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Abstract
Although apoptosis, pyroptosis, and ferroptosis have been implicated in AD, none fully explains the extensive neuronal 
loss observed in AD brains. Recent evidence shows that necroptosis is abundant in AD, that necroptosis is closely linked to 
the appearance of Tau pathology, and that necroptosis markers accumulate in granulovacuolar neurodegeneration vesicles 
(GVD). We review here the neuron-specific activation of the granulovacuolar mediated neuronal-necroptosis pathway, the 
potential AD-relevant triggers upstream of this pathway, and the interaction of the necrosome with the endo-lysosomal path-
way, possibly providing links to Tau pathology. In addition, we underscore the therapeutic potential of inhibiting necroptosis 
in neurodegenerative diseases such as AD, as this presents a novel avenue for drug development targeting neuronal loss to 
preserve cognitive abilities. Such an approach seems particularly relevant when combined with amyloid-lowering drugs.

Abbreviations
AD  Alzheimer’s disease
ALS  Amyotrophic lateral sclerosis
APP  Amyloid precursor protein
ARTAG   Aging-related tau astrogliopathy
Aβ  Amyloid beta peptide
BCL-2  B cell lymphoma-2
cIAP  Cellular inhibitors of apoptosis proteins (cIAP)
DD  Death domain
DNs  Dystrophic neurites
ELN  Endo-lysosomal network
ESCRT   Endosomal sorting complexes required for 

transport
FADD  Fas-associated protein with a death domain
GVDs  Granulovacuolar degeneration
LOAD  Late onset Alzheimer’s disease
MLKL  Mixed lineage kinase
MS  Multiple sclerosis

NDDs  Neurodegenerative diseases
PCD  Programmed cell death
PD  Parkinson’s disease
pTAU   Phosphorylated Tau
RA  Rheumatoid arthritis
RHIM  RIP homotypic interaction motif
RIPK1  Receptor-interacting serine-threonine protein 

kinase 1
RIPK3  Receptor-interacting serine-threonine protein 

kinase 3
TLR  Toll-like receptor
TNF  Tumor necrosis factor
TNFR1  Tumor necrosis factor receptor 1
UPR  Unfolded protein response
UPS  Ubiquitin proteasome system
ZBP1  Z-DNA binding protein 1

Introduction

Alzheimer’s disease (AD) may have multiple primary etiolo-
gies (genetic, sporadic, environmental, and infection) [15, 
68, 90] but is defined by a common characteristic neuropa-
thology and symptomatology, including extracellular deposi-
tion of amyloid plaques, intracellular deposition of hyper-
phosphorylated Tau tangles, neurovascular changes, reactive 
gliosis, cognitive impairment, granulovacuolar degeneration 
(GVDs), and neurodegeneration [6, 86, 153]. AD is esti-
mated to affect around 6.9 million people in America alone 
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and is expected to triple by 2050. The total lifetime cost of 
care for someone with dementia was around $400,000 in 
2023 (Alzheimer’s facts and figures 2024).

Loss of functional synapses and neurons is a defining 
feature of neurodegenerative diseases (NDDs). The cor-
relation between cognitive decline, neuronal cell death, 
and neuropathological alterations, especially Tau pathol-
ogy, is relatively well established in AD [62]. However, it 
remains debated whether neurons die and degenerate by a 
programmed cell death mechanism or become atrophic and 
cleared by phagocytic microglia, as some speculate [156]. 
The question also remains whether neuronal cell death 
spreads over the brain in a predictable pattern similar to 
amyloid deposition [162], Tau pathology [22], or granulo-
vacuolar degeneration (GVD) [163] or whether it occurs 
randomly. How do neurons manage to survive during the 
lengthy prodromal stage of the disease while all pathology 
is accumulating—but no cognitive decline is yet observed. 
Is there a tipping point when neurons begin to degener-
ate?[150]. It also remains unclear how much neuronal 
pathology has to accumulate before patients start to show 
clinical symptoms.

Neurons are regarded as long-lived cell types [104]. The 
literature suggests that neurodegeneration is often associated 
with the accumulation of toxic aggregates of hyperphospho-
rylated Tau (pTau) in the excitatory neurons [44, 46, 48], 
and that accumulation of pathological Tau is closely corre-
lated with synaptic dysfunction and dementia [47, 112, 126, 
140]. Programmed cell death (PCD) is an intricately regu-
lated process involved in tissue homeostasis maintenance of 
multicellular organisms [47]. Several pathways are at play, 
such as apoptosis, pyroptosis, ferroptosis, and necroptosis 
[183], and crosstalk between these pathways is referred to 
as PANoptosis, characterized by the presence of the PANo-
ptosome [128].

The clinical manifestation of AD correlates well with the 
degree of synaptic and neuronal loss in the hippocampus and 
cerebral neocortex. Selective loss of pyramidal excitatory cell 
populations in the hippocampus and cortex, coupled with 
deficits in neuronal circuits, is thought to lead to cognitive 
impairment characteristic of AD. However, cognitive impair-
ment is a relatively late symptom of the disease, suggesting 
that extensive damage occurs already preclinically. Examina-
tion of postmortem AD brains indicates indeed significant 
reductions in brain volume and the number of neurons [5, 6, 
127, 145, 175] as supported by stereological and Isotropic 
fractionator techniques that allow accurate estimates of the 
absolute number of neurons in asymptomatic-AD and severely 
demented AD cohorts. Neuronal density quantification using 
these unbiased stereological methods revealed a > 50% loss of 
neurons in the hippocampus and cerebral cortex of demented 
patients with AD but not in asymptomatic-AD brains [5, 64, 
149]. Post-mortem human tissue offers valuable insights into 

pathological processes; however, these tissue samples repre-
sent only end stages within an ongoing disease continuum. The 
fundamental limitation of endpoint neuropathological analysis 
is that it solely captures the snapshot of neuronal loss, without 
elucidating the transient alterations and ephemeral neuronal 
loss, including the active clearance of dead neurons by resident 
immune cells.

