methods, the latent-trait approach with
explicit modeling of correlations (PP-LT-C; Klauer, 2010) seemed
to be overparameterized for a 13-parameter MPT model (HB13;
Erdfelder & Buchner, 1998), yielding less accurate results than the
simpler beta-MPT method (PP-B).

Whereas simulation studies can shed light on the conditions under
which we should expect divergences in empirical (i.e., real) data, the
extent to which they sufficiently capture the conditions that appear in
empirical data remains unclear. In our analysis, we will therefore
consider a number of potential moderators and examine the degree to
which they can explain diverging results between different methods.

First, in line with the theoretical predictions described above, any
condition related to uncertainty in estimation (i.e., estimation error)
could explain divergence between any of the methods considered.
For example, the amount of data that is available to estimate a
specific parameter might affect estimation uncertainty. Likewise, the
presence of parameter trade-offs (i.e., structural relationships
between parameters) might make it difficult to estimate a parameter
independently of other parameters in the model, thereby affecting

5 By “holds for each participant,” we mean that each individual is
associated with a multinomial probability distribution over the responses in
line with the respective MPT model.

6 Strictly speaking, for the reasons outlined in Appendix B, this conclusion
is generally true only for MPT models with no more than two parameters per
branch. Theoretically, for MPT models with three or more parameters per
branch, complex patterns of stochastic dependence within branches may
occur despite all correlations within branches being zero. This would violate
aggregation invariance and could thus counteract perfect agreement between
estimates. However, such a scenario would be in conflict with all hierarchical
models considered in our multiverse analysis and seems unlikely in practice.

8 SINGMANN ET AL.



uncertainty in estimation (e.g., Krefeld-Schwalb et al., 2022; Spektor
& Kellen, 2018). Second, for small to moderate sample sizes,
parameter heterogeneity could explain divergence between methods
that do (vs. do not) take heterogeneity into account (i.e., complete-
pooling vs. other methods). Third, parameter correlations across
individuals between parameters that occur within the same branch of
an MPT model might explain divergence between methods that do
(vs. do not) explicitly model these correlations (i.e., latent-trait vs.
othermethods), because not considering those correlations in a model
can lead to biased parameter estimates (Erdfelder, 2000; Erdfelder et
al., 2023; Klauer, 2010). Fourth, the actual parameter values might
explain divergence between methods. For example, in MPT models,
the parameters are probabilities bound between 0 and 1; parameter
values near these boundaries are often estimated less precisely and
therefore might show greater divergences across estimation methods.
Finally, model fit (or misfit) might signal a divergence between
methods. In the Method section, we provide a detailed description of
all moderators considered.

The Present Study

The goal of our multiverse meta-analysis is to document how
researchers’ decisions regarding different estimation methods in
cognitive-modeling affect results and to identify empirical condi-
tions that help explain the divergence between methods that we
observe. To do so, in the present study, we performed a systematic
meta-analysis and gathered the available data from 164 published
data sets that applied one of nine predefined MPT models. We
selected these nine models because of their popularity and
widespread use within the fields of memory, judgment and decision
making, and social cognition. The models, along with their core
parameters, are described in detail in Table 1. We then applied the
multiverse of estimation methods, using the MPTmultiverse

software package, to these data sets and examined divergence in
core model parameters between nine implemented estimation
methods that adopt different levels of pooling within different
statistical frameworks. This large-scale meta-analysis allowed us to
answer three main research questions:

1. What is the actual magnitude of divergence between
results coming from the application of different estima-
tion methods to the same empirical data?

By examining divergence between parameters estimated from
empirical data, our findings can inform whether results and
conclusions can be considered robust with regard to the estimation
method used. By capitalizing on a large set of published data across
a broad selection of MPT models and research questions, our
findings provide information about a wide range of typical MPT
modeling conditions (e.g., populations and paradigms).

2. Does the prediction of perfect agreement hold for the
MPT model class?

The different estimation methods considered in our multiverse
can accommodate different degrees of individual differences and are
derived from different statistical frameworks. Despite these
differences, we have derived specific conditions, based on basic
statistical theory, under which we expect the different estimation
methods to agree perfectly: For structurally aggregation invariant
MPT models for which both the correlations among parameters on
the same branch as well as the standard error approach zero. These
conditions occur only rarely in regular-sized empirical data sets, but
are likely to be present in our large meta-analytic data set. If this
prediction does not hold, the validity ofMPTmodeling in its entirety
would be threatened. However, if this prediction holds, the statistical
assumptions underlying MPT modeling would be to some degree
justified.

Table 1
MPT Models Included in the Meta-Analysis

Paradigm Model Model separately measure Core parameter

1. Recognition memory Two high-threshold model for
confidence ratings (Bröder et al.,
2013), for 6-point and 8-point scales.

Item recognition and guessing DN, DO, g

2. Source monitoring Two high-threshold model of source
monitoring for two sources (Bayen
et al., 1996).

Item recognition, source memory, and
various forms of guessing

b, D1 (= D2 = DN),
g (= a), (d1 = d2)

3. Free recall Pair-clustering model without singletons
(Batchelder & Riefer, 1980, 1986).

Storage and retrieval processes in free recall c, r, u

4. Prospective memory Prospective memory model (R. E. Smith
& Bayen, 2004).

Prospective and retrospective components of
prospective memory, ongoing-task ability

P, M, C1, C2

5. Hindsight bias Hindsight bias model (Erdfelder &
Buchner, 1998).

Reconstruction and recollection processes in
hindsight judgments

b, c, rC, rE

6. Recognition-based inference r-model (Hilbig, Erdfelder, & Pohl,
2010).

Recognition and further knowledge as bases
of inference

r, a, b

7. Implicit-attitude tasks Quad model (Conrey et al., 2005; with
the model specification used in
Calanchini et al., 2014).

Automatic association activation,
discriminability, and overcoming bias

AC, D, G, OB

8. Implicit-attitude tasks ReAL model (Meissner & Rothermund,
2013).

Evaluative association, recoding, and label-
based identification

Re, A1, A2, L1, L2, L3, L4

9. Various paradigms Process-dissociation model (without
guessing parameter; Jacoby, 1991).

Controlled and automatic processes (e.g.,
recollection and automatic activation)

rI (= rE), a

Note. The definition of the core parameters for each model can be found in Tables 2 to 9.
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3. What are the sources of divergence?

As the conditions under which we expect the different methods to
agree perfectly only occur rarely in empirical data, an important
question for MPT practitioners is to understand the conditions under
which they can predict the degree of divergence between the
different estimation methods. Our study is the first to examine these
conditions empirically in a large-scale meta-analysis. We consider
several candidate moderators that capture aspects of estimation
uncertainty, heterogeneity, parameter correlations, parameter trade-
offs, and model fit (details are provided in the Method section). Note
that some of the moderators can be controlled by the researcher prior
to data collection (e.g., the number of observations, or population
under investigation), whereas others cannot be controlled (e.g.,
parameter trade-offs), or only partly be controlled (e.g., relative
information to estimate a parameter). Our analysis is thus not only
informative with regard to the robustness (or instability) of
previously published results, but will also be of high practical
relevance for future MPT-modeling applications.

Method

Transparency and Openness

This meta-analysis followed the Preferred Reporting Items for
Systematic reviews and Meta-Analyses guidelines (Moher et al.,
2009) and was initially preregistered. Our preregistration protocol can
be found at https://osf.io/bpuwj/ (published in July, 2018). Once we
obtained all data, we decided to improve the preregistered analyses
plan in several core aspects (e.g., the dependent variable, definition
of some key independent variables, and the theoretical framing).
As a consequence, only the data-collection part should be considered
formally preregistered.
All meta-analytic data, analysis code, as well as supplemental

results are available on the Open Science Framework (OSF) at https://
osf.io/waen6/ (Singmann et al., 2024). Data were analyzed using R,
and the final analysis is based on Version 4.3.2 (R Core Team, 2022).

Inclusion and Exclusion Criteria

Eligible for inclusion in the reanalysis were all empirical data sets
generated by human participants (i.e., no simulated data, no
animals) for which an MPT analysis based on one of the nine MPT
models (Table 1) had been published in English or German in a book
chapter or peer-reviewed journal (including footnotes, appendices,
and additional online material is available at OSF: https://osf.io/wae
n6/).7 For practical reasons, the search was limited to publications
prior to June 1, 2018.

Information Sources

We developed literature search strategies separately for each
model using text strings identical or related to the respective MPT
model name (e.g., “process dissociation model,” “process-dissocia-
tion model”; search strings for each model are documented in the
additional online material is available at OSF: https://osf.io/waen6/).
We searched APA PsycInfo, PubMed, Scopus, and Web of
Science.8 We also scanned the literature for references that cite the
original model publication.

Study Selection

The study selection process is depicted in Figure 3. The steps
were carried out separately for each of the nine selectedMPTmodels
by experts of the respective model. In an initial step, records were
screened for eligibility and excluded if they did not meet the criteria
based on screening of the abstract and/or the full text. In a second
step, the remaining full-text articles were assessed for eligibility by
detailed inspection, and reasons for exclusions were listed. The
excluded articles belonged to one (or more) of four categories: No
original data were reported; no MPT modeling was conducted; a
paradigm was used that precluded use of the MPTmodel; a different
MPT model variant than listed in Table 1 was used. In a third step,
for the remaining eligible studies, the availability of individual-level
data was checked. In a fourth step, we prepared the data for
reanalysis which required splitting some of the experiments into
independent data sets for technical and/or conceptual reasons. The
results reported below are based on these 164 independent data sets
from which we derived a total of 1,779 group-level core parameter
estimates.

Data Collection

We extracted individual-level category frequencies for each data
set in each selected study. These were required in order to apply all
nine estimation methods. If individual-level data were not available
in the study, we contacted the authors of the study.We used data that
were made available to us by October 15, 2018. We extracted the
class of MPT model, study population (i.e., college students, older
adults, children, clinical patients, other), as well as any grouping
variable that specifies an experimental or quasi-experimental
condition of the study.

Summary Measures and Methods of Synthesis

We re-analyzed the category frequencies for all available data
sets with the R package MPTmultiverse, which was
developed specifically for that purpose (Singmann et al., 2020).
MPTmultiverse combines the packages MPTinR (Singmann &
Kellen, 2013) and TreeBUGS (Heck et al., 2018). The estimation
methods were applied to complete data sets (i.e., across between-
subjects or within-subjects conditions). Next, we provide a description
of how we obtained group-level parameter estimates and correspond-
ing standard errors for each method per data set. When the data set
consisted of multiple conditions, we estimated separate group-level
parameters per condition.

Frequentist Methods

Estimates for all frequentist methods were obtained through
gradient-based numerical optimization using 10 fitting runs
with different random starting values for each data set. For the

7 We initially wanted to include only those studies that used one of the nine
estimation methods from our multiverse analysis (Figure 2). We discarded
this criterion after thorough discussion, as our focus was not on the specific
results of the initially published analyses, but rather on the divergence
between the estimation methods included in our multiverse analysis.

8 Because each search was performed by a different group of authors at
different institutions, we cannot provide further details regarding which
individual databases were accessed for each Web of Science search.
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complete-pooling method, the group-level estimates were the
estimates from the fitting run that produced the largest likelihood,
and the standard error was based on either the analytical Hessian
matrix or—when calculating the analytical Hessian matrix failed—
the numerical Hessian matrix (i.e., standard errors are computed as
the square root of the diagonal of the inverse of the analytical/
numerical Hessian matrix; e.g., Pawitan, 2014). For the no-pooling
estimates, the group-level estimates were the mean of the individual-
level estimates, and the standard errors were the standard errors of
the mean (i.e., standard deviation of individual-level estimates
divided by the square root of the number of estimates), excluding
all individual-level estimates (on a case-wise basis) that were
empirically not identified. For the asymptotic no-pooling method,
empirical identifiability was assessed by comparing results of

independent fitting runs that produced approximately the same
likelihood (absolute difference on log-likelihood scale < .01) and
we retained those estimates that were also approximately equal (i.e.,
maximum absolute difference < .01).

For the bootstrap no-pooling methods, we created a bootstrap
distribution of estimates for each individual participant using 1,000
bootstrap samples. That is, for each participant, we created 1,000 sets
of synthetic data of the same size as the original data and then fit the
model to each of these synthetic data sets and recorded all parameter
estimates. The distribution of the estimates from fits to the synthetic
data is the bootstrap distribution of the parameter estimates. The
nonparametric samples are random samples from a multinomial
distribution in which the probabilities are given by the data. The
parametric samples are random samples from a multinomial
distribution in which the probabilities are given by the predictions
of the model fit to the data (i.e., these samples assume that the model
fits the data). We discarded estimates as not being empirically
identifiable if the width of the 95% bootstrap CI (i.e., the 97.5%
quantile minus the 2.5% quantile of the bootstrap distribution)
spanned almost the full parameter range (i.e., was larger than .99).

Bayesian Methods

All Bayesian estimates were based on MCMC sampling using
either custom-written samplers (complete-pooling and no-pooling)
or using JAGS (partial-pooling methods; Plummer, 2003). For all
methods, results were based on three independent chains. We only
retained a result if all parameters achieved an R̂ < 1.05 and the
number of effective samples was >2,000. The minimum number of
post burn-in samples was 50,000 per chain (with 20,000 burn-in and
10,000 adaptation samples) with a thinning rate of 10. Due to large
differences in model complexity and data sizes, the number of
samples and thinning rate had to be adapted by the researchers in
order to reach the convergence criteria (for some data sets, repeated
attempts to reach convergence criteria were without success). We
used the default TreeBUGS priors for all Bayesian methods.
Specifically, for the beta-MPT method (PP-B), we defined the priors
for the shape parameters α and β of the group-level distributions as
gamma distributions with shape = 1 and rate = 0.1, with the lower
bound truncated at 1. For the latent-trait method (PP-LT), the priors
for the group-level parameters were standard normal distributions
(μ = 0, σ2 = 1), implying uniform distributions in probability space.

For the complete-pooling and partial-pooling methods, the group-
level estimates were the posterior means of the corresponding
parameters, and the standard errors are the posterior standard
deviations. For the no-pooling method, the individual-level estimates
were averaged for each sample and then group-level estimates and
standard errors were obtained as for the other methods.

Quantifying Divergence

To quantify divergence, we used two measures. First, to quantify
divergence across estimates, we used the root-mean-squared error
(RMSE). It represents the expected prediction error from predicting
the value of the estimate of one method from the value of the estimate
of the other method. Importantly, the RMSE is on the same scale as
theMPT parameter estimates and can therefore be readily interpreted.
For example, an RMSE of .1 indicates that the expected prediction
error is .1 parameter value (i.e., 10% of the possible parameter range).

Figure 3
Meta-Analysis Flowchart for Study Selection

Note. No original data = no original data were reported; no modeling = no
MPT modeling was conducted; other paradigm = a paradigm was used that
precluded use of the MPT model; model variant = a variant of the MPT
model was applied. MPT = multinomial processing tree.
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As for any squared deviation measure, larger divergences affect the
RMSE more strongly than smaller divergences.
Second, to quantify divergence for specific estimates, we used the

absolute deviation. Like the RMSE, absolute deviation is on the
same scale as the MPT parameter value and thus is easy to interpret.

Overview of Analysis

Our results are split into three parts along the three research
questions listed above. In Part 1, we provide an overview of the
magnitude of divergence across estimation methods. In this part, we
also provide a test whether parameter estimates for models for which
structural-aggregation invariance holds show smaller divergences
than estimates for models for which it does not hold. In Part 2, we test
whether the theoretically derived prediction of perfect agreement
holds under the specified conditions. In Part 3, we check whether we
can identify sources of divergence; that is, moderators that allow us to
predict the degree of divergence.
In Part 1 of the results, we look at the magnitude of divergence. In

the first subsection, we focus on the divergence across data sets,
MPTmodels, and parameters. In the second subsection, we focus on
the divergence across all (9 × 8)/2 = 36 pairs of estimation methods.
To avoid an overwhelming amount of details and to provide a
compact presentation of the results, Parts 2 and 3 focus on a selected
set of five method pairs. These methods reflect the most commonly
used ones within the method multiverse. Specifically, we designated
two reference methods, complete-pooling MLE (CP-MLE) and the
latent-trait method with correlations (PP-LT-C), and then calculated
the absolute deviation between the estimates of the referencemethod
and those of selected comparison methods. As comparison methods,
we designated no-pooling MLE (NP-MLE), the partial-pooling beta
method (PP-B), and the latent-trait method without correlations (PP-
LT-NC). The complete results for all comparison methods are
presented in the additional online material available at OSF: https://
osf.io/waen6/.

Moderators

As moderators that could potentially explain the magnitude of
divergence, we considered any variable obtained in our analysis that
could affect parameter estimation. For some of the moderators, we
had a priori predictions of how they might affect the magnitude of
divergences as noted below; for others, we did not. The moderators
can be classified as either model-dependent or model-independent.
We call a moderator model-dependent if the value of the moderator
depends on the specific MPT model. For example, the model
parameter is specific to each MPT model (e.g., parameter a in the
process-dissociation model may exhibit larger divergence than
parameter r) and is thus model-dependent. All model-dependent
moderators are categorical. By contrast, we call a moderator model-
independent if the value of the moderator does not depend on the
specific MPT model under consideration. For example, the standard
error of any estimate from any MPT model can in principle take on
any value between 0 and 1. Model-independent moderators can be
continuous (e.g., standard error) or categorical (e.g., population of
participants).
From a theoretical perspective, the model-independent moderators

aremore interesting, because if wewere to find that the largest sources
of divergence were model-dependent moderators, our results were

only applicable to the set of MPT models considered here. However,
if we were to find that model-independent moderators can help
explain the observed divergences, then it is reasonable to assume that
our results generalize beyond the MPT models considered here. In
the following, we list all moderators considered in our analysis,
beginning with the model-dependent moderators.

Model-Dependent Moderators. We consider four model-
dependent moderators. These are the model (a factor with nine
levels shown in Table 1); the submodel (an alternative version of the
model factor with 13 levels, which also considers subtypes of some
of the models; e.g., for the source monitoring model 2HTSM, we
consider submodels 4 and 5d from Bayen et al., 1996, and a six-
parameter variant from Bell & Buchner, 2010 which we henceforth
refer to as submodel 6e); model parameter with 53 levels (here we
consider parameter nested in submodel, e.g., parameter b from the
2HTSM is represented in three different levels, one for each
submodel); and data set (with 164 levels).

Model-Independent Categorical Moderators. We consider
two categorical moderators that are model-independent: the
population of participants, which has five different levels (college
students, older adults, children, clinical patients, and other), and the
scientific goal, which has two levels representing two distinct
reasons why the researchers of the original articles used an MPT
model—either for parameter estimation (e.g., to compare model
parameters across conditions) or for model selection (e.g., compare
different models with each other). In addition, we considered a
number of model-independent continuous moderators.

Standard Error. Appendix B shows that one potential source
of divergence is the estimation uncertainty expressed in the standard
errors (SEs) of the estimates. The way the SEs were estimated are
specific for each method and described in Summary Measures and
Methods of Synthesis section. To streamline presentation, we
present results of the combined (i.e., average) SE of both methods in
a pair, after winsorizing each individual SE at a maximum of 0.25
(to reduce the influence of a few large outliers). In line with the
theoretical predictions, we expected larger SEs to be associated
with larger divergence. Results of individual SEs (with and without
winsorizing) are qualitatively the same and presented in the
additional online material is available at OSF: https://osf.io/waen6/.

Parameter Correlations. The other moderator identified in
Appendix B is the correlation between parameters on the level of the
participants, which are modeled explicitly only in the fully
parameterized latent-trait model (PP-LT-C). To assess the impact
of parameter correlations, we recorded the posterior means of the
individual-level correlation parameters from the latent-trait model,
ρ. Following Appendix B, of particular importance are the
correlations among parameters that appear on the same tree branch.
In the analysis, we used the maximum correlation for a specific
parameter and data set with all parameters that appear on the same
branch.9 In line with the theoretical predictions, we expected larger
parameter correlations to be associated with larger divergence.

9 Results using a summary statistic other than the maximum correlation
with all parameters that appear on the same branch (maximum correlation,
median correlation, mean correlation, and proportion of correlations larger
than .5 for correlations with all parameters that appear on the same branch as
well as correlations with all other parameters, not only those on the same
branch) are qualitatively the same and presented in the additional online
material available at OSF: https://osf.io/waen6/ (Singmann et al., 2024). The
same holds for the results regarding parameter trade-offs discussed below.
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Values of Parameter Estimates. Another potential source of
divergence between methods is the value of the estimate itself. For
example, values near the boundaries of the parameter space (i.e., 0 or
1) may show larger divergences than values near the mid of the
parameter space (i.e., .5). Therefore, we will test for a u-shaped
(or other quadratic) relationship between the parameter value with
the absolute deviation.
Interindividual Differences: Standard Deviation. To assess

the effect of interindividual differences on divergence, we used
two measures. First, we assessed interindividual differences by
calculating the standard deviation (SD) of the individual-level
posterior means from the latent-trait partial-pooling model (after a
retransformation to the probit scale).10 We expected larger SDs to be
associated with larger divergence.
Interindividual Differences: Heterogeneity. Second, we

assessed the heterogeneity of the observed response frequencies
across participants in a nonparametric manner. Specifically, we
applied the asymptotic χ2 test proposed by J. B. Smith and
Batchelder (2008) to each data set. As a measure of heterogeneity,
we used Cohen’s w, an effect size measure for χ2 tests. We expected
larger effect sizes to be associated with larger divergence.11

Parameter Trade-Offs. One potential reason for estimation
uncertainty is the presenece of structural parameter trade-offs, or
parameter fungibility (e.g., Krefeld-Schwalb et al., 2022; Spektor &
Kellen, 2018). Such structural relationships can produce distortions
in parameter estimation and can make it difficult to interpret the
model parameters independently from each other. We estimated
parameter trade-offs via the MCMC chains of the latent-trait model.
Specifically, we defined the parameter trade-off for a specific
parameter and data set as the maximum across-chain correlation of
the group-level parameter with other group-level parameters that
appear on the same branch. We chose the maximum (instead of
mean, or median) absolute group-level correlation because a high
trade-off with one parameter cannot be compensated by a low trade-
off with other parameters. We expected larger parameter trade-offs
to be associated with larger divergence.
Relative Information. One property of the MPT model class

that could also affect parameter estimation is the tree structure.
Specifically, estimates of parameters near the root of the tree govern
how much information is available for estimating parameters
appearing in the subsequent branches. For example, if the estimate
for r in the process-dissociation model (Figure 1) is high, then there
is only little information available for estimating a. In the extreme
case of r = 1, the estimate of a is not identifiable (i.e., a can take on
any value with the model making the same prediction).
To assess the effect of the proportion of information that is

available for estimating each parameter, we first calculated the
probability for each branch (i.e., the product of the parameters in the
branch). The relative information for a parameter is operationalized
as the sum of all estimated branch probabilities containing this
parameter and varies between 0 and 1. As this measure was highly
correlated across methods (r ≈ 1), we only report results based on
the relative information of the reference method.12 Thus, we
obtained one relative-information estimate for each parameter and
data set. We expected smaller relative information to be associated
with larger divergence.
Relative N. Relative information does not account for the

sample size of a data set. Therefore, we also considered relative N,
which we defined as the relative information multiplied by the total

number of observations for a data set. We expected smaller relative
N to be associated with larger divergence.

Model Fit. We also considered the fit of the model. As a
measure, we used the p value of the fit statistic. The null hypothesis
is that the model fits the data. Consequently, we expected that small
p values (i.e., indicating a model does not fit the observed data well)
are associated with larger divergence. The method for obtaining the
p values differed across estimation methods. For the frequentist
methods, we used G2 tests, either asymptotic or based on the
bootstrap distribution. For the no-pooling method the G2 statistics
were summed across participants before calculating the p value. For
the Bayesian methods, we used posterior predictive tests based on
the T1 statistic (Klauer, 2010).

Potential Biases Due to Study Selection

Our method of identifying suitable studies is potentially biased in
several ways: We only included published studies from English or
German sources that were published prior to June 1, 2018 and could
be found using our search strategy. Studies in other languages, more
recent studies, and studies only discoverable through other
databases not included in our search are not part of this meta-
analysis. While this might have affected the selection of studies, we
are confident that this did not introduce any bias in our conclusions.
The reason for this is that our aim differed from that of a typical
meta-analysis. We were not interested in estimating the size or
direction of a specific effect for a specific model parameter, but in
assessing the divergence of parameter estimates across estimation
methods for all core model parameters. Hence, a selection bias for a
specific effect—such as a possible publication bias toward studies
showing a significant difference for a specific model parameter—is
unrelated to and inconsequential for our actual research question.
This also implies that tests for publication bias, such as funnel plots,
cannot be applied to our meta-analysis. The only requirement for our
conclusions to be valid is that the selection of studies is
representative of studies using MPT models at large. Given our
focus on nine of the most popular MPT models, and that our
researcher team has extensively worked with these models, we are
confident that our study selection meets this requirement.

Another potential bias that is specific to our meta-analysis is that
the original estimation method is disproportionately likely to be a
frequentist method (which used to be common for decades) as
compared to a Bayesian method (which is commonly used only
recently). However, because we re-analyzed the data with each
approach of the MPT multiverse, the uneven distribution of original
estimation methods also does not pose a threat to the validity of our
analyses. Further, studies with an application of MPT models other
than the ones used here (Table 1) are missing. Different results might
emerge for MPT models we did not consider. However, due to our

10 We did not record the posterior estimate of the SD, which is a model
parameter of the latent-trait model.

11 We used additional measures based on the same statistical test as
alternative measures of heterogeneity. These were the χ2-value of the test, the
p value of the test, and the effect size measure Cramer’s V. All of these
showed qualitatively the same pattern as Cohen’s w (see additional online
material available at OSF: https://osf.io/waen6/; Singmann et al., 2024).

12 The reason these differ slightly across methods is that the relative
information is calculated from the estimated parameter values which differ
across methods.
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inclusion of a large number of model-independent moderators, as
well as the careful selection of MPT models from various research
fields, this seems unlikely.

Results

Tables 2–9 list all 164 data sets included in our meta-analysis,
one table for each MPT model (the Quad and ReAL model are
presented in one table; see also Table 1), including the study
population, number of participants, and mean number of trials per
participant. We applied the multiverse of all nine estimation
methods (Figure 2) to all 164 data sets. For 87% of the data sets, we
successfully obtained estimates from all nine methods; for 10%, we
obtained estimates from eight methods (i.e., one method failed for
those data sets), and for 3%, we obtained estimates from seven
methods. That is, if a specific method failed for a data set, this was
not a strong indication that another method would fail as well. The
Bayesian methods were more likely to fail than the frequentist
methods. Failure rates were 5% each for PP-LT-C and PP-LT-NC,
4% for NP-Bayes, 2% for NP-NPB, 1% for PP-B, and 0% for all
other estimation methods.