The Tau pathology precedes neuronal cell death and 
shows a rather robust correlation with neurodegeneration 
and cognitive decline in AD. This contrasts with the fact that 
Aβ pathology does not correlate well with cognition [62]. 
Pathological buildup of Tau protein is observed in excitatory 
neurons in specific brain regions, including the locus coer-
uleus [60], cholinergic basal forebrain [22, 165], the entorhi-
nal cortex [17, 22], the subiculum [22], the hippocampus 
[21, 22], and the cortical areas. Frequently, the cells harbor-
ing pathological Tau also exhibit deficits in autophagic and 
endo-lysosomal systems [134]. When neurons undergo cell 
death, intracellular neuronal tangles transition into extra-
cellular ghost tangles characterized by stability, protease 
resistance, and non-immunogenicity. These attributes enable 
the longitudinal tracking of deceased neurons through the 
persistence of these tangles over time. Assuming a one-to-
one correspondence between ghost tangles and deceased 
neurons, if tau-induced neuronal demise primarily occurs 
via ghost tangle formation, it is reasonable to infer that the 
abundance of ghost tangles mirrors the extent of neuronal 
loss. Consequently, quantifying neuronal density in AD 
patients should theoretically account for both ghost tangles 
and healthy neurons, aligning with the total neuronal count 
observed in healthy controls. However, such an assumption 
leads to a significant underestimation of neuronal depletion 
in AD, as evidenced by a notable incongruity in neuronal 
density quantification. Specifically, the loss of neurons in the 
hippocampus, estimated to exceed 50%, exceeds the preva-
lence of extracellular neurofibrillary tangles, estimated at 
approximately 8% [88]. This incongruence suggests that tan-
gle formation alone may not be the sole driver of neuronal 
cell demise.

This review summarizes the recent evidence that necrop-
tosis, one of the major neuronal cell death pathways in AD, 
is linked to Tauopathy. We will speculate on which factors 
might induce neuron-specific activation of the necroptosis 
pathway and discuss the possibility of targeting this pathway 
to impede neuronal loss and to counteract neurodegenera-
tion in AD.

Apoptosis in Alzheimer’s disease

Apoptosis and necroptosis are two distinct modalities of 
regulated cell death. Developing neurons readily engage 
the apoptosis cell death pathway but mature, post-mitotic 
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neurons employ various, redundant, strategies to prevent 
apoptosis (reviewed in [85, 137]). They are, for instance, 
typically resilient to intrinsic apoptosis triggered by mito-
chondrial damage [85], which may ensure their long-term 
survival. Despite this, previous studies have argued that 
apoptosis is activated in the human AD brain. These claims 
are primarily based on studies showing caspase-3, -6, and 
-8 upregulation in AD brain using gene expression stud-
ies or immunohistochemistry. However, the characteristic 
typical morphology of apoptotic bodies is rarely observed 
(1–3 neurons per million) in AD brains [76]. Caspase-3 is 
a key executionary protease in the apoptosis pathway, and 
once activated, it destroys many structural and regulatory 
proteins in the cell, leading to cellular demise. However, 
caspase-3 immunoreactivity in AD was detected mainly in 
GVD bodies and in Tau tangles, and Caspase-3 has been 
linked to the cleavage of a truncated form of Tau at posi-
tion 421 in the C-terminus [29, 76, 94, 103, 114, 154]. 
Although Caspase-3 is activated in AD, the reason why it 
seems to cleave only a select number of substrates (e.g., Tau 
and APP) remains unclear [54, 139]. In parallel with find-
ings from human studies, investigations conducted on an 
experimental animal model (rTg4510 mice) using 2-photon 
imaging demonstrated that only a small subset of neurons 
exhibited caspase positivity [152]. Interestingly, despite the 
presence of activated caspases, the caspase-positive cells did 
not undergo apoptosis over time. In addition, histochemical 
assessments unveiled evidence of caspase-cleaved Tau, yet 
no TUNEL-positive cells or apoptotic morphologies [152]. 
Hence, the lack of typical apoptotic blebbing morphology 
in degenerating neurons, the exceedingly low frequency of 
caspase-3 positive neurons (which does not explain the sub-
stantial neuronal loss) [10], and the presence of caspases 
within Tau tangles [8, 50, 139] all imply alternative func-
tions of caspases in AD, rather than their involvement solely 
in apoptotic cell death [26, 29, 32, 52].

Necroptosis in Alzheimer’s disease

Necroptosis represents a programmed type of necrotic cell 
demise. It results in the lysis of the cell and, in contrast to 
apoptosis, activates inflammation. Necroptosis is induced by 
the activated necrosome complex comprising phosphoryl-
ated forms of receptor-interacting serine/threonine-protein 
kinases (RIPK1, RIPK3) and phosphorylated mixed line-
age kinase (MLKL). Activation of death receptors such as 
TNFR1, FAS, and TLR4 by their cognate ligands facilitates 
necroptosis activation. Inflammatory signals primarily 
induce the canonical necroptosis pathway, typically under 
conditions where apoptosis is impaired or inhibited (Fig. 3) 
[86, 129]. Interest in the role of necroptosis in neuroinflam-
matory and neurodegenerative conditions got traction in 

the last decade. Necroptosis occurs in AD (Fig. 1) [11, 28, 
86], Parkinson’s disease (PD) [38, 100, 125], multiple scle-
rosis (MS) [133] and amyotrophic lateral sclerosis (ALS) 
[138]. However, the extracellular and intracellular factors 
that trigger necroptosis in neurons in NDDs remain elusive, 
which probably reflects the uncertainties with regard to the 
upstream or downstream role of inflammation in those differ-
ent disorders (Fig. 2). A strong caveat, as with the apoptosis 
studies, is that the mere presence of biochemical markers 
of necroptosis in tissues does not necessarily demonstrate 
that necroptosis is effectively occurring, as key mediators 
of necroptosis may have multiple functions and be involved 
in extensive crosstalk with other cell death pathways [34, 
35, 102, 123]. Moreover, as we will discuss, several late 
checkpoints in the necroptosis pathways might delay or stop 
entirely the perforation of the cell membrane and dismissal 
of neurons [41].

In AD, necroptosis is now unequivocally demonstrated 
to be at least partially responsible for the dismissal of neu-
rons, and this claim is based on experiments in patient brain 
samples, xenografted human neurons, and transgenic mouse 
models of AD [11, 28, 86, 87]. Earlier findings suggested 
the activation of necroptosis in neurons and, to some degree, 
in microglia using postmortem AD brains [28]. However, 
this study primarily relied on the expression of total MLKL 
rather than the activated form of MLKL (pMLKL). This is 
insufficient as induction of necroptosis requires the forma-
tion of complex IIb (Fig. 3), and this is characterized by the 
phosphorylation of RIPK1, RIPK3, and MLKL [28]. Using 
well-established control, AD and pre-AD (pre-symptomatic) 
brain samples, it was later demonstrated that the activated 
necrosome complex is exclusively expressed in neurons in 
brain regions known to be susceptible to neurodegeneration 
(hippocampal subfields, subiculum, entorhinal cortex, tem-
poral cortex, hypothalamus, amygdala, and frontal cortex) 
[86].

Furthermore, the necrosome complex was localized in 
specialized cytoplasmic compartments in the neurons known 
as GVD bodies [86], which seem to sequester the necro-
some complex to avoid immediate cell death execution, 
which would explain the abundant presence of necroptosis 
markers in these GVD in AD brains [11, 86] (Fig. 3). The 
GVD-necrosome complexes are correlated positively with 
TAU pathology (Braak staging) and are correlated inversely 
with neuronal cell density in the hippocampus region and the 
late affected frontal cortex layers [86]. Neurons with GVD 
and positive for necroptosis markers are notably abundant in 
the brain, with over 50% of the pyramidal neurons exhibit-
ing activation of necroptosis markers in the hippocampus of 
AD brains. While these studies in the human brain under-
scored the importance of necroptosis in AD, they do not 
allow us to conclude that the lost neurons were dismissed 
by necroptosis or another cell death pathway. We, therefore, 
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used a xenograft model of AD [11], exposing human stem 
cell-derived neurons to amyloid plaque pathology in the 
brain of an amyloid mouse model (AppNL−G−F/Rag2−/−). 
These neurons display pathological Tau accumulation 
and, interestingly, GVD-necroptosis activation. Temporal 
transcriptomic analyses of transplanted neurons unveiled 
that MEG3, a long noncoding RNA, acts as an upstream 
activator of the GVD-necroptosis pathway in this model. 
Most importantly, downregulating MEG3 expression using 

shRNA or inhibiting necroptosis using pharmacological or 
genetic approaches targeting RIPK1, RIPK3, or MLKL all 
effectively prevented neuronal cell loss, providing compel-
ling evidence for the involvement of necroptosis in amyloid 
plaque-induced neuronal degeneration [11]. These observa-
tions strongly indicate a plausible role of the necroptosis 
pathway in neuronal cell death in AD.

Both in the postmortem and xenotransplantation 
studies, we noticed a remarkable association between 

Fig. 1  Discovery of cell death 
pathways in relation to observa-
tions in Alzheimer’s disease. 
The discovery of the different 
cell death mechanisms is indi-
cated on the left side of the time 
bar. On the right side, signifi-
cant observations in Alzhei-
mer’s disease are indicated
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necroptosis markers and GVD bodies. The abundant pres-
ence of this pathology is particularly intriguing as it is 
generally assumed that once a cell death pathway is initi-
ated, cells undergo complete demise within 24 h [13, 142]. 
The presence of the necrosome complex within GVDs sug-
gests, therefore, a biological checkpoint aimed at prevent-
ing the execution of necroptosis (Fig. 3).

While acknowledging activation of various types of 
programmed cell death in AD beyond necroptosis (cas-
pase-3 activation (discussed above), pyroptosis [116, 169], 
ferroptosis [169], autophagy [121], and other mechanisms 
[56], necroptosis seems to be the predominant cell death 
pathway by which neurons degenerate in AD. Of course, 
there might be significant interplay among different cell 
death pathways in AD and in chronic degenerative dis-
ease in general, and further work will indicate whether 
PANoptosis [147] is a better concept than necroptosis 
to understand the underlying molecular and cell biology 
mechanisms of neuronal cell loss in AD.

GVD, necroptosis, and Tau pathology

Simchowicz and Hirano described already an intraneu-
ronal accumulation of aggregates in a membrane-bound 
vacuole (~ 3–5 µm diameter) with central granulated 
structures in AD more than 100 years ago (Fig. 1) [65, 
78]. These structures are called GVD bodies or GVDs 
and are specific to neurons. GVDs were mainly observed 
in hippocampal pyramidal neurons in limbic and neocor-
tical regions in various pathological conditions such as 
AD, PD, ALS, PSP, PSP, Pick’s, and Guam diseases and 
have become one of their histopathological features [163]. 
While GVDs are observed in healthy conditions as well, 
their abundance per neuron and the number of neurons 
with GVD significantly increase in pathological condi-
tions [9, 10, 78, 163, 178]. In AD, similar to extracellular 
amyloid plaques and neurofibrillary tangles, GVDs also 
spread through the brain and reflect the spatiotemporal 