Part 1: Magnitude of Divergence

Divergence Across Data Sets and Models

Tables 2–9 also list the mean absolute deviation for each data set
and core model parameter across all method pairs, except for the NP-
Bayes method for reasons discussed below. Because the mean
absolute deviation is on the same scale as the MPT parameter, it can
range from 0 (i.e., no divergence) to 1 (i.e., maximum divergence).
Inspection of the mean absolute deviations suggests that the largest

systematic differences occurred across models and model parame-
ters, but not so much across the data sets within an MPT model.

The model with the largest mean absolute deviations is the pair-
clusteringmodel (Table 4, Batchelder &Riefer, 1986, also introduced
in Appendix A)—the only model which does not possess the
structural-aggregation invariance (SAI) property.13 For this model, u
shows the smallest mean absolute deviation (≈.04) and r the largest
(≈.1 or more). These results provide a first corroboration of the
prediction that models for which SAI holds show smaller divergences
than models for which it does not hold.

However, also for the remainingmodels for which SAI holds, there
are considerable differences on the level of the parameter. Some
parameters—such as OB (Table 8) and rI (Table 9)—have
comparatively large mean absolute deviations of ≈.1 or larger,
whereas others—such as DN (Table 2), d (Table 3), b (Table 6), and
Re (Table 8)—have medium mean absolute deviations of ≈.05.
Still others have small mean absolute deviations near 0—such as D,
(Table 3), a (Table 7), and a (Table 9). In addition, single data sets
showedmarkedly larger divergenceswhen compared to other data sets
for a givenmodel (e.g., R. E. Smith et al., 2014, Experiment 1, Table 5
and Van Dessel et al., 2017, Table 8). Neither the study population,

Table 2
Overview of Recognition Memory Data Sets for the Confidence-Rating Two High-Threshold (c2HT) Model

c2HT: 6-point scale Mean absolute deviation

Data set Population N K DN DO g

Dube and Rotello (2012), pictures Students 27 400 .07 .03 .05
Dube and Rotello (2012), words Students 22 400 .06 .02 .02
Heathcote et al. (2006), Experiment 1 Students 16 558 .03 .01 .01
Heathcote et al. (2006), Experiment 2 Students 23 560 .02 .01 .01
Jaeger et al. (2012) Students 63 120 .14 .06 .09
Jang et al. (2009) Students 33 140 .10 .03 .04
Koen et al. (2013), Experiment 2 (full attention) Students 48 198 .06 .02 .03
Koen et al. (2013), Experiment 4 (immediate) Students 48 300 .04 .02 .02
Koen and Yonelinas (2010), pure list Students 32 320 .10 .02 .04
Koen and Yonelinas (2011) Students 20 600 .03 .02 .02
Pratte et al. (2010) Students 97 480 .03 .01 .01
D. G. Smith and Duncan (2004) Students 30 140 .06 .02 .03

c2HT: 8-point scale Mean absolute deviation

Data set Population N K DN DO g

Benjamin et al. (2013) Students 124 120 .08 .02 .03
Onyper et al. (2010), pictures Students 136 768 .03 .00 .01
Onyper et al. (2010), words Students 131 768 .04 .01 .01

Note. N = number of participants, K average number of responses per participant. The rightmost columns show the mean
absolute deviations the core model parameters across method pairs and (if present) within-subject conditions. DN = detect
new; DO = detect old; g = guess old.

13 Notably, to maximize effects of SAI violation, we deliberately excluded
singletons from our multiverse analyses of the pair-clustering model and
focused on recall patterns for word pairs only. As shown by Erdfelder et al.
(2023), systematic estimation bias in the pair-clustering model can be
prevented to some degree by including many singletons into the analysis,
because singletons—in contrast to unclustered words from pairs—yield
unbiased estimates of parameter u that counteract the systematic biases
induced by SAI violation. Because we were mainly interested in examining
effects of SAI violation on RMSE, we focused on pair-clustering data for
word pairs exclusively.
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nor number of participants, nor mean number of observations per
participant appear to show systematic effects on deviations.

Divergence Across Method Pairs

Next, we zoomed in on the divergence separately for each method
pair. Figure 4 provides an overview of all pairwise deviations. If
all data points were exactly on the main diagonal (for which y = x),
this pattern of results would indicate perfect agreement between
two methods. As can be seen, no two methods agreed perfectly.
However, most of the data points are distributed along the main
diagonal. This is a reassuring result, as it indicates that methods
generally produce similar estimates.

Figure 4 provides a further visualization of the predicted effect of
SAI on divergence. Estimates for the pair-clustering model (for
which SAI does not hold) are shown as blue triangles, whereas
estimates for all other models are shown as grey circles. Figure 4
also provides two different RMSEs for each method pair: one based
solely on estimates from models for which SAI holds (top left
corner); the other based on all estimates (lower right corner). By
comparing the two RMSEs in each panel we gain further support for
the prediction that, across almost all method pairs, models for which
SAI holds show smaller divergences than models for which it
does not hold. In addition, the most egregious and systematic
divergences—observed mainly for the cases in which the CP-MLE
method produced estimates of ≈1 while the other method produced
estimates between 0 and 1—also come exclusively from the pair-

Table 3
Overview of Source Monitoring Data Sets for the Two High-Threshold Model of Source Monitoring (2HTSM)

2HTSM submodel 4 Mean absolute deviation

Data set Population N K b D g d

Arnold et al. (2013) Students 48 64 .01 .01 .02 .08
Besken and Gülgöz (2008) Older adults and students 80 54 .07 .02 .05 .06
Bayen and Kuhlmann (2011) Experiment 1 Students 48 96 .04 .02 .02 .05
Bayen and Kuhlmann (2011) Experiment 2 Students 72 96 .01 .01 .03 .09
Giang et al. (2012) Students 58 80 .01 .01 .01 .05
Kuhlmann et al. (2012) Experiment 1 Students 72 96 .00 .01 .01 .07
Kuhlmann et al. (2016) Experiment 1 Older adults and students 144 72 .02 .01 .01 .02
Kuhlmann et al. (2016) Experiment 2 Students 72 72 .02 .00 .02 .02
Kuhlmann and Touron (2017) Older adults and students 159 100 .03 .01 .02 .02
Meiser (2003) Students 66 72 .03 .00 .01 .04
Meiser and Hewstone (2001) Students 40 108 .02 .00 .02 .04
Simons et al. (2002), Experiment 1 Older adults and patients 22 240 .03 .01 .00 .01
Simons et al. (2002), Experiment 2 Older adults and patients 16 120 .05 .00 .00 .00
Simons et al. (2002), Experiment 3 Patients 5 120 .03 .01 .00 .05
Schütz and Bröder (2011), Experiment 1 Students 50 150 .01 .00 .01 .01
Schütz and Bröder (2011), Experiment 2 Students 48 150 .00 .00 .00 .01
Schütz and Bröder (2011), Experiment 3 Students 50 90 .00 .00 .00 .03
Schütz and Bröder (2011), Experiment 4 Students 48 90 .01 .00 .00 .02
Schütz and Bröder (2011), Experiment 5 Students 50 90 .00 .00 .00 .01

2HTSM submodel 5d Mean absolute deviation

Data set Population N K b D g d1 d2

Bell et al. (2015), Experiment 3 Students 100 80 .01 .01 .03 .09 .10
Bell et al. (2015), Experiment 4 Students 135 80 .03 .01 .02 .07 .08
Dodson and Shimamura (2000), Experiment 1 Students 45 90 .04 .01 .03 .08 .06
Dodson and Shimamura (2000), Experiment 3 Students 36 120 .03 .01 .03 .08 .07
Dodson and Shimamura (2000), Experiment 4 Students 75 120 .05 .01 .02 .06 .05
Klauer and Meiser (2000), Experiment 3 Students 40 98 .02 .01 .03 .08 .11
Klauer and Meiser (2000), Experiment 4 Students 120 108 .02 .01 .01 .05 .09
Küppers and Bayen (2014), Experiment 1 Students 48 96 .02 .00 .03 .08 .08
Mieth et al. (2016a), Experiment 1 Students 112 80 .02 .01 .02 .07 .08
Mieth et al. (2016a), Experiment 2 Students 96 80 .02 .01 .01 .08 .08
Mieth et al. (2016a), Experiment 3 Students 101 80 .02 .01 .03 .07 .09
Süssenbach et al. (2016) Students 104 80 .02 .01 .04 .04 .08

2HTSM submodel 6e Mean absolute deviation

Data set Population N K b D1 D2 g d1 d2

Bell et al. (2015) Experiment 1 Students 138 80 .04 .01 .01 .03 .08 .08
Bell et al. (2015) Experiment 2 Students 114 80 .02 .01 .02 .03 .09 .09
Kroneisen and Bell (2018) Students 40 160 .01 .01 .00 .01 .11 .10
Mieth et al. (2016b) Students 216 80 .03 .01 .01 .04 .10 .08

Note. See Table 2. b = old/new guessing; D, D1, D2 = item memory; g = source guessing; d, d1, d2 = source memory.
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Table 4
Overview of Free Recall Data Sets for the Pair-Clustering (PC) Model

PC model
Mean absolute

deviation

Data set Population N K c r u

Bröder et al. (2008) Patients, older adults,
and other

68 120 .04 .09 .06

Francis et al. (2018), English Students 126 40 .07 .18 .03
Francis et al. (2018), English dominant Students 62 40 .06 .15 .03
Francis et al. (2018), Spanish dominant Students 63 40 .07 .17 .03
Golz and Erdfelder (2004), afternoon Patients 36 60 .08 .14 .04
Golz and Erdfelder (2004), forenoon Patients 35 60 .08 .16 .04
Matzke et al. (2015) Students 65 60 .07 .18 .04
Riefer et al. (2002), alcoholics Patients 42 120 .06 .12 .03
Riefer et al. (2002), schizophrenics Patients 54 121 .05 .09 .02

Note. See Table 2. c = probability that an item pair is clustered and stored in memory; r = probability that an
item pair is retrieved from memory, given that it was clustered; u = probability that a member of an item pair is
stored and retrieved from memory, given that the item pair was not stored as a cluster.

Table 5
Overview of Prospective Memory Data Sets for the Prospective Memory (PM) Model

PM model Mean absolute deviation

Data set Population N K C1 C2 M P

Arnold, Bayen, and Böhm (2015) Students 125 327 .02 .01 .02 .02
Schnitzspahn et al. (2012) Older adults and students 86 306 .01 .01 .05 .04
Horn et al. (2011), Experiment 2A Students 27 128 .01 .01 .03 .05
Horn et al. (2011), Experiment 2B Students 29 128 .01 .01 .04 .05
Pavawalla et al. (2012) Patients and other 34 62 .01 .02 .06 .03
Rummel et al. (2011) Students 61 62 .03 .03 .03 .04
R. E. Smith and Hunt (2014) Older adults and students 138 78 .02 .01 .07 .04
R. E. Smith et al. (2014), Experiment 1 Students 81 62 .20 .22 .24 .10
R. E. Smith and Bayen (2005), Experiment 1 Students 20 136 .01 .00 .01 .02
R. E. Smith and Bayen (2005), Experiment 2 Students 21 136 .00 .01 .02 .02
R. E. Smith et al. (2010) Children and students 118 66 .02 .01 .07 .06
Arnold, Bayen, and Smith (2015) Students 413 248 .00 .00 .06 .04
R. E. Smith et al. (2014), Experiment 2 Students 90 62 .01 .01 .04 .06
R. E. Smith et al. (2014), Experiment 3 Students 80 112 .02 .01 .08 .06

Note. See Table 2. C1 = probability of detecting Type 1 ongoing-task items; C2 = probability of detecting Type 2 ongoing-task items;
M = retrospective component (target recognition); P = prospective component.

Table 6
Overview of Hindsight Bias Data Sets for Hindsight Bias (HB) Model

HB model Mean absolute deviation

Data set Population N K b c rC rE

Bayen et al. (2006), Experiment 1 Older adults and students 52 54 .08 .03 .00 .00
Bayen et al. (2006), Experiment 2 Older adults and students 64 50 .07 .03 .01 .01
Bernstein et al. (2011) Children, older adults and students 194 19 .17 .11 .01 .01
Coolin et al. (2015) Older adults and students 124 50 .06 .01 .00 .01
Coolin et al. (2016) Older adults 80 56 .09 .02 .01 .01
Erdfelder et al. (2007), Experiment 1 Students 20 54 .15 .16 .00 .00
Groß and Bayen (2015) Older adults and students 128 96 .03 .02 .04 .03
Groß and Bayen (2017) Students 142 60 .06 .01 .00 .00
Pohl et al. (2010) Children and students 139 49 .15 .04 .00 .00

Note. See Table 2. b = probability of biased reconstruction; c = probability of adoption of the correct judgment; rE = probability
of recollection for experimental items; rC = probability of recollection for control items.
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clustering model. In sum, as predicted, the absence of SAI is
associated with larger divergence.
As we are interested in divergences that we do not expect a priori

based on statistical theory, we included in the analyses reported in
Parts 2 and 3 only those models for which SAI holds.
Patterns of Divergence. Beyond the overall reassuring pattern

of similar estimates, Figure 4 shows that the spread around the main
diagonal is noticeable and differs across method pairs. The RMSEs
in the upper left corner of each panel (i.e., excluding the pair-
clustering model) range from .026 to .109. Within the partial-
pooling (PP) methods, divergence is comparatively small (all RMSE
< .05). The overall smallest RMSE of .026 is observed for PP-LT-C
and PP-LT-NC, which are very similar to each other relative to other
methods (they only differ in whether parameter correlations across
participants are explicitly included in the model). Likewise, the two

bootstrap-based no-pooling methods NP-PB and NP-NPB also
show a comparatively small divergence, RMSE = .035, and are also
very similar.