Fig. 2  Link between endocytosis, autophagy, GVD, and necropto-
sis in Alzheimer’s disease. A schematic depiction of the interplay 
between the autophagic and endocytic pathways in healthy conditions 
(left side) and in Alzheimer’s disease (right side) in relation to granu-
lovacuolar degeneration bodies (GVDs) pathology. In Alzheimer’s 
disease, intracellular pathological aggregates such as Tau enter the 
autophagy and endo-lysosomal system for degradation. Tau aggrega-

tion can disrupt proteostasis, intracellular trafficking, and function of 
this system. The proteolytic capacity may also be inadequate to effi-
ciently degrade the toxic aggregates, increasing demand on the lyso-
somal system to break down pathological Tau. Impaired endo-lyso-
somal function and overloading of the lysosomal system can result in 
the accumulation of undigested cytosolic cargo in GVD. Representa-
tive protein markers from every organelle are indicated
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distribution of the neurofibrillary tangle pathology [83, 
163].

Earlier research has shown that GVD lesions correlate 
with the degeneration of neurons in brain regions such as 
the entorhinal cortex, hippocampus, and, to some extent, 
the frontal cortex in AD and with accumulating pTau and 
Aβ pathology [83, 86, 91, 136]. Whether a causal rela-
tionship exists between GVD and neuronal loss remained 
unclear. Tau and GVD pathologies are frequently observed 
in the same neurons in the aforementioned vulnerable brain 
regions [44–46, 140, 177]. GVDs are thought to originate 

from late-stage autophagy structures and contain several 
aggregated proteins relevant to AD pathogenesis [49, 174]. 
Similar to pathological Tau, GVD first appears in the CA1 
region of the hippocampus, and, like pathological Tau aggre-
gates, accumulation of GVD is better correlated with neu-
ronal cell loss than Aβ plaque pathology. Aβ plaques [16, 
80, 153, 162, 172], being a disease-defining feature of AD, 
are not directly correlated to neuronal cell death or cognitive 
decline [16, 51, 79, 80]. They are likely acting as a trigger 
of a gradually developing chronic gliosis and neuroinflam-
mation [153] acting upstream in the disease pathway, for 

Fig. 3  Necroptosis checkpoint mechanism in neurons in Alzheimer’s 
disease. The canonical necroptosis pathway is initiated by the bind-
ing of ligands to cell surface death receptors such as TNFR1. Upon 
TNF binding to TNFR1, a transient intracellular complex (referred 
to as complex I) forms, recruiting adaptor proteins like TRADD, 
RIPK1, and other key signaling molecules involved in TNFR1-medi-
ated NF-kB signaling (not shown in the image). However, dysregu-
lation of complex I leads to RIPK1 activation through phosphoryla-
tion at S166. This results in the formation of two distinct cytosolic 
complexes, complex IIa, and complex IIb, which facilitate RIPK1-
dependent apoptosis or necroptosis, respectively. Complex IIa com-
prises FADD, CASP8, and RIPK1, promoting CASP8 activation, 
which cleaves pro-caspase-3 into active, cleaved caspase-3, initi-
ating the apoptotic cell death pathway. When apoptosis is impaired 
or inhibited, activated RIPK1 binds to RIPK3 to form complex IIb. 
Phosphorylation of RIPK3, either by RIPK1 or through autophospho-
rylation, leads to MLKL phosphorylation, causing its translocation 

to the plasma membrane and induction of necroptosis by disrupting 
plasma membrane integrity. Moreover, membrane-bound TLR4 can 
trigger necroptosis either upon LPS binding or by interacting with 
cytosolic viral nucleic acids via TRIF and can directly bind to RIPK3, 
bypassing RIPK1 to induce necroptosis. Cytosolic viral Z-DNA or 
Z-RNA can also prompt necroptosis by binding to Z-DNA-binding 
protein 1 (ZBP1), mediating RIPK3-dependent necroptosis. The 
phosphorylated MLKL oligomerizes to execute cell death. In Alz-
heimer’s disease, internalized necrosome complexes can accumulate 
inside neuronal somas as GVDs due to impaired endo-lysosomal 
systems (checkpoint 1). Increased levels of oligomerized pMLKL 
in the cytosol lead to its translocation to the plasma membrane. The 
oligomerized pMLKL on the damaged plasma membrane can be 
removed through endocytosis mediated by flotillin and ESCRT-III, 
followed by degradation in lysosomes, or by exocytosis mediated by 
Alix and syntenin in the form of exosomes (checkpoint 2)
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instance by inducing MEG3 expression [11]. Aβ-pathology 
is also linked to both the formation and the spreading of 
pathological Tau and is in that way also linked to activation 
of necroptosis and GVD formation [14, 63, 163], in accord-
ance with its role as a trigger, not a driver of the disease [79].

There is differential vulnerability among neurons to Tau, 
GVD pathology, and neurodegeneration [44, 95, 136, 140, 
175]. Excitatory cholinergic basal forebrain neurons, as well 
as neurons in the entorhinal cortex, hippocampus, and sub-
iculum, among other regions [45, 46], are particularly prone 
to degeneration. In contrast, inhibitory neurons are relatively 
spared from Tau pathology, although they are functionally 
affected early in the disease [44, 53, 95, 167]. Similarly, 
there is an inverse correlation between neuronal myelina-
tion and perineuronal nets with the onset of Tau pathology. 
Tau pathology tends to appear initially in cortical regions 
where myelination occurs later in development and spreads 
to areas with higher levels of myelination [23–25]. Moreo-
ver, neurons with aggrecan-based perineuronal nets or brain 
regions with abundant extracellular matrix chondroitin sul-
fate proteoglycans show less Tau and tangle pathology [27, 
117]. We hypothesize that this selective vulnerability within 
neuronal subpopulations among different brain regions may 
contribute to discrepancies in Tau and GVD distribution.

A direct role of Tau in GVD generation was suggested in 
in vitro experiments using rodent primary cultures stimu-
lated with Tau seeds, which induced GVD bodies exclu-
sively in neurons but not in glia [174]. We have recently con-
firmed these and have observed that neurons deficient in Tau 
expression are not able to generate GVD in vitro (T’Syen, 
Balusu and De Strooper, manuscript in preparation). GVDs 
have been observed only in older Tau transgenic mice (24 
months, e.g., Tau22, JNPL3, and PS19) and double trans-
genic mice carrying both human APP and Tau transgenes, 
but not in APP transgenic mice alone [70, 84, 86, 96, 113, 
179]. Moreover, crossing APP transgenic mice with Tau 
transgenic mice accelerated Tau, GVD pathology, and neu-
rodegeneration in line with an upstream role of amyloid in 
disease acceleration [79, 87, 96]. Intriguingly, inhibition of 
necroptosis using brain-penetrant small molecules in these 
mouse models rescued neuronal loss, confirming the direct 
role of necroptosis in AD-relevant neuronal loss [11, 87].

Origin, content, and fate of GVD bodies 
and their association with Alzheimer’s 
disease pathogenesis

The mechanism of GVD formation and its relationship 
with pathological Tau in neurons remains poorly under-
stood. Earlier studies using electron microscopy revealed 
a double-layer membrane, which suggested an autophagic 
origin [124]. However, recent immunohistochemical 

analysis of postmortem brain samples and in vitro mod-
eling indicate the absence of LC3 and p62, both early 
autophagy markers, and EEA1, an early endosome 
marker [49]. GVDs exhibit, however, immunoreactiv-
ity to late autophagic markers like LIMP2 and LAMP1 
on the outer membrane, as well as to endocytic mark-
ers such as CHMP2B in their dense core [49]. GVDs in 
mouse primary culture neurons induced by aggregated 
Tau are immune reactive to markers such as CK1δ, CK1ɛ, 
CHMP2B, and pPERK. The proteolysis reporter DQ-
BSA is found in most GVDs, indicating that they contain 
degraded endocytic cargo and fuse with lysosomes [173, 
174]. GVDs in cell culture, like their counterparts in vivo, 
exhibit immunoreactivity to LAMP1 and LIMP2, suggest-
ing the contribution of lysosomes [49].

The cumulative observations in brain samples and in vitro 
models suggest that the GVDs harbor late-stage autophagy 
markers and amass at the nexus of autophagic and endo-
cytic routes, probably as a consequence of an incomplete 
formation of autolysosome formation, which subsequently 
accumulates as GVDs [49].

The content of GVDs might provide further insights into 
their origin. Their dense cores contain coarse electron-dense 
protein aggregates, while the surrounding area appears floc-
cular and liquid-like. Analytical EM studies revealed the 
presence of aluminum in GVDs [124]. A myriad number of 
proteins from different subcellular compartments accumu-
late in GVDs, including components of the unfolded protein 
response (UPR), other stress-related proteins, ubiquitin, neu-
rofilament, kinases (GSK3β, CDK5, CK1α, CK1β CK1δ, 
MAPK, SYK, MARK 3&4, and JNK), disease-associated 
proteins (pTau, pAβ (Ser26), and pTDP43) [67, 89, 170], we 
refer to several excellent recent reviews for more exhaustive 
coverage of the proteome of GVD [67, 83, 173].

As several disease-associated proteins accumulate in 
GVD, there is great potential in further exploring the content 
of GVD for novel diagnostic markers of AD. CK1 is such an 
example. It is a biomarker for GVD in AD brains and CK1 
levels can increase by up to > 20-fold in neurons containing 
tangles and GVDs [180]. In addition, members of the CK1 
family are known to phosphorylate Tau, RIPK1 and RIPK3, 
components of the necrosome [61]. It is intriguing to see 
both CK1 and its substrates accumulating within the GVD 
subcellular compartment.

The exact role of GVD in the neurodegeneration process 
remains unclear. GVDs may potentially handle misfolded 
proteins. Tau is known to be degraded by autophagy and 
endocytosis [1] and might end up in late autophagic or 
GVD compartments if degradation is hampered. However, 
the question remains whether pathological Tau specifically 
triggers the necroptosis cell death pathway in neurons and 
whether other aggregates can induce similar pathology [37, 
113, 176].
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GVD‑necroptosis pathway: protective 
or detrimental

GVDs could serve as a defense mechanism against necrop-
tosis, or they might reflect a gradual, slow-acting form of 
this process. Several cell-type-specific checkpoint mecha-
nisms have been identified that are capable of reviving 
cells from necroptotic demise, and it might be that the 
GVD accumulation is just reflecting one of those mecha-
nisms (Fig. 3) [41, 141, 185]. Instead of permeabilizing 
the cell membrane and executing necroptosis, membrane-
bound pMLKL can be endocytosed via a flotillin-mediated 
mechanism and degraded in the lysosomes (checkpoint 2, 
Fig. 3). Alternatively, ALIX-syntenin-1-mediated exocy-
tosis of pMLKL via extracellular vesicles can also pro-
tect the cell membrane (checkpoint 1, Fig. 3) [41, 181, 
185]. It looks like the neurons in AD, maybe because of 
an altered endo-lysosomal system, may accumulate such 
vesicles with aggregated pMLKL and potentially other 
toxic aggregates, thereby contributing to the formation of 
GVDs [1, 41, 158, 181, 185]. Notably, genetic studies, in 
particular genome-wide association studies (GWAS) have 
identified several risk genes of AD which are operating 
in the endo-lysosomal network (ELN), such as PICALM, 
PLD3, BIN1, CSTD, CLU, UBQLN1, GRN, and SORL1 
[12, 15, 74, 109].