Interestingly, the partial-pooling methods without correlation
parameters (PP-B, PP-LT-NC) produced generally slightly lower
RMSEs with other methods than the latent-trait variant with
correlation parameters (PP-LT-C); the partial-pooling method
with correlation parameters (PP-LT-C) produced a slightly larger
divergence with other methods. This pattern of results suggests
two possibilities: Either parameters are truly correlated, and not
including correlation parameters in the model produces biased
estimates; or parameters are truly uncorrelated, and including
correlation parameters in the model produces biased estimates.
As shown in Appendix C, most data sets have nonzero correlations
among model parameters, making the first possibility somewhat more

Table 7
Overview of Recognition-Based Inference Data Sets for the r-Model

r-Model Mean absolute deviation

Data set Population N K a b r

Castela and Erdfelder (2017), Experiment 1, Domain 1 Students 73 190 .00 .00 .02
Castela and Erdfelder (2017), Experiment 1, Domain 2 Students 74 190 .00 .00 .02
Castela and Erdfelder (2017), Experiment 1, Domain 3 Students 72 190 .00 .01 .01
Castela and Erdfelder (2017), Experiment 2 Students 51 421 .00 .00 .01
Filevich et al. (2019), Domain 1 Other 99 70 .00 .02 .05
Filevich et al. (2019), Domain 2 Other 99 70 .00 .00 .08
Hilbig et al. (2015), Experiment 1 Students 44 190 .00 .01 .02
Hilbig et al. (2015), Experiment 2 Students 59 190 .00 .00 .02
Hilbig et al. (2015), Experiment 3 Students 95 84 .00 .00 .01
Hilbig and Richter (2011) Students 28 190 .01 .01 .02
Hilbig, Erdfelder, and Pohl (2010), Experiment 6 Students 34 136 .00 .01 .03
Hilbig, Erdfelder, and Pohl (2010), Experiment 7b Students 13 91 .01 .00 .01
Hilbig et al. (2011) Students 63 182 .00 .01 .01
Hilbig et al. (2012), Experiment 1 Students 68 153 .00 .00 .01
Hilbig and Pohl (2009), Experiment 1 Students 24 190 .01 .01 .01
Hilbig and Pohl (2009), Experiment 2 Students 72 135 .00 .00 .03
Hilbig and Pohl (2009), Experiment 3 Students 62 91 .00 .00 .01
Hilbig and Pohl (2008), Experiment 5 Students 101 55 .00 .00 .02
Hilbig et al. (2009) Students 78 91 .01 .01 .02
Hilbig, Scholl, and Pohl (2010), Experiment 1 Students 19 120 .00 .01 .01
Hilbig, Scholl, and Pohl (2010), Experiment 2 Students 36 120 .01 .01 .05
Horn et al. (2015) Older adults and students 78 276 .00 .00 .03
Horn et al. (2016) Children 115 153 .01 .01 .05
M&E, Experiment 1 (day group, Test 1) Students 33 300 .00 .01 .01
M&E, Experiment 1 (day group, Test 2) Students 33 300 .00 .00 .01
M&E, Experiment 1 (week group, Test 1) Students 31 300 .00 .01 .01
M&E, Experiment 1 (week group, Test 2) Students 31 300 .00 .01 .01
M&E, Experiment 2 (day group, Test 1) Students 41 300 .00 .00 .01
M&E, Experiment 2 (day group, Test 2) Students 41 300 .00 .00 .02
M&E, Experiment 2 (week group, Test 1) Students 42 300 .00 .00 .01
M&E, Experiment 2 (week group, Test 2) Students 42 300 .00 .00 .02
M&E, Experiment 3 (different group, islands) Students 64 300 .00 .00 .02
M&E, Experiment 3 (different group, musicians) Students 64 300 .01 .00 .02
M&E, Experiment 3 (related group, celebrities) Students 68 300 .00 .00 .02
M&E, Experiment 3 (related group, movies) Students 68 300 .00 .00 .02
M&E, Experiment 4 (names) Students 87 300 .00 .00 .02
M&E, Experiment 4 (pictures) Students 87 300 .00 .00 .02
Michalkiewicz et al. (2018) Students 92 300 .00 .00 .04
Pohl (2017), Experiment 2 Students 191 66 .00 .01 .03
Pohl et al. (2017), Experiment 1 Students 118 300 .00 .00 .01
Pohl et al. (2017), Experiment 2 Students 30 300 .00 .00 .03
Pohl et al. (2013) Students 60 105 .00 .01 .02

Note. See Table 2. M&E = Michalkiewicz and Erdfelder (2016); a = recognition validity; b = knowledge validity; r =
probability of relying on recognition.
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likely. Another source of substantive divergences are differences in
distributional assumptions—normal on probit scale versus beta
distribution—as shown by the RMSE of .036 between PP-LT-NC
and PP-B.
The most noticeable divergence with other methods occurred for

NP-Bayes, both within the no-pooling methods and across all
methods (RMSEs between .09 and .11). Additionally, NP-Bayes
was the only methodwhere the pattern of divergences systematically
deviated from the main diagonal. Specifically, when NP-Bayes is
shown on the x-axis in Figure 4 (sixth column), we see an s-shaped
relationship with all other methods such that the NP-Bayes estimate
is less extreme (i.e., pushed away from the boundary toward .50).
We attribute this consistent pattern to the increased influence of the
prior for this method. Specifically, for NP-Bayes, we employed
independent flat priors on the parameter range from 0 to 1 for all
parameters at the participant level; this assumption magnified the
influence of the prior distribution on the posterior estimate at the
group level. This pattern of results contrasts with the other Bayesian

methods, where the prior is only applied once. NP-Bayes can thus be
considered generally unsuitable for parameter estimation at the
group level, and we will not consider it any further.

One further pattern that emerged was that the partial-pooling
methods show, on average, the smallest divergence across different
pooling levels. In addition to the small divergence within all partial-
pooling methods, the partial-pooling methods also showed small
divergence with complete-pooling MLE—the most traditional
method—with RMSEs< .05. Likewise, the partial-pooling methods
showed comparatively small divergence with NP-MLE and NP-
NPB, with RMSEs between .054 and .065. Given that partial-
pooling is a hybrid between complete-pooling and no-pooling, such
a result is perhaps unsurprising and, at the same time, reassuring.

To investigate whether the value of the parameter estimates can be
used for predicting divergence, Figure 4 shows a generalized linear
additive model (GAM, in red; Baayen et al., 2017) predicting one
estimate from the value of the other estimate. A GAM is a flexible
regression model that can account for a nonlinear relationship using

Table 8
Overview of Implicit Attitude Tasks Data Sets for the Quad and ReAL Model

Quad model Mean absolute deviation

Data set Population N T AC1 AC2 D G OB

Beer et al. (2008) Students 16 381 .01 .02 .01 .01 .14
Calanchini et al. (2013) Students 236 120 .02 .02 .02 .02 .10
Calanchini et al. (2014), Experiment 1a (Asian-White) Students 168 144 .02 .02 .01 .01 .18
Calanchini et al. (2014), Experiment 1a (Black–White) Students 168 144 .02 .01 .01 .02 .12
Calanchini et al. (2014), Experiment 1b (Black–White) Students 49 120 .02 .01 .01 .03 .17
Calanchini et al. (2014), Experiment 1b (flower-insect) Students 49 120 .01 .02 .02 .02 .06
Calanchini et al. (2014), Experiment 1c (flower-insect) Students 56 120 .02 .02 .01 .02 .15
Calanchini et al. (2014), Experiment 1c (threat
stereotype)

Students 56 144 .01 .02 .01 .02 .08

Calanchini et al. (2014), Experiment 2a (Black–White) Other 200 120 .03 .03 .02 .02 .12
Calanchini et al. (2014), Experiment 2a (skin tone) Other 200 120 .03 .02 .01 .02 .11
Calanchini et al. (2014), Experiment 2b (sexuality) Other 200 120 .03 .02 .01 .02 .28
Calanchini et al. (2014), Experiment 2a (disability) Other 200 120 .03 .03 .02 .02 .25
Calanchini et al. (2014), Experiment 2c (age) Other 200 120 .02 .02 .01 .03 .04
Calanchini et al. (2014), Experiment 2c (gender
stereotype)

Other 200 120 .02 .03 .01 .01 .11

Gonsalkorale et al. (2011) Other 72 120 .02 .01 .01 .02 .07
Jin et al. (2016), Experiment 1 Students 117 120 .01 .01 .01 .02 .15
Jin et al. (2016), Experiment 2 Students 52 120 .01 .01 .01 .02 .08
Lueke and Gibson (2015; age) Students 71 80 .02 .03 .01 .02 .18
Lueke and Gibson (2015; race) Students 72 80 .02 .02 .01 .02 .10
Wrzus et al. (2017; happy–unhappy) Students 563 160 .03 .02 .02 .03 .18
Wrzus et al. (2017; number–letter) Students 564 160 .01 .01 .01 .02 .06

ReAL model Mean absolute deviation

Data set Population N T A1 A2 L1 L2 L3 L4 Re

Koranyi and Meissner (2015) Students 154 320 .01 .01 .01 .02 .01 .01 .03
Meissner and Rothermund (2013), Experiment 1–3 Students 160 320 .01 .01 .01 .01 .01 .01 .05
Meissner and Rothermund (2013), Experiment 4 Students 40 320 .01 .00 .02 .01 .01 .01 .05
Meissner and Rothermund (2013), Experiment 5 Students 40 320 .01 .01 .01 .01 .01 .02 .02
Meissner and Rothermund (2013), Experiment 6 Students 77 320 .01 .01 .01 .01 .01 .01 .03
Meissner and Rothermund (2013), Experiment 7 Students 85 320 .01 .01 .01 .01 .01 .01 .03
Meissner and Rothermund (2015), Experiment 1 Students 80 320 .01 .01 .01 .01 .01 .01 .04
Meissner and Rothermund (2015), Experiment 2 Students 77 384 .01 .01 .01 .01 .01 .01 .02
Van Dessel et al. (2017) Students 40 189 .10 .09 .01 .02 .01 .00 .31

Note. See Table 2. For the Quad model: AC1 = activated association between one target group and negative evaluations; AC2 = activated association
between the other target group and positive evaluations; D = detection of correct responses; G = guessing; OB = overcoming biased associations. For the
ReAL model: A1, A2 = evaluative associations of the target categories; L1, L2, L3, L4 = label-based identification of the correct response for the target
categories (L1, L2) and the attribute categories (L3, L4); Re = recoding.
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a thin-plate regression spline. Overall, we did not find any effects
other than the predicted relationship along the main diagonal, with
two exceptions already discussed. First, for NP-Bayes there was an
s-shaped relationship (column 6). Second, estimates from the pair-
clustering model (for which SAI does not hold) again produce
large divergences. This can, for example, be seen in the first column
as a dip at the right boundary driven by the blue pair-clustering
estimates.
Cases With Large Divergence. Across all pairs (excluding the

pairs involving NP-Bayes, but including the pair-clustering model),
19.6% of all absolute deviations were larger than .05, 9.3% were
larger than .10, and 1.8% were larger than .25.14

We next considered the worst cases—the single largest absolute
deviation for each of the 28 methods pairs. The largest worst case
appears between CP-MLE and NP-PB with an absolute deviation of
.97. The smallest worst case appears between PP-LT-C and PP-LT-
NC with an absolute deviation of 0.26. In line with the results
reported above, the pair-clustering model (with singletons excluded
from analyses) features prominently among the worst cases (for 11
method pairs), but several worst cases involve models for which SAI
holds, for example, the prospective memory model (seven method
pairs), the ReAL model (three method pairs) and the Quad model
(three method pairs). Furthermore, worst cases from the pair-
clustering model are not necessarily larger than worst cases from
other models. For example, both the largest and smallest worst case
comes from the pair-clustering model and only two of the nine worst
cases (all larger than .8) are from the pair-clustering model (the other
seven are from the prospective memory model).
To summarize, despite these individual cases with large

divergences, the set of all pairwise comparisons shown in
Figure 4 is overall reassuring. We found large agreement between
methods, and there was no clear or consistent bias (with the
exception of NP-Bayes). Furthermore, the partial-pooling methods
showed comparatively large agreement with all other methods.
However, for each pair, we also saw at least a few data points for
which the divergence is considerable. Even for the two methods
with the strongest agreement, PP-LT-C and PP-LT-NC, we found
divergences larger than .20 (even after excluding the pair-clustering

model). In addition, even though certain models and data sets were
more likely to show large divergence, nonnegligible divergence
appeared for all models. In the next step, we will test the prediction
of perfect agreement derived above.