Endo‑lysosomal autophagy is disturbed 
by Tau pathology and provides links 
to GVD‑necroptosis

In the context of AD, the intracellular aggregates of hyper-
phosphorylated, conformationally altered Tau are associ-
ated with synaptic loss, GVD formation, necroptosis acti-
vation, and neuronal loss [19, 72, 86, 136, 174, 182]. Tau 
is an intrinsically disordered protein and is mainly present 
in axons. Post-translational modifications such as phos-
phorylation, acetylation, and ubiquitinylation negatively 
impact its ability to interact with microtubules, leading 
to aggregation. The aggregated Tau is either degraded or 
assembled into filamentous inclusions, which vary among 
the different Tauopathies [43, 148, 171].

The question of whether pathological inclusions of 
Tau are only indicators of disease progression or directly 
involved in cellular demise remains unresolved. Conflict-
ing evidence from various model systems used to model 
AD Tau pathology has led to ongoing controversy regard-
ing whether monomers, oligomers, or filaments, are toxic 
[120]. Recent data from in vitro and in vivo studies using 
pathological Tau seeds indicate that these seeds can be 

internalized and can propagate pathology both in vitro and 
in vivo [14, 30, 63, 93, 108]. These toxic protein aggre-
gates in the cytosol are degraded via either the proteasome 
or autophagic-lysosomal systems and we speculate that 
disturbances of these pathways, either upstream of Tau 
or caused by accumulating Tau, are linked to GVD and 
necroptosis.

The ubiquitin–proteasome system (UPS) marks Tau for 
degradation via monoubiquitylation or polyubiquitination 
[33]. Unlike monoubiquitination, specific branching patterns 
of polyubiquitination at amino acid residues (K6, K11, K48, 
K63 and M1) determine the route of protein degradation. 
K48-linked polyubiquitination is predominant and targets 
the Tau protein to the proteasome. K63-linked polyubiq-
uitination can serve diverse functions, including directing 
Tau to autophagic or lysosomal pathways, but it could also 
promote the formation of insoluble inclusions and facilitate 
endocytosis [33]. Polyubiquitination could indeed contribute 
to Tau accumulation within GVDs, particularly in the pres-
ence of autophagy defects [31, 33, 171].

Strong arguments for the involvement of proteins belong-
ing to the endo-lysosomal network and autophagy in AD 
pathogenesis came from the GWAS studies [15, 74]. Impair-
ment in the auto-lysosomal axis in neurons has also been 
documented in AD brains and transgenic mouse models 
[132]. For example, an increase in the expression of RAB5 
and RAB7 has been observed exclusively in regions prone to 
degeneration in individuals with mild cognitive impairment 
(MCI) and AD [55]. The activity of the mammalian target 
of rapamycin (mTOR), a negative regulator of autophagy, 
is notably elevated in AD brains, which also positively cor-
relates with Braak staging [4, 132].

Interestingly, the accumulation of autophagosomes in 
the dystrophic neurites around the plaque has been noted in 
AD brains as well as in several transgenic amyloid mouse 
models such as APP-PS1, 5xFAD, and  AppNL−G−F [146]. 
PLD3, also known as phospholipase D3, has been linked to 
late-onset AD (LOAD) and is highly enriched in the dys-
trophic neurites both in human AD brains and transgenic 
amyloid mouse brains [42, 118, 143, 184]. Functional 
experiments with overexpression of PLD3 caused endolys-
osomes to enlarge, leading to their accumulation and a 
decline in axonal conduction. Conversely, the deletion of 
PLD3 reversed these abnormalities, thereby establishing a 
mechanistic link between PLD3 expression and the enlarge-
ment of endo-lysosomal compartments in AD. This adds 
to the substantial evidence suggesting that AD pathology 
disrupts autophagy and the endo-lysosomal system [42, 118, 
143, 146, 184].

GVDs, which are late-phase autolysosome compart-
ments, accumulate in the soma of degenerating neurons. 
They contain a diverse range of disease-associated proteins 
such as pTDP43 and pTau [164, 170]. Increased expression 
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of early autophagy markers such as MAP1LC3B-II and p62 
(also known as SQSTM1/p62) is associated with neurofi-
brillary tangles [92, 134]. Whether the increase in expres-
sion of autophagy markers in AD represents a high demand 
for autophagy as a protective reaction or an impaired 
autophagosome maturation in neuronal cell bodies as part of 
the pathogenesis is unclear. The lysosomal acidification sys-
tem, downstream of autophagosome maturation, is crucial 
in effectively breaking down and recycling luminal contents 
[81, 122]. In AD, reduced expression of lysosomal proteins 
like Cathepsin D (CTSD) and lysosomal-associated mem-
brane protein 1 (LAMP1) and subcellular mis-localization 
are potentially reflecting a hampered lysosomal acidification 
in both neurons and glia [69, 77, 122].

It is intriguing that proteins detected in autophagosomes 
within dystrophic neurites resulting from amyloid plaque 
deposition are also present in the GVDs [67], which are pri-
marily triggered by intracellular Tau pathology. Despite the 
shared proteome composition between dystrophic neurites 
and GVD compartments, there are significant differences in 
the maturation and intracellular fate of these organelles. For 
instance, early-stage immature autophagosomes in axonal 
DNs undergo retrograde transport towards the cell body, 
where they subsequently fuse with lysosomes for further 
degradation [66]. However, the significant accumulation of 
both immature and mature autophagic vesicles within DNs 
compared to neuronal perikarya suggests either impaired 
retrograde transport [18, 122, 159] or a more effective and 
robust autophagic process, specifically within the axonal 
dystrophic neurites [2, 122, 130]. Furthermore, senescence 
and impaired autophagy can result in the accumulation of 
intracellular Aβ, potentially contributing to downstream 
effects involving Tau, necroptosis, and GVDs [3, 57, 82, 
155] (Fig. 2).