Part 2: Testing the Prediction of Perfect Agreement

We predict perfect agreement between two estimation method
pairs for group-level parameters—that is, a divergence of zero—if
(a) a model holds for each participant (possibly with different
parameters), (b) the correlations between parameters on the same
branch approach zero, and (c) the SE approaches zero (details shown
in Appendix B). Only with our large data set, we can identify
empirical conditions where (b) and (c) hold. If there is perfect
agreement betweenmethods in these cases, then this is in line with the
assumption that (a) holds, too. By contrast, if the prediction of perfect
agreement would fail in these cases, then this would be in conflict
with assumption (a). Our multiverse meta-analysis thus offers the
opportunity to provide an empirical test of a central assumption of the
MPT models class. To provide a compact test of the prediction, we
focus on the five selected pairs of reference and comparison methods
(the results are qualitatively the same with all comparison methods
and can be found in the additional online material available at OSF:
https://osf.io/waen6/).

First, we tested the prediction by looking at the absolute
deviations in a descriptive manner by binning the data. The results
are shown in the top row of Figure 5. In the lower left corner of each
panel, the SE and correlations both approach zero. We predict that
for these cases, the mean absolute deviation should also be close
to zero. As can be seen, this held for most of the method pairs,
as indicated by a green- or yellow-colored square in the leftmost
corner. However, most empirical data sets had SEs and correlations
notably larger than zero; and the descriptive analysis alone does not
seem to permit a final judgment for our prediction.

Table 9
Overview of Process-Dissociation Data Sets for the Process-Dissociation (PD) Model

PD model Mean absolute deviation

Data set Population N K a r

Bodner et al. (2000), Experiment 2 Students 30 80 .01 .02
Bodner et al. (2000), Experiment 4 Students 28 80 .01 .02
Caldwell and Masson (2001), Experiment 1 Older adults and students 60 48 .01 .01
Caldwell and Masson (2001), Experiment 2 Students 28 144 .01 .00
Rouder et al. (2008), Experiment 1 Students 66 96 .01 .06
Rouder et al. (2008), Experiment 2 Students 44 32 .02 .03
Stahl et al. (2015), Experiment 1 Students 181 211 .00 .02

Extended PD model Mean absolute deviation

Data set Population N K a rE rI

Klauer et al. (2015), Experiment 1 Students 40 287 .05 .05 .14
Klauer et al. (2015), Experiment 3 Students 40 335 .07 .07 .13
Klauer et al. (2015), Experiment 5 Students 162 694 .03 .11 .11

Note. See Table 2. a = automatic processes; r = controlled processes; rE = controlled processes under exclusion
conditions; rI = controlled processes under inclusion conditions.

14 When excluding the pairs involving NP-Bayes and excluding the pair-
clustering model, 15.2% of all absolute deviations were larger than .05, 6.7%
were larger than .10, and 1.0% were larger than .25.
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We therefore also performed a second, model-based analysis to
test the prediction. Specifically, we used a GAM to predict the
absolute deviation for each method pair using a bivariate tensor
smooth over both the correlation and the SE (Baayen et al., 2017).

To constrain the model prediction to the positive range, we used
a gamma distribution with a log link as the conditional distribution
of the absolute deviation. Results are shown in the bottom row of
Figure 5. In the area of interest where both the SE and the

Figure 4
Parameter Divergence Across All Methods

Note. Each data point shows the two estimates for one parameter across two methods. Grey circles show estimates from models which are
structural-aggregation invariant, whereas blue triangles show estimates from the pair-clustering (PC) model for which structural-aggregation
invariance does not hold. Data points are plotted semitransparently so that areas with more points appear darker. The value in the lower right
corner of each panel gives the RMSE of the estimates for the two methods across all pairs, whereas the value in the upper left corner gives the
RMSE after excluding the PC model. The red line shows the predicted relationship between both estimates from a generalized additive model
using a thin-plate regression spline (using all data points shown). RMSE = root-mean-squared error; CP-MLE = complete-pooling, maximum
likelihood estimation; CP-Bayes= complete-pooling, Bayesian parameter estimation; NP-MLE = no-pooling, maximum likelihood estimation;
NP-PB = no-pooling, parametric bootstrap; NP-NPB = no-pooling, nonparametric bootstrap; NP-Bayes = no-pooling, Bayesian parameter
estimation; PP-B = beta-MPT approach; PP-LT-NC = partial-pooling, latent-trait without correlation parameters; PP-LT-C = partial-pooling,
latent-trait with correlation parameters; MPT = multinomial processing tree. See the online article for the color version of this figure.
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correlations are zero, the GAM predictions and associated 95% CIs
are very small, with the upper bounds of the CIs< .042. Note that the
GAM predictions are solely data-informed (i.e., semiparametric);
the model does not “know” that we are interested in this specific
parameter region. These results therefore further support the
prediction of perfect agreement.
Taken together, the prediction of perfect agreement appeared to

hold. Across all considered method pairs, the pattern of observed

absolute deviations supports—across methods, models, and data
sets—the assumption that the considered MPT models hold
approximately for each participant they were applied to. This
result provides an important empirical validation of the assumptions
underlying MPT model applications in psychology.

In the next analysis part, we will aim to identify moderators
that might explain the degree of absolute divergence in cases of
parameter correlations and SEs larger than zero.

Figure 5
Test of Prediction of Perfect Agreement
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Note. For each combination of reference (“R:”) and comparison method (“C:”), each panel shows
the mean absolute deviation (Absol. dev.; top row) and the predicted mean absolute deviation from a
generalized additive model using a bivariate tensor smooth (bottom row) as a function of the average
SE on the x-axis and the maximum parameter correlations on the y-axis. The absolute deviation is
indicated with a color scale such that green indicates a mean absolute deviation between 0 and .01. For
the top panel, data are binned in bins of size .02 (x-axis) and .025 (y-axis), reflecting the different
observed variable ranges. CP-MLE= complete-pooling, maximum likelihood estimation; PP-LT-C=
partial-pooling, latent-trait with correlation parameters; NP-MLE = no-pooling, maximum likelihood
estimation; PP-B = beta-MPT approach; SE = standard error; MPT = multinomial processing tree.
See the online article for the color version of this figure.
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Part 3: Sources of Divergence

In Part 1 (see Figure 4), we used the RMSE as our measure
of divergence between two methods. In Part 3, we attempt to reduce
the RMSE by including further information. To do so, we predict the
absolute deviation between the estimates of two methods using
linear regression. Note that the estimate of the residual standard
deviation of such a regression model, which is a measure of model
misfit, is equal to the RMSE. In other words, in this part, we test
whether adding additional predictors to a regression model
predicting the absolute deviation reduces the RMSE.
We started with a baseline model including only the absolute

deviation between two methods (i.e., a regression model with only
an intercept). The mean absolute deviations for the selected method
pairs are shown in Figure 6. For example, for the pair of CP-MLE
and NP-MLE, the observed mean absolute deviation is .032. Based
on the value from a CP-MLE estimate, we predict that the NP-MLE
estimate will be the same value ±.032.15 Table 10 shows the
RMSEs for these baseline models (in the row labeled “x̄ [baseline]
(1)”), which correspond to the mean absolute deviations given in
Figure 6.16 Our next question was whether we can reduce the
RMSEs of the baseline models by adding the moderators described
above.17

Univariate Analyses: Model-Dependent Moderators

We first considered the model-dependent moderators. These
represent idiosyncratic aspects of the set of models considered here
and therefore do not allow generalization to other MPT models. In
Table 10, rows two (“Model (8)”) to row five (“Data set (145–147)”)
show the RMSEs after adding the corresponding predictors to the
baseline model. In line with our earlier observation (see Part 1), we
found the most substantial reduction in RMSE for the MPT model
parameter (row five). That is, the MPT model parameter explains, to
a substantial degree, the magnitude of divergence between methods.
The reduction in RMSE for the two related moderators, model and

submodel (rows three and four), was considerably smaller.
Likewise, the reduction in RMSE for data set (row six) was also
noticeably smaller. Taken together, these results suggest that the
MPT model parameter had the largest influence on predicting the
absolute deviation between two methods, compared to the other
model-dependent moderators. To foreshadow the following results,
none of the model-independent moderators alone could reduce the
RMSE to a similar degree. Thus, we consider the reduction in RMSE
provided by model parameter the benchmark for the remaining
moderators. Note, however, that with values between .027 and .037
the RMSEs are nonnegligible even when accounting for the MPT
model parameter.

Figure 6
Distribution of Absolute Deviation Across Selected Method Pairs
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Note. For each combination of reference method (“R:”) and comparison
method (on x-axis), the plot shows the distribution of individual absolute
deviation (Abs. deviation) values as violin plots. The boxplot in the
background shows the 25% quantile, the 50% quantile (i.e., the median), and
the 75% quantile. The solid point shows themeanwhich are (from left to right)
.032, .019, .027, .032, and .025. Given the highly asymmetric distribution, the
mean is similar to the 75% quantile in most cases. CP-MLE = complete-
pooling, maximum likelihood estimation; PP-LT-C = partial-pooling, latent-
trait with correlation parameters; NP-MLE= no-pooling,maximum likelihood
estimation; PP-B = beta-MPT approach; MPT =multinomial processing tree.

Table 10
RMSE for the Baseline Model and the Models With Categorical
Moderators for Selected Method Pairs

Predictor in the
regression model

CP-MLE PP-LT-C

NP-MLE PP-B PP-LT-C NP-MLE PP-B

x̄ [baseline] (1) .050 .035 .039 .049 .035
Model (8) .049 .034 .038 .047 .034
Submodel (12) .047 .033 .037 .046 .034
Parameter (49) .037 .027 .032 .036 .030
Data set (145–147) .047 .030 .037 .046 .031
Population (5) .050 .035 .038 .048 .035
Goal (2) .050 .035 .039 .049 .035

Note. The two header rows indicate the combination of reference method
and comparison method. Values in parentheses in the first column are the
number of levels for the corresponding categorical moderator (= number
of coefficients of the linear model predicting the absolute deviation
including the intercept). For data set, the number of levels differs
somewhat across method pair as in some cases a method failed for a
specific data set, in which case no estimates for this method were available
for this data set. RMSE = root-mean-squared error; CP-MLE = complete-
pooling, maximum likelihood estimation; PP-LT-C = partial-pooling,
latent-trait with correlation parameters; NP-MLE = no-pooling, maximum
likelihood estimation; PP-B = beta-MPT approach; MPT = multinomial
processing tree.

15 As we predict the absolute deviation, this prediction generally holds for
both directions (i.e., does not depend on which of the two methods is
designated as reference or comparison method), unless the independent
variables are specific to one of the methods (e.g., value of parameter estimate
for reference method in Figure 7). This predicted absolute deviation can be
understood as creating a symmetric uncertainty band around the estimates of
one method in which the estimates of the other method is expected to be. The
smaller the predicted absolute deviation between two methods, the better the
prediction. Thus, the uncertainty band would also be ±.032 if we were to
predict the CP-MLE estimates from the NP-MLE.

16 Because we do not make point predictions but consider the uncer-
tainty of the predictions, the baseline RMSEs in Table 10 are lower
than the ones in Figure 4 (upper left corner). For example, for the pair
of CP-MLE and NP-MLE, the RMSE is reduced to .050 (compared to .061
in Figure 4).

17 To simplify comparison with the multivariate results presented later, all
results presented in this section are based on only those observations for
which we have values for all potential moderators (e.g., excluding all
observations from data sets for which the latent trait partial-pooling method
failed as this method provided the values of the parameter trade-offs
moderator). This approach reduces the total number of observations across
considered pairs by 5.8% compared to the number of data points in Figure 4.
Note that all results presented in this section also exclude the observations
from the pair-clustering model for which structural aggregation invariance is
violated.

22 SINGMANN ET AL.



Univariate Analyses: Model-Independent Moderators

Next, we examined the model-independent moderators that,
in principle, allow generalization beyond the set of MPT models
considered here. The twomodel-independent categoricalmoderators—
population of participants and scientific goal—showed no reduction
in RMSE compared to the baseline model (Table 10).

We then considered the model-independent continuous mod-
erators; results are shown in Figures 7 and 8. Each panel shows the
relationship between the absolute deviation for one method pair
and one moderator. The blue line and number show the linear
relationship between the moderator and the absolute deviation (in
some cases after a nonlinear transformation of the moderator
described in the x-axis label) along with the corresponding RMSE;

Figure 7
Univariate Relationship of Continuous Model-Independent Moderators With Absolute Deviation (Part 1)

Note. Each column shows one pair of reference method (“R:”) and comparison method (“C:”). The y-axis depicts the
absolute deviation (Abs. deviation) between the two estimation methods indicated in the header. The x-axis shows the
value on one of the considered moderators. Data points are plotted semitransparently so that areas with more points appear
darker. The blue line shows the linear (in the case of the value of the parameter estimates, the quadratic) relationship
between the moderator and the absolute deviation and the blue number shows the corresponding RMSE. The red line
shows the nonlinear relationship between based on a generalized additive model using a thin-plate regression spline and the
red number the corresponding RMSE. To simplify comparisons, the RMSE of the baseline model and the model including
the MPT parameter are given in the figure header. RMSE = root-mean-squared error; CP-MLE = complete-pooling,
maximum likelihood estimation; PP-LT-C = partial-pooling, latent-trait with correlation parameters; NP-MLE = no-
pooling, maximum likelihood estimation; PP-B = beta-MPT approach; SE = standard error; MPT = multinomial
processing tree. See the online article for the color version of this figure.
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the red line and number show a flexible nonlinear relationship based
on a GAM along with the corresponding RMSE. For comparison,
we show the RMSE for model parameter and baseline in the
figure header. As mentioned above, no single model-independent
continuous moderator achieved the same reduction in RMSE as
MPT model parameter, neither with a linear nor a nonlinear
relationship.
The first two rows of Figure 7 show the two potential moderators

already considered in Part 2: the SE, and the across-participant
correlations of the parameter with other parameters on the same
branch. In line with the results described earlier, we found that
including SE substantially reduces RMSE compared to the baseline
model (first row in Figure 7). This is true for all but the PP-LT-C and
PP-B method pair, for which the RMSE reduction is comparatively
small. The relationship is such that within each panel, with the SE at
the minimum, the predicted absolute deviation is around 0, and with
the SE at the maximum, predicted deviation is between .08 and .18.