Canonical necroptosis cell death pathway 
and relevance to Alzheimer’s disease

The intermediate domain of RIPK1 contains a RIP homo-
typic interaction motif (RHIM), which facilitates both homo- 
and heterodimeric interactions with other RHIM-containing 
proteins, including RIPK3, Toll/IL-1R domain-containing 
adapter-inducing interferon-β (TRIF), and Z-DNA bind-
ing protein 1 (ZBP1) [35, 58, 119]. These RHIM motif 
domains are pivotal in initiating necroptosis. Furthermore, 
the C-terminal death domain (DD) of RIPK1 also mediates 
both homo and heterodimerization with other intracellular 
death domain-containing proteins like Fas-associated pro-
tein with a death domain (FADD), TNFR1, and FAS [58, 
166]. RIPK1 can, on the contrary, prevent cell death by 
regulating pro-survival B-cell lymphomas-2 (BCL-2) and 
X chromosome-linked inhibitor of apoptosis (XIAP) and 

inflammatory gene expression in the cells (Fig. 3) [35]. 
RIPK3 is another core component of the necroptotic cell 
death pathway. Upon phosphorylation, either by RIPK1 or 
through self-phosphorylation, RIPK3 recruits MLKL and 
triggers MLKL phosphorylation [166]. Like RIPK1, RIPK3 
also contains a RHIM domain that enables the formation of 
a signaling complex between RIPK1 and RIPK3, character-
ized by amyloid-like structures formed by the two proteins, 
thereby initiating downstream signaling events [115]. RIPK3 
can be activated by ZBP1, a nucleic acid pattern recognition 
receptor that binds to cytosolic z-DNA or z-RNA. MLKL, 
finally, is the “execution protein” of the necroptosis path-
way. MLKL consists of a four-helical bundle (4HB) domain 
at the N-terminal and a pseudokinase domain at the C-ter-
minal side [131]. RIPK3 facilitates the phosphorylation of 
MLKL, leading to a conformational change in its structure. 
This alteration induces MLKL aggregation, necrosome for-
mation, translocation to the cell membrane, membrane per-
meabilization, and ultimately leads to cell death [58, 166].

Classically, necroptosis has been studied in the context of 
inflammatory stimuli such as tumor necrosis factor (TNF). 
TNF binds to tumor necrosis factor receptor 1 (TNFR1), 
initiating the recruitment of cellular inhibitors of apopto-
sis proteins (cIAP), RIPK1, TNF receptor-associated fac-
tor (TRAF), and TNF receptor-associated death domain 
(TRADD) to the intracellular domain of TNFR1, resulting 
in the assembly of complex I and induction of a pro-inflam-
matory response [129]. TNFR1 prompts apoptosis via com-
plex IIa (Fig. 3). However, in conditions where apoptosis 
is deficient, TNF triggers caspase-independent cell death 
through RIPK1 (complex IIb) [36].

Given the strong link between TNF and necroptosis, it 
becomes imperative to inquire whether TNF, interferon, 
or Toll-like receptor (TLR) ligands—known stimulants 
of necroptosis—are upregulated in AD. While we provide 
a summary of previous research, it appears imperative to 
undertake further investigations in this area, as correlative 
evidence indicates its potential significance. Inflammatory 
conditions such as rheumatoid arthritis (RA), psoriasis, and 
inflammatory bowel disease, where TNF plays a significant 
role, are associated with a higher likelihood of developing 
AD [29, 135, 138, 187]. While epidemiological evidence 
provides correlative evidence of an association between anti-
TNF treatment in RA and a lower incidence of AD, this 
relationship does not prove, of course, causality [187]. A sin-
gle nucleotide polymorphism in TNF (G308A; rs1800629) 
correlates with susceptibility to AD in the Chinese popula-
tion, whereas the same SNP shows a protective effect in the 
European population [6, 20, 138, 168].

Reports measuring TNF or TNFR1 in patients are also 
not unequivocal [135, 157, 160]. One potential source 
of TNF in the brain is the microglia. Microglia exhibit a 
diverse range of cellular states when exposed to amyloid 
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Aβ pathology, including the cytokine response microglia or 
CRM characterized by upregulation of a whole series of 
pro-inflammatory cytokines [105, 106]. One study reported 
a close association of the activated HLA-DR+ microglia 
and CD8+ T cells in close proximity to neurons expressing 
pMLKL. However, it is not clear whether microglia locally 
produce TNF to initiate necroptosis in neurons [75].

Exploring therapeutic strategies 
by targeting the necroptosis pathway 
in Alzheimer’s disease

The recent approval of Aβ-targeting immunotherapy and 
progress in treating Tau pathology are hopeful developments 
in the field of AD [40]. However, removing the biochemical 
hallmarks of the disease at the stage that dementia symptoms 
occur will not be enough to stabilize the disease. Moreover, 
it takes about 1 year to clear amyloid plaques from the brain 
[151], and likely a similar time for Tau. During treatment, 
neurons will continue to suffer from amyloid stress, and 
necroptosis will be maintained. To maximize therapeutic 
benefits, it might be essential to stop neuronal loss while the 
neuroinflammatory environment induced by amyloid plaques 
gradually resolves. Therapeutically inhibiting the main cell 
death mechanisms while Aβ therapy is building up its ben-
efits might result in a better outcome for the patient.

Several necroptosis inhibitors are approved already or are 
in various stages of development for the treatment of cancer. 
For instance, ponatinib (targets both RIPK1 and RIPK3) and 
dabrafenib and Sorafenib (targets RIPK3) were approved for 
the treatment of leukemia [7, 111]. These kinase inhibitors 
are not specific and known to target non-overlapping kinases 
such as SRC, ABL, BRAF, RAF, VEGFR, PDGFR, FGFR, 
KIT, SIK1, NEK11, RET, TIE2, BCR-ABL, EPHR, FLT3, 
TAK1, and RIPK2 [110]. We recently demonstrated that 
ponatinib and dabrafenib could rescue neuronal loss in both 

the preclinical xenograft model of AD as well as in a mouse 
model harboring both amyloid and Tau pathology (double 
transgenic mice, APP23xTau58) [11, 87, 119].

Nearly 37 compounds are being studied to target RIPK1, 
the upstream kinase in the necroptosis cascade with 27 in 
preclinical stages and 10 in clinical trials. In 2018, Denali 
forged a partnership with Sanofi aimed at developing CNS-
specific RIPK inhibitors for AD, ALS, and MS indications. 
DNL788 (SAR443820) is a selective and potent RIPK1 
inhibitor succeeding DNL747, which Denali and Sanofi 
halted after Phase 1 due to apprehensions regarding its 
long-term toxicity. DNL788 was tested in the clinic for ALS 
and MS indications. In the ALS Phase 2 HIMALAYA trial 
the drug failed to meet the primary endpoint, i.e., a better 
functional outcome as measured with the ALSFRS-R (ALS 
Functional Rating Scale—Revised). The role of necroptosis 
in ALS remains a subject of ongoing investigation. Some 
studies suggest that necroptosis is implicated in the degen-
eration of motor neurons [71], while others, using preclini-
cal models like the SOD1 model of ALS, have reported no 
alteration in motor neuron degeneration upon deletion of 
RIPK1 [39]. A recent neuropathological study revealed no 
accumulation of the necrosome complex in the central cor-
tex and spinal cord [144]. Another RIPK1 inhibitor, SIR-
2446 is an oral RIPK1 inhibitor being developed by Sironax 
therapeutics for the treatment of AD and MS and is currently 
in Phase 1 clinical trials. DNL788 is also being tested in 
relapsing–remitting MS in a Phase 2 in collaboration with 
Sanofi (Table 1).

Currently, there are no drugs in the clinical phase of 
development specifically aimed at targeting RIPK3, although 
some are in the preclinical pipeline. Compounds such as 
GSK’840, GSK’843, and GSK’872 that target RIPK3 
induced a conformational change, enabling the recruitment 
of RIPK1 through the RHIM domain, resulting in caspase 8 
activation and the initiation of apoptosis [107]. This unex-
pected induction of apoptosis by RIPK3 upon drug binding 

Table 1  List of drugs targeting 
the necroptosis cell death 
pathway in CNS-related 
conditions

Drug Target Company Phase Indication

Necrostatin-1 RIPK1 Academic/non-profit Preclinical AD, PD, ALS
7-Cl-O-Nec-1 RIPK1 Academic/non-profit Preclinical AD, PD, ALS
BSC-3301 RIPK1 BisiChem Preclinical AD, MS, ALS
SIR-2446 RIPK1 Sironax Ltd Phase 1 AD, MS
AMX0035 RIPK1 Amylyx Pharmaceuticals Phase 3 ALS
DNL788/SAR443820 RIPK1 Denali Therapeutics Phase 1 ALS (ceased), MS
VRN-04-1 (VRN-04) RIPK1 Voronoi preclinical Inflammation
GSK’843 RIPK3 GlaxoSmithKline Preclinical Neurodegen-

erative diseases 
(broad)

IRP-1529 RIPK3 IRP Systems Preclinical AD, PD
PN10943 RIPK3 ProteoNic Preclinical AD, PD
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has impeded drug discovery programs for RIPK3. Recent 
studies have shown that Heat shock protein 90 (HSP90) 
regulates the necroptosis pathway by targeting RIPK3 and 
MLKL in a classical TNF induced necroptosis model [73, 
98, 186], which might open the possibility of targeting 
RIPK3 or MLKL via HSP90 inhibition [97]. However, it 
remains to be established whether similar mechanisms are 
conserved in the context of GVD-necroptosis in AD.

Alternatively, one could study and target the upstream 
regulators of the necroptosis pathway, especially if they are 
specific for AD. For instance, the long noncoding RNA, 
MEG3, is differentially regulated in AD and has been 
shown to regulate cell death pathways [11, 59, 99, 101]. 
In vitro overexpression of MEG3 in neurons can activate the 
necroptosis pathway and its effect can be countered using 
ponatinib, dabrafenib, or necrosulfonamide [11]. Likewise, 
inhibition of MEG3 expression in transplanted neurons 
rescued neuronal loss, consistent with observations made 
in vitro. While the precise mechanism by which MEG3 
induces necroptosis and the upstream factors that induce 
MEG3 expression remains unclear, it is intriguing to specu-
late that identifying those might finally provide a molecular 
link between Tau pathology and neuronal loss. Inhibiting 
such upstream necroptosis-inducing factors might present a 
broader opportunity to target this pathway and specifically 
inhibit neuronal loss in AD.

Conclusion

Demonstrating that necroptosis is involved in Tau pathol-
ogy-driven neuronal loss in AD seems a pivotal observa-
tion. This observation provides the foundation for further 
work aimed at linking those pathologies at the molecular 
level and identifying kinases or other proteins that connect 
neuroinflammation, Tau pathology, the induction of the 
necrosome, and components of the GVD in a consistent 
pathway that can be targeted for the treatment of AD. Simi-
larly, unraveling the role of upstream triggers of this pathway 
(Aβ and/or inflammatory mediators) seems a crucial aim for 
further Alzheimer’s research. A critical note remains that 
cell death pathway molecules are multifunctional and can 
be involved in an array of mechanisms leading to protection 
or cell death. The following years will teach to what extent 
necroptosis is necessary and sufficient for neuronal loss in 
AD or whether it is the culmination of varying cell death 
pathways and PANoptosis that determines the outcome of 
this devastating disease [161].
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