In contrast to the SE, the parameter correlations (second row)
showed essentially no univariate relationships with absolute
deviation; the RMSEs were similar to those of the baseline model.

The moderators shown in row three and four of Figure 7 provided
some reduction in RMSE compared to the baseline model. The value
of the parameter estimate (using the value of the reference method)
showed a slight u-shaped relationship, with larger predicted absolute
deviations for small and large values (row three). The individual
variability (SD), one of two measures of individual differences,
showed a positive relationship with absolute deviation (row four).
For this moderator, we observed an interesting pattern with respect
to reduction in RMSE: For all pairs but PP-LT-C and PP-B, the
reduction is only small; by contrast, for the PP-LT-C and PP-B pair,
the reduction is rather substantial. In fact, for this method pair, SD
provides an even larger reduction than SE. Finally, row five shows
the relationship of absolute deviations with the second measure of
individual differences, the heterogeneity of responses. Here, we

Figure 8
Univariate Relationship of Continuous Model-Independent Moderators With Absolute Deviation (Abs.
Deviation; Part 2)

Note. For the first row, the blue line shows the linear relationship, for rows two to four the blue line shows the linear
relationship after transformation of the variable (log-transformation or log(p + 1)-transformation). For the third row,
values are winsorized at 15,000 (15k). See Figure 7 for more details. CP-MLE = complete-pooling, maximum likelihood
estimation; PP-LT-C = partial-pooling, latent-trait with correlation parameters; NP-MLE = no-pooling, maximum
likelihood estimation; PP-B= beta-MPT approach;MPT=multinomial processing tree. See the online article for the color
version of this figure.
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only found a minor reduction in RMSE for all method pairs.
For none of the moderators shown in Figure 7 did the nonlinear
relationships (in red) provide a substantial additional improvement
in RMSE.
The results in Figure 8 show the four remaining moderators for

which the reduction in RMSE compared to the baseline model is
minor at best. Row one shows the parameter trade-offs for which we
see essentially no reduction in RMSE compared to the baseline
model. Rows two and three show the relative parameter information
and the relative N, respectively, which both show a small negative
relationship (on the log scale) with absolute deviation. Row four
shows the model fit which also appears to provide no information
that would allow predicting the absolute deviation between two
methods.

Multivariate Analyses: Model-Independent Moderators

It is possible that a combination of moderators better predicts the
absolute deviation between two methods than any single moderator
alone. Therefore, we next considered different multiple regression
models in which we entered the moderators as additive main effects.
The RMSE results are shown in Table 11 (section “without
interactions”). For comparison, the “parameter” model (with the
largest overall reduction in RMSE so far), and the model with only
SE (the model-independent moderator with the largest reduction in
RMSE so far), are also shown.
The “all” model includes additive main effects of all model-

independent moderators considered. As can be seen, this model
performed similar to the “parameter” model and did not lead to a
much larger reduction for most method pairs.
The next question was whether we need all the continuous model-

independent moderators to achieve an RMSE similar to the
“parameter” model, or whether a subset of relevant moderators

suffices. To investigate this question, we estimated all possible
multiple regressions containing either only two or only three
moderators. Table 11 shows, in rows “best 2” and “best 3,”
respectively, the RMSE for the model with the lowest (i.e., best)
RMSE among all these models for each method pair. Results show
that a model with only the two or three best moderators performed
similar to the model with all moderators. Importantly, we found
that some moderators consistently appeared in the set of the two
best or three best moderators across method pairs. Specifically, a
parsimonious model with an RMSE that is comparable to the “all”
model is one that includes SE, the value of the estimate (linear and
quadratic), and SD.

Figure 9 shows the unstandardized multiple regression coefficients
for the model with SE, parameter value, and SD across the method
pairs considered here. The estimates of the regression coefficients
were generally in agreement, with the exception of SE, which
showed noticeable variability across method pairs. Larger SEs were
associated with larger absolute deviation, with a mean estimate of
around .50. This means that an SE that is .10 larger is associated with
an absolute deviation that is on average approximately .05 larger, if all
other predictors remain constant. To simplify interpretation of the
coefficients relating to the parameter value, we subtracted .50 from
the value before including them in the model. We found a slightly
negative linear and clearly positive quadratic relationship indicating
that the model predicts larger absolute deviations at the boundary of
the parameter space (i.e., near 0 and, to a smaller degree, near 1). For
example, if we use themean estimates of the coefficients, compared to
a parameter value of .50, a parameter value of .10 (i.e., a parameter
that is .40 smaller) is associated with an absolute deviation that is on
average −0.40 × −0.019 + (−0.40)2 × 0.16 = 0.03 larger, if all other
predictors remain constant. Finally, larger individual variability (SD)
further increased the predicted absolute deviation with a regression
coefficient of around .01–.02.

Table 11
RMSE for the Multiple Regression Models Predicting Absolute Deviation

Predictors in the model

CP-MLE PP-LT-C

NP-MLE PP-B PP-LT-C NP-MLE PP-B

Parameter (53) .037 .027 .032 .036 .030
SE .041 .031 .032 .044 .033
Without interactions
All (11) .037 .027 .029 .039 .027
Best 2 (4) .039 .029 .031 .041 .030
Best 3 (5) .038 .028 .030 .040 .029
SE, value, SD (5) .039 .029 .030 .041 .029

With two-way interactions
All (55) .032 .023 .026 .033 .023
RAMP (19–29) .033 .023 .027 .034 .023

Note. The two header rows indicate the combination of reference method and comparison method. Values
in parentheses after the model name in the first column are the number of regression coefficients (including
the intercept). To simplify comparison, the parameter column is the same as in Table 10 and the SE column
the same as in Figure 7. Best 2 and best 3 show the lowest RMSE among all possible models with only two
or three moderators, respectively. The RAMP models are based on the method of Hao et al. (2018) and differ
in their numbers of parameters. For models involving the value of the estimate of the reference method (e.g.,
all main), we included both a linear and quadratic coefficient. RMSE = root-mean-squared error; CP-MLE =
complete-pooling, maximum likelihood estimation; PP-LT-C = partial-pooling, latent-trait with correlation
parameters; NP-MLE = no-pooling, maximum likelihood estimation; PP-B = beta-MPT approach; RAMP =
regularization algorithm under marginality principle; MPT = multinomial processing tree.
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In a final step, we considered whether adding two-way
interactions among the model-independent moderators can further
improve the predictive abilities of the multiple regression models
(see Table 11, section “with two-way interactions”). First, we
considered a model with all two-way interactions among the nine
moderators considered here (“All”). As expected, compared to the
“parameter” model, this model reduced the RMSE for most of
the method pairs. Next, we asked: Is there a restricted subset of
interactions that is mainly responsible for the improved predictive
power? To do so we used a penalized model selection approach
among all possible two-way interactions (“RAMP”).18 We found
no consistent set of interactions across method pairs that could
improve performance noticeably. Importantly, even with interac-
tions included, a nonnegligible absolute deviation (ranging from
.023 to .034 across pairs) remained unexplained.

Discussion

Applying a cognitive model requires the researcher to make a
number of decisions. Two important decisions concern the statistical
framework and level of pooling. Ideally, parameter estimates from
cognitive models are robust across such modeling decisions. To
examine how choice of estimation method affects modeling-based
results, we conducted a multiverse meta-analysis in which we re-
estimated empirical data from 164 published data sets that applied
one of nine different cognitive MPT models.
Prior to exploring empirical divergence between results in these

data sets, we identified conditions under which we would expect
divergence to occur based on statistical theory. Our predictions for
these conditions were confirmed. First, for the pair-clustering model
for which one parameter occurs more than once in some of the
branches of the model (i.e., for which structural-aggregation

invariance does not hold), divergence was noticeably larger than
for the other models included, for which structural-aggregation
invariance holds. A researcher should check the structural-aggregation
invariance property of their model in advance. If it does not hold, they
should expect a larger amount of divergence and ideally explore the
robustness of their results across themultiverse of estimationmethods.
Second, for models for which structural-aggregation invariance holds,
the divergence between methods was near zero for cases in which all
parameter correlations on the same branch were approximately zero
and the standard error was approximately zero. This result is in line
with the assumption that—across the multiverse of methods, models,
and data sets—the considered MPT models hold for each participant
they were applied to, an assumption common to all MPT applications.
This result provides an important validation of MPT applications in
psychological research.

These preconditions—zero correlations and zero standard error—
occur only rarely for a specific empirical data set. We therefore
asked, how large is the effect of parameter estimation method on
parameter estimates in empirical data? Overall, our meta-analysis
established a reassuringly high convergence across methods, with
partial-pooling parameter estimates showing the most consistent

Figure 9
Multiple Regression Coefficients Predicting Absolute Deviation From Three Best
Moderators

Note. For ease of interpretation, we subtracted .50 from the parameter value before entering it
into the regression model. The mean (median, not shown) estimates are (from top to bottom):
−0.011 (−0.010), 0.54 (0.52),−0.019 (−0.015), 0.16 (0.14), 0.016 (0.012). CP-MLE= complete-
pooling, maximum likelihood estimation; PP-LT-C = partial-pooling, latent-trait with correlation
parameters; NP-MLE = no-pooling, maximum likelihood estimation; PP-B = beta-MPT
approach; SE = standard error; MPT = multinomial processing tree. See the online article for the
color version of this figure.

18 We used the regularization algorithm under marginality principle
(RAMP; Hao et al., 2018) approach which uses a LASSO penalty to select
among all possible main effects and two way interactions while attempting to
minimize the total number of nonzero coefficients. The RMSE of the
resulting model (“RAMP”) is very similar to the RMSE of the model with all
interactions. However, the number of parameters and included interactions
did differ quite dramatically across method pairs. Of the possible 45
interactions (RAMP also considers quadratic terms for each of the nine
moderators), one appears in all five method pairs (quadratic effect of value),
five appear in four pairs, seven appear in three pairs, 10 appear in two pairs,
10 appear in one pair only, and 12 interactions appear in none of the pairs.
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results when compared with other methods. Nonetheless, there are
single cases of high divergence even for such high-agreement
method pairs. Although some model parameters are more likely to
show high divergence (as we will discuss in more detail below),
divergence can, in principle, occur for every MPT model. That is,
despite our finding that agreement between methods is generally
high, the possibility always remains that any given data set is an
exceptional case that exhibit considerable divergence between
estimation methods.
With regard to the estimation methods for MPT models we

therefore propose two different recommendations; one pragmatic
recommendation, and one for increased certainty. In the vast majority
of cases—especially when effects of theoretical interest are not
small—a pragmatic choice is to use only one method. Our results
show that in this case, a partial-poolingmethod is the safest bet.Which
partial-pooling method to use cannot be answered with our empirical
approach, but we may nevertheless use our results as a starting point
for some speculations. The partial-pooling methods without correla-
tions (PP-B, PP-LT-NC) show smaller divergences with all other
methods than the partial-pooling method with correlations; however,
most data sets show nonzero correlations (Appendix C), which is also

a plausible assumption about the underlying data-generating process.
Consequently, using PP-LT-C seems like a sensible first choice (but
see Groß & Pachur, 2020, and discussion below).

The downside of this pragmatic approach is that it does not allow
assessing the uncertainty of one's results that would result from
choosing a different method. If researchers want extra certainty in their
results and wish to know how method-dependent their results are, a
multiverse analysis using the MPTmultiverse package (Singmann
et al., 2020) is a good choice. Occasions for requiring this extra
certainty are, for example, when developing newmodels, when effects
of theoretical interest are small, or when the parameter of interest is
known to show large divergence (see Figure 10 discussed below).
Such a multiverse analysis should be limited to the set of methods that
are sensible for a given data set (and model); for instance, no-pooling
methods should not be included if the number of observations per
participant is low (no-pooling Bayes should generally be avoided).

In our analysis, we did not only document divergence, but also
aimed at identifying the sources of divergence. To do so, we
included several moderators that might be relevant for the choice of
estimation method based on theoretical grounds and simulation
studies. These moderators included properties that are specific to

Figure 10
Absolute Deviations Across MPT Submodels and Their Core Parameters

Note. Each x-axis tick shows the distribution of individual absolute deviation (Abs. deviation) scores for
each core model parameter (see Table 1) for the complete-pooling MLE and partial-pooling latent-trait
with correlations method pair. We omitted the second PD variant (PDE), as it only contained data from
three studies. The distribution is shown as violin plots. The boxplot in the background shows the 25%
quantile, the 50% quantile (i.e., the median), and the 75% quantile. The solid point shows the mean.
MPT=multinomial processing tree; 2HTSM= two-high-threshold model of source monitoring; c2HT=
confidence-rating two-high-threshold; PC = pair-clustering; PD = process-dissociation; PM =
prospectivememory;HB= hindsight-bias; RM= r-model; ReAL=ReALmodel; QUAD=Quadmodel.
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MPT models and their tree structure (e.g., the MPT model, model
parameter, or the relative information available to estimate a
parameter), as well as aspects that are universal to parameter
estimation of cognitive models (e.g., the magnitude of interindivid-
ual differences, or the standard error of the estimate). Somewhat
surprisingly, divergence was not well explained by most of these
moderators—neither in univariate nor multivariate regression
models. For example, neither parameter correlations, nor parameter
trade-offs, nor heterogeneity of the observed response frequencies—
aspects that are differently captured by the different estimation
methods—explained substantial divergence between the methods.
The absence of effects cannot be explained by a restriction of range
of these variables (see Figures 7 and 8). It appears that, contrary to
earlier theoretical considerations (e.g., J. B. Smith & Batchelder,
2008), these variables are not major sources of divergence between
parameter estimates for empirical data. The only way for these
variables to have a substantial effect on divergence would be in
terms of three-way interactions (e.g., heterogeneity might affect
divergence only when both SE and correlations are high),
interactions of even higher orders, or as effects that are specific
to the MPT model parameter. An exploration of such higher order
effects is beyond the scope of the present work.
Among the moderators that did explain divergence between

estimation methods to a noticeable degree, the MPT model
parameter was the best single predictor. This result implies that
researchers should thoroughly familiarize themselves with the
respective MPT model and check if the parameters of main interest
show large divergence across estimation methods. In Figure 10, we
provide an exemplary overview of the divergence between complete-
poolingMLE (themost traditional method) and partial-pooling latent-
trait with correlations (the most advanced method) for the models’
core parameters. As can be seen, the pair-clustering (PC) model,
which is not structurally aggregation invariant, appears to be an
exceptional case; here, mean divergence for the c and r parameters is
high, and divergence spans across a large range (up to .50). However,
among other models for which structural-aggregation invariance
holds, divergence for selected parameters can also be large (e.g., up to
.32 for the OB parameter of the Quad model).
The MPT model parameter is the most idiosyncratic aspect of the

model and carries no general information that is universal for all
MPT models. We therefore aimed to find model-independent
moderators that provide a similar reduction in RMSE; however, no
single model-independent moderator predicted divergence to a
similar degree. In combination, three model-independent modera-
tors explained a similar amount of RMSE as the MPT model
parameter: the standard error of the estimate, the parameter value,
and the standard deviation of the individual estimates. This result
has implications for researchers, because these moderators can (to
some extent) be controlled prior to data collection. According to our
results, the most important aspect affecting divergence is the
standard error, which captures estimation uncertainty (with a higher
standard error being associated with larger divergence between
estimation methods). To reduce the standard error and associated
divergence, the researcher can make sure to collect a large amount of
data or to improve the experimental design (Heck & Erdfelder,
2019).19 Although this conclusion is not new to researchers who
apply statistical and cognitive modeling (e.g., Calanchini et al.,
2021; Meissner & Rothermund, 2013), it deserves to be reiterated
here once more.

In addition, the value of the parameter estimate showed a u-shaped
(quadratic) relationship with divergence, such that values near the
boundaries of the parameter space (i.e., 0 and 1) were associated with
larger divergences. To reduce divergence between methods, the
researcher can make adjustments to the study design to avoid
parameters near the boundaries. For example, if a parameter denotes a
recognition probability, parameter values near the boundaries 0 and 1
(indicating no recognition or perfect recognitionmemory, respectively)
can be avoided by making the recognition task easier or more difficult.

Finally, individual variability (i.e., the standard deviation of the
individual parameter estimates) appeared consistently as a predictor
of divergence across method pairs, although only with comparatively
less predictive power, and—contrary to our expectation—across all
method pairs and not only for method pairs that do (vs. do not)
account for individual variability (i.e., complete-pooling vs. other
methods). Compared to the other two moderators, individual
variability is more difficult to control by the researcher. One
possibility is to recruit homogeneous samples (e.g., with a similar-age
and educational background). However, this approach might conflict
with the research question at hand.

Yet, even when taking into account these model-independent
aspects, we found that a large part of the divergence remained
unexplained. Our analysis thus shows the importance of examining
sources of divergence in a large-scale empirical data set, in addition
to identifying and addressing these factors in simulation studies. By
using an empirical data set can we identify factors that actually
explain why some methods yield different results than others.

The Role of Priors in Bayesian Estimation

One feature that is specific to Bayesian estimation is the
requirement of a prior distribution which is updated in light of the
data, resulting in the posterior distribution. But howmuch uncertainty
regarding the parameter estimates results from the choice for the
specific priors used?

Our multiverse meta-analysis relied on the noninformative or
weakly informative priors that are typically used with these
methods (as implemented in TreeBUGS). These priors are
expected to have a limited effect on parameter estimates
(Gelman et al., 2013) and appear to be the universal choice
among researchers using MPT models. The very few exceptions
that we know of are cases that focus on hypothesis testing using
Bayes factors, which is much more dependent on the prior than
parameter estimation (Gronau et al., 2019; Heck & Wagenmakers,
2016; Sarafoglou et al., 2023). However, as exemplified in the case
of Bayesian no-pooling in our analysis, it appears that there might

19 In general, for partial-pooling methods increasing the number of
participants increases power, and therefore decreases the standard error, more
than increasing the number of observations per participant (Rouder & Haaf,
2018; Westfall et al., 2014). However, in our data, the number of participants
and the average number of observations per participant were correlated with
the value of the standard error to a similar degree (r = −.22 and r = −.31,
respectively), with the latter correlation even being somewhat larger in
magnitude. At the same time, these two indicators of the amount of data were
largely uncorrelated with each other (r = .05). This suggests that either
increasing the number of items or the number of participants (or both) could
help in decreasing the standard error for MPT models. When in doubt, we
recommend performing a brief simulation study for establishing which
aspect of the study design has a larger effect on the standard error for a given
model and situation.
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be unusual cases where noninformative priors can have a
surprisingly large effect on the group-level estimates that are
ultimately obtained.
To explore whether such exceptional cases can be expected more

frequently, we explored the degree of uncertainty that emerges when
deviating from the standard choice of priors. To this end, we re-
estimated parameters of the PP-LT-C method for three selected data
sets, each associated with a different MPT model. The models were
fit using a series of different informative priors, some of which we
consider to be quite extreme.20 We then obtained the distribution of
absolute deviations across priors by comparing the estimates of
the PP-LT-C model with informative priors to the estimates of the
PP-LT-C model with standard priors. We then compared this
distribution of deviations across priors to the distribution of absolute
deviations across methods obtained in our main analysis (e.g.,
Tables 2, 3, and 6). For each of the 11 core parameters considered, the
mean and median absolute deviations were much smaller across
priors than across methods. For 10 of the 11 core parameters, the
maximum absolute deviation was much smaller across priors than
across methods.21 Altogether, this additional analysis showed that
even when using rather extreme priors that are unlikely to be used in
practice, the effect of priors appears to be considerably smaller than
the effect of estimation method, both on average and for the
maximum absolute deviation (i.e., the worst case).

Strengths and Limitations

With a total of 164 data sets from 142 empirical experiments
(corresponding to 61% of the 232 experiments identified as eligible),
we were able to gather a large, representative body of empirical
MPT data—thanks to the effort of our scientific network and support
of fellow MPT researchers. Over and above a traditional meta-
analysis, our multiverse meta-analysis required the availability of
data at the individual level. Due to this rich individual-level
database, we were well positioned to compare the results of all
estimation methods considered, which is a major strength of our
approach.
Furthermore, our analysis considered a broad selection of MPT

models from different paradigms and different subareas of cognitive
and social psychology (e.g., memory, decision making, implicit-
attitude measurement). We also included data collected from
different populations (e.g., clinical patients, college students, older
adults). Whereas the selection encompassed a sizeable number of
applications—we included all major MPT models that see regular
use—this selection is not comprehensive, and other MPT models
and populations could also be considered. Given our broad
selection, however, it seems unlikely that models not considered
here would yield dramatically different results let alone change the
picture obtained here.
There are also limitations to our approach. For instance, although

our results inform about divergence of results from the different esti-
mation methods, they do not provide information about the accuracy
of results, as the true data-generating process remains unknown. From
our multiverse analysis alone, we cannot infer that the partial-pooling
methods, which show the highest agreement both within and across
methods, are also accurate (i.e., unbiased). For example, including
correlation parameters in a partial-pooling method (i.e., PP-LT-C)
may result in biased estimates for specific, complex MPT models
when using typical amounts of data (Groß & Pachur, 2020). We

propose that, for cognitive modeling, a joint consideration of the
results of simulation studies (to learn about important regularities) and
empirical studies (to examine if the identified regularities are relevant
for empirical data) will yield the most valuable insight. Our analysis
showed that the moderators identified in theoretical considerations
and simulation results do not explain divergence as much as expected
in empirical applications. Only an approach based on empirical data
sets allows us to gain such an insight.

Another shortcoming is that our analysis focused on parameter
estimation only and did not consider the convergence or divergence
of statistical inferences about parameters (e.g., is the parameter value
significantly or credibly larger than zero, or different from .50?) or
sets of parameters (e.g., do parameter values differ significantly or
credibly between conditions?). Due to considerable variability in our
data sets with regard to models and research questions (including
within- and between-subjects comparisons, or no comparisons at all),
examining the impact on inferences is beyond the scope of this article.
We consider this an important follow-up topic that can only be
adequately addressed in a model- or paradigm-specific fashion. As
discussed above, when interested in statistical inference, the effect of
the choice of prior distribution is likely to be larger than when only
interested in parameter estimation; here, the use of different priors
would need to be considered more systematically.

Implications for Cognitive Modeling

Our meta-analysis complements research in the field of “meta-
science”; specifically, research that examines the effect of decisions
in the research process (e.g., operationalization, data processing,
data analysis) on results (e.g., Baribault et al., 2018; Boehm, Annis,
et al., 2018; Dutilh et al., 2019; Landy et al., 2020; Starns et al.,
2019; Steegen et al., 2016). Although some of these decisions can be
arbitrary in some situations, they can nevertheless affect the results
to a substantial degree. As a consequence, the research community
has recognized the importance of documenting the impact of these
decisions on results to increase transparency and reproducibility,
and to counteract questionable research practices.

Here, we provide an example of a multiverse analysis in the field of
cognitive modeling. Cognitive modeling has become increasingly
popular and, just like regular data-analysis and statistical modeling,
involves a number of decisions. In the scarce existing literature on the
effect of cognitive-modeling decisions, teams of researchers were
asked to use their fitting routines (Boehm, Annis, et al., 2018; Dutilh
et al., 2019), and then the results between the different approaches

20 The three data sets were from the c2HT model (Jaeger et al., 2012), the
2HTSM (Bayen & Kuhlmann, 2011, Experiment 1), and the HB model
(Coolin et al., 2016). To maximize the potential effect of the prior, we selected
data sets for which the size of the data set was on the smaller side and the
absolute deviations reported above (i.e., across estimation methods) was at
least medium. Across the different runs, we changed the priors for the group-
level parameters for which the default is a standard normal distribution (μ = 0,
σ = 1) on the probit scale, which corresponds to a noninformative (uniform)
prior distribution on the probability scale.We independently manipulated both
the mean (in three steps, −1, 0, and 1) and standard deviation (in three steps,
0.33, 1, and 3) of the normal distribution resulting in a total of eight models in
addition to the variant with the default priors. For priors with σ> 1, the implied
prior on the probability scale is bimodal at the edges of the parameter space.

21 The only exception was parameter b from the HB model for which the
maximum absolute deviation across priors was .18, whereas it was .17 across
methods.
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were compared. By contrast, our work took a more systematic
approach and investigated—for the field of MPT modeling—the
effect of two important modeling decisions, which resulted in a set of
different estimation methods. In the final part of this article, we
therefore revisit our main results and speculate on how they might
contribute to the broader literature on cognitive modeling.
One of our key results was that the divergence between estimation

methods was, on average, small. This is a reassuring result for the
class of MPT models, but we recognize that this finding might not
necessarily generalize to other cognitive models, such as response
time models or models of decision making under risk. For example,
there is some evidence from decision making models whose
parameters are estimated on a largely unconstrained space (as
opposed to MPT parameters which are restricted to the range from 0
to 1) that sparse individual-level data can lead to severely inflated
no-pooling estimates (Nilsson et al., 2011). The average of such no-
pooling estimates can then diverge quite substantially from partial-
pooling estimates. Furthermore, it is well known that for certain
model classes, such as learning models, aggregation artifacts are to
be expected, so complete-pooling has to be avoided at all costs
(Estes, 1956; Evans et al., 2018). Hence, whether or not divergence
occurs between different estimation methods should be assessed for
each model class separately.
Another important set of our results was that (a) partial-pooling

struck the best balance between complete-pooling and no-pooling
and that (b) the most important model-independent predictor for
divergence was the standard error of the parameter. From the
standpoint of statistical theory, these two results seem almost trivial:
Partial-pooling was developed to strike a balance between complete-
pooling and no-pooling. And, what other than the standard error—the
statistical measure of estimation uncertainty—should mainly predict
divergence? Thus, while our results might have been expected to
some degree, their empirical confirmation provide strong evidence for
the validity of the underlying statistical theory and for the practical
usability of the considered (partial-pooling) methods. One common
problem is that methodological researchers are often more interested
in developing ever new methods, instead of extensively testing
existing methods (Heinze et al., 2022). By contrast, our study turned
out to provide an extensive real-world test of partial-poolingmethods,
which they passed with flying colors. We hope this empirical success
will encourage researchers who work with other model classes
to seriously consider using partial-pooling methods. Additionally,
our results highlight again that if the standard error of a parameter
estimate is large, then the evidence we can derive from such a result
might be severely limited.22 Researchers, check your standard errors.
Our systematic exploration of different estimation methods

provided some further insights that are likely relevant for other
model classes. As mentioned above, we found systematic differences
for partial-pooling methods that do (vs. do not) explicitly model
parameter correlations. This is one important, but often overlooked,
decision for all partial-pooling applications (for some exceptions,
see Bates et al., 2015; Groß & Pachur, 2020). Deciding on whether
or not to include correlation parameters in partial-pooling models
not only requires considering whether there likely are substantial para-
meter correlations across participants, but also considering if inclu-
ding correlation parameters might affect parameter estimates given the
number of observations. If partial-pooling becomes the de facto
standard in the field, which we view as likely, whether to explicitly

model parameter correlations needs to be addressed both empirically
and with simulation studies in a model-class specific manner.

For two of the methods which are not commonly used we
found concerning patterns of results. First, in a Bayesian no-pooling
approach, the prior seems to have considerable—and perhaps
undue—influence. Given how a Bayesian no-pooling approach
works, this is likely a general problem that cannot easily be avoided
(e.g., changing the prior does not seem to provide a straightforward
solution as long as the prior is to remain both general and proper).
Thus, a Bayesian no-pooling approach should probably be avoided
for all model classes, unless it can be shown that the problem
identified here does not occur. Second, we found that the Bayesian
complete-pooling method produced a few estimates that dramati-
cally differed from all other methods (see Figure 4, second column).
Recall that this method uses a custom MCMC sampler and is
not commonly used in cognitive-modeling applications (although
it features prominently in introductions to Bayesian cognitive
modeling, e.g., Lee&Wagenmakers, 2013). Here, we used it mainly
to complement our multiverse. It is therefore unclear whether these
few divergences amount to a serious issue in practice.

Taken together, these two concerning results suggest that if a
researcher uses an estimation method that is relatively new or not
yet well-established, we advise them to use at least a “minimal”
multiverse approach and compare the results with a well-established
method. Any noticeable divergence that might emerge should
encourage a further exploration of the differences, and how they can
be explained.

Conclusions

We examined the robustness of parameter estimation in MPT
models across nine different methods that emerge from the combi-
nation of two important modeling decisions—the level of data pooling
and the statistical framework. A reanalysis of individual-level data
from 164 published data sets involving nine popular MPT models
showed a reassuringly high convergence across methods. These
results indicate that previous parameter estimates based on one of the
considered methods would likely be retained if a different method had
been applied. Furthermore, we found that partial-pooling methods
produced the smallest divergence across methods, making them our
recommended default method. Although individual cases with non-
negligible deviations were found for all models and method pairs,
there was one major exception to the generally positive picture: esti-
mates for an MPT model for which structural-aggregation invariance
did not hold. Further analyses revealed that the best predictors for
the degree of divergence were the specific MPT model parameter
(Figure 10) and the standard error of the estimate. Other predictors
considered previously, such as parameter correlations, had limited
predictive ability. These results highlight the importance of supple-
menting simulation studies with large-scale analyses of empirical data.

Recent calls for methodological reforms have brought a number
of issues to researchers’ attention. Among these is the impact of the
decisions made throughout the data-analytic process on the final

22 In this context, large can generally be understood relative to what the
parameter estimate is to be comparedwith. For example, if we are interested if a
specific parameter estimate is larger than 0, then the value of the estimate should
be at least twice as large as the corresponding standard error. If we are interested
in comparing two parameter estimates across conditions, then their difference
should generally be much larger than the corresponding standard errors.
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outcome (Gelman & Loken, 2014; Simmons et al., 2011; Steegen et
al., 2016). The present work is a large-scale attempt to address this
issue in the context of the MPT model class—a particularly relevant
testbed given its breadth of applications and its methodological
maturity (Batchelder & Riefer, 1999; Erdfelder et al., 2009). The
positive outcome of our analyses vindicates the long-standing
efforts made by MPT modelers on matters concerning parameter
estimation and the influence of different sources of variability (e.g.,
Chechile, 1998; Hu & Batchelder, 1994; Klauer, 2006, 2010;
Matzke et al., 2015; Riefer & Batchelder, 1988, 1991; J. B. Smith &
Batchelder, 2010). More broadly, this project as a whole provides a
template for future efforts to address the challenge of “researcher
degrees of freedom” in the context of cognitive modeling.
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Appendix A

General Model Equation Structure of MPT Models

MPT models aim at explaining probabilities of observable
responses as a function of latent probabilities that represent
outcomes of underlying cognitive processes. Let us provide a formal
introduction to the MPTmodel class using the pair-clustering model
of Batchelder and Riefer (1986) shown in Figure A1 (for a more
general tutorial on MPT modeling, see Schmidt et al., 2023). The
pair-clustering model refers to a memory experiment in which
participants are asked for free recall of a list of sequentially
presented words. Some of these words are semantically related to
another word in the list (i.e., word-pair items) while others are not
(i.e., singleton items). The model aims at measuring three cognitive
process outcomes, namely, storage of a word-pair as a cluster in
memory (latent probability c), retrieval of a stored cluster from
memory (latent probability r), and successful storage and retrieval of
an unclustered single word (latent probability u). Each of the two
item types is modeled in a separate processing tree. In the general
case, MPT models include K trees with Jk response categories Ckj in
tree k, k = 1,… , K, j = 1,… , Jk, and S ≤

P
K
k=1ðJk − 1Þ parameters

θs, s = 1, … , S, each of which is an element of [0,1]. In the pair-
clustering model, we have K = 2, J1 = 4, J2 = 2, and S = 3, and the

three parameters are θ1 = c, θ2 = r and θ3 = u, respectively. The
general structure of the MPT model equation that describes how
response probabilities p(Ckj) depend on the S parameters collected in
the parameter vector θ is given by

pðCkjjθÞ =
XIkj
i=1

YS
s=1

θaskjis ð1 − θsÞbskji , (A1)

where Ikj is the number of branches that end up in category Ckjwhile
askji and bskji indicate how often a parameter θs and its complement
(1 − θs), respectively, appear on the i-th branch of category Ckj (Hu
& Batchelder, 1994). To illustrate, there is only a single branch for
category C11 of the pair clustering model, namely, the first branch in
Figure A1. This branch represents successful cluster storage with
probability θ1 = c followed by successful cluster retrieval with
probability θ2 = r. No other parameter is involved in this branch.
Hence, for the first branch, a1111 = a2111 = 1, whereas all other as111
and bs111 are zero. The askji and bskji count variables for other
branches can be derived accordingly.

Figure A1
MPT Model of Pair-Clustering

Note. C1 = word-pair Category 1; C2 = word-pair Category 2; C3 = word-pair Category 3; C4 = word-pair Category 4; S1 =
singleton Category 1; S2 =singleton Category 2; c = probability that a word-pair is stored as a cluster; r = probability that a previously
stored cluster is successfully retrieved as a cluster; u = probability that a single word is stored and retrieved; MPT = multinomial
processing tree.

(Appendices continue)
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Appendix B

Aggregation Invariance Properties and Implications for Parameter Estimates

In this appendix, we first introduce the notions of structural and
empirical aggregation invariance of MPT models and then discuss
implications of these invariance properties for divergence between
parameter estimates.

Structural and Empirical Aggregation Invariance

Equation A1 refers to a single participant with parameter vector θ.
When we assume that an MPT model holds for each participant but
participants may differ in their parameter values, the parameter
vector θ becomes a random vectorΘ, with θn being the value of this
random vector for participant n, n = 1, … , N. By implication, the
response category probabilities p(Ckj) also become random variables
P(Ckj):

PðCkjjΘÞ =
XIkj
i=1

YS
s=1

Θaskji
s ð1 − ΘsÞbskji : (B1)

As shown by Erdfelder et al. (2023), the expected frequencies
Nk · EðPðCkjjΘÞÞ predicted by anMPTmodel for categoryCkjwhen
parameters may vary between participants are easily derived when
this model satisfies the conditions of structural and empirical
aggregation invariance defined as follows:

Definition 1 (Structural Aggregation Invariance)

An MPT model is called structurally aggregation invariant (SAI),
when none of its parametersΘs (or parameter complements (1−Θs))
occurs repeatedly in any branch of the model, and if a parameter and
its complement never co-occur in the same branch.

Definition 2 (Empirical Aggregation Invariance)

We call MPT models empirically aggregation invariant (EAI),
when all parameters (or parameter complements) that co-occur in the
same branch are stochastically independent.
Based on these two definitions, it can be shown analytically that

any MPT model that satisfies the SAI and EAI properties and holds
for each individual must also hold for the category frequencies
aggregated across individuals. Moreover, the parameters of the
model for the aggregate data are just the expectations (i.e., the means
E(Θ)) of the individual parameters (cf. Erdfelder et al., 2023).
Specifically, making use of the SAI and EAI properties one can
derive the expected category frequencies for the aggregate data as
follows:

Nk · EðPðCkjjΘÞÞ=Nk · E

�XIkj
i=1

YS
s=1

Θaskji
s ð1−ΘsÞbskji

�

=Nk ·

�XIkj
i=1

YS
s=1

ðEðΘsÞÞaskjið1−EðΘsÞÞbskji
�
: (B2)

Notably, for typical applications in the MPT context, a weaker
concept of empirical aggregation invariance suffices to derive the
same result.

Definition 3 (Weak Empirical Aggregation Invariance)

We call MPT models weakly empirically aggregation invariant
(WEAI), when the covariance between any two parameters (or
parameter complements) that co-occur in the same branch is zero.

While WEAI is only a necessary and not a sufficient condition for
EAI, MPT models that are both SAI and WEAI also imply Equation
B2 under either of two conditions: (a) We consider MPT models with
no more than two parameters (or parameter complements) per branch,
such as the pair-clustering model or the process-dissociation model
discussed in this article; or (b) we consider MPT models with any
number of parameters per branch but restrict their possible distributions
to those were deviations from stochastic independence—if any—are
fully described by pairwise covariances (e.g., the multivariate normal
distribution on a probit scale). The hierarchical MPT models
considered in our multiverse analysis are all in line with the second
requirement, so that the combination of SAI according to Definition 1
and WEAI according to Definition 3 suffices to derive Equation B2.

Note, however, that the derivation of Equation B2 does not work
anymore when either SAI or WEAI or both properties are violated.
The pair-clustering model, for example, violates SAI because
parameter u and its complement (1 − u) occur repeatedly in the
branches 3–6 of the word-pair tree in Figure A1. Hence, some of the
exponents askji and bskji are larger than 1 for this model and
derivation of the last line in Equation B2 is not anymore possible.
The only way to make the pair-clustering model consistent with the
last line is to assume that (a) parameter u is a constant that does not
vary between individuals and (b) the covariance between the c and
the r parameters across individuals is zero.

Convergence of Parameter Estimates

The derivation in the previous subsection refers to the
expectations of the parameters, that is, to their true means at the
population level. However, this has direct implications for all
estimation methods of group-level parameters that are consistent. If
the sample size gets very large and the respective MPT model that
satisfies SAI and EAI holds for each participant, all these methods
must converge against the true expectations. Since all estimation
methods considered in this multiverse analysis are consistent,
divergence between group-level parameter estimates derived with
different methods should asymptotically vanish when both the
number of participants and the number of responses per
participantB1 are sufficiently large. Alternatively, we can refer to
standard errors of parameter estimates that must convergence
against zero when sample sizes and the number of responses
converge against infinity. It follows that group-level mean parameter
estimates should be identical across estimation methods if their
standard errors approach zero. Or in other words, the more precisely
we can estimate a specific MPT parameter, the lower we expect

(Appendices continue)

B1 Note that a large number of responses per participant is especially
crucial for all no-pooling methods considered in this multiverse analysis. If
the number of responses is small, no-pooling estimates (including single-
participant ML) may suffer from systematic estimation bias that does not
vanish (but rather stabilizes) when only the number of participants increases.
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divergences to be, as long as the invariance properties of a valid
MPT model hold.
Taken together, we can derive the following empirical

predictions for MPT models for which the SAI property holds.
The agreement between any pair of estimation methods considered
in our multiverse analysis should be essentially perfect (i.e., no
disagreement) as long as the correlations with other parameters
on the same branch is approximately zero and the standard error
approaches zero.

This relationship is expected to hold for any consistent
estimation method under the distribution models considered in
our multiverse analysis. Importantly, however, to derive this result
we need to assume that the corresponding model indeed holds for
each participant. However, this assumption is shared by all
methods addressed in our multiverse analysis. Were we to see
noticeable divergences from the empirical prediction, this could
be taken as evidence that this assumption does not hold to a
satisfactory degree.

Appendix C

Distribution of Parameter Correlations

0

1

2

3

0.00 0.25 0.50 0.75 1.00
Average correlation

de
ns

ity

0

1

2

3

0.00 0.25 0.50 0.75 1.00
Maximum correlation

de
ns

ity

Note. Distributions of parameter correlations across all parameters and models, as
estimated from the partial-pooling, latent-trait with correlation parameters model. In each
panel, the black dot indicates the mean. The left panel shows the distribution of average
correlations for each parameter (M = 0.21) and the right panel the distribution of maximum
correlations for each parameter (M = 0.36).
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